EP0544365B1 - Detergent compositions and process for preparing them - Google Patents
Detergent compositions and process for preparing them Download PDFInfo
- Publication number
- EP0544365B1 EP0544365B1 EP92203563A EP92203563A EP0544365B1 EP 0544365 B1 EP0544365 B1 EP 0544365B1 EP 92203563 A EP92203563 A EP 92203563A EP 92203563 A EP92203563 A EP 92203563A EP 0544365 B1 EP0544365 B1 EP 0544365B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- weight
- composition
- process according
- detergent
- starting material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Revoked
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/395—Bleaching agents
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/66—Non-ionic compounds
- C11D1/83—Mixtures of non-ionic with anionic compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/02—Inorganic compounds ; Elemental compounds
- C11D3/12—Water-insoluble compounds
- C11D3/124—Silicon containing, e.g. silica, silex, quartz or glass beads
- C11D3/1246—Silicates, e.g. diatomaceous earth
- C11D3/1253—Layer silicates, e.g. talcum, kaolin, clay, bentonite, smectite, montmorillonite, hectorite or attapulgite
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D11/00—Special methods for preparing compositions containing mixtures of detergents
- C11D11/0082—Special methods for preparing compositions containing mixtures of detergents one or more of the detergent ingredients being in a liquefied state, e.g. slurry, paste or melt, and the process resulting in solid detergent particles such as granules, powders or beads
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D17/00—Detergent materials or soaps characterised by their shape or physical properties
- C11D17/06—Powder; Flakes; Free-flowing mixtures; Sheets
- C11D17/065—High-density particulate detergent compositions
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/02—Inorganic compounds ; Elemental compounds
- C11D3/12—Water-insoluble compounds
- C11D3/124—Silicon containing, e.g. silica, silex, quartz or glass beads
- C11D3/1246—Silicates, e.g. diatomaceous earth
- C11D3/128—Aluminium silicates, e.g. zeolites
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/39—Organic or inorganic per-compounds
- C11D3/3902—Organic or inorganic per-compounds combined with specific additives
- C11D3/3905—Bleach activators or bleach catalysts
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/39—Organic or inorganic per-compounds
- C11D3/3942—Inorganic per-compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/02—Anionic compounds
- C11D1/12—Sulfonic acids or sulfuric acid esters; Salts thereof
- C11D1/14—Sulfonic acids or sulfuric acid esters; Salts thereof derived from aliphatic hydrocarbons or mono-alcohols
- C11D1/146—Sulfuric acid esters
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/66—Non-ionic compounds
- C11D1/72—Ethers of polyoxyalkylene glycols
Definitions
- the present invention relates to a process for the preparation of a granular detergent composition having a high bulk density and good powder properties. More in particular, it relates to a process for the continuous preparation of such detergent compositions, especially those with high detergent activity. Moreover, it relates to a granular detergent composition obtainable by the process of the present invention.
- the first type of process involves spray-drying an aqueous detergent slurry in a spray-drying tower.
- the various components are dry-mixed and optionally agglomerated with liquids, e.g. nonionics.
- the most important factor which governs the bulk density of a detergent powder is the bulk density of the starting materials in the case of a dry-mixing process, or the chemical composition of the slurry in the case of a spray-drying process. Both factors can only be varied within a limited range.
- EP-A-337,330 (Henkel) relates to a continuous process for obtaining high bulk density detergent powder containing a considerable amount of anionic and nonionic surfactant material, said process comprising treating spray-dried detergent material in a high-speed mixer under addition of nonionic material, whereby the mean residence time in the mixer is from 10-60 seconds. Alkyl sulphate is not mentioned in this document.
- EP-A-265,203 discloses liquid surfactant compositions comprising an anionic and a nonionic surfactant. This patent document also discloses the use of these compositions which comprises spraying these compositions onto a solid particulate absorbent material. In this document alkyl sulphate is explicitly mentioned as a possible anionic surfactant which could effectively be applied in the surfactant composition which is sprayed onto the absorbent material.
- the disadvantages of this route are the limited level of active detergent material which can be dosed in this way and the necessity that the particulate solid material to which the liquid surfactant compositions are added, is an absorbent material. Furthermore, at increased levels of active detergent material sticky detergent powder having deteriorated powder properties could easily be produced in this way.
- liquid surfactant system comprising alkyl sulphate and an alkoxylated nonionic surfactant is thoroughly mixed with particulate starting material during treatment of this starting material in a high speed mixer/densifier.
- the present invention provides a process for the preparation of a granular detergent composition having a bulk density of at least 650 g/I, which comprises treating a particulate starting material in a high speed mixer/densifier, characterised in that 0.1 to 50% by weight as calculated on the granular detergent composition of a liquid surfactant composition is mixed with the starting material during this treating process, said surfactant composition comprising
- the invention provides a granular detergent composition obtainable by this process and having a particle porosity of less than 10%, preferably less than 5%.
- the present invention is concerned with a process for the preparation of a high bulk density powder having a high active detergent content.
- An important characteristic of the present process is that the detergent material remains throughout the process in particulate or granular form. Caking, balling an dough formation are avoided and the final product does not require an additional step in which the particle size is reduced.
- a liquid surfactant composition comprising alkyl sulphate and an alkoxylated,preferably ethoxylated, nonionic surfactant is thoroughly mixed with a particulate starting material in a high-speed mixer/densifier.
- This is essentially an agglomeration process, wherein the particulate starting material is agglomerated by the liquid surfactant material, resulting in detergent particles containing the particulate starting material and a surfactant phase.
- this surfactant phase acts as a binder for the particulate starting material.
- This agglomeration process can be carried out either as a continuous or as a batch process.
- the agglomeration process is a well controlled, robust process resulting in detergent powder with the desired particle size and with powder properties which are comparable to those of detergent powders currently on the market .
- the liquid surfactant composition it has been found effective to add to the liquid surfactant composition one or more components with such a composition that a significant viscosity increase of the resulting total liquid composition is obtained.
- the addition of these components raises the afore-mentioned viscosity generally by at least a factor 5, preferably by at least a factor 10, a viscosity increase by at least a factor 100 being most preferred (when measured in a Haake viscometer at a shear rate between 0.1 and 20 S- 1 ).
- the agglomeration process appeared to be better controllable resulting in better powder properties of the detergent material produced in this way.
- viscosity raising components are water and, particularly, fatty acid in combination with a stoichiometric amount of alkaline material (such as caustic soda) sufficient to neutralize the fatty acid which obviously results in the formation of soap.
- alkaline material such as caustic soda
- the detergent powder obtained by the process of the invention may be further treated in a second step in a moderate speed granulator/densifier, whereby it is brought into or maintained in a deformable state, the mean residence time being from 1-10 minutes, and thereafter in a third step in a drying and/or cooling apparatus, as described in EP-A-367,339.
- the process of the present invention is very flexible with respect to the chemical composition of the particulate starting material.
- This material comprises the compounds usually found in detergent compositions such as builders and detergent active materials. Phosphate containing as well as zeolite containing compositions and compositions having either high or low active detergent content may be used as particulate starting material.
- the detergency builder present in the starting material may be any material capable of reducing the level of free calcium ions in the wash liquor and will preferably provide the composition with other beneficial properties such as the generation of an alkaline Ph, the suspension of soil removed from the fabric and the suspension of fabric softening clay material.
- suitable builders include precipitating builders such as the alkali metal carbonates, bicarbonates, orthophosphates, sequestering builders such as the alkali metal tripolyphosphates or nitrilotriacetates, or ion exchange builders such as the amorphous alkali metal alumino-silicates or the zeolites.
- the process is also suitable for producing calcite/sodium carbonate built detergent compositions.
- the builder material applied in the process of the present invention consists of fine particles, desirably with a particle size of less than 10 microns.
- part of the builder material amounting to about 0.5-10% by weight as calculated on the total granular composition is preferably added during the second step when the detergent powder is further treated in a moderate speed granulator/densifier, as mentioned above. This process is disclosed in more detail by EP-A-390,251.
- the level of builder material present in the starting material is preferably such that its content as calculated on the total granular composition is in the range from 10 to 70% by weight, most preferably from 30 to 60% by weight.
- the detergent active material present in the starting material may be selected from anionic, ampholytic, zwitterionic or nonionic detergent active materials or mixtures thereof.
- suitable synthetic anionic detergent compounds are sodium and potassium (C 9 -C 20 ) benzene sulphonates, particularly sodium linear secondary alkyl (C 10 -C 15 ) benzene sulphonates; and sodium alkyl glyceryl ether sulphates, especially those ethers of the higher alcohols derived from tallow or coconut oil and synthetic alcohols derived from petroleum.
- Suitable nonionics which may be used as constituents of the particulate starting material include, in particular the reaction products of compounds having a hydrophobic group and a reactive hydrogen atom, for example, aliphatic alcohols, acids, amides or alkyl phenols with alkylene oxides, especially ethylene oxide either alone or with propylene oxide.
- Specific nonionic detergent compounds are alkyl (C 6 -C 22 ) phenol ethylene oxide condensates, generally having 5 to 25 EO, i.e. 5 to 25 units of ethylene oxide per molecule, and the condensation products of aliphatic (C s -C is ) primary or secondary linear or branched alcohols with ethylene oxide, generally 5 to 40 EO.
- the level of detergent active material present in the starting material may be in the range from 0 to 30% by weight. This level is preferably less than 10% by weight, more preferably less than 5% by weight.
- materials which may be present in the particulate starting material include fluorescers; polycarboxylate polymers; antiredeposition agents, such as carboxy methyl cellulose; fatty acids; fillers, such as sodium sulphate; clays such as kaolin or bentonite.
- the particulate starting material for the process of the invention may be prepared by any suitable method, such as spray-drying or dry-mixing.
- the components of the starting material may also effectively be added separately to the mixer/densifier. It is considered to be one of the advantages of the process of this invention that high bulk density, high active detergent powders may be prepared from dry-mixed or untreated starting materials, without the need for expensive spray-drying equipment.
- it may also be desirable that one or more of the ingredients of the starting material are adjuncts of liquids onto solid components, prepared by spray-drying, granulation or via insitu neutralization in a high-speed mixer.
- the liquid surfactant composition which is mixed into the particulate starting material in the mixer/densifier comprises an anionic surfactant (which is a sodium or potassium salt of an alkyl sulphate), an alkoxylated nonionic surfactant and water.
- the amount of the liquid surfactant composition which is applied is such that its content as calculated on the total granular detergent obtained is in the range from 0.1 to 50% by weight, preferably from 20 to 50 % by weight, more preferably from 25 to 50 % by weight.
- Preferred surfactant compositions according to the invention contain not more than 30% by weight of alkyl sulphate, and as little water as possible.
- Compositions in which the weight ratio of alkyl sulphate to alkoxylated nonionic surfactant ranges from 0.125:1 to 0.5:1 are of especial interest.
- the nonionic surfactant is preferably an ethoxylated or mixed ethoxy-propoxylated primary or secondary aliphatic alcohol. Most preferred are ethoxylated primary alcohols, especially Ca-C, primary alcohols ethoxylated with from 2 to 25 moles of ethylene oxide per mole of alcohol.
- the anionic surfactant component of the liquid surfactant composition is a sodium or potassium alkyl sulphate salt.
- Suitable alkyl sulphates are sodium C 12 -C18 alkyl sulphates, especially the primary alkyl sulphates, although other alkyl sulphates outside this carbon chain length range, and potassium alkyl sulphates may also be used.
- the liquid surfactant composition it is preferred to add to the liquid surfactant composition one or more components with such a composition, that a significant viscosity increase of the resulting total liquid composition is obtained.
- the total level of these components may be as high as 20% by weight as calculated on the total liquid composition, said level being preferably in a range of from 2 to 10% by weight.
- the densified powder thus obtained has preferably a particle porosity of less than 10%, more preferably less than 5%.
- This powder may be used as a detergent powder in its own right. Generally, however, various additional ingredients may be added to give a more efficient product.
- the amount of postdosed material will generally range from about 10 to 200% by weight, calculated on the weight of the densified powder.
- Examples of materials which may be postdosed to the densified powder include enzymes, bleaches, bleach precursors, bleach stabilizers, lather suppressors, perfumes and dyes.
- Liquid or pasty ingredients may conveniently be absorbed on to solid porous particles, generally inorganic, which may then be postdosed to the densified powder obtained by the process of the invention.
- the following zeolite-containing detergent granules were prepared by spray-drying aqueous slurries.
- the compositions (in % by weight) of the porous granules thus obtained are shown in Table 1.
- the granules were free flowing and had a mean particle size of ca. 300 microns.
- the granules were fed directly into a continuous low speed mixer, The rotational speed was in both cases about 30 rpm.
- the mean residence time of the granules in the mixer was approximately 2 minutes.
- a mixture of 20 wt% PAS and 80 wt% non-ionic was sprayed onto these granules until the granules were almost saturated. At this stage, the free-flowiness of the granular detergent material started to decline.
- the maximum level of detergent active material which can be sprayed-on in view of the obtainable powder properties is 25 % by weight. Furthermore, it can be derived by comparing the particle size of the detergent granules before and after treatment in the mixer, that no agglomeration has occurred.
- composition of the granular detergent powder leaving the batch mixer/densifier is given in Table 3.
- the thus obtained granular detergent compositions had good powder properties (DFR was 101 ml/s) and a bulk density of about 770 g/I .
- the level of the active detergent material present in the detergent powder obtained i.e.: 27.8 % by weight is higher than the levels obtained in the comparative examples.
- compositions of the granular material leaving the Lodige Recycler are given in Table 4.
- the thus obtained granular detergent compositions had good powder properties, a bulk density of about 700 g/I and a particle size of 500-600 microns.
- the levels of the active detergent material present in the detergent powders obtained are respectively 30.8 % by weight and 30.0 % by weight. These active detergent levels are much higher than the levels obtained in the comparative examples and also higher than the active detergent level obtained in example 2. This is the result of incorporating into the liquid surfactant composition fed into the Recycler, fatty acid in combination with a stoichiometric amount of caustic soda, as viscosity raising material. It is clear that during the mixing/densifying process soap is formed from this material.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Detergent Compositions (AREA)
Description
- The present invention relates to a process for the preparation of a granular detergent composition having a high bulk density and good powder properties. More in particular, it relates to a process for the continuous preparation of such detergent compositions, especially those with high detergent activity. Moreover, it relates to a granular detergent composition obtainable by the process of the present invention.
- Recently there has been considerable interest within the detergents industry in the production of detergent powders having a relatively high bulk density, for example 600 g/I and above.
- Generally speaking, there are two main types of processes by which detergent powders can be prepared. The first type of process involves spray-drying an aqueous detergent slurry in a spray-drying tower. In the second type of process, the various components are dry-mixed and optionally agglomerated with liquids, e.g. nonionics.
- The most important factor which governs the bulk density of a detergent powder is the bulk density of the starting materials in the case of a dry-mixing process, or the chemical composition of the slurry in the case of a spray-drying process. Both factors can only be varied within a limited range.
- Therefore, a substantial increase in bulk density can only be achieved by additional processing steps which lead to the densification of the detergent powder. There are several processes known in the art leading to such densification. Particular attention has thereby been paid to the densification of spray-dried powders by post-tower treatment.
- In view of increased environmental concern, it is desirable to produce high density detergent powder containing alkyl sulphate as an active detergent component. The reason is that this type of active detergent material is readily biodegradable and therefore environmentally friendly.
- EP-A-337,330 (Henkel) relates to a continuous process for obtaining high bulk density detergent powder containing a considerable amount of anionic and nonionic surfactant material, said process comprising treating spray-dried detergent material in a high-speed mixer under addition of nonionic material, whereby the mean residence time in the mixer is from 10-60 seconds. Alkyl sulphate is not mentioned in this document.
- EP-A-265,203 (Unilever) discloses liquid surfactant compositions comprising an anionic and a nonionic surfactant. This patent document also discloses the use of these compositions which comprises spraying these compositions onto a solid particulate absorbent material. In this document alkyl sulphate is explicitly mentioned as a possible anionic surfactant which could effectively be applied in the surfactant composition which is sprayed onto the absorbent material.
- The disadvantages of this route are the limited level of active detergent material which can be dosed in this way and the necessity that the particulate solid material to which the liquid surfactant compositions are added, is an absorbent material. Furthermore, at increased levels of active detergent material sticky detergent powder having deteriorated powder properties could easily be produced in this way.
- It has also been proposed to make high active alkyl sulphate containing granules and to postdose these granules to an essentially anionic-free concentrated base powder.
- This method of producing high active alkyl sulphate containing detergent particles is, however, not attractive. The reason is that it involves the separate drying of a hydrous alkyl sulphate paste which requires considerable amounts of energy, or, alternatively, as described in EP-A-402,112 (P&G), the incorporation into said high active detergent particles of non-detergent active, less biodegradable additives such as ethoxylated nonionic surfactant material including at least 9 ethylene oxide groups.
- It is an object of the present invention to provide a process for obtaining high bulk density granular detergent compositions having a bulk density of at least 650 g/I and a high active detergent content. It is also an object to provide an environmentally friendly, low energy process for the preparation of a high bulk density granular detergent composition having a high active detergent content. It is a further object to provide a process for obtaining a detergent composition comprising alkyl sulphate as one of the active detergent constituents.
- We have now found that these and other objects can be achieved if a liquid surfactant system comprising alkyl sulphate and an alkoxylated nonionic surfactant is thoroughly mixed with particulate starting material during treatment of this starting material in a high speed mixer/densifier.
- In a first aspect, the present invention provides a process for the preparation of a granular detergent composition having a bulk density of at least 650 g/I, which comprises treating a particulate starting material in a high speed mixer/densifier, characterised in that 0.1 to 50% by weight as calculated on the granular detergent composition of a liquid surfactant composition is mixed with the starting material during this treating process, said surfactant composition comprising
- (a) a sodium or potassium salt of an alkyl sulphate in an amount from 5 to 60% by weight;
- (b) an alkoxylated nonionic surfactant in an amount from 40 to 95% by weight,
- (c) the balance being water in an amount from 0 to less than 20% by weight.
- In a second aspect, the invention provides a granular detergent composition obtainable by this process and having a particle porosity of less than 10%, preferably less than 5%.
- The present invention is concerned with a process for the preparation of a high bulk density powder having a high active detergent content. An important characteristic of the present process is that the detergent material remains throughout the process in particulate or granular form. Caking, balling an dough formation are avoided and the final product does not require an additional step in which the particle size is reduced.
- During the process of the invention, a liquid surfactant composition comprising alkyl sulphate and an alkoxylated,preferably ethoxylated, nonionic surfactant is thoroughly mixed with a particulate starting material in a high-speed mixer/densifier. This is essentially an agglomeration process, wherein the particulate starting material is agglomerated by the liquid surfactant material, resulting in detergent particles containing the particulate starting material and a surfactant phase. Generally, this surfactant phase acts as a binder for the particulate starting material.
- The advantage of this agglomeration process over a process wherein the liquid surfactant composition is absorbed into the particulate starting material is the fact that by agglomerating much higher levels of liquid surfactant material can be incorporated in the detergent powder to be obtained, while maintaining good powder properties.
- This agglomeration process can be carried out either as a continuous or as a batch process. For economic reasons, it is preferred to carry out the process of the invention continuously in a high-speed mixer/densifier, whereby the mean residence time is from about 5-30 seconds.
- Furthermore, it is important that the agglomeration process is a well controlled, robust process resulting in detergent powder with the desired particle size and with powder properties which are comparable to those of detergent powders currently on the market . For obtaining detergent powder with good powder properties, it has been found effective to add to the liquid surfactant composition one or more components with such a composition that a significant viscosity increase of the resulting total liquid composition is obtained. The addition of these components raises the afore-mentioned viscosity generally by at least a factor 5, preferably by at least a factor 10, a viscosity increase by at least a factor 100 being most preferred (when measured in a Haake viscometer at a shear rate between 0.1 and 20 S-1). As a result of this viscosity increase, the agglomeration process appeared to be better controllable resulting in better powder properties of the detergent material produced in this way.
- Examples of such viscosity raising components are water and, particularly, fatty acid in combination with a stoichiometric amount of alkaline material ( such as caustic soda) sufficient to neutralize the fatty acid which obviously results in the formation of soap.
- For obtaining a very high bulk density powder, the detergent powder obtained by the process of the invention may be further treated in a second step in a moderate speed granulator/densifier, whereby it is brought into or maintained in a deformable state, the mean residence time being from 1-10 minutes, and thereafter in a third step in a drying and/or cooling apparatus, as described in EP-A-367,339.
- The process of the present invention is very flexible with respect to the chemical composition of the particulate starting material. This material comprises the compounds usually found in detergent compositions such as builders and detergent active materials. Phosphate containing as well as zeolite containing compositions and compositions having either high or low active detergent content may be used as particulate starting material.
- The detergency builder present in the starting material may be any material capable of reducing the level of free calcium ions in the wash liquor and will preferably provide the composition with other beneficial properties such as the generation of an alkaline Ph, the suspension of soil removed from the fabric and the suspension of fabric softening clay material. Examples of suitable builders include precipitating builders such as the alkali metal carbonates, bicarbonates, orthophosphates, sequestering builders such as the alkali metal tripolyphosphates or nitrilotriacetates, or ion exchange builders such as the amorphous alkali metal alumino-silicates or the zeolites.
- The process is also suitable for producing calcite/sodium carbonate built detergent compositions.
- Preferably, the builder material applied in the process of the present invention consists of fine particles, desirably with a particle size of less than 10 microns. When very high bulk density detergent powder is prepared, part of the builder material amounting to about 0.5-10% by weight as calculated on the total granular composition is preferably added during the second step when the detergent powder is further treated in a moderate speed granulator/densifier, as mentioned above. This process is disclosed in more detail by EP-A-390,251.
- The level of builder material present in the starting material is preferably such that its content as calculated on the total granular composition is in the range from 10 to 70% by weight, most preferably from 30 to 60% by weight.
- The detergent active material present in the starting material may be selected from anionic, ampholytic, zwitterionic or nonionic detergent active materials or mixtures thereof. Examples of suitable synthetic anionic detergent compounds are sodium and potassium (C9-C20) benzene sulphonates, particularly sodium linear secondary alkyl (C10-C15) benzene sulphonates; and sodium alkyl glyceryl ether sulphates, especially those ethers of the higher alcohols derived from tallow or coconut oil and synthetic alcohols derived from petroleum. Suitable nonionics which may be used as constituents of the particulate starting material include, in particular the reaction products of compounds having a hydrophobic group and a reactive hydrogen atom, for example, aliphatic alcohols, acids, amides or alkyl phenols with alkylene oxides, especially ethylene oxide either alone or with propylene oxide. Specific nonionic detergent compounds are alkyl (C6-C22) phenol ethylene oxide condensates, generally having 5 to 25 EO, i.e. 5 to 25 units of ethylene oxide per molecule, and the condensation products of aliphatic (Cs-Cis) primary or secondary linear or branched alcohols with ethylene oxide, generally 5 to 40 EO.
- The level of detergent active material present in the starting material may be in the range from 0 to 30% by weight. This level is preferably less than 10% by weight, more preferably less than 5% by weight.
- Other examples of materials which may be present in the particulate starting material include fluorescers; polycarboxylate polymers; antiredeposition agents, such as carboxy methyl cellulose; fatty acids; fillers, such as sodium sulphate; clays such as kaolin or bentonite.
- The particulate starting material for the process of the invention may be prepared by any suitable method, such as spray-drying or dry-mixing. The components of the starting material may also effectively be added separately to the mixer/densifier. It is considered to be one of the advantages of the process of this invention that high bulk density, high active detergent powders may be prepared from dry-mixed or untreated starting materials, without the need for expensive spray-drying equipment. On the other hand, it may also be desirable that one or more of the ingredients of the starting material are adjuncts of liquids onto solid components, prepared by spray-drying, granulation or via insitu neutralization in a high-speed mixer.
- The liquid surfactant composition which is mixed into the particulate starting material in the mixer/densifier comprises an anionic surfactant (which is a sodium or potassium salt of an alkyl sulphate), an alkoxylated nonionic surfactant and water. The amount of the liquid surfactant composition which is applied is such that its content as calculated on the total granular detergent obtained is in the range from 0.1 to 50% by weight, preferably from 20 to 50 % by weight, more preferably from 25 to 50 % by weight. Preferred surfactant compositions according to the invention contain not more than 30% by weight of alkyl sulphate, and as little water as possible. Compositions in which the weight ratio of alkyl sulphate to alkoxylated nonionic surfactant ranges from 0.125:1 to 0.5:1 are of especial interest.
- The nonionic surfactant is preferably an ethoxylated or mixed ethoxy-propoxylated primary or secondary aliphatic alcohol. Most preferred are ethoxylated primary alcohols, especially Ca-C, primary alcohols ethoxylated with from 2 to 25 moles of ethylene oxide per mole of alcohol.
- The anionic surfactant component of the liquid surfactant composition is a sodium or potassium alkyl sulphate salt. Suitable alkyl sulphates are sodium C12-C18 alkyl sulphates, especially the primary alkyl sulphates, although other alkyl sulphates outside this carbon chain length range, and potassium alkyl sulphates may also be used.
- As described above, it is preferred to add to the liquid surfactant composition one or more components with such a composition, that a significant viscosity increase of the resulting total liquid composition is obtained. The total level of these components may be as high as 20% by weight as calculated on the total liquid composition, said level being preferably in a range of from 2 to 10% by weight.
- It was found to be essential for obtaining an optimal densification to subject the particulate starting material to a three-step densification process, as extensively disclosed in EP-A-367,339.
- The densified powder thus obtained has preferably a particle porosity of less than 10%, more preferably less than 5%. This powder may be used as a detergent powder in its own right. Generally, however, various additional ingredients may be added to give a more efficient product. The amount of postdosed material will generally range from about 10 to 200% by weight, calculated on the weight of the densified powder.
- Examples of materials which may be postdosed to the densified powder include enzymes, bleaches, bleach precursors, bleach stabilizers, lather suppressors, perfumes and dyes. Liquid or pasty ingredients may conveniently be absorbed on to solid porous particles, generally inorganic, which may then be postdosed to the densified powder obtained by the process of the invention.
- The process of the invention is further illustrated by the following non-limiting Examples, in which parts and percentages are by weight unless otherwise indicated. In the Examples the following abbreviations are used:
- PAS : Primary alkyl sulphate, sodium salt of C12-C18 primary alkyl sulphate
- NI : C12-C14 Nonionic surfactant (ethoxylated alcohol containing on average 5 EO groups, ex Kolb
- Carbonate Sodium carbonate, ex AKZO
- Silicate : Sodium alkaline silicate
- Zeolite : Zeolite A4 (Wessalith [trade mark]),ex Degussa.
- Soap : Sodium salt of C16-C22 fatty acid, ex Unichema
- Polymer : Sokalan CP5/7 [trademark) type of polymer, ex BASF
- Sulphate : Sodium sulphate.
-
- The granules were free flowing and had a mean particle size of ca. 300 microns.
- The granules were fed directly into a continuous low speed mixer, The rotational speed was in both cases about 30 rpm. The mean residence time of the granules in the mixer was approximately 2 minutes. In this apparatus, a mixture of 20 wt% PAS and 80 wt% non-ionic was sprayed onto these granules until the granules were almost saturated. At this stage, the free-flowiness of the granular detergent material started to decline.
- The following compositions and physical properties of the resulting detergent granules were obtained:
-
- It can be seen that the maximum level of detergent active material which can be sprayed-on in view of the obtainable powder properties, is 25 % by weight. Furthermore, it can be derived by comparing the particle size of the detergent granules before and after treatment in the mixer, that no agglomeration has occurred.
- Several detergent components of which the solid components have a particle size lower than 200 microns, were fed into a high speed batch mixer/densifier. The mean residence time of the granular detergent mixture in the batch mixer/densifier was approximately 3 minutes.
- The composition of the granular detergent powder leaving the batch mixer/densifier is given in Table 3.
-
- The thus obtained granular detergent compositions had good powder properties (DFR was 101 ml/s) and a bulk density of about 770 g/I .
- It can be seen that the level of the active detergent material present in the detergent powder obtained (i.e.: 27.8 % by weight) is higher than the levels obtained in the comparative examples.
- Several detergent components of which the solid materials have a particle size lower than 200 microns, were fed into a Lodige (Trade Mark) Recycler CB30, a continuous high speed mixer/densifier. The rotational speed was 1600 rpm. The mean residence time of the granular mixtures in the Lodige Recycler was approximately 10 seconds.
-
- It can be seen that the levels of the active detergent material present in the detergent powders obtained are respectively 30.8 % by weight and 30.0 % by weight. These active detergent levels are much higher than the levels obtained in the comparative examples and also higher than the active detergent level obtained in example 2. This is the result of incorporating into the liquid surfactant composition fed into the Recycler, fatty acid in combination with a stoichiometric amount of caustic soda, as viscosity raising material. It is clear that during the mixing/densifying process soap is formed from this material.
Claims (10)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| GB9125035 | 1991-11-26 | ||
| GB919125035A GB9125035D0 (en) | 1991-11-26 | 1991-11-26 | Detergent compositions and process for preparing them |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| EP0544365A1 EP0544365A1 (en) | 1993-06-02 |
| EP0544365B1 true EP0544365B1 (en) | 1995-06-28 |
Family
ID=10705204
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP92203563A Revoked EP0544365B1 (en) | 1991-11-26 | 1992-11-19 | Detergent compositions and process for preparing them |
Country Status (14)
| Country | Link |
|---|---|
| EP (1) | EP0544365B1 (en) |
| JP (1) | JP2837325B2 (en) |
| KR (4) | KR950013924B1 (en) |
| AU (1) | AU2854792A (en) |
| BR (1) | BR9204571A (en) |
| CA (1) | CA2083332C (en) |
| DE (1) | DE69203217T2 (en) |
| ES (1) | ES2075600T3 (en) |
| GB (2) | GB9125035D0 (en) |
| IN (1) | IN177135B (en) |
| MY (1) | MY108256A (en) |
| SA (3) | SA93130528B1 (en) |
| TW (2) | TW254966B (en) |
| ZA (2) | ZA929185B (en) |
Families Citing this family (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0639639B2 (en) * | 1993-08-17 | 2010-07-28 | The Procter & Gamble Company | Detergent compositions comprising percarbonate bleaching agents |
| ATE188991T1 (en) * | 1993-09-13 | 2000-02-15 | Procter & Gamble | GRANULAR DETERGENT COMPOSITIONS WITH NON-IONIC SURFACTANT AND METHOD FOR THE PRODUCTION THEREOF |
| GB9323300D0 (en) * | 1993-11-11 | 1994-01-05 | Unilever Plc | Detergent composition |
| IL108500A (en) * | 1994-01-31 | 1998-06-15 | Zohar Detergent Factory | Fatty alcohol sulphates in granular form and process for their preparation |
| TW326472B (en) * | 1994-08-12 | 1998-02-11 | Kao Corp | Method for producing nonionic detergent granules |
| BR9509051A (en) * | 1994-09-29 | 1998-06-23 | Unilever Nv | Process for obtaining a detergent composition and particulate detergent composition |
| CA2208038C (en) * | 1994-12-22 | 2004-01-27 | Unilever Plc | Detergent composition |
| GB9513327D0 (en) * | 1995-06-30 | 1995-09-06 | Uniliver Plc | Process for the production of a detergent composition |
| GB9526097D0 (en) * | 1995-12-20 | 1996-02-21 | Unilever Plc | Process |
| GB9625066D0 (en) * | 1996-12-02 | 1997-01-22 | Unilever Plc | Process for the production of a detergent composition |
| GB0111862D0 (en) | 2001-05-15 | 2001-07-04 | Unilever Plc | Granular composition |
| GB0111863D0 (en) | 2001-05-15 | 2001-07-04 | Unilever Plc | Granular composition |
| AU2003263591A1 (en) | 2002-09-06 | 2004-03-29 | Kao Corporation | Detergent particles |
| EP1832648A1 (en) | 2006-03-08 | 2007-09-12 | Unilever Plc | Laundry detergent composition and process |
Family Cites Families (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE3504628A1 (en) * | 1985-02-11 | 1986-08-14 | Henkel KGaA, 4000 Düsseldorf | METHOD FOR PRODUCING GRANULATE GRANULATE |
| JPS6262899A (en) * | 1985-09-13 | 1987-03-19 | 花王株式会社 | High density granular detergent composition |
| GB8625104D0 (en) * | 1986-10-20 | 1986-11-26 | Unilever Plc | Detergent compositions |
| GB8810193D0 (en) * | 1988-04-29 | 1988-06-02 | Unilever Plc | Detergent compositions & process for preparing them |
| JP2547444B2 (en) * | 1988-05-12 | 1996-10-23 | 旭電化工業株式会社 | Concentrated high-density clothes powder detergent |
| ES2085273T3 (en) * | 1988-11-02 | 1996-06-01 | Unilever Nv | PROCEDURE FOR PREPARING AN APPARENT HIGH DENSITY GRANULAR DETERGENT COMPOSITION. |
| GB8907187D0 (en) * | 1989-03-30 | 1989-05-10 | Unilever Plc | Detergent compositions and process for preparing them |
| CA2017921C (en) * | 1989-06-09 | 1995-05-16 | John Michael Jolicoeur | Formation of detergent granules by deagglomeration of detergent dough |
| GB8922018D0 (en) * | 1989-09-29 | 1989-11-15 | Unilever Plc | Detergent compositions and process for preparing them |
| GB8924294D0 (en) * | 1989-10-27 | 1989-12-13 | Unilever Plc | Detergent compositions |
| JP2802450B2 (en) * | 1990-03-16 | 1998-09-24 | ライオン株式会社 | High bulk density granular detergent composition |
| GB9008013D0 (en) * | 1990-04-09 | 1990-06-06 | Unilever Plc | High bulk density granular detergent compositions and process for preparing them |
-
1991
- 1991-11-26 GB GB919125035A patent/GB9125035D0/en active Pending
-
1992
- 1992-01-17 GB GB929201059A patent/GB9201059D0/en active Pending
- 1992-11-19 EP EP92203563A patent/EP0544365B1/en not_active Revoked
- 1992-11-19 ES ES92203563T patent/ES2075600T3/en not_active Expired - Lifetime
- 1992-11-19 DE DE69203217T patent/DE69203217T2/en not_active Revoked
- 1992-11-19 CA CA002083332A patent/CA2083332C/en not_active Expired - Fee Related
- 1992-11-20 AU AU28547/92A patent/AU2854792A/en not_active Abandoned
- 1992-11-24 MY MYPI92002140A patent/MY108256A/en unknown
- 1992-11-25 KR KR92022274A patent/KR950013924B1/en not_active Expired - Fee Related
- 1992-11-25 KR KR1019920022273A patent/KR960001021B1/en not_active Expired - Fee Related
- 1992-11-26 ZA ZA929185A patent/ZA929185B/en unknown
- 1992-11-26 IN IN376BO1992 patent/IN177135B/en unknown
- 1992-11-26 BR BR9204571A patent/BR9204571A/en not_active IP Right Cessation
- 1992-11-26 JP JP4317094A patent/JP2837325B2/en not_active Expired - Lifetime
- 1992-11-26 ZA ZA929184A patent/ZA929184B/en unknown
-
1993
- 1993-01-15 TW TW082100233A patent/TW254966B/zh active
- 1993-01-15 KR KR1019930000454A patent/KR960001019B1/en not_active Expired - Lifetime
- 1993-01-15 KR KR1019930000453A patent/KR960001018B1/en not_active Expired - Lifetime
- 1993-01-15 TW TW082100228A patent/TW232704B/zh not_active IP Right Cessation
- 1993-05-12 SA SA93130528A patent/SA93130528B1/en unknown
- 1993-05-12 SA SA93130524A patent/SA93130524B1/en unknown
- 1993-06-20 SA SA93130598A patent/SA93130598B1/en unknown
Also Published As
| Publication number | Publication date |
|---|---|
| CA2083332C (en) | 1998-10-06 |
| ZA929184B (en) | 1994-05-26 |
| DE69203217T2 (en) | 1995-11-30 |
| KR930016530A (en) | 1993-08-26 |
| GB9125035D0 (en) | 1992-01-22 |
| GB9201059D0 (en) | 1992-03-11 |
| KR950013924B1 (en) | 1995-11-18 |
| KR960001019B1 (en) | 1996-01-17 |
| EP0544365A1 (en) | 1993-06-02 |
| IN177135B (en) | 1996-11-16 |
| MY108256A (en) | 1996-08-30 |
| KR930010168A (en) | 1993-06-22 |
| SA93130528B1 (en) | 2005-06-12 |
| DE69203217D1 (en) | 1995-08-03 |
| JP2837325B2 (en) | 1998-12-16 |
| CA2083332A1 (en) | 1993-05-27 |
| KR960001018B1 (en) | 1996-01-17 |
| KR930016531A (en) | 1993-08-26 |
| ES2075600T3 (en) | 1995-10-01 |
| TW254966B (en) | 1995-08-21 |
| JPH0617098A (en) | 1994-01-25 |
| TW232704B (en) | 1994-10-21 |
| SA93130598B1 (en) | 2005-11-23 |
| AU2854792A (en) | 1993-05-27 |
| KR960001021B1 (en) | 1996-01-17 |
| BR9204571A (en) | 1993-06-01 |
| ZA929185B (en) | 1994-05-26 |
| KR930010174A (en) | 1993-06-22 |
| SA93130524B1 (en) | 2004-08-14 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP0715652B1 (en) | Process for making high density detergent agglomerates | |
| US4487710A (en) | Granular detergents containing anionic surfactant and ethoxylated surfactant solubility aid | |
| EP0451894B2 (en) | High bulk density granular detergent compositions and process for preparing them | |
| EP0544365B1 (en) | Detergent compositions and process for preparing them | |
| JPH07122080B2 (en) | Detergent composition and method for producing the same | |
| EP0775193A1 (en) | Granulation in a fluidised bed | |
| US5736502A (en) | Process for preparing detergent compositions | |
| CA2259535C (en) | Process for making detergent compositions | |
| EP0739977B1 (en) | Process for producing granular detergent components or compositions | |
| EP0870008B1 (en) | Process for producing granular detergent components or compositions | |
| EP0436240B1 (en) | Process for preparing a high bulk density detergent composition having improved dispensing properties | |
| US6156718A (en) | Process for making detergent compositions | |
| US6140301A (en) | Process for producing granular detergent components or compositions | |
| EP0836640A1 (en) | Process for the production of a detergent composition | |
| US5925614A (en) | Process for producing granular detergent components or compositions | |
| JPH11509263A (en) | PROCESS FOR PRODUCING AGENT DETERGENT COMPOSITIONS WITH IMPROVED FLOW | |
| AU701791B2 (en) | High active granular detergent compositions and process for making them | |
| AU739651B2 (en) | Process for the production of a detergent composition | |
| JPH09302398A (en) | Production of aggregated detergent composition having improved fluidity |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH DE ES FR GB IT LI NL SE |
|
| 17P | Request for examination filed |
Effective date: 19930414 |
|
| 17Q | First examination report despatched |
Effective date: 19940929 |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE ES FR GB IT LI NL SE |
|
| REF | Corresponds to: |
Ref document number: 69203217 Country of ref document: DE Date of ref document: 19950803 |
|
| ET | Fr: translation filed | ||
| ITF | It: translation for a ep patent filed | ||
| REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2075600 Country of ref document: ES Kind code of ref document: T3 |
|
| PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
| PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
| 26 | Opposition filed |
Opponent name: HENKEL KOMMANDITGESELLSCHAFT AUF AKTIEN Effective date: 19960321 |
|
| NLR1 | Nl: opposition has been filed with the epo |
Opponent name: HENKEL KOMMANDITGESELLSCHAFT AUF AKTIEN |
|
| PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19961030 Year of fee payment: 5 |
|
| PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19971130 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19971130 |
|
| PLBO | Opposition rejected |
Free format text: ORIGINAL CODE: EPIDOS REJO |
|
| APAC | Appeal dossier modified |
Free format text: ORIGINAL CODE: EPIDOS NOAPO |
|
| APAE | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOS REFNO |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
| APAC | Appeal dossier modified |
Free format text: ORIGINAL CODE: EPIDOS NOAPO |
|
| APAE | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOS REFNO |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20011029 Year of fee payment: 10 |
|
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
| APAC | Appeal dossier modified |
Free format text: ORIGINAL CODE: EPIDOS NOAPO |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20021030 Year of fee payment: 11 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20021031 Year of fee payment: 11 Ref country code: SE Payment date: 20021031 Year of fee payment: 11 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20021114 Year of fee payment: 11 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20021204 Year of fee payment: 11 |
|
| RDAH | Patent revoked |
Free format text: ORIGINAL CODE: EPIDOS REVO |
|
| RDAG | Patent revoked |
Free format text: ORIGINAL CODE: 0009271 |
|
| 27W | Patent revoked |
Effective date: 20021017 |
|
| GBPR | Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state |
Free format text: 20021017 |
|
| REG | Reference to a national code |
Ref country code: SE Ref legal event code: ECNC |
|
| NLR2 | Nl: decision of opposition |
Effective date: 20021017 |
|
| APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |