EP0543948A1 - Matiere de revetement active sous l'effet des micro-ondes comprenant une resine polymere - Google Patents
Matiere de revetement active sous l'effet des micro-ondes comprenant une resine polymereInfo
- Publication number
- EP0543948A1 EP0543948A1 EP19910917866 EP91917866A EP0543948A1 EP 0543948 A1 EP0543948 A1 EP 0543948A1 EP 19910917866 EP19910917866 EP 19910917866 EP 91917866 A EP91917866 A EP 91917866A EP 0543948 A1 EP0543948 A1 EP 0543948A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- coating material
- solvent
- resin
- binder system
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000576 coating method Methods 0.000 title claims abstract description 97
- 239000000463 material Substances 0.000 title claims abstract description 94
- 239000011248 coating agent Substances 0.000 title claims abstract description 90
- 239000002952 polymeric resin Substances 0.000 title claims abstract description 21
- 229920003002 synthetic resin Polymers 0.000 title claims abstract description 17
- 239000002904 solvent Substances 0.000 claims abstract description 48
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 claims abstract description 23
- 239000001856 Ethyl cellulose Substances 0.000 claims abstract description 23
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 claims abstract description 23
- 239000000020 Nitrocellulose Substances 0.000 claims abstract description 22
- 229920001249 ethyl cellulose Polymers 0.000 claims abstract description 22
- 235000019325 ethyl cellulose Nutrition 0.000 claims abstract description 22
- 229920001220 nitrocellulos Polymers 0.000 claims abstract description 22
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims abstract description 20
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims abstract description 20
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims abstract description 19
- 238000007639 printing Methods 0.000 claims abstract description 19
- XJRBAMWJDBPFIM-UHFFFAOYSA-N methyl vinyl ether Chemical compound COC=C XJRBAMWJDBPFIM-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229920001577 copolymer Polymers 0.000 claims abstract description 11
- 229920005989 resin Polymers 0.000 claims description 93
- 239000011347 resin Substances 0.000 claims description 93
- 239000002245 particle Substances 0.000 claims description 35
- 239000011230 binding agent Substances 0.000 claims description 29
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 22
- 229910002804 graphite Inorganic materials 0.000 claims description 13
- 239000010439 graphite Substances 0.000 claims description 13
- 229910052799 carbon Inorganic materials 0.000 claims description 9
- 239000000654 additive Substances 0.000 claims description 5
- 230000002378 acidificating effect Effects 0.000 claims description 3
- 230000000996 additive effect Effects 0.000 claims 1
- 238000001035 drying Methods 0.000 claims 1
- 238000011065 in-situ storage Methods 0.000 claims 1
- 238000010022 rotary screen printing Methods 0.000 claims 1
- 239000000758 substrate Substances 0.000 abstract description 16
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 abstract description 9
- 239000003795 chemical substances by application Substances 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 52
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 38
- 235000019441 ethanol Nutrition 0.000 description 30
- UPBDXRPQPOWRKR-UHFFFAOYSA-N furan-2,5-dione;methoxyethene Chemical compound COC=C.O=C1OC(=O)C=C1 UPBDXRPQPOWRKR-UHFFFAOYSA-N 0.000 description 29
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 27
- 229910052759 nickel Inorganic materials 0.000 description 26
- 239000003607 modifier Substances 0.000 description 16
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 15
- 239000000126 substance Substances 0.000 description 11
- YKYONYBAUNKHLG-UHFFFAOYSA-N propyl acetate Chemical compound CCCOC(C)=O YKYONYBAUNKHLG-UHFFFAOYSA-N 0.000 description 10
- -1 propyl alcohols Chemical class 0.000 description 10
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 9
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 9
- 229920000642 polymer Polymers 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 150000001298 alcohols Chemical class 0.000 description 6
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 5
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 5
- 238000009472 formulation Methods 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 4
- 230000002349 favourable effect Effects 0.000 description 4
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 4
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 229920013683 Celanese Polymers 0.000 description 3
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 3
- 239000004372 Polyvinyl alcohol Substances 0.000 description 3
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 3
- 238000002835 absorbance Methods 0.000 description 3
- 150000008064 anhydrides Chemical class 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 3
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 235000013305 food Nutrition 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 3
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 239000004014 plasticizer Substances 0.000 description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 description 3
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 3
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 125000003158 alcohol group Chemical group 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- HUMNYLRZRPPJDN-UHFFFAOYSA-N benzaldehyde Chemical compound O=CC1=CC=CC=C1 HUMNYLRZRPPJDN-UHFFFAOYSA-N 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- HQABUPZFAYXKJW-UHFFFAOYSA-N butan-1-amine Chemical compound CCCCN HQABUPZFAYXKJW-UHFFFAOYSA-N 0.000 description 2
- DKPFZGUDAPQIHT-UHFFFAOYSA-N butyl acetate Chemical compound CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- PAFZNILMFXTMIY-UHFFFAOYSA-N cyclohexylamine Chemical compound NC1CCCCC1 PAFZNILMFXTMIY-UHFFFAOYSA-N 0.000 description 2
- SWXVUIWOUIDPGS-UHFFFAOYSA-N diacetone alcohol Chemical compound CC(=O)CC(C)(C)O SWXVUIWOUIDPGS-UHFFFAOYSA-N 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 2
- JMMWKPVZQRWMSS-UHFFFAOYSA-N isopropanol acetate Natural products CC(C)OC(C)=O JMMWKPVZQRWMSS-UHFFFAOYSA-N 0.000 description 2
- 229940011051 isopropyl acetate Drugs 0.000 description 2
- GWYFCOCPABKNJV-UHFFFAOYSA-M isovalerate Chemical compound CC(C)CC([O-])=O GWYFCOCPABKNJV-UHFFFAOYSA-M 0.000 description 2
- 150000003951 lactams Chemical class 0.000 description 2
- 150000004702 methyl esters Chemical class 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 229920002689 polyvinyl acetate Polymers 0.000 description 2
- 239000011118 polyvinyl acetate Substances 0.000 description 2
- CYIDZMCFTVVTJO-UHFFFAOYSA-N pyromellitic acid Chemical compound OC(=O)C1=CC(C(O)=O)=C(C(O)=O)C=C1C(O)=O CYIDZMCFTVVTJO-UHFFFAOYSA-N 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 1
- UVHQXWILFGUDTA-LNKPDPKZSA-N (z)-4-ethoxy-4-oxobut-2-enoic acid;methoxyethene Chemical compound COC=C.CCOC(=O)\C=C/C(O)=O UVHQXWILFGUDTA-LNKPDPKZSA-N 0.000 description 1
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 1
- OZXIZRZFGJZWBF-UHFFFAOYSA-N 1,3,5-trimethyl-2-(2,4,6-trimethylphenoxy)benzene Chemical compound CC1=CC(C)=CC(C)=C1OC1=C(C)C=C(C)C=C1C OZXIZRZFGJZWBF-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- LHENQXAPVKABON-UHFFFAOYSA-N 1-methoxypropan-1-ol Chemical compound CCC(O)OC LHENQXAPVKABON-UHFFFAOYSA-N 0.000 description 1
- SSUBAQORPAUJGD-UHFFFAOYSA-N 1-methylpyrrolidin-2-one;pyrrolidin-2-one Chemical compound O=C1CCCN1.CN1CCCC1=O SSUBAQORPAUJGD-UHFFFAOYSA-N 0.000 description 1
- OAYXUHPQHDHDDZ-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethanol Chemical compound CCCCOCCOCCO OAYXUHPQHDHDDZ-UHFFFAOYSA-N 0.000 description 1
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 1
- SVONRAPFKPVNKG-UHFFFAOYSA-N 2-ethoxyethyl acetate Chemical compound CCOCCOC(C)=O SVONRAPFKPVNKG-UHFFFAOYSA-N 0.000 description 1
- JSGVZVOGOQILFM-UHFFFAOYSA-N 3-methoxy-1-butanol Chemical compound COC(C)CCO JSGVZVOGOQILFM-UHFFFAOYSA-N 0.000 description 1
- XLYMOEINVGRTEX-UHFFFAOYSA-N 4-ethoxy-4-oxobut-2-enoic acid Chemical group CCOC(=O)C=CC(O)=O XLYMOEINVGRTEX-UHFFFAOYSA-N 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- CYUOWZRAOZFACA-UHFFFAOYSA-N aluminum iron Chemical compound [Al].[Fe] CYUOWZRAOZFACA-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 229930188620 butyrolactone Natural products 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 229920006217 cellulose acetate butyrate Polymers 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 150000008280 chlorinated hydrocarbons Chemical class 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- 235000010944 ethyl methyl cellulose Nutrition 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 235000011087 fumaric acid Nutrition 0.000 description 1
- 229960002598 fumaric acid Drugs 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 238000007646 gravure printing Methods 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- SHOJXDKTYKFBRD-UHFFFAOYSA-N mesityl oxide Natural products CC(C)=CC(C)=O SHOJXDKTYKFBRD-UHFFFAOYSA-N 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 239000013528 metallic particle Substances 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 229920003087 methylethyl cellulose Polymers 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- MCSAJNNLRCFZED-UHFFFAOYSA-N nitroethane Chemical compound CC[N+]([O-])=O MCSAJNNLRCFZED-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- LYGJENNIWJXYER-UHFFFAOYSA-N nitromethane Chemical compound C[N+]([O-])=O LYGJENNIWJXYER-UHFFFAOYSA-N 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 239000011087 paperboard Substances 0.000 description 1
- QNGNSVIICDLXHT-UHFFFAOYSA-N para-ethylbenzaldehyde Natural products CCC1=CC=C(C=O)C=C1 QNGNSVIICDLXHT-UHFFFAOYSA-N 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/24—Electrically-conducting paints
Definitions
- a MICROWAVE ACTIVE COATING MATERIAL INCLUDING A POLYMERIC RESIN
- the present invention relates to microwave susceptible coating materials, and more particularly, to such coating materials useful for creating patterned microwave field modifiers.
- Microwave ovens possess the ability to heat, cook or bake items, particularly foodstuffs, extremely rapidly. Unfortunately, microwave heating also has its disadvantages. For example, microwave heating alone in today's microwave ovens often fails to achieve such desirable results as evenness, uniformity, browning, crispening, and reproducibility. Contemporary approaches to achieving these and other desirable results with microwave ovens include the use of microwave field modifying devices such as microwave susceptors and/or microwave shields.
- Microwave susceptors and shields like other materials and constructions have some degree of microwave reflectance (R), absorbance (A) and transmittance (T); or collectively RAT properties.
- RAT properties are measured in terms of percentage of microwave energy reflected by (R), absorbed by (A), and transmitted through (T) a material or construction. Thus, the aggregate of the R, A and T values will total 100%.
- a microwave shield is relatively opaque to microwave energy.
- a shield will have a relatively low T value.
- Microwave shields are exemplified by such highly electrically conductive materials as aluminum foil. Although shields are generally thought of as non-heating elements, a shield could also be a susceptor, i.e., heat appreciably, and visa-versa. Thus, a shield is an element with relatively low transmittance regardless of its tendency to generate heat.
- microwave susceptors are devices which, when disposed in a microwave energy field such as exists in a microwave ven, respond by generating a significant amount of heat.
- microwave susceptors absorbs a portion of the microwave energy and converts it directly to heat which is useful, for example, to crispen or brown foodstuffs.
- microwave susceptors generally have a relatively high microwave absorbance value.
- susceptors include a mechanism to convert the absorbed microwave energy to heat.
- heat may result from microwave induced, intramolecular or inter olecular action; or from induced electrical currents which result in so called I-squared-R losses in electrically conductive devices; or from dielectric heating of dielectric material disposed between electrically conductive particles, elements or areas which type of heating is hereinafter alternatively referred to as fringe field heating or capacitive heating.
- microwave susceptors and shields have an effect on the microwave power distribution within a microwave oven. That is, they interact with the microwave energy within the oven through their RAT properties and cause the microwave energy field to be modified. Accordingly, devices and constructions which act to modify the microwave field or microwave energy power distribution within a microwave oven are referred to herein collectively as microwave field modifiers.
- U.S. Patent 4,914,266 discloses a microwave susceptor which is created by coating a coating material.
- the coating material includes carbon or graphite and an ink vehicle.
- the ink vehicle comprises a resin and a solvent.
- the resins include polymeric resins soluble in alcohol but insoluble in water such as nitrocellulose, cellulose acetate, methyl cellulose, ethyl cellulose and cellulose acetate butyrate.
- the solvent is alcohol which comprehends allyl, amyl , benzyl, butyl, cetyl, isopropyl and propyl alcohols.
- a coating material which is microwave active when dry.
- the coating material includes electrically conductive particles and a binder system.
- the binder system comprehends a solvent and polymeric resin selected from the group consisting of nitrocellulose; ethyl cellulose; polyvinylbutyral ; poly (methyl vinyl ether/maleic anhydride) copolymer or derivatives thereof; and polyvinyl- pyrrolidone.
- the coating material is. preferably susceptible of being coated on a substrate by means of a high speed pattern coating process.
- the coating material preferably dries forming discrete electrically conductive elements having a conductivity, expressed in terms of surface resistivity, of less than about 100 ohms per square.
- Figure 1 is a perspective view of a preferred embodiment of a microwave field modifier which can be made using the coating material of the present invention.
- FIG 2 is an enlarged scale, fragmentary portion of the microwave field modifier shown in Figure 1.
- the coating material of the present invention generally includes a binder system, which comprehends selected polymeric resin materials and a solvent, and electrically conductive particles.
- the coating material may include various other components.
- the binder system is used to bind the electrically conductive particles together in contacting relation.
- the binder system also preferably functions to bind the coating material to the dielectric substrate.
- Included in the binder system is a solvent and a polymeric resin selected from the group consisting of nitrocellulose; ethyl cellulose; polyvinylbutyral; poly (methyl vinyl ether/maleic anhydride) copolymer or derivatives thereof; and poly inylpyrrolidone. a. Ethyl Cellu ⁇ se and Nitrocellulose
- the polymeric resin may be nirocellulose or ethyl cellulose.
- the nitrocellulose or ethyl cellulose resin is dissolved in a solvent to form solutions of preferably from about 8% to about 30% by weight resin in solvent; more preferably from about 10% to about 25%; and from about 15% to about 20% is most preferred.
- the higher percentages are preferred for particulate carrying properties but the lower percentages are favored for achieving a favorable printing viscosity.
- Typical solvents of ethyl cellulose and nitrocellulose include alcohols.
- Alcohol is commonly used to mean ethyl alcohol (or ethanol) but also may include ally!, amyl, benzyl, butyl, cetyl , methyl, n-butyl, isobutyl, isopropyl, and propyl alcohols.
- Nitrocellulose is also soluble in toluene, xylene and n-butyl acetate, ethyl acetate, n-propyl acetate, isopropyl acetate, and cellosolve acetate.
- a nitrocellulose is available from General Printing, Ink Division, Sun Chemical Corporation, Cleveland, Ohio as a 40% solution of 18-25 cps RS Nitrocellulose. This solution includes 17% isopropyl alcohol, 23% ethyl acetate and 20% n-propyl acetate by weight.
- An ethyl cellulose is available from Hercules Inc., Wilmington, Delaware under the name Ethyl Cellulose N-4.
- the nitrogen percentage of the nitrocellulose is preferably from about 10% to about 14%, and more preferably from about 11% to about 13%.
- the ethoxy content of the ethylcellulose is preferably from about 47% to about 48%.
- the polymeric resin may be polyvinylbutyral.
- Polyvinylbutyral is FDA approved for such things as a component in can coatings and paperboard coatings for food packages.
- Polyvinylbutyral may be obtained from Hoechst-Celanese of Somerville, NJ under the trade name Mowital* B. It is available in several molecular weights.
- the preferred types are coded B-20H, B-30H and B-30T by Hoechst-Celanese.
- Mowital® B polyvinylbutyral resins refer to a class of polymer resins supplied by Hoechst-Celanese Corporation with the chemical name of poly (2-propyl-m-dioxane-4,6-diylene), They are comprised of polyvinyl butyral, polyvinyl acetate, and polyvinyl alcohol groups. The structural formula is shown below.
- the molecular weight of this compound (i.e., values of m, n, and o) should be selected such that the coating material will have a viscosity in the range identified hereinafter.
- the molecular weight is more preferably from about 30,000 to about 60,000 and even more preferably from about 50,000 to about 60,000.
- the preferred grades used are Mowital B20H, B30H, and B30T. Both the B20H and B30H have 18-21% polyvinyl alcohol, 75-77% polyvinyl butyral, and 3% polyvinyl acetate. One difference between B20H and B30H is the viscosity of the resins in solution, with B30H having a higher viscosity than that of the B20H resin.
- the B30T has a higher polyvinyl alcohol content (24-27%), and a lower polyvinyl butyral content (69-71%).
- Mowital® B20H and B30H polyvinylbutyral resins have FDA approval for direct and indirect food contact. The materials do not thermally decompose below 232 * C (450 * F).
- Typical solvents for polyvinylbutyral include alcohols.
- Alcohol is commonly used to mean ethyl alcohol (or ethanol) but also may include allyl, amyl , benzyl, butyl, cetyl , isobutyl, isopropyl, and propyl alcohols.
- Polyvinylbutyral is also soluble in glycol ethers (methoxypropanol, butylglycol, and methoxybutanol), and cyclohexanone. Polyvinylbutyral is slightly soluble in methyl & ethyl acetate, acetone, and methylethyl ketone.
- the polyvinylbutyral resin is dissolved in a solvent to form solutions of preferably from about 8% to about 30% by weight resin in solvent; more preferably from about 10% to about 25%; and from about 15% to about 20% is most preferred.
- the higher percentages are preferred for particulate carrying properties but the lower percentages are favored for achieving a favorable printing viscosity.
- the binder resin may be a poly (methyl vinyl ether/maleic anhydride) co-polymer resin or a derivative thereof. Variation in the side group substitutions determine the nature and type of the polymer.
- Preferred poly (methyl vinyl ether/maleic anhydride) co-polymer resins or derivatives thereof are the Gantrez ® resins available from the GAF Corporation of Wayne, New Jersey. Gantrez ® is a registered trademark of the GAF Corporation. Gantrez® currently comes in three basic forms; Gantrez ® AN, Gantrez ® ES and Gantrez ® S.
- the Gantrez ® AN series resins are referred to as the anhydride resins and are supplied as dry powders.
- Typical solvents for the Gantrez ® AN series resins are water, alcohols ( ethanol , ethanol, propanol, isopropanol, butanol), phenols, pyridine, acetic acid, aldehydes & ketones, (benzaldehyde, formaldehyde, acetone, cyclohexanone, methyl ethyl ketone, mesityl oxide, diacetone alcohol), lactams (2-pyrrolidone, N-methyl-2-pyrrolidone, N-vinyl-2-pyrrolidone, and butyrolactone), and lower aliphatic esters (methyl and ethyl acetate).
- the chemical structure for Gantrez ® AN resins is shown below.
- the molecular weight of this compound (i.e., value of n) should be selected such that the coating material will have a viscosity in the range identified hereinafter.
- the molecular weight for the Gantrez ® AN series resins is more preferably from about 190,000 to about 2,200,000 and even more preferably from about 900,000 to about 1,150,000.
- the Gantrez ® AN series are basically the starting point for the other series resins, based on the solvent system used.
- the other Gantrez ® resins are derivatives of the AN series.
- the anhydride linkage is cleaved so as to form the highly polar hydrolyzed form of the resin.
- the chemical structure for the Gantrez® S series resins is shown below.
- the molecular weight of this compound (i.e., value of n) should likewise be selected such that the coating material will have a viscosity in the range identified hereinafter.
- the molecular weight for the Gantrez® AN series resins is more preferably from about 200,000 to about 2,000,000.
- This hydr yzed form of the polyms ⁇ is the Gantrez ® S series of resins.
- the Gantrez ® AN and S series resins have FDA approval as adhesives.
- Gantrez ® S series resins are also supplied as powders.
- the Gantrez ® ES series resins are half esters formed from alcohols.
- One way to form the Gantrez ® ES series resins is to use the Gantrez ® AN series resins with alcohol as a solvent.
- the functional group of the alcohol used for dissolving the polymer forms an ester with the side chains of the polymer.
- the chemical structure is shown below.
- the molecular weight of this compound (i.e., value of n) should likewise be selected such that the coating material will have a viscosity in the range identified hereinafter.
- the molecular weight for the Gantrez® ES series resins is more preferably from about 100,000 to about 150,000.
- a preferred ES resin is Gantrez ® ES-225 which is the mono-ethyl ester of the poly (methyl vinyl ether/maleic anhydride) co-polymer resin.
- the chemical name for the ES-225 polymer is 2-Butenedioic acid monoethyl ester polymer with Methoxyethene.
- Gantrez ® ES resins are supplied as alcohol solutions with 50% resin solids in the appropriate alcohol.
- Gantrez ® ES-335 is supplied in isopropanol, and is the isopropyl ester version of the same polymer.
- the ES resins are soluble in alcohols (variations will change the polymer), ethylene glycol, butyl carbitol, acetone, cyclohexanone, dioxane, and tetrahydrofuran, and are insoluble or swell in diethyl ether, chloroform, carbon tetrachloride, and toluene.
- the poly (methyl vinyl ether/maleic anhydride) co-polymer resins or derivatives thereof are dissolved in a solvent (Gantrez ES series are diluted from 50%) to form solutions of preferably from about 8% to about 30% by weight resin in solvent; more preferably from about 10% to about 25%; and from about 15% to about 20% is most preferred. The higher percentages are preferred for particulate carrying properties but the lower percentages are favored for achieving a favorable printing viscosity.
- the binder resin may be polyvinylpyrrolidone.
- Polyvinylpyrrolidone is the common name for a material with the chemical name of poly (N-vinyl-2-pyrrolidone). Polyvinylpyrrolidone may be obtained from GAF Corporation, Wayne, New Jersey, and Sigma Chemicals, St Louis, Missouri. The structural formula is shown below.
- POLYVINYLPYRROLIDONE poly(N-vinyl-2-pyrrolidone) The molecular weight of this compound (i.e., value of n) should be selected such that the coating material will have a viscosity in the range identified hereinafter.
- the molecular weight is even more preferably from about 10,000 to about 500,000 and even more preferably from about 300,000 to about 500,000.
- Typical solvents for polyvinylpyrrolidone include water, alcohols (all), ether alcohols (glycol ethers, diethylene glycol, triethylene glycol, hexamethylene glycol, polyethylene glycol), some chlorinated hydrocarbons (methylene dichloride, ethylene dichloride, chloroform), lactams (2-pyrrolidone N-methyl-2-pyrrolidone, N-vinyl-2-pyrrolidone), amines (butylamine, cyclohexylamine, aniline, ethylenediamine, pyrridine), and nitroparaffins (nitromethane, nitroethane).
- the polyvinylpyrrolidone resin is dissolved in a solvent to form solutions of preferably from about 5% to about 30% by weight resin in solvent; more preferably from about 8% to about 15%.
- the higher percentages are preferred for particulate carrying properties but the lower percentages are favored for achieving a favorable printing viscosity.
- Other Components preferably from about 5% to about 30% by weight resin in solvent; more preferably from about 8% to about 15%.
- Electrically conductive particles which may be used to make coating materials using any of the resins identified above in accordance with the present invention preferably include carbon particles and graphite particles; and even more preferably include pure metallic particles such as nickel, iron, copper, silver and tin, some metallic oxides such as tin oxide, metal alloy particles such as aluminum iron alloys. Coating materials made with the more preferred particles are more conductive and therefore more reflective. Furthermore, the conductive particles preferably have irregular shapes; even more preferably are also relatively flat; and most preferably are also of differing shapes and sizes; all of which promote electrical contact between the elements. In addition, the conductive particles are preferably less than 25 microns in size and more preferably less than 10 microns in size; i.e., their maximum dimension.
- a preferred conductive particle which has been found successful is Nickel Flake HCA-1 which may be purchased from the Nova et Company, Wyckoff, N.J.
- the Nova et Nickel Flake HCA-1 is a dendritic particle formed of spheroids which have been connected together and smashed flat.
- a preferred conductive particle has a flattened dendritic shape.
- a second preferred particle is graphite which may be purchased from Cabot Corporation, Waltham, Mass. as Carbon Black Regal® 99R. This particle is also relatively flat and has a size of about .36 nanometers.
- the conductive particles preferably constitute from about 40% to about 80% by weight of the coating material; and even more preferably from about 55% to about 65% by weight of the coating material.
- the carbon or graphite preferably constitute from about 10% to about 50% by weight of the coating material; and even more preferably from about 13% to about 23% of the coating material by weight.
- the viscosity of the coating material is preferably from about 50 cps to about 7000 cps.
- the viscosity is preferably from about 100 cps to about 175 cps as measured with a #3 yak cup.
- the viscosity should be such that the coating material is suitable for the chosen coating process used; be it painting, spraying, printing, silkscreen printing or rotogravure printing. Achieving the desired viscosity may require the addition of resin, solvents or other additives after the initial mixing of the coating material as is commonly done in printing processes. The percentages given above as percent by weight of the resin, solvent and conductive particles are believed broad enough to cover these situations.
- Viscosity can sometimes be drastically affected by the addition of small quantities of various additional components. In these situations the conductive particle to resin ratio will generally remain the same. Thus, preferred ranges can also be expressed in terms of a conductive particle:resin ratio by weight.
- the conductive particle (except for carbon and graphite):resin ratio for all the resins described above except nitrocellulose and ethyl cellulose is preferably from about 2:1 to about 50:1; and even more preferably, from about 4:1 to about 20:1.
- the conductive particle (except for carbon and graphite) :resin ratio is preferably from about 2:1 to about 20:1; and even more preferably, from about 4:1 to about 10:1.
- the carbon and graphite particle to resin ratio for all :ne resins described above except nitrocellulose and ethyl cellulose is preferably from about 0.4:1 to about 13:1; and more preferably, from about 0.7:1 to about 4:1.
- Some other components which may be used as constituents of coating materials in accordance with the present invention include emulsifying agents, acids and liquid materials which will chemically unite with the other constituents of the coating material to cause the coating material to solidify after being applied in a fluidized state.
- the coating materials may further comprise plasticizer material.
- anti-settling agents or other constituents may be included in coating material formulations.
- the coating material may be used to create a particularly preferred microwave field modifier such as is indicated generally as 20 in Figure 1.
- the microwave field modifier basically includes a substrate 22 and an array formed from a plurality of discrete electrically conductive elements 24 disposed thereon.
- the discrete electrically conductive elements 24 are formed from pattern coating the coating material 26 to areas of the substrate 22.
- the coating material is applied to the substrate 22 by printing and most preferably by rotogravure printing. Printing offers advantages such as cost and efficiency savings over other coating processes and rotogravure printing equipment is generally currently available to carton manufacturers.
- the conductive elements 24 have relatively low surface resistance: preferably one-hundred (100) ohms or less per square; more preferably ten (10) ohms or less per square; still more preferably three (3) ohms or less per square; even more preferably one (1) ohm or less per square; and most preferably one-tenth (0.1) ohm or less per square.
- the maximum dimension of the elements 24 is preferably less than about four centimeters and even more preferably from about 1cm to about 3cm.
- the elements 24 preferably have an elongate portion and/or preferably are staggered relative to each other side to side as described hereinafter.
- elongate has its ordinary meaning: i.e., having a form notably long in comparison to its width.
- the elongate elements 24 described herein are preferably substantially straight albeit it is not intended to thereby exclude serpentine, wavy, and curved shapes.
- the elongate elements 24 preferably have radiused ends as shown to ' lessen the propensity for electrical arcing.
- Staggered relation is intended to include but not be limited to shapes such as elongate, square, and rectangular elements 24 which are in side by side relation but which have their ends offset from one another. The offset need not be necessarily uniform throughout the array.
- Coating material thickness is preferably from about 0.0001 inches to about 0.003 inches and even more preferably from about 0.0005 inches to about 0.002 inches.
- an undercoating placed on the substrate prior to printing increases conductivity.
- an overcoating placed over the elements increases conductivity.
- Conductivity is further increased by using both an undercoating and an overcoating. If binder of the undercoating and/or overcoating uses the same solvent as the binder of the coating material conductivity is increased even further. Consequently, an undercoating or overcoating is used, more preferably an undercoating and an overcoating is used, even more preferably an undercoating or overcoating uses the same solvent as the coating material and most preferably an undercoating and overcoating uses the same solvent as the binder of the coating material.
- acidic binder additives include phthalic acid, pyromellitic acid, salicylic acid and benzoic acid and mixtures thereof. While not intending to be bound it is believed the surface chemistry effects of adsorption may be providing this benefit. The adsorption may allow for closer contact of the metal particles with each other giving rise to better conductivity. Also, it is possible salts are being formed with the oxide making the metal more free for electrical conduction.
- Figure 1 illustrates a preferred microwave field modifier, indicated generally as 20, which may be printed using the coating material of the present invention.
- the substrate 22 of Figure 1 is twenty point cartonboard such as is commonly converted into such things as cartons for packaging microwaveable food products: i.e., packages which are suitable for being placed in a microwave oven to heat, cook or bake the contents of the package without removing the contents from the carton.
- Other exemplary substrate 22 materials include cartonboard, coated cartonboard, thermoplastic film, thermoplastic nonwovens, thermoset plastics, or ceramic.
- an array Disposed on the substrate 22 is an array formed from a plurality of discrete electrically conductive elements 24.
- the array extends over the entire top surface 28 of the substrate 22 except for a perimetric zone 29 which is devoid of coating material 26.
- the perimetric zone 29 acts to insulate the edges of modifier 20 so as to substantially obviate arcing between the electrically conductive elements 24 and any metallic material disposed adjacent the modifier 20.
- the array of Figure 1 extends over the entire surface of the substrate 22, the modifier may be limited to one or more zones of the substrate 22.
- the preferred modifier 20 of Figure 1 includes elements 24 which are uniform in size and shape except at some row ends, and have lengths L and widths W, respectively.
- the array preferably substantially comprises elements 24 which are uniformly configured.
- the elements 24 are preferably linearly aligned in straight rows parallel to each other. The rows are linearly spaced apart by a distance designated SL; and side by side rows are spaced widthwise a distance designated SW. Further, the rows are in staggered relation so that side by side adjacent elements are linearly offset by a distance designated OS. The degree of stagger, in percent, of such an array is (0S/L)(100).
- This Example uses a 9.3 percent solution of Nitrocellulose resin.
- a 9.3 percent solution can be obtained by starting with 4.0 grams of nitrocellulose resin. To this add 4.0 grams of a plasticizer such as Hercolyn D (hydrogenated methyl ester of rosin), available from Hercules Chemical Corp, Wilmington, Delaware. Add 35 grams of 38/28/34 mixture of isopropyl acetate/isopropyl alcohol/n-propyl acetate as a solvent, providing a total of 43 grams of the 9.3 percent solution. To this add 57 grams of Novamet nickel HCA-1 flakes; creating a 57% nickel and 43% (9.3% resin) resin solution coating material. Thus the final solution consists of 57 grams nickel and 43 grams of 9.3% resin solution.
- This solution is then screen printed or rotogravure printed (with only minor adjustments to viscosity) in a pattern similar to that of Figure 1.
- the dimensions of this pattern may be as follows: end gap SL of 0.045 inches; side gap SW of 0.0275 inches; length L of 0.787 inches; width W of 0.035 inches; and a stagger of 31%.
- This Example uses a 5.4 percent solution of ethyl cellulose.
- a 5.4 percent solution can be obtained by starting with 2.2 grams of ethyl cellulose resin.
- an anti-settling agent such as Bentone SD2 which is available from National Lead Chemicals, Hightstown, New Jersey.
- Bentone SD2 which is available from National Lead Chemicals, Hightstown, New Jersey.
- a modifier such as Uni-Rez 7055 (fumaric-acid modified rosin ester binder), available from Union Camp Corp., Wayne, New Jersey; and 1.8 grams of a plasticizer such as Herculon D (hydrogenated methyl ester of rosin), available from Hercules Chemical Corp, Wilmington, Delaware.
- This solution is then screen printed or rotogravure printed (with only minor adjustments to viscosity) in a pattern similar to that of Figure 1.
- the dimensions of this pattern may be as follows: end gap SL of 0.045 inches.; side gap SW of 0.0275 inches; length L of 0.787 inches; width W of 0.035 inches; and a stagger of 31%.
- Either of the formulations of the Examples above may be rotogravure printed; requiring only minor alterations to solution viscosity through the addition of ethanol or n-propyl acetate solvent. These solutions may be rotogravure printed in a pattern similar to Figure 1.
- the dimensions of this pattern may be as follows: end gap SL of 0.080 inches; side gap SW of 0.040 inches; length L of 0.787 inches; width W of 0.020 inches; and a stagger of 25%.
- This example uses a ten percent solution of Mowital ® B30H.
- a ten percent solution can be obtained by dissolving 5 grams of B30H powder in 45 grams of methanol (methyl alcohol). To this add 75 grams of Novamet nickel; creating a 60% nickel and 40% (10% solid resin) resin solution, thus, the final solution consists of 75 grams nickel and 50 grams of 10% resin solution.
- This coating material may then be screen printed in a pattern similar to that of Figure 1.
- the dimensions of this pattern may be as follows: end gap SL of .045 inches, side gap SW 0.275 inches, length L of .787 inches, width W of .035, and overlap of 31%
- this coating material is screen printed onto a substrate such as cartonboard which has been pre-coated with a layer of the polyvinylbutyral solution, (i.e., 10% solution in methanol without nickel) by using a doctor blade or a mayer rod the conductivity and the reflectance (R) may be increased.
- a layer of the polyvinylbutyral solution i.e. 10% solution in methanol without nickel
- the change in RAT properties may be similar to those of the second sample which has an undercoating.
- the conductivity and the reflectivity (R) may be further increased.
- This example uses a twenty percent solution of Mowital ® B30H.
- a twenty percent solution can be obtained by dissolving 10 grams of B30H powder in 50 grams of methanol (methyl alcohol). To this add 75 grams of Novamet nickel; creating a 60% nickel and 40% (20% solid resin) resin solution. Thus, the final solution consists of 75 grams nickel and 50 grams of 10% resin solution.
- This coating material may then be screen printed in a pattern similar to that of Figure 1.
- the dimensions of this pattern may be as follows: end gap SL of .045 inches, side gap SW of 0.275 inches, length L of .787 inches, width W of .035 inches, and overlap of 31%.
- This example uses the formulation described in Example 1 above in the application of gravure printing.
- This formulation has been found suitable for rotogravure printing with only minor alterations in solution viscosity through addition of ethanol or ethyl acetate solvent.
- the formulation may be printed by means of rotogravure printing in a pattern similar to that of Figure 1.
- the dimensions of this pattern may be as follows: end gap SL of .080 inches, side gap SW of .040 inches, length L of .787 inches, width W of .020 inches, and overlap of 25%.
- coating materials of the present invention based on polv (methyl vinyl ether/maleic anhydride) co-polvmer resin or derivatives thereof which may be used to print a microwave field modifier similar to the one described above are as follows:
- Example 7 This Example uses a twenty percent solution of Gantrez ES-225. A twenty percent solution can be obtained by starting with 20 grams of material as supplied (50% resin and 50% ethanol solvent) This provides 10 grams resin and 10 grams solvent. Add 30 grams of ethanol solvent to the solution; creating a 20% resin and 80% solvent solution. This provides 10 grams resin and 40 grams solvent or 50 grams of total solution. To this add 75 grams of Novamet nickel; creating a 60% nickel and 40% (20% resin) resin solution coating material. Thus the final solution consists of 75 grams nickel and 50 grams of 20% resin solution.
- This solution is then screen printed or rotogravure printed (with only minor adjustments to viscosity) in a pattern similar to that of Figure 1.
- the dimensions of this pattern may be as follows: end gap SL of 0.045 inches; side gap SW of 0.0275 inches; length L of 0.787 inches; width W of 0.035 inches; and a stagger of 31%.
- This Example uses a ten percent solution Gantrez AN-139.
- a ten percent solution can be obtained by dissolving 5 grams of AN-139 powder in 45 grams of water. 75 grams of Novamet nickel flakes is added the resin solution; creating a 60% nickel and 40% (10% resin) resin solution coating material. Thus the final solution consists of 75 grams nickel and 50 grams of the 10% resin solution.
- This solution is screen printed in a pattern similar to that of Figure 1.
- the dimensions of this,pattern may be as follows: end gap SL of 0.045 inches; side gap SW of 0.0275 inches; length L of 0.787 inches; width W of 0.035 inches; and a stagger of 31%.
- This example uses a ten percent solution of polyvinylpyrrolidone.
- a ten percent solution can be obtained by dissolving 5 grams of polyvinylpyrrolidone powder in 45 grams of methanol (methyl alcohol). To this add 75 grams of Novamet nickel; creating a 60% nickel and 40% (10% solid resin) resin solution. Thus, the final solution consists of 75 grams nickel and 50 grams of 10% resin solution.
- This solution may then be screen printed in a pattern similar to that of Figure 1.
- the dimensions of this pattern may be as follows: end gap SL of .045 inches, side gap SW 0.275 inches, length L of .787 inches, width W of .035 inches and overlap of 31%.
- This example uses a thirty percent solution of polyvinylpyrrolidone.
- a thirty percent solution can be obtained by dissolving 18 grams of polyvinylpyrrolidone powder in 42 grams of methanol (methyl alcohol). To this add 40 grams of 325 mesh graphite from J.T. Baker; creating a 40% graphite and 60% (30% solid resin) resin solution. Thus, the final solution consists of 40 grams graphite and 60 grams of 30% resin solution.
- This solution may then be screen printed in a pattern of staggered square elements.
- the dimensions of this pattern may be as follows: end gap SL of .06mm, side gap SW of 0.06mm, length L of 7.0mm, width W of 7.0mm, and overlap of 31%.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Paints Or Removers (AREA)
- Inks, Pencil-Leads, Or Crayons (AREA)
Abstract
Matière de revêtement active sous l'effet des micro-ondes comprenant des éléments électroconducteurs ainsi qu'un système de liaison. Le système de liaison comprend un solvent ainsi qu'une résine polymère choisie dans le groupe constitué de nitrocellulose, cellulose éthylique, polyvinylbutyral, poly(éther de vinylméthylique/anhydride maléique) co-polymère ou ses dérivés, et polyvinylpyrrolidone. La matière de revêtement est capable de constituer un revêtement configuré sur un substrat afin de former une pluralité d'éléments électroconducteurs discrets. Les éléments électroconducteurs discrets ont une dimension maximum suffisamment réduite pour éviter l'allumage. De plus, les éléments forment un réseau faisant office d'agent modifiant le champ des micro-ondes. L'agent modifiant peut constituer un substrat diélectrique comportant une pluralité d'aires de surface discrètes revêtues d'une matière de revêtement électroconductrice afin de former des éléments électroconducteurs discrets, ces derniers étant disposés sur une surface donnée en un réseau prédéterminé. Les éléments sont de préférence allongés et le réseau constitue une pluralité de rangées d'éléments en alignement linéaire lesquelles sont parallèles, et les éléments du réseau en rangées adjacentes sont disposés en quinconce. Lesdits éléments électroconducteurs sont de préférence formés par impression d'une matière de revêtement électroconductrice analogue à de l'encre sur le substrat diélectrique.
Applications Claiming Priority (16)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US56801090A | 1990-08-16 | 1990-08-16 | |
| US56810490A | 1990-08-16 | 1990-08-16 | |
| US56800690A | 1990-08-16 | 1990-08-16 | |
| US56810390A | 1990-08-16 | 1990-08-16 | |
| US568006 | 1990-08-16 | ||
| US568103 | 1990-08-16 | ||
| US568104 | 1990-08-16 | ||
| US61434390A | 1990-11-15 | 1990-11-15 | |
| US61434190A | 1990-11-15 | 1990-11-15 | |
| US61434490A | 1990-11-15 | 1990-11-15 | |
| US61434290A | 1990-11-15 | 1990-11-15 | |
| US614343 | 1990-11-15 | ||
| US614342 | 1990-11-15 | ||
| US614341 | 1990-11-15 | ||
| US614344 | 1990-11-15 | ||
| US568010 | 1995-12-06 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| EP0543948A1 true EP0543948A1 (fr) | 1993-06-02 |
Family
ID=27575483
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP19910917866 Withdrawn EP0543948A1 (fr) | 1990-08-16 | 1991-08-13 | Matiere de revetement active sous l'effet des micro-ondes comprenant une resine polymere |
Country Status (5)
| Country | Link |
|---|---|
| EP (1) | EP0543948A1 (fr) |
| JP (1) | JPH06500357A (fr) |
| AU (1) | AU8725891A (fr) |
| NZ (1) | NZ239400A (fr) |
| WO (1) | WO1992003509A1 (fr) |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| RU2083618C1 (ru) * | 1995-08-23 | 1997-07-10 | Товарищество с ограниченной ответственностью "ТИКО" | Электропроводный лакокрасочный материал |
| CN102176897A (zh) * | 2009-01-28 | 2011-09-07 | 岩垣直子 | 双眼睑形成用溶液及采用该溶液的双眼睑形成方法 |
| US9303507B2 (en) | 2013-01-31 | 2016-04-05 | Saudi Arabian Oil Company | Down hole wireless data and power transmission system |
| EP3910017B1 (fr) * | 2020-05-14 | 2025-03-26 | Henkel AG & Co. KGaA | Encre de carbone imprimable à grande vitesse |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4518651A (en) * | 1983-02-16 | 1985-05-21 | E. I. Du Pont De Nemours And Company | Microwave absorber |
| US4914266A (en) * | 1989-03-22 | 1990-04-03 | Westvaco Corporation | Press applied susceptor for controlled microwave heating |
-
1991
- 1991-08-13 EP EP19910917866 patent/EP0543948A1/fr not_active Withdrawn
- 1991-08-13 AU AU87258/91A patent/AU8725891A/en not_active Abandoned
- 1991-08-13 JP JP3516614A patent/JPH06500357A/ja active Pending
- 1991-08-13 WO PCT/US1991/005724 patent/WO1992003509A1/fr not_active Ceased
- 1991-08-15 NZ NZ23940091A patent/NZ239400A/en unknown
Non-Patent Citations (1)
| Title |
|---|
| See references of WO9203509A1 * |
Also Published As
| Publication number | Publication date |
|---|---|
| WO1992003509A1 (fr) | 1992-03-05 |
| AU8725891A (en) | 1992-03-17 |
| NZ239400A (en) | 1995-02-24 |
| JPH06500357A (ja) | 1994-01-13 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CA2140518C (fr) | Materiau interactif a auto-limitation pour micro-ondes | |
| US4914266A (en) | Press applied susceptor for controlled microwave heating | |
| US5118747A (en) | Microwave heater compositions for use in microwave ovens | |
| US5002826A (en) | Heaters for use in microwave ovens | |
| EP2350176B1 (fr) | Composition d'argent en film polymère épais de haute conductivité pour utilisation dans les rfid et d'autres applications | |
| US5645764A (en) | Electrically conductive pressure sensitive adhesives | |
| EP2303957B1 (fr) | Composition pour électrode d argent en couche épaisse de polymère destinée à être utilisée dans les cellules photovoltaïques en couche mince | |
| EP0569646A1 (fr) | Suscepteur | |
| DE3786589T2 (de) | Zusammengesetztes Material, das Mikrowellen absorbierende Materialien enthält. | |
| EP0543948A1 (fr) | Matiere de revetement active sous l'effet des micro-ondes comprenant une resine polymere | |
| JP7194366B2 (ja) | 熱転写シート、熱転写シートと被転写体との組合せ、熱転写シートの製造方法及び転写物の製造方法 | |
| US4217596A (en) | Recording carrier for electrical discharge recording apparatus | |
| DE69115279T2 (de) | Mikrowellenverpackung mit elektrisch leitenden elementen, die das mirkowellenfeld modifizieren. | |
| US5308945A (en) | Microwave interactive printable coatings | |
| US5985180A (en) | Coating agent for plastic films | |
| US4175152A (en) | Polymeric materials containing semiconducting refractory oxides | |
| CA2048340A1 (fr) | Matiere de revetement active aux micro-ondes, comportant du polyvinylbutyral | |
| JPH0195170A (ja) | 導電性塗料 | |
| CA2048341A1 (fr) | Matiere de revetement active aux micro-ondes, comportant une resine copolymerique de type methylvinylether/anhydride maleique | |
| CA2048342A1 (fr) | Matiere de revetement active aux micro-ondes comportant de la polyvinylpyrrolidone | |
| CA2048343A1 (fr) | Matiere de revetement active aux micro-ondes comportant une resine de nicrocellulose ou d'ethylcellulose | |
| NZ239399A (en) | Microwave field modifier: rows of patterned electrically conductive elements | |
| JP3526743B2 (ja) | 導電性シート | |
| JPH03271362A (ja) | 電気絶縁性金属蒸着膜 | |
| JPH03264390A (ja) | 絶縁性転写箔 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 19930211 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE |
|
| 17Q | First examination report despatched |
Effective date: 19931210 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
| 18W | Application withdrawn |
Withdrawal date: 19950502 |