EP0408131B1 - Bleach activation - Google Patents
Bleach activation Download PDFInfo
- Publication number
- EP0408131B1 EP0408131B1 EP19900201821 EP90201821A EP0408131B1 EP 0408131 B1 EP0408131 B1 EP 0408131B1 EP 19900201821 EP19900201821 EP 19900201821 EP 90201821 A EP90201821 A EP 90201821A EP 0408131 B1 EP0408131 B1 EP 0408131B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- bleach
- composition
- alkyl
- bleaching
- catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000007844 bleaching agent Substances 0.000 title claims description 62
- 230000004913 activation Effects 0.000 title description 5
- 239000000203 mixture Substances 0.000 claims description 56
- 239000003054 catalyst Substances 0.000 claims description 44
- -1 peroxy compound Chemical class 0.000 claims description 37
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 33
- 239000003599 detergent Substances 0.000 claims description 27
- 238000004061 bleaching Methods 0.000 claims description 25
- 150000004965 peroxy acids Chemical class 0.000 claims description 22
- 150000001875 compounds Chemical class 0.000 claims description 21
- 125000000217 alkyl group Chemical group 0.000 claims description 14
- 239000002243 precursor Substances 0.000 claims description 13
- 239000003446 ligand Substances 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 12
- 150000003839 salts Chemical class 0.000 claims description 12
- 229910052723 transition metal Inorganic materials 0.000 claims description 11
- 150000004700 cobalt complex Chemical class 0.000 claims description 10
- 230000008569 process Effects 0.000 claims description 10
- 150000003624 transition metals Chemical class 0.000 claims description 10
- 125000003118 aryl group Chemical group 0.000 claims description 9
- 229910052739 hydrogen Inorganic materials 0.000 claims description 7
- 239000001257 hydrogen Substances 0.000 claims description 7
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims description 7
- 125000001424 substituent group Chemical group 0.000 claims description 7
- 229910052783 alkali metal Inorganic materials 0.000 claims description 5
- 150000001450 anions Chemical class 0.000 claims description 5
- 230000003197 catalytic effect Effects 0.000 claims description 5
- 229910052736 halogen Inorganic materials 0.000 claims description 5
- 150000002367 halogens Chemical class 0.000 claims description 5
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 claims description 5
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 claims description 4
- 150000001340 alkali metals Chemical class 0.000 claims description 4
- 150000001768 cations Chemical class 0.000 claims description 4
- 229910021645 metal ion Inorganic materials 0.000 claims description 4
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 4
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 125000000547 substituted alkyl group Chemical group 0.000 claims description 3
- JCXJVPUVTGWSNB-UHFFFAOYSA-N Nitrogen dioxide Chemical compound O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 claims description 2
- 230000009471 action Effects 0.000 claims description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 2
- 150000001342 alkaline earth metals Chemical class 0.000 claims description 2
- 125000005210 alkyl ammonium group Chemical group 0.000 claims description 2
- 238000004140 cleaning Methods 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 230000001419 dependent effect Effects 0.000 claims description 2
- HDCXQTPVTAIPNZ-UHFFFAOYSA-N n-({[4-(aminosulfonyl)phenyl]amino}carbonyl)-4-methylbenzenesulfonamide Chemical compound C1=CC(C)=CC=C1S(=O)(=O)NC(=O)NC1=CC=C(S(N)(=O)=O)C=C1 HDCXQTPVTAIPNZ-UHFFFAOYSA-N 0.000 claims description 2
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 claims description 2
- 229910052717 sulfur Inorganic materials 0.000 claims description 2
- 125000001814 trioxo-lambda(7)-chloranyloxy group Chemical group *OCl(=O)(=O)=O 0.000 claims description 2
- 239000000463 material Substances 0.000 description 15
- 229910052708 sodium Inorganic materials 0.000 description 14
- 239000011734 sodium Substances 0.000 description 14
- 229910002514 Co–Co Inorganic materials 0.000 description 13
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 13
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- 239000002738 chelating agent Substances 0.000 description 10
- 230000000694 effects Effects 0.000 description 9
- 238000005406 washing Methods 0.000 description 9
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 8
- 238000009472 formulation Methods 0.000 description 8
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 7
- 244000269722 Thea sinensis Species 0.000 description 7
- 229920001577 copolymer Polymers 0.000 description 7
- 239000011976 maleic acid Substances 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- KFSLWBXXFJQRDL-UHFFFAOYSA-N Peracetic acid Chemical compound CC(=O)OO KFSLWBXXFJQRDL-UHFFFAOYSA-N 0.000 description 6
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 6
- 235000014113 dietary fatty acids Nutrition 0.000 description 6
- 239000000194 fatty acid Substances 0.000 description 6
- 229930195729 fatty acid Natural products 0.000 description 6
- 150000002978 peroxides Chemical class 0.000 description 6
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 239000002585 base Substances 0.000 description 5
- 239000007795 chemical reaction product Substances 0.000 description 5
- 239000010941 cobalt Substances 0.000 description 5
- 229910017052 cobalt Inorganic materials 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 150000004665 fatty acids Chemical class 0.000 description 5
- 239000004615 ingredient Substances 0.000 description 5
- 150000004967 organic peroxy acids Chemical class 0.000 description 5
- 125000000864 peroxy group Chemical group O(O*)* 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 4
- 229910020637 Co-Cu Inorganic materials 0.000 description 4
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 4
- BGRWYDHXPHLNKA-UHFFFAOYSA-N Tetraacetylethylenediamine Chemical compound CC(=O)N(C(C)=O)CCN(C(C)=O)C(C)=O BGRWYDHXPHLNKA-UHFFFAOYSA-N 0.000 description 4
- 150000001298 alcohols Chemical class 0.000 description 4
- 125000000129 anionic group Chemical group 0.000 description 4
- 229910052791 calcium Inorganic materials 0.000 description 4
- 239000011575 calcium Substances 0.000 description 4
- 239000004744 fabric Substances 0.000 description 4
- 229910000029 sodium carbonate Inorganic materials 0.000 description 4
- XSVSPKKXQGNHMD-UHFFFAOYSA-N 5-bromo-3-methyl-1,2-thiazole Chemical compound CC=1C=C(Br)SN=1 XSVSPKKXQGNHMD-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical class C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000011149 active material Substances 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 125000001931 aliphatic group Chemical group 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 235000019864 coconut oil Nutrition 0.000 description 3
- 239000003240 coconut oil Substances 0.000 description 3
- 150000001879 copper Chemical class 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 229960001484 edetic acid Drugs 0.000 description 3
- FJKIXWOMBXYWOQ-UHFFFAOYSA-N ethenoxyethane Chemical class CCOC=C FJKIXWOMBXYWOQ-UHFFFAOYSA-N 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000011572 manganese Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000003352 sequestering agent Substances 0.000 description 3
- 229960001922 sodium perborate Drugs 0.000 description 3
- 235000019832 sodium triphosphate Nutrition 0.000 description 3
- YKLJGMBLPUQQOI-UHFFFAOYSA-M sodium;oxidooxy(oxo)borane Chemical compound [Na+].[O-]OB=O YKLJGMBLPUQQOI-UHFFFAOYSA-M 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000004753 textile Substances 0.000 description 3
- CIOXZGOUEYHNBF-UHFFFAOYSA-N (carboxymethoxy)succinic acid Chemical class OC(=O)COC(C(O)=O)CC(O)=O CIOXZGOUEYHNBF-UHFFFAOYSA-N 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910021532 Calcite Inorganic materials 0.000 description 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 2
- 244000060011 Cocos nucifera Species 0.000 description 2
- 235000013162 Cocos nucifera Nutrition 0.000 description 2
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical class [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 description 2
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 239000012190 activator Substances 0.000 description 2
- 125000002947 alkylene group Chemical group 0.000 description 2
- 229910000323 aluminium silicate Inorganic materials 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- 150000003863 ammonium salts Chemical class 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- SRSXLGNVWSONIS-UHFFFAOYSA-M benzenesulfonate Chemical compound [O-]S(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-M 0.000 description 2
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical class OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 2
- 239000001110 calcium chloride Substances 0.000 description 2
- 229910001628 calcium chloride Inorganic materials 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 2
- WJJMNDUMQPNECX-UHFFFAOYSA-N dipicolinic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=N1 WJJMNDUMQPNECX-UHFFFAOYSA-N 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 230000003301 hydrolyzing effect Effects 0.000 description 2
- 238000005342 ion exchange Methods 0.000 description 2
- SUMDYPCJJOFFON-UHFFFAOYSA-N isethionic acid Chemical compound OCCS(O)(=O)=O SUMDYPCJJOFFON-UHFFFAOYSA-N 0.000 description 2
- 159000000003 magnesium salts Chemical class 0.000 description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 2
- YDSWCNNOKPMOTP-UHFFFAOYSA-N mellitic acid Chemical class OC(=O)C1=C(C(O)=O)C(C(O)=O)=C(C(O)=O)C(C(O)=O)=C1C(O)=O YDSWCNNOKPMOTP-UHFFFAOYSA-N 0.000 description 2
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical compound OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- SIOXPEMLGUPBBT-UHFFFAOYSA-N picolinic acid Chemical compound OC(=O)C1=CC=CC=N1 SIOXPEMLGUPBBT-UHFFFAOYSA-N 0.000 description 2
- 230000001376 precipitating effect Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 125000001453 quaternary ammonium group Chemical group 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 239000003760 tallow Substances 0.000 description 2
- DLYUQMMRRRQYAE-UHFFFAOYSA-N tetraphosphorus decaoxide Chemical compound O1P(O2)(=O)OP3(=O)OP1(=O)OP2(=O)O3 DLYUQMMRRRQYAE-UHFFFAOYSA-N 0.000 description 2
- 150000003623 transition metal compounds Chemical class 0.000 description 2
- 229910001428 transition metal ion Inorganic materials 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- XFNJVJPLKCPIBV-UHFFFAOYSA-N trimethylenediamine Chemical compound NCCCN XFNJVJPLKCPIBV-UHFFFAOYSA-N 0.000 description 2
- 239000010457 zeolite Substances 0.000 description 2
- 239000004711 α-olefin Substances 0.000 description 2
- FXNDIJDIPNCZQJ-UHFFFAOYSA-N 2,4,4-trimethylpent-1-ene Chemical group CC(=C)CC(C)(C)C FXNDIJDIPNCZQJ-UHFFFAOYSA-N 0.000 description 1
- CFPOJWPDQWJEMO-UHFFFAOYSA-N 2-(1,2-dicarboxyethoxy)butanedioic acid Chemical class OC(=O)CC(C(O)=O)OC(C(O)=O)CC(O)=O CFPOJWPDQWJEMO-UHFFFAOYSA-N 0.000 description 1
- QDDADYIRBDHPRY-UHFFFAOYSA-N 3-(carboxymethoxy)-3-oxopropanoic acid Chemical compound OC(=O)COC(=O)CC(O)=O QDDADYIRBDHPRY-UHFFFAOYSA-N 0.000 description 1
- NHQDETIJWKXCTC-UHFFFAOYSA-N 3-chloroperbenzoic acid Chemical compound OOC(=O)C1=CC=CC(Cl)=C1 NHQDETIJWKXCTC-UHFFFAOYSA-N 0.000 description 1
- ZJAFQAPHWPSKRZ-UHFFFAOYSA-N 4-nitrobenzenecarboperoxoic acid Chemical compound OOC(=O)C1=CC=C([N+]([O-])=O)C=C1 ZJAFQAPHWPSKRZ-UHFFFAOYSA-N 0.000 description 1
- HSCSHUNFBKVMBN-UHFFFAOYSA-N 4-sulfobenzenecarboperoxoic acid Chemical compound OOC(=O)C1=CC=C(S(O)(=O)=O)C=C1 HSCSHUNFBKVMBN-UHFFFAOYSA-N 0.000 description 1
- UWLVWAQSMOVZKN-UHFFFAOYSA-N 5-methylbenzene-1,3-dicarbaldehyde Chemical compound CC1=CC(C=O)=CC(C=O)=C1 UWLVWAQSMOVZKN-UHFFFAOYSA-N 0.000 description 1
- 229920002126 Acrylic acid copolymer Polymers 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 102000013142 Amylases Human genes 0.000 description 1
- 108010065511 Amylases Proteins 0.000 description 1
- ROFVEXUMMXZLPA-UHFFFAOYSA-N Bipyridyl Chemical compound N1=CC=CC=C1C1=CC=CC=N1 ROFVEXUMMXZLPA-UHFFFAOYSA-N 0.000 description 1
- 0 CC(C*1=CCCCC1)C(C(C)OC)C1C(C)(CCC*)C1 Chemical compound CC(C*1=CCCCC1)C(C(C)OC)C1C(C)(CCC*)C1 0.000 description 1
- FYJQFTDDXICKAM-UHFFFAOYSA-N CC[Na].OC(OC(C=C1)=CC=C1S(O)(=O)=O)=O.Cl Chemical compound CC[Na].OC(OC(C=C1)=CC=C1S(O)(=O)=O)=O.Cl FYJQFTDDXICKAM-UHFFFAOYSA-N 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 102000005575 Cellulases Human genes 0.000 description 1
- 108010084185 Cellulases Proteins 0.000 description 1
- 229910017518 Cu Zn Inorganic materials 0.000 description 1
- 229910017752 Cu-Zn Inorganic materials 0.000 description 1
- 229910017943 Cu—Zn Inorganic materials 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 229910017108 Fe—Fe Inorganic materials 0.000 description 1
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical class NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 1
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 1
- 239000004367 Lipase Substances 0.000 description 1
- 102000004882 Lipase Human genes 0.000 description 1
- 108090001060 Lipase Proteins 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 241001302239 Mycobacterium tuberculosis complex Species 0.000 description 1
- SUZRRICLUFMAQD-UHFFFAOYSA-N N-Methyltaurine Chemical compound CNCCS(O)(=O)=O SUZRRICLUFMAQD-UHFFFAOYSA-N 0.000 description 1
- 229910003298 Ni-Ni Inorganic materials 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 229920000388 Polyphosphate Polymers 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- PCKSUVDVOPIZBJ-UHFFFAOYSA-N S(=O)(=O)(O)C1=CC=C(C=C1)C(=O)O.C(CC)[Na] Chemical compound S(=O)(=O)(O)C1=CC=C(C=C1)C(=O)O.C(CC)[Na] PCKSUVDVOPIZBJ-UHFFFAOYSA-N 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- 239000004902 Softening Agent Substances 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- ULUAUXLGCMPNKK-UHFFFAOYSA-N Sulfobutanedioic acid Chemical class OC(=O)CC(C(O)=O)S(O)(=O)=O ULUAUXLGCMPNKK-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical class OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- DGEZNRSVGBDHLK-UHFFFAOYSA-N [1,10]phenanthroline Chemical compound C1=CN=C2C3=NC=CC=C3C=CC2=C1 DGEZNRSVGBDHLK-UHFFFAOYSA-N 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 150000004973 alkali metal peroxides Chemical class 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 229920013820 alkyl cellulose Polymers 0.000 description 1
- 235000019418 amylase Nutrition 0.000 description 1
- 229940025131 amylases Drugs 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 150000005840 aryl radicals Chemical class 0.000 description 1
- 125000000732 arylene group Chemical group 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- JXLHNMVSKXFWAO-UHFFFAOYSA-N azane;7-fluoro-2,1,3-benzoxadiazole-4-sulfonic acid Chemical compound N.OS(=O)(=O)C1=CC=C(F)C2=NON=C12 JXLHNMVSKXFWAO-UHFFFAOYSA-N 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000003426 co-catalyst Substances 0.000 description 1
- 150000001868 cobalt Chemical class 0.000 description 1
- AVINMTZQCQURBJ-UHFFFAOYSA-N cobalt;2-pyridin-2-ylpyridine Chemical compound [Co].N1=CC=CC=C1C1=CC=CC=N1 AVINMTZQCQURBJ-UHFFFAOYSA-N 0.000 description 1
- 230000009918 complex formation Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000007859 condensation product Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- TVZPLCNGKSPOJA-UHFFFAOYSA-N copper zinc Chemical compound [Cu].[Zn] TVZPLCNGKSPOJA-UHFFFAOYSA-N 0.000 description 1
- 239000012043 crude product Substances 0.000 description 1
- 229960003280 cupric chloride Drugs 0.000 description 1
- RMKNCYHVESPYFD-UHFFFAOYSA-N decan-1-amine;hydrochloride Chemical compound [Cl-].CCCCCCCCCC[NH3+] RMKNCYHVESPYFD-UHFFFAOYSA-N 0.000 description 1
- 229940042400 direct acting antivirals phosphonic acid derivative Drugs 0.000 description 1
- VTIIJXUACCWYHX-UHFFFAOYSA-L disodium;carboxylatooxy carbonate Chemical compound [Na+].[Na+].[O-]C(=O)OOC([O-])=O VTIIJXUACCWYHX-UHFFFAOYSA-L 0.000 description 1
- JHUXOSATQXGREM-UHFFFAOYSA-N dodecanediperoxoic acid Chemical compound OOC(=O)CCCCCCCCCCC(=O)OO JHUXOSATQXGREM-UHFFFAOYSA-N 0.000 description 1
- BRDYCNFHFWUBCZ-UHFFFAOYSA-N dodecaneperoxoic acid Chemical compound CCCCCCCCCCCC(=O)OO BRDYCNFHFWUBCZ-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 229940052303 ethers for general anesthesia Drugs 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 230000002070 germicidal effect Effects 0.000 description 1
- 229940050410 gluconate Drugs 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229940045996 isethionic acid Drugs 0.000 description 1
- 238000004900 laundering Methods 0.000 description 1
- 235000019421 lipase Nutrition 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- XJRBAMWJDBPFIM-UHFFFAOYSA-N methyl vinyl ether Chemical group COC=C XJRBAMWJDBPFIM-UHFFFAOYSA-N 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 239000010705 motor oil Substances 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- SXLLDUPXUVRMEE-UHFFFAOYSA-N nonanediperoxoic acid Chemical compound OOC(=O)CCCCCCCC(=O)OO SXLLDUPXUVRMEE-UHFFFAOYSA-N 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 150000001451 organic peroxides Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- MPQXHAGKBWFSNV-UHFFFAOYSA-N oxidophosphanium Chemical group [PH3]=O MPQXHAGKBWFSNV-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- XCRBXWCUXJNEFX-UHFFFAOYSA-N peroxybenzoic acid Chemical compound OOC(=O)C1=CC=CC=C1 XCRBXWCUXJNEFX-UHFFFAOYSA-N 0.000 description 1
- 125000005342 perphosphate group Chemical group 0.000 description 1
- JRKICGRDRMAZLK-UHFFFAOYSA-L persulfate group Chemical group S(=O)(=O)([O-])OOS(=O)(=O)[O-] JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- VVTMNCICAIKIRN-UHFFFAOYSA-N phenyl benzoate;sodium Chemical compound [Na].C=1C=CC=CC=1C(=O)OC1=CC=CC=C1 VVTMNCICAIKIRN-UHFFFAOYSA-N 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003007 phosphonic acid derivatives Chemical class 0.000 description 1
- 229940081066 picolinic acid Drugs 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920001444 polymaleic acid Polymers 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 239000001205 polyphosphate Substances 0.000 description 1
- 235000011176 polyphosphates Nutrition 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical compound [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 description 1
- 229910052939 potassium sulfate Inorganic materials 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000004076 pulp bleaching Methods 0.000 description 1
- NYCVCXMSZNOGDH-UHFFFAOYSA-N pyrrolidine-1-carboxylic acid Chemical class OC(=O)N1CCCC1 NYCVCXMSZNOGDH-UHFFFAOYSA-N 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 235000020095 red wine Nutrition 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 239000012047 saturated solution Substances 0.000 description 1
- 235000015067 sauces Nutrition 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- 239000004289 sodium hydrogen sulphite Substances 0.000 description 1
- 229940045872 sodium percarbonate Drugs 0.000 description 1
- 229940048086 sodium pyrophosphate Drugs 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 239000012265 solid product Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 125000005156 substituted alkylene group Chemical group 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 235000013616 tea Nutrition 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 150000004685 tetrahydrates Chemical class 0.000 description 1
- RYCLIXPGLDDLTM-UHFFFAOYSA-J tetrapotassium;phosphonato phosphate Chemical compound [K+].[K+].[K+].[K+].[O-]P([O-])(=O)OP([O-])([O-])=O RYCLIXPGLDDLTM-UHFFFAOYSA-J 0.000 description 1
- UNXRWKVEANCORM-UHFFFAOYSA-I triphosphate(5-) Chemical compound [O-]P([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O UNXRWKVEANCORM-UHFFFAOYSA-I 0.000 description 1
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- AQLJVWUFPCUVLO-UHFFFAOYSA-N urea hydrogen peroxide Chemical compound OO.NC(N)=O AQLJVWUFPCUVLO-UHFFFAOYSA-N 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 235000014101 wine Nutrition 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/39—Organic or inorganic per-compounds
- C11D3/3902—Organic or inorganic per-compounds combined with specific additives
- C11D3/3905—Bleach activators or bleach catalysts
- C11D3/3932—Inorganic compounds or complexes
Definitions
- This invention relates to activation of bleaches employing peroxy compounds, including hydrogen peroxide or a hydrogen peroxide adduct, which liberate hydrogen peroxide in aqueous solution, as well as peroxy acids; to compounds that activate or catalyse peroxy compounds; to bleach compositions including detergent bleach compositions which contain a catalyst for peroxy compounds; and to processes for bleaching and/or washing of substrates employing the aforementioned types of compositions.
- peroxy compounds including hydrogen peroxide or a hydrogen peroxide adduct, which liberate hydrogen peroxide in aqueous solution, as well as peroxy acids
- bleach compositions including detergent bleach compositions which contain a catalyst for peroxy compounds
- processes for bleaching and/or washing of substrates employing the aforementioned types of compositions employing the aforementioned types of compositions.
- the present invention is concerned with the effective use of transition metal compounds as catalyst for the bleach activation of peroxy compound bleaches.
- Peroxide bleaching agents for use in laundering have been known for many years. Such agents are effective in removing stains, such as tea, fruit and wine stains, from clothing at or near boiling temperatures. The efficacy of peroxide bleaching agents drops off sharply at temperatures below 60°C.
- transition metal ions catalyse the decomposition of H2O2 and H2O2-liberating percompounds, such as sodium perborate. It has also been suggested that transition metal salts together with a chelating agent can be used to activate peroxide compounds so as to make them usable for satisfactory bleaching at lower temperatures. Not all combinations of transition metals with chelating agents appeared to be suitable for improving the bleaching performance of peroxide compound bleaches. Many combinations indeed show no effect, or even a worsening effect, on the bleaching performance; no proper rule seems to exist by which the effect of metal ion/chelating agent combinations on the bleaching performance of peroxide compound bleaches can be predicted.
- US Patent N° 3,156,654 suggested particularly cobalt and copper salts in conjunction with pyridine-2-carboxylic acid or pyridine-2,6-dicarboxylic acid, preferably as a pre-formed complex, as being a suitable combination.
- Another suggestion is made in US Patent N° 3,532,634 to use a transition metal, especially cobalt, manganese and copper salts, together with a chelating agent in combination with a persalt and an organic bleach activator. It is said here that the chelating agent should have a first complex formation constant with the transition metal ion of log 2 to about log 10 at 20°C.
- Preferred options include (di)-picolinic acid, pyrrolidine-carboxylic acids and 1,10-phenanthroline, whereas well-known chelating agents, such as ethylene diamine tetraacetic acid - found usable according to US Patent N° 3,156,654 - are unsuitable. These catalysts, as shows in the Examples, have very little or no effect on persalts alone.
- transition metal For a transition metal to be useful as a bleach catalyst in a detergent bleach composition, the transition metal compound must not unduly promote peroxide decomposition by non-bleaching pathways and must be hydrolytically and oxidatively stable.
- US Patent N° 4,728,455 discusses the use of Mn(III)-gluconate as peroxide bleach catalyst and EP-A-0272030 discloses the use of cobalt(III)amine complexes, e.g. [Co(NH3)5Cl]Cl2, as peroxide bleach catalysts. Still, the performance of these systems is inadequate when used for bleaching in the low-temperature region of about 20-40°C. They are furthermore restricted in their efficacy to remove a wide class of stains.
- Another object of the invention is to provide an improved bleaching composition for use in detergent formulations which are effective at low to medium temperatures of e.g. 20-40°C.
- Still another object of the invention is to provide new, improved detergent bleach formulations.
- Yet another object of the invention is to provide aqueous laundry wash media containing new, improved detergent bleach formulations.
- a further object of the invention is to provide an improved bleaching system comprising a peroxy compound bleach and a transition metal catalyst for the effective use in the textile and paper industries and other related industries.
- the improved transition metal bleach catalyst according to the invention is a cobalt complex of the following general formula (A) : (A) [Co.M a LX p ] z Y n .
- M is a metal ion selected from Co and Cu; a is 0 or 1;
- X is a common anion such as Cl ⁇ , Br ⁇ , I ⁇ , NO3 ⁇ , ClO4 ⁇ , NCS ⁇ and OH ⁇ , or a small co-ordinating ligand such as H2O, NH3 and pyridine, or a species selected from O22 ⁇ , O2 ⁇ , HO2 ⁇ and H2O2;
- p is an integer from 0 to 4;
- Y is a counter ion, the type of which is dependent upon the charge z of the complex;
- z denotes the charge of the complex and is an integer which can be positive or negative, whereby, if z is positive, Y is a common anion as denoted for X and, if
- R1, R2 are each a substituent selected from H, alkyl, aryl, optionally substituted;
- Examples of the ligands in their simplest forms are thus: Being a Co-complex, ligand (I) will form a mono-nuclear Co-complex and ligand (II) will form a bi-nuclear Co-Co- or Co-Cu-complex.
- catalyst complexes which can be, and are normally, written in simplified form :
- An example of a complex wherein R1 or R2 is substituted is : Any of these complexes are useful catalysts for the bleach activation of peroxy compounds over a wide class of stains at lower temperatures, in a much more effective way than the metal catalysts of the art hitherto known.
- the [Co.M a L]-core complex is the determining factor of its catalytic action and that the presence of X and Y in the formula, which may be inherent to the methods of preparation, has hardly any effect on the catalytic action of the instant complexes. It is also essential that the catalyst complex of the invention should contain at least one cobalt atom, since otherwise no, or hardly any, catalyzing effect is observed, e.g. Cu-SALEN or a bi-nuclear Cu-Cu-complex is hardly catalytically active. These non-cobalt-containing complexes are thus outside the purview of the present invention.
- bleach catalysts of the invention are hydrolytically and oxidatively stable, and that the complexes themselves are catalytically active, insensitive to builder variations in the composition. Another advantage is that the instant catalysts appear to be better than similar complexes proposed in the art.
- the instant bleach catalysts have furthermore the surprising feature in that they activate not only hydrogen peroxide or hydrogen peroxide-liberating compounds but also peroxyacids and peroxyacid bleach systems, such as a persalt/peroxyacid precursor mixture.
- a further surprising feature of the bleach systems according to the invention is that they are effective on a wide range of stains including both hydrophilic and hydrophobic stains, which is very unusual for hydrogen peroxide-based bleach systems.
- the invention provides a bleaching or cleaning process employing a peroxy compound bleaching agent selected from the group of hydrogen peroxide, hydrogen peroxide-liberating compounds, peroxyacids and their salts, and peroxyacid bleach precursors and mixtures thereof, which process is characterized in that said bleaching agent is activated by a catalytic amount of a cobalt complex of general formula (A) as defined hereinbefore.
- the catalytic component is a novel feature of the invention.
- the effective level of the cobalt complex catalyst expressed in terms of parts per million (ppm) of transition metal in the aqueous bleaching solution, will normally range from 0.01 ppm to 1000 ppm, preferably from 0.1 ppm to 100 ppm, most preferably from 0.1 ppm to 10 ppm. Higher levels may be desired and applied in industrial bleaching processes, such as textile and paper pulp-bleaching. The lower range levels are primarily destined and preferably used in domestic laundry operations.
- the invention provides an improved bleaching composition
- the improved bleaching composition has particular application in detergent formulations to form a new and improved detergent bleach composition within the purview of the invention, comprising said peroxy compound bleach, the aforesaid cobalt complex catalyst, a surface-active material, and usually also detergency builders and other known ingredients of such formulations, as well as in the industrial bleaching of yarns, textiles, paper and the like.
- compositions comprising a peroxy compound bleach and the aforesaid bleach catalyst are effective over a wide pH range of between 7 and 13, with optimal pH range lying between 8 and 11.
- the peroxy compound bleaches which can be utilized in the present invention include hydrogen peroxide, hydrogen peroxide-liberating compounds, peroxyacids and their salts, and peroxyacid bleach precursors and mixtures thereof.
- Hydrogen peroxide sources are well known in the art. They include the alkali metal peroxides, organic peroxide bleaching compounds such as urea peroxide, and inorganic persalt bleaching compounds, such as the alkali metal perborates, percarbonates, perphosphates and persulphates. Mixtures of two or more such compounds may also be suitable. Particularly preferred are sodium percarbonate and sodium perborate and, especially, sodium perborate monohydrate. Sodium perborate monohydrate is preferred to tetrahydrate because of its excellent storage stability while also dissolving very quickly in aqueous bleaching solutions.
- Peroxyacid compounds include the organic peroxyacids and their salts and the inorganic peroxyacid salts.
- One suitable class of organic peroxyacids can be represented by compounds of the general formula : wherein R is an alkylene or substituted alkylene group containing 1 to 20 carbon atoms or an arylene group containing from 6 to 8 carbon atoms, n is 0 or 1, and Y is hydrogen, halogen, alkyl, aryl or any group which provides an anionic or cationic moiety in aqueous solution.
- Such groups can include, for example, and -N+R3 wherein M is H or a water-soluble, salt-forming cation.
- the organic peroxyacids and salts thereof can contain either one, two or more peroxy groups and can be either aliphatic or aromatic.
- the unsubstituted acid may have the general formula : wherein Y can be H, -CH3, -CH2Cl, or -N+R3 and m can be an integer from 1 to 20.
- compounds of this type are diperoxyazelaic acid, peroxylauric acid and diperoxydodecanedioic acid, and the magnesium salts thereof.
- the unsubstituted acid may have the general formula: wherein Y is, for example, hydrogen, halogen, alkyl, -(CH2) n N+R3 or
- the percarboxy or percarbonic and Y groupings can be in any relative position around the aromatic ring.
- the ring and/or Y group (if alkyl) can contain any non-interfering substituents, such as halogen or sulphonate groups.
- aromatic peroxyacids and salts thereof include peroxybenzoic acid, m-chloro-peroxybenzoic acid, p-nitro-peroxybenzoic acid, p-sulphonato-peroxybenzoic acid, diperoxyisophthalic acid, peroxy-alpha-naphthoic acid, and 4,4'-sulphonyl-diperoxybenzoic acid and magnesium salts thereof.
- inorganic peroxyacid salts is potassium monopersulphate.
- a product comprising this compound is the triple salt, K2SO4.KHSO4.2KHSO5, available commercially under the trade-name Oxone ® from E.I. Dupont de Nemours and Company and Caroat ® from Degussa.
- Preferred peroxyacids are peracetic acid and potassium monopersulphate.
- Peroxyacid bleach precursors are known and amply described in literature, such as in the GB-Patents 836,988; 864,798; 907,356; 1,003,310 and 1,519,351; German Patent 3,337,921; EP-A-0185522; EP-A-0174132; EP-A-0120591; and U.S. Patents 1,246,339; 3,332,882; 4,128,494; 4,412,934 and 4,675,393.
- peroxyacid bleach precursors Another useful class of peroxyacid bleach precursors is that of the quaternary ammonium substituted peroxyacid precursors as disclosed in U.S. Patents 4,751,015 and 4,397,757, in EP-A-284292 and in our pending unpublished European Patent Application 89200385.6.
- peroxyacid bleach precursors of this class are: 2-(N,N,N-trimethyl ammonium) ethyl sodium-4-sulphophenyl carbonate chloride - (SPCC); N-octyl,N,N-dimethyl-N10-carbophenoxy decyl ammonium chloride - (ODC); 3-(N,N,N-trimethyl ammonium) propyl sodium-4-sulphophenyl carboxylate; and N,N,N-trimethyl ammonium toluyloxy benzene sulphonate.
- SPCC 2-(N,N,N-trimethyl ammonium) ethyl sodium-4-sulphophenyl carbonate chloride -
- ODC N-octyl,N,N-dimethyl-N10-carbophenoxy decyl ammonium chloride -
- the preferred classes are the esters, including acyl phenol sulphonates and acyl alkyl phenol sulphonates; amides, including TAED; and the quaternary ammonium substituted peroxyacid precursors.
- Highly preferred activators include sodium-4-benzoyloxy benzene sulphonate; N,N,N′,N′-tetraacetyl ethylene diamine; sodium-1-methyl-2-benzoyloxy benzene-4-sulphonate; sodium-4-methyl-3-benzoyloxy benzoate; SPCC and trimethyl ammonium toluyloxy benzene sulphonate.
- a detergent bleach composition of the invention can be formulated by combining effective amounts of the components.
- effective amounts means that the ingredients are present in quantities such that each of them is operative for its intended purpose when the resulting mixture is combined with water to form an aqueous medium which can be used to wash clothes, fabrics and other articles.
- the detergent bleach composition can be formulated to contain, for example, 5% to 30% by weight, preferably from 10 to 25% by weight, of a peroxide compound.
- Peroxyacids may be utilized in somewhat lower amounts, for example from 1% to 15% by weight, preferably from 2% to 10% by weight.
- Peroxyacid precursors may be utilized in combination with a peroxide compound in approximately the same level as peroxyacids, i.e. 1% to 15%, preferably from 2% to 10% by weight.
- the cobalt complex catalyst will be present in such formulations in amounts so as to provide the required level of cobalt in the wash liquor. Normally, an amount of cobalt complex catalyst is incorporated in the formulation which corresponds to a transition metal content of from 0.0002% to 10.0% by weight, preferably 0.002% to 1.0% by weight.
- the bleach catalyst of the invention is compatible with substantially any known and common surface-active agents and detergency builder materials.
- the surface-active material may be naturally derived or a synthetic material selected from anionic, nonionic, amphoteric, zwitterionic, cationic actives and mixtures thereof. Many suitable actives are commercially available and are fully described in literature, for example in "Surface Active Agents and Detergents", Volumes I and II, by Schwartz, Perry and Berch.
- the total level of the surface-active material may range up to 50% by weight, preferably being from 1% to 40% by weight of the composition, most preferably 4 to 25%.
- Synthetic anionic surface-actives are usually water-soluble alkali metal salts of organic sulphates and sulphonates having alkyl groups containing from 8 to 22 carbon atoms, the term alkyl being used to include the alkyl portion of higher aryl radicals.
- suitable synthetic anionic detergent compounds are sodium and ammonium alkyl sulphates, especially those obtained by sulphating higher (C8-C18) alcohols produced, for example, from tallow or coconut oil; sodium and ammonium alkyl (C9-C20) benzene sulphonates, particularly sodium linear secondary alkyl, (C10-C15) benzene sulphonates; sodium alkyl glyceryl ether sulphates, especially those esters of the higher alcohols derived from tallow or coconut oil and synthetic alcohols derived from petroleum; sodium coconut oil fatty acid monoglyceride sulphates and sulphonates; sodium and ammonium salts of sulphuric acid esters of higher (C9-C18) fatty alcohol alkylene oxides particularly ethylene oxide, reaction products; the reaction products of fatty acids such as coconut fatty acids esterified with isethionic acid and neutralized with sodium hydroxide; sodium and ammonium salts of fatty acid amides of
- nonionic surface-active compounds examples include in particular the reaction products of alkylene oxides, usually ethylene oxide, with alkyl (C6-C22) phenols, generally 5-25 EO, i.e. 5-25 units of ethylene oxides per molecule; the condensation products of aliphatic (C8-C18) primary or secondary linear or branched alcohols with ethylene oxide, generally 3-30 EO, and products made by condensation of ethylene oxide with the reaction products of propylene oxide and ethylene diamine.
- alkyl polyglycosides long chain tertiary amine oxides, long chain tertiary phosphine oxides and dialkyl sulphoxides.
- Amounts of amphoteric or zwitterionic surface-active compounds can also be used in the compositions of the invention but this is not normally desired owing to their relatively high cost. If any amphoteric or zwitterionic detergent compounds are used, it is generally in small amounts in compositions based on the much more commonly used synthetic anionic and nonionic actives.
- the detergent compositions of the invention will normally also contain a detergency builder.
- Builder materials may be selected from 1) calcium sequestrant materials, 2) precipitating materials, 3) calcium ion-exchange materials and 4) mixtures thereof.
- Examples of calcium sequestrant builder materials include alkali metal polyphosphates, such as sodium tripolyphosphate; nitrilotriacetic acid and its water-soluble salts; the akali metal salts of carboxymethyloxy succinic acid, ethylene diamine tetraacetic acid, oxydisuccinic acid, mellitic acid, benzene polycarboxylic acids, citric acid; and polyacetal carboxylates as disclosed in US patents 4,144,226 and 4,146,495.
- alkali metal polyphosphates such as sodium tripolyphosphate
- nitrilotriacetic acid and its water-soluble salts the akali metal salts of carboxymethyloxy succinic acid, ethylene diamine tetraacetic acid, oxydisuccinic acid, mellitic acid, benzene polycarboxylic acids, citric acid
- polyacetal carboxylates as disclosed in US patents 4,144,226 and 4,146,495.
- precipitating builder materials examples include sodium orthophosphate, sodium carbonate and sodium carbonate/calcite.
- Examples of calcium ion-exchange builder materials include the various types of water-insoluble crystalline or amorphous aluminosilicates, of which zeolites are the best known representatives.
- compositions of the invention may contain any one of the organic or inorganic builder materials, such as sodium or potassium tripolyphosphate, sodium or potassium pyrophosphate, sodium or potassium orthophosphate, sodium carbonate or sodium carbonate/calcite mixtures, the sodium salt of nitrilotriacetic acid, sodium citrate, carboxymethyl malonate, carboxymethyloxy succinate and the water-insoluble crystalline or amorphous aluminosilicate builder materials, or mixtures thereof.
- the organic or inorganic builder materials such as sodium or potassium tripolyphosphate, sodium or potassium pyrophosphate, sodium or potassium orthophosphate, sodium carbonate or sodium carbonate/calcite mixtures, the sodium salt of nitrilotriacetic acid, sodium citrate, carboxymethyl malonate, carboxymethyloxy succinate and the water-insoluble crystalline or amorphous aluminosilicate builder materials, or mixtures thereof.
- These builder materials may be present at a level of, for example, from 5 to 80% by weight, preferably from 10 to 60% by weight.
- the detergent compositions of the invention can contain any of the conventional additives in the amounts in which such materials are normally employed in fabric washing detergent compositions.
- these additives include lather boosters, such as alkanolamides, particularly the monoethanol amides derived from palmkernel fatty acids and coconut fatty acids, lather depressants, such as alkyl phosphates and silicones, anti-redeposition agents, such as sodium carboxymethyl cellulose and alkyl or substituted alkyl cellulose ethers, other stabilizers, such as ethylene diamine tetraacetic acid and the phosphonic acid derivatives (i.e.
- Dequest ® types fabric softening agents, inorganic salts, such as sodium sulphate, and, usually present in very small amounts, fluorescent agents, perfumes, enzymes, such as proteases, cellulases, lipases and amylases, germicides and colourants.
- Another optional but highly desirable additive ingredient with multi-functional characteristics in detergent compositions is from 0.1% to about 3% by weight of a polymeric material having a molecular weight of from 1,000 to 2,000,000 and which can be a homo- or co-polymer of acrylic acid, maleic acid, or salt or anhydride thereof, vinyl pyrrolidone, methyl- or ethyl-vinyl ethers, and other polymerizable vinyl monomers.
- polyacrylic acid or polyacrylate are polyacrylic acid or polyacrylate; polymaleic acid/acrylic acid copolymer; 70:30 acrylic acid/hydroxyethyl maleate copolymer; 1:1 styrene/maleic acid copolymer; isobutylene/maleic acid and diisobutylene/maleic acid copolymers; methyl- and ethyl-vinylether/maleic acid copolymers; ethylene/maleic acid copolymer; polyvinyl pyrrolidone; and vinyl pyrrolidone/maleic acid copolymer.
- Detergent bleach compositions of the invention formulated as free-flowing particles can be produced by any of the conventional techniques employed in the manufacture of detergent compositions, but preferably by slurry-making and spray-drying processes to form a detergent base powder to which the heat-sensitive ingredients including the peroxy compound bleach and optionally some other ingredients as desired, and the bleach catalyst, can be added as dry substances.
- the bleach catalyst can be added separately to a wash/bleach water containing the peroxy compound bleaching agent.
- the instant bleach catalyst can also be formulated in detergent bleach compositions of other product forms, such as flakes, tablets, bars and liquids, particularly non-aqueous liquid detergent compositions.
- Such non-aqueous liquid detergent compositions in which the instant bleach catalyst can be incorporated are known in the art and various formulations have been proposed, e.g. in US Patents 2,864,770; 3,368,977; 4,772,412; GB Patents 1,205,711; 1,370,377; 2,194,536; DE-A-2,233,771 and EP-A-0,028,849.
- This compound was prepared by a procedure analogous to that described for Cu-Cu L.Cl2.6H2O, except that the reaction was carried out under an atmosphere of oxygen-free nitrogen to avoid possible aerial oxidation and the crude product was obtained simply by cooling the reaction mixture. The precaution of excluding oxygen during the reaction was probably unnecessary, for the solid product was stable to air.
- the crude solid was recrystallized from hot methanol and dried under vacuum over calcium chloride at room temperature.
- the ligand L in these complexes is that of formula II(a) having a CH3 substituent on each aromatic ring and the Co-Co-complex is that of formula (2) as hereinbefore described with Q being methyl. [N.H. Pilkington et al., Austr. Journ. Chemistry (1970), 23 , pages 2225/36].
- Bleaching experiments were conducted with Co-SALEN's and Co-SALPD's as bleach catalyst having different Q-substituents.
- the conditions for the bleach experiments were : Demineralized water; Temperature 40°C, isothermal; 60 minutes' washing time; pH 10.5; H2O2 concentration : 8.6 mMol/l; Catalyst concentration : 2.5 x 10 ⁇ 6 to 2.5 x 10 ⁇ 5 Mol/l.
- Bleach monitor tea-stained test cloths;
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Detergent Compositions (AREA)
Description
- This invention relates to activation of bleaches employing peroxy compounds, including hydrogen peroxide or a hydrogen peroxide adduct, which liberate hydrogen peroxide in aqueous solution, as well as peroxy acids; to compounds that activate or catalyse peroxy compounds; to bleach compositions including detergent bleach compositions which contain a catalyst for peroxy compounds; and to processes for bleaching and/or washing of substrates employing the aforementioned types of compositions.
- In particular, the present invention is concerned with the effective use of transition metal compounds as catalyst for the bleach activation of peroxy compound bleaches.
- Peroxide bleaching agents for use in laundering have been known for many years. Such agents are effective in removing stains, such as tea, fruit and wine stains, from clothing at or near boiling temperatures. The efficacy of peroxide bleaching agents drops off sharply at temperatures below 60°C.
- It is known that many transition metal ions catalyse the decomposition of H₂O₂ and H₂O₂-liberating percompounds, such as sodium perborate. It has also been suggested that transition metal salts together with a chelating agent can be used to activate peroxide compounds so as to make them usable for satisfactory bleaching at lower temperatures. Not all combinations of transition metals with chelating agents appeared to be suitable for improving the bleaching performance of peroxide compound bleaches. Many combinations indeed show no effect, or even a worsening effect, on the bleaching performance; no proper rule seems to exist by which the effect of metal ion/chelating agent combinations on the bleaching performance of peroxide compound bleaches can be predicted.
- Various attempts have been made to select suitable metal/chelating agent combinations for said purpose and to correlate bleach-catalysing effect with some physical constants of the combination; so far without much success and of no practical value.
- US Patent N° 3,156,654 suggested particularly cobalt and copper salts in conjunction with pyridine-2-carboxylic acid or pyridine-2,6-dicarboxylic acid, preferably as a pre-formed complex, as being a suitable combination. Another suggestion is made in US Patent N° 3,532,634 to use a transition metal, especially cobalt, manganese and copper salts, together with a chelating agent in combination with a persalt and an organic bleach activator. It is said here that the chelating agent should have a first complex formation constant with the transition metal ion of log 2 to about log 10 at 20°C. Preferred options include (di)-picolinic acid, pyrrolidine-carboxylic acids and 1,10-phenanthroline, whereas well-known chelating agents, such as ethylene diamine tetraacetic acid - found usable according to US Patent N° 3,156,654 - are unsuitable. These catalysts, as shows in the Examples, have very little or no effect on persalts alone.
- Other patent documents discussing the use of chelating agents are, for example, GB Patents 984,459 and 1,192,524, which suggested the use of copper salts in combination with other specific chelating agents of the class of amino acetic acids, and US Patent N° 4,119,557, which suggested the use of pre-formed ferric ion complexes with a polycarboxy amine-type chelating agent. All these prior art suggestions are based on systems in which free metal ion is the catalytically active species and consequently produce results in practice that are often very inconsistent and/or unsatisfactory, especially when used for washing at low temperatures. The ferric ion complexes of US Patent N° 4,119,557 are furthermore not effective at low temperatures.
- For a transition metal to be useful as a bleach catalyst in a detergent bleach composition, the transition metal compound must not unduly promote peroxide decomposition by non-bleaching pathways and must be hydrolytically and oxidatively stable. US Patent N° 4,728,455 discusses the use of Mn(III)-gluconate as peroxide bleach catalyst and EP-A-0272030 discloses the use of cobalt(III)amine complexes, e.g. [Co(NH₃)₅Cl]Cl₂, as peroxide bleach catalysts. Still, the performance of these systems is inadequate when used for bleaching in the low-temperature region of about 20-40°C. They are furthermore restricted in their efficacy to remove a wide class of stains.
- It is an object of the present invention to provide an improved transition metal catalyst for the bleach activation of hydrogen peroxide and hydrogen peroxide-liberating compounds, as well as peroxyacid compounds, including peroxyacid precursors, over a wide class of stains at lower temperatures.
- Another object of the invention is to provide an improved bleaching composition for use in detergent formulations which are effective at low to medium temperatures of e.g. 20-40°C.
- Still another object of the invention is to provide new, improved detergent bleach formulations.
- Yet another object of the invention is to provide aqueous laundry wash media containing new, improved detergent bleach formulations.
- A further object of the invention is to provide an improved bleaching system comprising a peroxy compound bleach and a transition metal catalyst for the effective use in the textile and paper industries and other related industries.
- These and other objects of the invention, as well as further understandings of the features and advantages thereof, can be had from the following description and claims.
- The improved transition metal bleach catalyst according to the invention is a cobalt complex of the following general formula (A) :
(A) [Co.MaLXp]zYn.
wherein M is a metal ion selected from Co and Cu; a is 0 or 1; X is a common anion such as Cl⁻, Br⁻, I⁻, NO₃⁻, ClO₄⁻, NCS⁻ and OH⁻, or a small co-ordinating ligand such as H₂O, NH₃ and pyridine, or a species selected from O₂²⁻, O₂⁻, HO₂⁻ and H₂O₂; p is an integer from 0 to 4; Y is a counter ion, the type of which is dependent upon the charge z of the complex; z denotes the charge of the complex and is an integer which can be positive or negative, whereby, if z is positive, Y is a common anion as denoted for X and, if z is negative, Y is a common cation selected from alkali metal, alkaline earth metal or an alkyl ammonium cation; ; and L is a ligand being an organic molecule of the general formula I if a = 0, and of the general formula II if a = 1.
wherein m is 2-6, preferably 2-3; R¹, R² are each a substituent selected from H, alkyl, aryl, optionally substituted; Q¹ and Q² are each a substituent selected from H, optionally substituted alkyl or aryl, NO₂, NR₂, NR₃⁺, O-alkyl, O-aryl, halogen, SO₃⁻, alkyl SO₃⁻ and aryl SO₃⁻, T is either NR, O, PR or S, wherein R = R¹ or R² and b is 0-1. - Preferred ligands are those wherein T = NR, m = 3 and R, R¹ and R² are H; more preferably wherein b = 0. Examples of the ligands in their simplest forms are thus:
Being a Co-complex, ligand (I) will form a mono-nuclear Co-complex and ligand (II) will form a bi-nuclear Co-Co- or Co-Cu-complex. Examples of some catalyst complexes are:
which can be, and are normally, written in simplified form :
In the further description of the invention, the mono-nuclear Co-complexes are denoted as Co-SALEN's (m=2) or Co-SALPD's (m=3) and the bi-nuclear complexes are denoted as bi-nuclear Co-Co- or Co-Cu-complexes. They can be present as simple complexes or with substituents and containing further co-ordinating ligands, anions and cations.
Examples thereof are :
An example of a complex wherein R¹ or R² is substituted is :
Any of these complexes are useful catalysts for the bleach activation of peroxy compounds over a wide class of stains at lower temperatures, in a much more effective way than the metal catalysts of the art hitherto known. Preferred complexes are those of formulae (2) and (3), wherein Q¹ and Q² = -CH₃. These compounds will be referred to in the further description of the invention as "Co-Co", and "Co-Cu", respectively. - Several of the complexes usable herein have been prepared previously as scientific and laboratory curiosities without any practical function being in mind. Preparative routes for some complexes and the ligands are described in scientific literature such as Bull. Chem. Soc. of Japan, 1938, 13, 252; Journ. Am. Chem. Soc. 1947, 69, 1886; J. Chem. Soc., 1985, 107, 2903 and Austr. Journ. Chemistry 1970, 23, 2225/36.
- It should be appreciated that the [Co.MaL]-core complex is the determining factor of its catalytic action and that the presence of X and Y in the formula, which may be inherent to the methods of preparation, has hardly any effect on the catalytic action of the instant complexes. It is also essential that the catalyst complex of the invention should contain at least one cobalt atom, since otherwise no, or hardly any, catalyzing effect is observed, e.g. Cu-SALEN or a bi-nuclear Cu-Cu-complex is hardly catalytically active. These non-cobalt-containing complexes are thus outside the purview of the present invention.
- An advantage of the bleach catalysts of the invention is that they are hydrolytically and oxidatively stable, and that the complexes themselves are catalytically active, insensitive to builder variations in the composition. Another advantage is that the instant catalysts appear to be better than similar complexes proposed in the art.
- The instant bleach catalysts have furthermore the surprising feature in that they activate not only hydrogen peroxide or hydrogen peroxide-liberating compounds but also peroxyacids and peroxyacid bleach systems, such as a persalt/peroxyacid precursor mixture.
- A further surprising feature of the bleach systems according to the invention is that they are effective on a wide range of stains including both hydrophilic and hydrophobic stains, which is very unusual for hydrogen peroxide-based bleach systems.
- Accordingly, in one aspect, the invention provides a bleaching or cleaning process employing a peroxy compound bleaching agent selected from the group of hydrogen peroxide, hydrogen peroxide-liberating compounds, peroxyacids and their salts, and peroxyacid bleach precursors and mixtures thereof, which process is characterized in that said bleaching agent is activated by a catalytic amount of a cobalt complex of general formula (A) as defined hereinbefore.
The catalytic component is a novel feature of the invention. The effective level of the cobalt complex catalyst, expressed in terms of parts per million (ppm) of transition metal in the aqueous bleaching solution, will normally range from 0.01 ppm to 1000 ppm, preferably from 0.1 ppm to 100 ppm, most preferably from 0.1 ppm to 10 ppm. Higher levels may be desired and applied in industrial bleaching processes, such as textile and paper pulp-bleaching. The lower range levels are primarily destined and preferably used in domestic laundry operations. - In another aspect, the invention provides an improved bleaching composition comprising a peroxy compound bleach as defined above and a catalyst for the bleaching action of the peroxy compound bleach, said catalyst comprising the aforesaid Co-complex of general formulae (A). As indicated above, the improved bleaching composition has particular application in detergent formulations to form a new and improved detergent bleach composition within the purview of the invention, comprising said peroxy compound bleach, the aforesaid cobalt complex catalyst, a surface-active material, and usually also detergency builders and other known ingredients of such formulations, as well as in the industrial bleaching of yarns, textiles, paper and the like.
- Compositions comprising a peroxy compound bleach and the aforesaid bleach catalyst are effective over a wide pH range of between 7 and 13, with optimal pH range lying between 8 and 11.
- The peroxy compound bleaches which can be utilized in the present invention include hydrogen peroxide, hydrogen peroxide-liberating compounds, peroxyacids and their salts, and peroxyacid bleach precursors and mixtures thereof.
- Hydrogen peroxide sources are well known in the art. They include the alkali metal peroxides, organic peroxide bleaching compounds such as urea peroxide, and inorganic persalt bleaching compounds, such as the alkali metal perborates, percarbonates, perphosphates and persulphates. Mixtures of two or more such compounds may also be suitable. Particularly preferred are sodium percarbonate and sodium perborate and, especially, sodium perborate monohydrate. Sodium perborate monohydrate is preferred to tetrahydrate because of its excellent storage stability while also dissolving very quickly in aqueous bleaching solutions.
- Peroxyacid compounds include the organic peroxyacids and their salts and the inorganic peroxyacid salts. One suitable class of organic peroxyacids can be represented by compounds of the general formula :
wherein R is an alkylene or substituted alkylene group containing 1 to 20 carbon atoms or an arylene group containing from 6 to 8 carbon atoms, n is 0 or 1, and Y is hydrogen, halogen, alkyl, aryl or any group which provides an anionic or cationic moiety in aqueous solution. Such groups can include, for example,
and -N⁺R₃ wherein M is H or a water-soluble, salt-forming cation. - The organic peroxyacids and salts thereof can contain either one, two or more peroxy groups and can be either aliphatic or aromatic. When the organic peroxyacid is aliphatic, the unsubstituted acid may have the general formula :
wherein Y can be H, -CH₃, -CH₂Cl,
or -N⁺R₃
and m can be an integer from 1 to 20. - Specific examples of compounds of this type are diperoxyazelaic acid, peroxylauric acid and diperoxydodecanedioic acid, and the magnesium salts thereof.
-
- The percarboxy or percarbonic and Y groupings can be in any relative position around the aromatic ring. The ring and/or Y group (if alkyl) can contain any non-interfering substituents, such as halogen or sulphonate groups.
- Specific examples of such aromatic peroxyacids and salts thereof include peroxybenzoic acid, m-chloro-peroxybenzoic acid, p-nitro-peroxybenzoic acid, p-sulphonato-peroxybenzoic acid, diperoxyisophthalic acid, peroxy-alpha-naphthoic acid, and 4,4'-sulphonyl-diperoxybenzoic acid and magnesium salts thereof.
- A specific example of inorganic peroxyacid salts is potassium monopersulphate. A product comprising this compound is the triple salt, K₂SO₄.KHSO₄.2KHSO₅, available commercially under the trade-name Oxone ® from E.I. Dupont de Nemours and Company and Caroat ® from Degussa.
- Preferred peroxyacids are peracetic acid and potassium monopersulphate.
- Peroxyacid bleach precursors are known and amply described in literature, such as in the GB-Patents 836,988; 864,798; 907,356; 1,003,310 and 1,519,351; German Patent 3,337,921; EP-A-0185522; EP-A-0174132; EP-A-0120591; and U.S. Patents 1,246,339; 3,332,882; 4,128,494; 4,412,934 and 4,675,393.
- Another useful class of peroxyacid bleach precursors is that of the quaternary ammonium substituted peroxyacid precursors as disclosed in U.S. Patents 4,751,015 and 4,397,757, in EP-A-284292 and in our pending unpublished European Patent Application 89200385.6. Examples of peroxyacid bleach precursors of this class are:
2-(N,N,N-trimethyl ammonium) ethyl sodium-4-sulphophenyl carbonate chloride - (SPCC);
N-octyl,N,N-dimethyl-N10-carbophenoxy decyl ammonium chloride - (ODC);
3-(N,N,N-trimethyl ammonium) propyl sodium-4-sulphophenyl carboxylate; and
N,N,N-trimethyl ammonium toluyloxy benzene sulphonate. - Of the above classes of bleach precursors, the preferred classes are the esters, including acyl phenol sulphonates and acyl alkyl phenol sulphonates; amides, including TAED; and the quaternary ammonium substituted peroxyacid precursors.
- Highly preferred activators include sodium-4-benzoyloxy benzene sulphonate; N,N,N′,N′-tetraacetyl ethylene diamine; sodium-1-methyl-2-benzoyloxy benzene-4-sulphonate; sodium-4-methyl-3-benzoyloxy benzoate; SPCC and trimethyl ammonium toluyloxy benzene sulphonate.
- A detergent bleach composition of the invention can be formulated by combining effective amounts of the components. The term "effective amounts" as used herein means that the ingredients are present in quantities such that each of them is operative for its intended purpose when the resulting mixture is combined with water to form an aqueous medium which can be used to wash clothes, fabrics and other articles.
- In particular, the detergent bleach composition can be formulated to contain, for example, 5% to 30% by weight, preferably from 10 to 25% by weight, of a peroxide compound. Peroxyacids may be utilized in somewhat lower amounts, for example from 1% to 15% by weight, preferably from 2% to 10% by weight.
- Peroxyacid precursors may be utilized in combination with a peroxide compound in approximately the same level as peroxyacids, i.e. 1% to 15%, preferably from 2% to 10% by weight.
- The cobalt complex catalyst will be present in such formulations in amounts so as to provide the required level of cobalt in the wash liquor. Normally, an amount of cobalt complex catalyst is incorporated in the formulation which corresponds to a transition metal content of from 0.0002% to 10.0% by weight, preferably 0.002% to 1.0% by weight.
- The bleach catalyst of the invention is compatible with substantially any known and common surface-active agents and detergency builder materials.
- The surface-active material may be naturally derived or a synthetic material selected from anionic, nonionic, amphoteric, zwitterionic, cationic actives and mixtures thereof. Many suitable actives are commercially available and are fully described in literature, for example in "Surface Active Agents and Detergents", Volumes I and II, by Schwartz, Perry and Berch. The total level of the surface-active material may range up to 50% by weight, preferably being from 1% to 40% by weight of the composition, most preferably 4 to 25%.
- Synthetic anionic surface-actives are usually water-soluble alkali metal salts of organic sulphates and sulphonates having alkyl groups containing from 8 to 22 carbon atoms, the term alkyl being used to include the alkyl portion of higher aryl radicals.
- Examples of suitable synthetic anionic detergent compounds are sodium and ammonium alkyl sulphates, especially those obtained by sulphating higher (C₈-C₁₈) alcohols produced, for example, from tallow or coconut oil; sodium and ammonium alkyl (C₉-C₂₀) benzene sulphonates, particularly sodium linear secondary alkyl, (C₁₀-C₁₅) benzene sulphonates; sodium alkyl glyceryl ether sulphates, especially those esters of the higher alcohols derived from tallow or coconut oil and synthetic alcohols derived from petroleum; sodium coconut oil fatty acid monoglyceride sulphates and sulphonates; sodium and ammonium salts of sulphuric acid esters of higher (C₉-C₁₈) fatty alcohol alkylene oxides particularly ethylene oxide, reaction products; the reaction products of fatty acids such as coconut fatty acids esterified with isethionic acid and neutralized with sodium hydroxide; sodium and ammonium salts of fatty acid amides of methyl taurine; alkane monosulphonates such as those derived by reacting alpha-olefins (C₈-C₂₀) with sodium bisulphite and those derived by reacting paraffins with SO₂ and Cl₂ and then hydrolyzing with a base to produce a random sulphonate; sodium and ammonium C₇-C₁₂ dialkyl sulfosuccinates; and olefin sulphonates, which term is used to describe the material made by reacting olefins, particularly C₁₀-C₂₀ alpha-olefins, with SO₃ and then neutralizing and hydrolyzing the reaction product. The preferred anionic detergent compounds are sodium (C₁₁-C₁₅) alkylbenzene sulphonates, sodium (C₁₆-C₁₈) alkyl sulphates and sodium (C₁₆-C₁₈) alkyl ether sulphates.
- Examples of suitable nonionic surface-active compounds which may be used, include in particular the reaction products of alkylene oxides, usually ethylene oxide, with alkyl (C₆-C₂₂) phenols, generally 5-25 EO, i.e. 5-25 units of ethylene oxides per molecule; the condensation products of aliphatic (C₈-C₁₈) primary or secondary linear or branched alcohols with ethylene oxide, generally 3-30 EO, and products made by condensation of ethylene oxide with the reaction products of propylene oxide and ethylene diamine. Other so-called nonionic surface-actives include alkyl polyglycosides, long chain tertiary amine oxides, long chain tertiary phosphine oxides and dialkyl sulphoxides.
- Amounts of amphoteric or zwitterionic surface-active compounds can also be used in the compositions of the invention but this is not normally desired owing to their relatively high cost. If any amphoteric or zwitterionic detergent compounds are used, it is generally in small amounts in compositions based on the much more commonly used synthetic anionic and nonionic actives.
- The detergent compositions of the invention will normally also contain a detergency builder. Builder materials may be selected from 1) calcium sequestrant materials, 2) precipitating materials, 3) calcium ion-exchange materials and 4) mixtures thereof.
- Examples of calcium sequestrant builder materials include alkali metal polyphosphates, such as sodium tripolyphosphate; nitrilotriacetic acid and its water-soluble salts; the akali metal salts of carboxymethyloxy succinic acid, ethylene diamine tetraacetic acid, oxydisuccinic acid, mellitic acid, benzene polycarboxylic acids, citric acid; and polyacetal carboxylates as disclosed in US patents 4,144,226 and 4,146,495.
- Examples of precipitating builder materials include sodium orthophosphate, sodium carbonate and sodium carbonate/calcite.
- Examples of calcium ion-exchange builder materials include the various types of water-insoluble crystalline or amorphous aluminosilicates, of which zeolites are the best known representatives.
- In particular, the compositions of the invention may contain any one of the organic or inorganic builder materials, such as sodium or potassium tripolyphosphate, sodium or potassium pyrophosphate, sodium or potassium orthophosphate, sodium carbonate or sodium carbonate/calcite mixtures, the sodium salt of nitrilotriacetic acid, sodium citrate, carboxymethyl malonate, carboxymethyloxy succinate and the water-insoluble crystalline or amorphous aluminosilicate builder materials, or mixtures thereof.
- These builder materials may be present at a level of, for example, from 5 to 80% by weight, preferably from 10 to 60% by weight.
- Apart from the components already mentioned, the detergent compositions of the invention can contain any of the conventional additives in the amounts in which such materials are normally employed in fabric washing detergent compositions. Examples of these additives include lather boosters, such as alkanolamides, particularly the monoethanol amides derived from palmkernel fatty acids and coconut fatty acids, lather depressants, such as alkyl phosphates and silicones, anti-redeposition agents, such as sodium carboxymethyl cellulose and alkyl or substituted alkyl cellulose ethers, other stabilizers, such as ethylene diamine tetraacetic acid and the phosphonic acid derivatives (i.e. Dequest ® types), fabric softening agents, inorganic salts, such as sodium sulphate, and, usually present in very small amounts, fluorescent agents, perfumes, enzymes, such as proteases, cellulases, lipases and amylases, germicides and colourants.
- Another optional but highly desirable additive ingredient with multi-functional characteristics in detergent compositions is from 0.1% to about 3% by weight of a polymeric material having a molecular weight of from 1,000 to 2,000,000 and which can be a homo- or co-polymer of acrylic acid, maleic acid, or salt or anhydride thereof, vinyl pyrrolidone, methyl- or ethyl-vinyl ethers, and other polymerizable vinyl monomers. Preferred examples of such polymeric materials are polyacrylic acid or polyacrylate; polymaleic acid/acrylic acid copolymer; 70:30 acrylic acid/hydroxyethyl maleate copolymer; 1:1 styrene/maleic acid copolymer; isobutylene/maleic acid and diisobutylene/maleic acid copolymers; methyl- and ethyl-vinylether/maleic acid copolymers; ethylene/maleic acid copolymer; polyvinyl pyrrolidone; and vinyl pyrrolidone/maleic acid copolymer.
- Detergent bleach compositions of the invention formulated as free-flowing particles, e.g. in powdered or granulated form, can be produced by any of the conventional techniques employed in the manufacture of detergent compositions, but preferably by slurry-making and spray-drying processes to form a detergent base powder to which the heat-sensitive ingredients including the peroxy compound bleach and optionally some other ingredients as desired, and the bleach catalyst, can be added as dry substances. Alternatively, the bleach catalyst can be added separately to a wash/bleach water containing the peroxy compound bleaching agent.
- The instant bleach catalyst can also be formulated in detergent bleach compositions of other product forms, such as flakes, tablets, bars and liquids, particularly non-aqueous liquid detergent compositions.
- Such non-aqueous liquid detergent compositions in which the instant bleach catalyst can be incorporated are known in the art and various formulations have been proposed, e.g. in US Patents 2,864,770; 3,368,977; 4,772,412; GB Patents 1,205,711; 1,370,377; 2,194,536; DE-A-2,233,771 and EP-A-0,028,849.
- The following Examples are given to further illustrate the invention.
- A solution of 5-methyl isophthalaldehyde (5.3 g) in the minimum volume of boiling methanol was added to the pale-blue suspension formed by mixing 1,3-diaminopropane (2.4 g) with a saturated solution of cupric chloride dihydrate (5.5 g) in methanol. The mixture was heated under reflux, whereupon the initial pale-blue suspended solid first turned pea-green and then eventually dissolved. Methanol was removed by boiling at atmospheric pressure until precipitation had just commenced and the dark-green precipitate was collected, dried at the pump, and then recrystallized from hot water, yielding L Cu₂Cl.6 H₂O as dark-green platilets, which were dried over calcium chloride at room temperature and atmospheric pressure. Drying at 80°C under vacuum over phosphorus pentoxide yielded Cu-Cu L.Cl₂.H₂O and pale-green powder. Prolonged heating in vacuo at 160°C was required for removal of the final molecule of water.
- This compound was prepared by a procedure analogous to that described for Cu-Cu L.Cl₂.6H₂O, except that the reaction was carried out under an atmosphere of oxygen-free nitrogen to avoid possible aerial oxidation and the crude product was obtained simply by cooling the reaction mixture. The precaution of excluding oxygen during the reaction was probably unnecessary, for the solid product was stable to air. The crude solid was recrystallized from hot methanol and dried under vacuum over calcium chloride at room temperature. The ligand L in these complexes is that of formula II(a) having a CH₃ substituent on each aromatic ring and the Co-Co-complex is that of formula (2) as hereinbefore described with Q being methyl. [N.H. Pilkington et al., Austr. Journ. Chemistry (1970), 23, pages 2225/36].
- This Example shows that "Co-Co" is a superior catalyst for H₂O₂ on tea-stained test cloths compared with Mn²⁺, Co²⁺ or cobalt-bipyridine complex. (Co-bipy)₃.
- Test conditions :
- Isothermal wash at 40°C and pH 10.5 for one hour, H₂O₂ concentration :
8.6.10⁻³ Mol/l, using demineralized water. - and results :
- [Co-Co] = 10⁻⁵ Mol/l. ΔR₄₆₀ = 26.3
[Mn] = 10⁻⁵ Mol/l. ΔR₄₆₀ = 21.4
[Co] = 10⁻⁵ Mol/l. ΔR₄₆₀ = 6.1
[Co-(bipy)₃] = 10⁻⁵ Mol/l. ΔR₄₆₀ = 17.3. - In this Example the bleach performances of H₂O₂ catalyzed with "Co-Co", "Co-Cu" and Co-(bipy)₃ on tea-stained test cloths were compared.
- Conditions :
- Heat up wash 20°C → 40°C in 13 minutes;
37 minutes at 40°C. 6 g/l conventional STP built detergent composition using 27°FH water. -
Catalyst ΔR*₄₆₀ None 4.9 Co(bipy)₃ 7.1 Co-Co 21.7 Co-Cu 20.6 - In this Example the H₂O₂ catalysis of the Co-Co-complex of the invention was compared with that of [Co(NH₃)₅Cl]Cl₂ of the art in an isothermal wash with a conventional base powder composition containing EDTA at 40°C on the removal of tea stain. The results were as follows :
Catalyst ΔR₄₆₀ Co-Co 26.3 [Co(NH₃)₅.Cl]Cl₂ 20.6 None 13.0 - These Examples show that "Co-Co" is also very effective on catalyzing the bleach performance of peracetic acid (both preformed and prepared in situ from a TAED/sodium perborate system). On tea-stained test cloths the experiments were carried out in an isothermal washing process at 40°C, using a zeolite built Dutch "All" base powder.
Catalyst ΔR₄₆₀ Peracetic acid TAED/perborate None 11.1 16.2 Co-Co 28.1 37.4 - This Example shows that Co-Co is also effective in catalyzing the bleach performance of potassium monopersulphate. The experiments were carried out in an isothermal washing process at 40°C, using a conventional detergent powder composition in the presence of a polyphosphonate sequestrant (Dequest ® 2041 ex Monsanto).
-
without catalyst ΔR = 12.5 with "Co-Co" ΔR = 16.0 - Peroxide bleaching results on tea-stained test cloths were monitored in isothermal washing tests at 40°C, pH 10, for one hour with H₂O₂ at a concentration of 9 m.Mol/l, and using different bi-nuclear M.M.-complexes as catalyst :
Catalyst ΔR₄₆₀ Cu-Zn 6.2 Cu-Cu 2.8 Ni-Ni 3.8 Fe-Fe 8.9 Co-Cu 21.5 Co-Co 26.0 - These results clearly demonstrate that only the Co-complexes of the invention are really effective.
- Bleaching experiments were conducted with Co-SALEN's and Co-SALPD's as bleach catalyst having different Q-substituents. The conditions for the bleach experiments were :
Demineralized water;
Temperature 40°C, isothermal; 60 minutes' washing time; pH 10.5;
H₂O₂ concentration : 8.6 mMol/l;
Catalyst concentration : 2.5 x 10⁻⁶ to 2.5 x 10⁻⁵ Mol/l.
Bleach monitor : tea-stained test cloths; - The ΔR results after a second wash without bleach are tabulated below :
1) SALEN-derivativesQ-substituent ΔR [cat] 5-Br 21.1 2.5 x 10⁻⁵ H 19.2 1.25 x 10⁻⁵ 5-NO₂ 18.6 2.5 x 10⁻⁵ 3-OEth 17.5 2.5 x 10⁻⁵ 3,5 di-Cl 15.4 2.5 x 10⁻⁵
2) SALPD-derivativesQ-substituents 3.-OEth 18.2 2.5 x 10⁻⁵ H 17.5 2.5 x 10⁻⁶ 5-Br 16.7 5 x 10⁻⁶
These results demonstrate that the catalytical effect is maintained with different substituents. - A series of bleaching experiments was carried out in a 20° to 40°C heat-up washing machine cycle, using a conventional detergent base powder + 15% sodium perborate monohydrate, with and without a Co-Co-complex catalyst, wherein the effect on various stains was examined.
- Washing conditions :
-
6 g/l dosage of perborated powder;
0.25 mg/l cobalt;
27°F tap water;
20° initial temperature,
pH 10.5 --> 40°C (pH 9.9) in 13 minutes and kept at 40°C for 37 minutes. - The results are tabulated below.
Test cloth Initial Δ460* Final ΔR₄₆₀* - catalyst + catalyst Grass 56.7 78.0 80.1 Coffee + milk 52.5 63.4 67.3 Spaghetti sauce 45.6 58.5 70.5 Tea 32.2 38.8 51.1 Red wine 30.7 48.6 58.3 Dirty motor oil 24.9 26.4 26.2 Black shoe polish 4.0 7.5 8.6 - These results show the overall effectiveness of the Co-Co-catalyst on a variety of stain types.
Claims (9)
- Bleaching or cleaning process employing a peroxy compound bleaching agent selected from the group of hydrogen peroxide, hydrogen peroxide-liberating compounds, peroxyacids and their salts, and peroxyacid bleach precursors, and mixtures thereof, characterized in that said bleaching agent is activated by a catalytic amount of a cobalt complex of general formula A:
(A) [Co.MaLXp]z Yn
wherein M is a metal ion selected from Co and Cu; a is 0 or 1; X is a common anion such as Cl⁻, Br⁻, I⁻, NO₃⁻, ClO₄⁻, NCS⁻ and OH⁻, or a small co-ordinating ligand such as H₂O, NH₃ and pyridine, or a species selected from O₂²⁻, O₂⁻, HO₂⁻ and H₂O₂; p is an integer from 0 to 4; Y is a counter-ion, the type of which is dependent upon the charge z of the complex; z denotes the charge of the complex and is an integer which can be positive or negative, whereby, if z is positive, Y is a common anion as denoted for X and, if z is negative, Y is a common cation selected from alkali metal, alkaline earth metal or an alkyl ammonium cation; ; and L is a ligand being an organic molecule of the general formula I if a = 0, and of the general formula II if a = 1 wherein m is 2-6, preferably 2-3; R¹, R² are each a substituent selected from H, alkyl, aryl, optionally substituted; Q¹ and Q² are each a substituent selected from H, optionally substituted alkyl or aryl, NO₂, NR₂, NR₃⁺, O-alkyl, O-aryl, halogen, SO₃⁻, alkyl SO₃⁻ and aryl SO₃⁻, T is either NR, O, PR or S, herein R = R¹ or R² and b is 0-1. - Process according to claim 1, characterized in that T=NR; m = 3 and R, R¹ and R² are H.
- Process according to claim 1 or 2, characterized in that b=0.
- Process according to claim 2 or 3, characterized in that L is a ligand of general formula II.
- Process according to claim 4, characterized in that Q¹ and Q² are -CH₃.
- Bleaching composition comprising a peroxycompound bleach selected from the group of hydrogen peroxide, hydrogen peroxide liberating compounds, peroxyacids and their salts, and peroxyacid bleach precursors, and mixtures thereof, and a catalyst for the bleaching action of said peroxy compound bleach, characterized in that said catalyst comprises a cobalt complex of general formula A according to any of the preceding claims 1-5.
- Composition according to claim 6, characterized in that the composition is a detergent bleach composition.
- Composition according to claim 7, characterized in that the cobalt complex catalyst is present in an amount corresponding to 0.0002 % to 10.0% by weight of transition metal in the composition.
- Composition according to claim 8, characterized in that said cobalt complex catalyst is present in an amount corresponding to 0.002% to 1.0% by weight of transition metal in the composition.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| GB898915781A GB8915781D0 (en) | 1989-07-10 | 1989-07-10 | Bleach activation |
| GB8915781 | 1989-07-10 |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| EP0408131A2 EP0408131A2 (en) | 1991-01-16 |
| EP0408131A3 EP0408131A3 (en) | 1991-04-10 |
| EP0408131B1 true EP0408131B1 (en) | 1995-05-24 |
Family
ID=10659811
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP19900201821 Expired - Lifetime EP0408131B1 (en) | 1989-07-10 | 1990-07-09 | Bleach activation |
Country Status (3)
| Country | Link |
|---|---|
| EP (1) | EP0408131B1 (en) |
| DE (1) | DE69019617T2 (en) |
| GB (1) | GB8915781D0 (en) |
Cited By (21)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5279816A (en) * | 1991-11-22 | 1994-01-18 | Colgate-Palmolive Co. | Oral composition having improved tooth whitening effect |
| US5520835A (en) * | 1994-08-31 | 1996-05-28 | The Procter & Gamble Company | Automatic dishwashing compositions comprising multiquaternary bleach activators |
| US5534180A (en) * | 1995-02-03 | 1996-07-09 | Miracle; Gregory S. | Automatic dishwashing compositions comprising multiperacid-forming bleach activators |
| US5559261A (en) * | 1995-07-27 | 1996-09-24 | The Procter & Gamble Company | Method for manufacturing cobalt catalysts |
| US5581005A (en) * | 1995-06-16 | 1996-12-03 | The Procter & Gamble Company | Method for manufacturing cobalt catalysts |
| US5595967A (en) * | 1995-02-03 | 1997-01-21 | The Procter & Gamble Company | Detergent compositions comprising multiperacid-forming bleach activators |
| US5597936A (en) * | 1995-06-16 | 1997-01-28 | The Procter & Gamble Company | Method for manufacturing cobalt catalysts |
| US5622646A (en) * | 1994-04-07 | 1997-04-22 | The Procter & Gamble Company | Bleach compositions comprising metal-containing bleach catalysts and antioxidants |
| GB2306472A (en) * | 1995-10-19 | 1997-05-07 | Ciba Geigy Ag | Cobalt compound bleach activators |
| US5686014A (en) * | 1994-04-07 | 1997-11-11 | The Procter & Gamble Company | Bleach compositions comprising manganese-containing bleach catalysts |
| US5703030A (en) * | 1995-06-16 | 1997-12-30 | The Procter & Gamble Company | Bleach compositions comprising cobalt catalysts |
| US5703034A (en) * | 1995-10-30 | 1997-12-30 | The Procter & Gamble Company | Bleach catalyst particles |
| US5705464A (en) * | 1995-06-16 | 1998-01-06 | The Procter & Gamble Company | Automatic dishwashing compositions comprising cobalt catalysts |
| US5798326A (en) * | 1995-02-02 | 1998-08-25 | The Procter & Gamble Company | Automatic dishwashing compositions comprising cobalt III catalysts |
| US5804542A (en) * | 1995-02-02 | 1998-09-08 | The Procter & Gamble Company | Automatic dishwashing compositions comprising cobalt catalysts |
| US5969171A (en) * | 1997-07-01 | 1999-10-19 | Clariant Gmbh | Metal complexes as bleach activators |
| US5967157A (en) * | 1996-09-11 | 1999-10-19 | The Procter & Gamble Company | Automatic dishwashing compositions containing low foaming nonionic surfactants in conjunction with enzymes |
| AU711960B2 (en) * | 1995-02-02 | 1999-10-28 | Procter & Gamble Company, The | Automatic dishwashing compositions comprising cobalt chelated catalysts |
| US6093343A (en) * | 1996-02-08 | 2000-07-25 | The Procter & Gamble Company | Detergent particles comprising metal-containing bleach catalysts |
| US6479447B2 (en) | 1999-12-23 | 2002-11-12 | Unilever Home & Personal Care Usa, Division Of Conopco, Inc. | Bleaching composition for dry cleaning containing transition metal bleach catalyst |
| US7335629B2 (en) | 2001-12-21 | 2008-02-26 | Henkel Kommanditgesellschaft Auf Aktien | Support-fixed bleaching catalyst complex compounds suitable as catalysts for peroxygen compounds |
Families Citing this family (30)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB2294268A (en) | 1994-07-07 | 1996-04-24 | Procter & Gamble | Bleaching composition for dishwasher use |
| US5578136A (en) | 1994-08-31 | 1996-11-26 | The Procter & Gamble Company | Automatic dishwashing compositions comprising quaternary substituted bleach activators |
| US5968881A (en) * | 1995-02-02 | 1999-10-19 | The Procter & Gamble Company | Phosphate built automatic dishwashing compositions comprising catalysts |
| DE19529904A1 (en) * | 1995-08-15 | 1997-02-20 | Henkel Kgaa | Detergent with activator complexes for peroxygen compounds |
| DE19529905A1 (en) * | 1995-08-15 | 1997-02-20 | Henkel Kgaa | Activator complexes for peroxygen compounds |
| EP0778342A1 (en) | 1995-12-06 | 1997-06-11 | The Procter & Gamble Company | Detergent compositions |
| DE19600159A1 (en) | 1996-01-04 | 1997-07-10 | Hoechst Ag | Bleaching agent systems containing bis- and tris (mu-oxo) -di-manganese complex salts |
| GB2309976A (en) * | 1996-02-08 | 1997-08-13 | Procter & Gamble | Bleach catalyst particles for inclusion in detergents |
| DE19606343A1 (en) | 1996-02-21 | 1997-08-28 | Hoechst Ag | Bleach |
| DE19719397A1 (en) * | 1997-05-07 | 1998-11-12 | Clariant Gmbh | Bleach-active metal complexes |
| DE19721886A1 (en) | 1997-05-26 | 1998-12-03 | Henkel Kgaa | Bleaching system |
| CA2310457A1 (en) | 1997-11-21 | 1999-06-03 | Laura Anne Oakes | Product applicator |
| GB0118749D0 (en) | 2001-08-01 | 2001-09-26 | Procter & Gamble | Water treatment compositions |
| EP1590426B1 (en) | 2003-02-03 | 2014-01-08 | Unilever PLC | Laundry cleansing and conditioning compositions |
| US20070138674A1 (en) | 2005-12-15 | 2007-06-21 | Theodore James Anastasiou | Encapsulated active material with reduced formaldehyde potential |
| RU2016140896A (en) | 2012-01-04 | 2018-12-14 | Дзе Проктер Энд Гэмбл Компани | FIBERAL STRUCTURES CONTAINING PARTICLES AND METHODS FOR THEIR MANUFACTURE |
| EP3075832B1 (en) | 2015-03-30 | 2021-04-14 | Dalli-Werke GmbH & Co. KG | Manganese-amino acid compounds in cleaning compositions |
| WO2018085300A1 (en) | 2016-11-01 | 2018-05-11 | The Procter & Gamble Company | Methods of using leuco colorants as bluing agents in laundry care compositions |
| US20180119070A1 (en) | 2016-11-01 | 2018-05-03 | The Procter & Gamble Company | Leuco colorants as bluing agents in laundry care compositions, packaging, kits and methods thereof |
| CA3046690A1 (en) | 2017-01-27 | 2018-08-02 | The Procter & Gamble Company | Active agent-containing articles that exhibit consumer acceptable article in-use properties |
| US11697905B2 (en) | 2017-01-27 | 2023-07-11 | The Procter & Gamble Company | Active agent-containing articles that exhibit consumer acceptable article in-use properties |
| US11697904B2 (en) | 2017-01-27 | 2023-07-11 | The Procter & Gamble Company | Active agent-containing articles that exhibit consumer acceptable article in-use properties |
| US11697906B2 (en) | 2017-01-27 | 2023-07-11 | The Procter & Gamble Company | Active agent-containing articles and product-shipping assemblies for containing the same |
| EP3444328A1 (en) | 2017-08-18 | 2019-02-20 | The Procter & Gamble Company | Cleaning agent |
| US20200190433A1 (en) | 2018-12-14 | 2020-06-18 | The Procter & Gamble Company | Foaming Fibrous Structures Comprising Particles and Methods for Making Same |
| EP3677665B1 (en) * | 2019-01-04 | 2021-05-05 | Henkel AG & Co. KGaA | Detergents, especially dishwashing detergents, comprising salicylidene-serine |
| EP3677664B1 (en) * | 2019-01-04 | 2021-05-19 | Henkel AG & Co. KGaA | Non-enzymatic removal of proteinaceous soils |
| US11485934B2 (en) | 2019-08-02 | 2022-11-01 | The Procter & Gamble Company | Foaming compositions for producing a stable foam and methods for making same |
| US20210148044A1 (en) | 2019-11-15 | 2021-05-20 | The Procter & Gamble Company | Graphic-Containing Soluble Articles and Methods for Making Same |
| US12371820B2 (en) | 2021-05-28 | 2025-07-29 | The Procter & Gamble Company | Natural polymer-based fibrous elements comprising a surfactant and methods for making same |
Family Cites Families (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB1182143A (en) * | 1966-03-01 | 1970-02-25 | United States Borax Chem | Bleaching Compositions and Methods. |
| LU60582A1 (en) * | 1970-03-24 | 1971-10-06 | ||
| DE3002271A1 (en) * | 1980-01-23 | 1981-07-30 | VEB Waschmittelwerk Genthin, Stammbetrieb, DDR 3280 Genthin | Bleaching mixt. for detergent compsns. - contg. (in)organic peroxy cpd. opt. activator and water-soluble metal chelate complex |
| GB8629837D0 (en) * | 1986-12-13 | 1987-01-21 | Interox Chemicals Ltd | Bleach activation |
-
1989
- 1989-07-10 GB GB898915781A patent/GB8915781D0/en active Pending
-
1990
- 1990-07-09 EP EP19900201821 patent/EP0408131B1/en not_active Expired - Lifetime
- 1990-07-09 DE DE1990619617 patent/DE69019617T2/en not_active Expired - Fee Related
Cited By (28)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5279816A (en) * | 1991-11-22 | 1994-01-18 | Colgate-Palmolive Co. | Oral composition having improved tooth whitening effect |
| US5622646A (en) * | 1994-04-07 | 1997-04-22 | The Procter & Gamble Company | Bleach compositions comprising metal-containing bleach catalysts and antioxidants |
| US5686014A (en) * | 1994-04-07 | 1997-11-11 | The Procter & Gamble Company | Bleach compositions comprising manganese-containing bleach catalysts |
| US5520835A (en) * | 1994-08-31 | 1996-05-28 | The Procter & Gamble Company | Automatic dishwashing compositions comprising multiquaternary bleach activators |
| US6020294A (en) * | 1995-02-02 | 2000-02-01 | Procter & Gamble Company | Automatic dishwashing compositions comprising cobalt chelated catalysts |
| AU711960B2 (en) * | 1995-02-02 | 1999-10-28 | Procter & Gamble Company, The | Automatic dishwashing compositions comprising cobalt chelated catalysts |
| US6119705A (en) * | 1995-02-02 | 2000-09-19 | The Procter & Gamble Company | Automatic dishwashing compositions comprising cobalt chelated catalysts |
| AU711747B2 (en) * | 1995-02-02 | 1999-10-21 | Procter & Gamble Company, The | Automatic dishwashing compositions comprising cobalt (III) catalysts |
| AU711742B2 (en) * | 1995-02-02 | 1999-10-21 | Procter & Gamble Company, The | Automatic dishwashing compositions comprising cobalt catalysts |
| US5804542A (en) * | 1995-02-02 | 1998-09-08 | The Procter & Gamble Company | Automatic dishwashing compositions comprising cobalt catalysts |
| US5798326A (en) * | 1995-02-02 | 1998-08-25 | The Procter & Gamble Company | Automatic dishwashing compositions comprising cobalt III catalysts |
| US5616546A (en) * | 1995-02-03 | 1997-04-01 | The Procter & Gamble Company | Automatic dishwashing compositions comprising multiperacid-forming bleach activators |
| US5534180A (en) * | 1995-02-03 | 1996-07-09 | Miracle; Gregory S. | Automatic dishwashing compositions comprising multiperacid-forming bleach activators |
| US5595967A (en) * | 1995-02-03 | 1997-01-21 | The Procter & Gamble Company | Detergent compositions comprising multiperacid-forming bleach activators |
| US5597936A (en) * | 1995-06-16 | 1997-01-28 | The Procter & Gamble Company | Method for manufacturing cobalt catalysts |
| US5703030A (en) * | 1995-06-16 | 1997-12-30 | The Procter & Gamble Company | Bleach compositions comprising cobalt catalysts |
| US5705464A (en) * | 1995-06-16 | 1998-01-06 | The Procter & Gamble Company | Automatic dishwashing compositions comprising cobalt catalysts |
| US5581005A (en) * | 1995-06-16 | 1996-12-03 | The Procter & Gamble Company | Method for manufacturing cobalt catalysts |
| US5559261A (en) * | 1995-07-27 | 1996-09-24 | The Procter & Gamble Company | Method for manufacturing cobalt catalysts |
| US6228127B1 (en) * | 1995-10-19 | 2001-05-08 | Ciba Specialty Chemicals Corporation | Bleaching or washing composition |
| GB2306472A (en) * | 1995-10-19 | 1997-05-07 | Ciba Geigy Ag | Cobalt compound bleach activators |
| US5703034A (en) * | 1995-10-30 | 1997-12-30 | The Procter & Gamble Company | Bleach catalyst particles |
| US6093343A (en) * | 1996-02-08 | 2000-07-25 | The Procter & Gamble Company | Detergent particles comprising metal-containing bleach catalysts |
| US5967157A (en) * | 1996-09-11 | 1999-10-19 | The Procter & Gamble Company | Automatic dishwashing compositions containing low foaming nonionic surfactants in conjunction with enzymes |
| US5969171A (en) * | 1997-07-01 | 1999-10-19 | Clariant Gmbh | Metal complexes as bleach activators |
| US6479447B2 (en) | 1999-12-23 | 2002-11-12 | Unilever Home & Personal Care Usa, Division Of Conopco, Inc. | Bleaching composition for dry cleaning containing transition metal bleach catalyst |
| US6495502B2 (en) | 1999-12-23 | 2002-12-17 | Unilever Home & Personal Care Usa, Division Of Conopco, Inc. | Bleaching composition for dry cleaning containing transition metal bleach catalyst |
| US7335629B2 (en) | 2001-12-21 | 2008-02-26 | Henkel Kommanditgesellschaft Auf Aktien | Support-fixed bleaching catalyst complex compounds suitable as catalysts for peroxygen compounds |
Also Published As
| Publication number | Publication date |
|---|---|
| EP0408131A3 (en) | 1991-04-10 |
| DE69019617D1 (en) | 1995-06-29 |
| DE69019617T2 (en) | 1995-09-28 |
| GB8915781D0 (en) | 1989-08-31 |
| EP0408131A2 (en) | 1991-01-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP0408131B1 (en) | Bleach activation | |
| EP0392592B1 (en) | Bleach activation | |
| EP0443651B1 (en) | Bleach activation | |
| EP0544519B1 (en) | Bleach manganese catalyst and its use | |
| EP0458397B1 (en) | Bleach activation | |
| EP0549271B1 (en) | Bleach activation using a manganese compound and an organic ligand | |
| KR960000205B1 (en) | Detergent bleach compositions | |
| EP0549272A1 (en) | Bleach activation | |
| EP0906402A1 (en) | Bleach activation | |
| US5021187A (en) | Copper diamine complexes and their use as bleach activating catalysts | |
| US6432901B2 (en) | Bleach catalysts | |
| US5041142A (en) | Peroxymetallates and their use as bleach activating catalysts | |
| US5969171A (en) | Metal complexes as bleach activators | |
| KR960015159B1 (en) | Detergent Bleach Composition |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): CH DE ES FR GB IT LI NL SE |
|
| PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
| AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): CH DE ES FR GB IT LI NL SE |
|
| 17P | Request for examination filed |
Effective date: 19910927 |
|
| RAP3 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: UNILEVER PLC Owner name: UNILEVER N.V. |
|
| 17Q | First examination report despatched |
Effective date: 19940926 |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE ES FR GB IT LI NL SE |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Effective date: 19950524 Ref country code: ES Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19950524 Ref country code: CH Effective date: 19950524 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19950612 Year of fee payment: 6 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19950620 Year of fee payment: 6 |
|
| REF | Corresponds to: |
Ref document number: 69019617 Country of ref document: DE Date of ref document: 19950629 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19950630 Year of fee payment: 6 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19950705 Year of fee payment: 6 |
|
| ITF | It: translation for a ep patent filed | ||
| ET | Fr: translation filed | ||
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19950824 |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
| 26N | No opposition filed | ||
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19960709 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19970201 |
|
| GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19960709 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19970328 |
|
| NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 19970201 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19970402 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050709 |