EP0478700B1 - Procede de fabrication d'un disjoncteur - Google Patents
Procede de fabrication d'un disjoncteur Download PDFInfo
- Publication number
- EP0478700B1 EP0478700B1 EP90911860A EP90911860A EP0478700B1 EP 0478700 B1 EP0478700 B1 EP 0478700B1 EP 90911860 A EP90911860 A EP 90911860A EP 90911860 A EP90911860 A EP 90911860A EP 0478700 B1 EP0478700 B1 EP 0478700B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- circuit breaker
- housing
- module
- breaker
- assembly
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 9
- 238000000034 method Methods 0.000 claims abstract description 6
- 238000009434 installation Methods 0.000 claims description 6
- 238000002242 deionisation method Methods 0.000 claims description 2
- 230000000717 retained effect Effects 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H71/00—Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
- H01H71/02—Housings; Casings; Bases; Mountings
- H01H71/0207—Mounting or assembling the different parts of the circuit breaker
- H01H71/0221—Majority of parts mounted on central frame or wall
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H71/00—Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
- H01H71/10—Operating or release mechanisms
- H01H71/50—Manual reset mechanisms which may be also used for manual release
- H01H71/52—Manual reset mechanisms which may be also used for manual release actuated by lever
- H01H71/526—Manual reset mechanisms which may be also used for manual release actuated by lever the lever forming a toggle linkage with a second lever, the free end of which is directly and releasably engageable with a contact structure
Definitions
- the invention relates to circuit breakers and, more particularly, to an improved method of manufacturing a circuit breaker.
- Circuit breakers function to interrupt electrical current flow between a source of electricity and a load in response to an over-current condition. They are typically manufactured in standard sized housings and include a movable blade carrying a contact (movable contact) that is generally connected to the electrical source, a mechanism carrying a stationary contact and a spring for biasing the movable contact away from the stationary contact. A releasable latch mechanism opposes the spring bias to physically couple the movable contact and the stationary contact to permit current flow from the source to the load. A trip lever releases the latch mechanism, permitting the spring bias to separate the movable contact and the stationary contact to prevent current flow from the source to the load.
- Prior art circuit breaker assemblies normally have one or more points of attachment to the housing, although US-A-4 079 346 discloses a circuit breaker in which the parts are attached to a plate to be located in a housing without attachment thereto. Preassembly of the breaker mechanism is difficult when it is held together by the housing. US-A-4 752 755 discloses a method of manfacturing a circuit breaker by preassembling a structure which is adjusted and tested before a cover is secured thereto. The manufacture of prior art circuit breakers has also been difficult to automate because parts need to be assembled along three orthogonally related axes. The present invention provides a solution to these problems.
- Another object of the invention is to provide a reliable, low cost method of manufacturing a circuit breaker.
- a feature of the invention is the provision of a modular subassembly of the operating parts of a circuit breaker that may be tested and adjusted prior to installation in the breaker housing.
- a method of manufacturing a circuit breaker having a movable load contact and a stationary load contact comprising the steps of preassembling a module comprising movable parts of said circuit breaker, and said stationary load contact by supporting between a pair of side plates, said module being capable of being adjusted and tested before installation in a housing providing a housing defining at least one compartment configured to support said module without attachment thereto; testing said module; placing said tested module into said compartment; and securing a cover to said housing.
- a circuit breaker having a movable load contact, a stationary load contact and a housing wherein, the movable parts of the circuit breaker and the stationary load contact are located within a pre-assembled module by supporting between a pair of side plates and located in the housing without attachment thereto, the module being capable of independent testing and adjustment prior to installation in the housing.
- FIG. 1 A circuit breaker 10 constructed in accordance with the first aspect of the invention is illustrated in FIG. 1.
- An additional description of the general features of a similar type circuit breaker can be found in the following patents, the specifications of which are incorporated herein by reference:
- the circuit breaker 10 has a housing 11 and includes a resilient clamp type line terminal 12 for connection to a source of electricity (not shown) and a screw type load terminal 14 for connection to a load circuit (not shown).
- a current path is established between the line terminal 12 and the load terminal 14 which includes a line conductor 16, a support 18 for a bimetal thermal element 20, a braided pigtail 22, and a blade 24 including a movable contact 26.
- the current path includes a stationary contact 28, a trip coil 31 and a load conductor 32.
- the blade 24 is shown in a closed position with the movable contact 26 engaging or mating with the stationary contact 28.
- the blade 24 is pivotable between the closed position shown and an open position, wherein the movable contact 26 is separated from the stationary contact 28 to prevent current flow.
- the stationary contact 28 comprises a layer of copper 28a laminated to a layer of steel 28b with a silver/graphite composition contact 28c welded to the copper.
- the blade 24 is an element of a unitary breaker assembly, generally designated 40, which controls the position of the blade 24 relative to the stationary contact 28.
- the circuit breaker 10 also includes a line-side arc arresting plate 29a, a load-side arc arresting plate 29b and a stack of deionization plates, or arc stack, 30, which cooperate to break the electrical arc formed when the circuit breaker 10 is opened while supplying current to a load.
- a line-side arc arresting plate 29a a load-side arc arresting plate 29b and a stack of deionization plates, or arc stack, 30, which cooperate to break the electrical arc formed when the circuit breaker 10 is opened while supplying current to a load.
- the specific operation of the arc arresting plates 29a, 29b and the arc stack 30 is disclosed in greater detail in the above incorporated patents.
- the elements 16, 18, 20 and 29a are joined together by welding at their various interfaces.
- unitary breaker assembly 40 includes a first frame member or plate 42 having first, second and third upright members 43, 44, 45, respectively.
- a pivot pin 48 extends upwardly through a hole in the first frame plate 42.
- a trip lever 50 is pivotally supported on the pivot pin 48.
- the trip lever 50 includes a solenoid actuator surface 52 and a bimetal actuator surface 54.
- the blade 24 includes an elongated slot 24a for receiving the pivot pin 48.
- the blade 24 further includes a notch 56 to which a first end of a toggle spring 58 is attached.
- a latch spring 60 is disposed about the pivot pin 48 between the trip lever 50 and the blade 24.
- the latch spring 60 includes a first end 62 which engages the first upright member 43 and a second end 63 which engages the solenoid actuator surface 52 of the trip lever 50.
- the latch spring 60 provides a counterclockwise bias to the trip lever 50.
- a cam 64 having an operating handle 65 attached thereto, includes a recessed portion 66 in which a cam spring 68 is placed. Referring also to FIGS. 3 and 4, a first cam spring end 69a extends from recessed portion 66 and engages the third upright member 45. A second cam spring end 69b engages a wall of the recessed portion 66. The cam spring 68 imparts a clockwise bias to the cam 64 as viewed in FIG. 2.
- a link 70 couples the cam 64 to a pawl 72.
- the pawl 72 is pivotally connected to a flag end 74 of the blade 24 by a pin 76.
- the flag end is visible through a window 75 in the housing 11 (FIG. 1) and indicates the status of the circuit breaker contacts, i.e. whether they are opened or closed.
- the trip lever 50 further includes an engaging surface 78 which engages the pawl 72.
- the movable contact 26 When in the closed position, the movable contact 26 is physically coupled to the stationary contact 28.
- the pin 76 operates as a fulcrum on the blade 24, causing the toggle spring 58 to keep the movable contact 26 and the stationary contact 28 closed.
- the blade 24 can be moved to the open position by operation of the bimetal thermal element 20, by action of a spring loaded rod 80 disposed within the operating or trip coil 31, or by manipulation of operating-handle 65.
- Load current passing through the bimetal thermal element 20 heats the bimetal thermal element 20 which deflects downwardly in the direction of the arrow 82. The amount of deflection depends upon the temperature reached by the bimetal thermal element 20, which is a function of the magnitude and duration of the load current.
- a calibration screw 84 engages the bimetal actuator surface 54 of the trip lever 50, causing the trip lever 50 to rotate clockwise about the pivot pin 48 and against the bias of the latch spring 60 (FIG. 3), tripping the circuit breaker 10 as discussed in greater detail below.
- the circuit breaker 10 can also be tripped by the trip coil 31.
- the rod 80 is downwardly biased by a solenoid spring 86.
- Rod 80 may be coupled to, or a part of (or simply in gravitational contact with), a movable armature in coil 31.
- Load current passes through the coil 31 (one end of which is welded to stationary contact 28), establishing an electromagnetic field that affects the coil armature (and hence rod 80).
- the electromagnetic force in coil 31 exceeds the biasing force of the solenoid spring 86, the rod 80 is moved (up) to engage the solenoid actuator surface 52, causing the trip lever 50 to rotate clockwise, tripping the circuit breaker 10, as discussed below.
- the cam 64 is shown from its reverse side in FIG. 4 to better illustrate the recessed portion 66 and cam spring 68.
- the cam spring 68 is centered on a cam pivot axis 88.
- the second cam spring end 69b is biased against wall 66a of the recessed portion 66.
- the first cam spring end 69a is biased by torsion loading against the third upright member 45.
- the torsion loading of the cam spring 68 urges the cam 64 and attached operating handle 65 in the downward position.
- the circuit breaker 10 is illustrated in an exploded perspective view in FIG. 5.
- the first, second and third upright members 43, 44, 45 of the first frame plate 42 terminate in connecting tabs 43a, 44a, 45a, respectively.
- a second frame plate 89 includes corresponding tab receiving openings 43b, 44b, 45b which provide an interference fit with the respective connecting tabs 43a, 44a, 45a to secure the first frame plate 42 to the second frame plate 89.
- the first and second frame plates 42, 89, respectively are separate pieces; however it is to be understood that the frame plates could be formed from a single piece folded over to form the opposing frame surfaces.
- the housing 11 has a base 11a and a cover 11b.
- the base 11a defines x, y and z axis supporting elements and surfaces. These include internal and external walls and parts that are perpendicular to the base 11a, i.e. extend along the z-axis.
- the elements define an arc stack section 90, a unitary breaker assembly section 92 and a coil section 94 as well as support slots such as 96a and 96b.
- End portions 18a and 18b of the bimetal support 18 are slid into and retained within respective support slots 96a and 96b.
- the line-side arc arresting plate 29a is slid into and retained within an arc runner slot 98.
- the unitary breaker assembly 40 is then simply placed in the unitary breaker assembly section 92, and requires no attachments to the housing 11.
- Suitably placed and configured additional indentations and protrusions may be incorporated in base 11a and cover 11b for assuring adequate support for the various elements, if desired.
- the load terminal 14 is slid into and retained in a load terminal compartment 99.
- Suitable fasteners are used to secure cover 11b in place on base 11a and thereby retain the elements of the circuit breaker in housing 11.
- the blade 24 is a tapered plate on edge, operating structurally as a beam so as to prevent flexing. If additional current carrying capacity is required, the width of the blade 24 may simply be increased.
- FIGS. 6 and 7 provide a very attractive solution for a circuit breaker manufacturer who wishes to do final assembly of circuit breakers at different locations.
- the operative parts of the circuit breaker including the unitary breaker assembly and the trip coil and stationary contact, are preassembled into a module that may be tested and calibrated before final installation in the breaker housing. Therefore, the critical manufacturing steps may be carefully controlled where the modules are constructed.
- circuit breaker 10' has a base 111 that is modified to accept a module 100 without the need of fasteners.
- Module 100 has a pair of supporting side plates or frame members (only one of which-105-is visible) that function to support the movable elements for operation as was accomplished by the frame members 42 and 89 above. That is, one of the side plates of module 100 has an internal configuration that cooperates with the other side plate to operatively support the working elements of the circuit breaker.
- the frame members are configured to provide suitable openings for parts of the circuit breaker that extend outside the module which includes the unitary breaker assembly and the trip coil assembly.
- the frame members are preferably made of plastic with suitable interior coatings or barrier plates adjacent to the contact areas to withstand the effects of heating due to opening and closing of the contacts under load.
- the frame members also support the pivot pins 48 and define the pivot axis 88.
- arc chute 30 All that needs to be added during final assembly is the arc chute 30. Securing the trip coil and stationary contact and the thermal element support 18 in module 100 renders the unitary breaker assembly capable of full operation apart from housing 111 and cover 112 and represents a preferred implementation of the invention.
- FIG. 7 the internal configuration of base 111 for supporting module 100 (without fasteners) is shown. It will be appreciated that suitable fasteners (not shown) are used to secure module 100 between base 111 and cover 112 via apertures 104 and 105. It will also be noted that the particular configuration of the base, cover and module is dependent upon the specific breaker construction.
- a unitary breaker assembly which can be preassembled and which requires no attachments to secure it within a circuit breaker housing.
- assembly of the unitary breaker assembly can readily be automated, because the assembly steps are performed along a single axis.
Landscapes
- Breakers (AREA)
- Manufacture Of Switches (AREA)
Abstract
Claims (5)
- Un procédé de fabrication d'un disjoncteur (10) comportant un contact de charge déplaçable (24) et un contact de charge fixe (28), comprenant les étapes suivantes:préassemblage d'un module (40, 100), comportant les parties déplaçables du dit disjoncteur (10) ainsi que le dit contact de charge fixe (24) de façon que ledit module soit supporté entre une paire de plaques latérales (105) de manière que ledit module puisse être réglé et testé avant d'être installé dans un boîtier;fournissant un boîtier (11a, 111) délimitant au moins un compartiment (92) aménagé de façon à supporter le dit module (40, 100) sans moyen de fixation;testant ledit module (40, 100);disposant ledit module testé (40, 100) dans ledit compartiment (92);et mettant un couvercle (11b, 112) sur ledit boîtier (11a, 111).
- Un procédé selon la revendication 1, caractérisé en ce que ledit boîtier (111) comporte un deuxième compartiment (90) pour supporter un seul élément (30) dudit disjoncteur (10) et consistant en outre de l'étape par lequel ledit seul élément dudit disjoncteur soit placé dans ledit deuxième compartiment (90) avant de mettre ledit couvercle (11b, 112).
- Un procédé selon la revendication 2, caractérisé en ce que ledit seul élément comprend un ensemble de plaques de désionisation (30).
- Procédé selon l'une quelconque des revendications précédentes, caractérisé par le fait qu'un connecteur éléctrique immobile (14) est connecté audit module (40, 100) et dans lequel ledit boîtier (11a, 111) comporte des moyens de support pour ledit connecteur éléctrique immobile (14).
- Un disjoncteur (10) comprenant un contact de charge déplaçable (24), un contact de charge fixe (28) et un boîtier (11a, 111), dans lequel les parties déplacables dudit disjoncteurs (10) et le contact de charge fixe (28) sont disposés dans un module préassemblé (40, 100) de façon à être supporté entre une paire de plaques latérales (105) et aménagé dans ledit boîtier sans moyen de fixation tel que ledit module peut être testé et réglé avant d'être installé dans le boîtier (11a, 111).
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US50886190A | 1990-04-12 | 1990-04-12 | |
| US508861 | 1990-04-12 | ||
| PCT/US1990/003664 WO1991016720A1 (fr) | 1990-04-12 | 1990-06-27 | Procede de fabrication d'un disjoncteur |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| EP0478700A1 EP0478700A1 (fr) | 1992-04-08 |
| EP0478700A4 EP0478700A4 (en) | 1993-05-05 |
| EP0478700B1 true EP0478700B1 (fr) | 1996-06-05 |
Family
ID=24024382
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP90911860A Expired - Lifetime EP0478700B1 (fr) | 1990-04-12 | 1990-06-27 | Procede de fabrication d'un disjoncteur |
Country Status (5)
| Country | Link |
|---|---|
| EP (1) | EP0478700B1 (fr) |
| JP (1) | JPH04506723A (fr) |
| CA (1) | CA2060323C (fr) |
| DE (1) | DE69027322D1 (fr) |
| WO (1) | WO1991016720A1 (fr) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| IE950039A1 (en) * | 1994-01-21 | 1995-07-26 | Square D Co | Blade assembly |
| DE19653379A1 (de) * | 1996-12-20 | 1998-06-25 | Abb Patent Gmbh | Verfahren zur Herstellung eines elektrischen Installationsschalters und Installationsschalter |
Family Cites Families (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2350680A1 (fr) * | 1976-05-04 | 1977-12-02 | Merlin Gerin | Disjoncteur electrique basse tension a platine de support |
| US4079346A (en) * | 1976-07-06 | 1978-03-14 | I-T-E Imperial Corporation | Mounting plate for molded case circuit breaker |
| DE3339400A1 (de) * | 1983-10-29 | 1985-05-09 | Sursum Elektrizitätsgesellschaft Leyhausen GmbH & Co, 8500 Nürnberg | Selbstschalter mit schlaganker-ausloeser |
| US4698903A (en) * | 1985-04-01 | 1987-10-13 | General Electric Company | Circuit breaker highspeed assembly |
| JPS62206734A (ja) * | 1986-03-05 | 1987-09-11 | 富士電機株式会社 | 回路しや断器 |
| US4835842A (en) * | 1987-04-23 | 1989-06-06 | General Electric Company | Method of assembling a molded case circuit breaker operating mechanism |
| US4789848A (en) * | 1987-09-03 | 1988-12-06 | General Electric Company | Molded case circuit breaker latch and operating mechanism assembly |
| US4864263A (en) * | 1987-09-03 | 1989-09-05 | General Electric Company | Molded case circuit breaker latch and operating mechanism assembly |
-
1990
- 1990-06-27 WO PCT/US1990/003664 patent/WO1991016720A1/fr not_active Ceased
- 1990-06-27 JP JP2510989A patent/JPH04506723A/ja active Pending
- 1990-06-27 DE DE69027322T patent/DE69027322D1/de not_active Expired - Lifetime
- 1990-06-27 EP EP90911860A patent/EP0478700B1/fr not_active Expired - Lifetime
- 1990-06-27 CA CA002060323A patent/CA2060323C/fr not_active Expired - Lifetime
Also Published As
| Publication number | Publication date |
|---|---|
| WO1991016720A1 (fr) | 1991-10-31 |
| EP0478700A4 (en) | 1993-05-05 |
| JPH04506723A (ja) | 1992-11-19 |
| CA2060323C (fr) | 2000-05-09 |
| EP0478700A1 (fr) | 1992-04-08 |
| CA2060323A1 (fr) | 1991-10-13 |
| DE69027322D1 (de) | 1996-07-11 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5097589A (en) | Method of manufacturing a circuit breaker | |
| US4968863A (en) | Unitary breaker assembly for a circuit breaker | |
| EP1126490B1 (fr) | Disjoncteur avec verrouillage et système de genouillère qui fonctionnent sur des plans différents | |
| EP0593733B1 (fr) | Coupe-circuit miniature automatique avec ensemble de contact assemblable selon l'axe des z | |
| EP0593688B1 (fr) | Disjoncteur miniature automatique avec mecanisme de declenchement a assemblage dans l'axe des z | |
| US5762182A (en) | Current limiting circuit breaker | |
| AU668972B2 (en) | Circuit breaker with auxiliary switch actuated by cascaded actuating members | |
| EP0603346B1 (fr) | Coupe-circuit miniature automatique avec mecanisme de reponse en courant assemblable selon l'axe des z | |
| PL194635B1 (pl) | Wyłącznik elektryczny z wymienialnym zespołem wyzwalającym | |
| JPS61281431A (ja) | モジユ−ル式接地事故遮断器 | |
| US5416291A (en) | Current limiting circuit breaker operating mechanism including linkage | |
| JP2825642B2 (ja) | サーキットブレーカーのラインターミナルおよびアークスタック | |
| US5075657A (en) | Unitary breaker assembly for a circuit breaker | |
| WO1993008585A1 (fr) | Disjoncteur de limitation de courant avec aimant surmoule et plaques metalliques | |
| US5285180A (en) | Circuit breaker | |
| EP0276074B1 (fr) | Disjoncteur à circuit magnétique shunt de rappel | |
| EP0478700B1 (fr) | Procede de fabrication d'un disjoncteur | |
| US5576677A (en) | Dual action armature | |
| US5886600A (en) | Modular thermal magnetic trip unit for rapid circuit interruption | |
| US3832663A (en) | Circuit breaker with improved frame and cradle support means |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 19920113 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE GB IT |
|
| A4 | Supplementary search report drawn up and despatched |
Effective date: 19930317 |
|
| AK | Designated contracting states |
Kind code of ref document: A4 Designated state(s): DE GB IT |
|
| 17Q | First examination report despatched |
Effective date: 19940520 |
|
| GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE GB IT |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT Effective date: 19960605 |
|
| REF | Corresponds to: |
Ref document number: 69027322 Country of ref document: DE Date of ref document: 19960711 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19960906 |
|
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
| 26N | No opposition filed | ||
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20080506 Year of fee payment: 19 |
|
| GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20090627 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090627 |