EP0478637A1 - Compositions a base d'hexahydrate de chlorure de calcium utilisees pour l'accumulation de chaleur a basse temperature - Google Patents
Compositions a base d'hexahydrate de chlorure de calcium utilisees pour l'accumulation de chaleur a basse temperatureInfo
- Publication number
- EP0478637A1 EP0478637A1 EP90909576A EP90909576A EP0478637A1 EP 0478637 A1 EP0478637 A1 EP 0478637A1 EP 90909576 A EP90909576 A EP 90909576A EP 90909576 A EP90909576 A EP 90909576A EP 0478637 A1 EP0478637 A1 EP 0478637A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- chloride hexahydrate
- phase change
- calcium chloride
- per cent
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- QHFQAJHNDKBRBO-UHFFFAOYSA-L calcium chloride hexahydrate Chemical compound O.O.O.O.O.O.[Cl-].[Cl-].[Ca+2] QHFQAJHNDKBRBO-UHFFFAOYSA-L 0.000 title claims abstract description 49
- 238000005338 heat storage Methods 0.000 title abstract description 16
- 239000000203 mixture Substances 0.000 title description 38
- 238000009472 formulation Methods 0.000 title description 33
- 239000012782 phase change material Substances 0.000 claims abstract description 67
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims abstract description 26
- 229940047908 strontium chloride hexahydrate Drugs 0.000 claims abstract description 20
- AMGRXJSJSONEEG-UHFFFAOYSA-L strontium dichloride hexahydrate Chemical compound O.O.O.O.O.O.Cl[Sr]Cl AMGRXJSJSONEEG-UHFFFAOYSA-L 0.000 claims abstract description 20
- 239000000654 additive Substances 0.000 claims abstract description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 15
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 13
- 239000011780 sodium chloride Substances 0.000 claims abstract description 13
- 238000004040 coloring Methods 0.000 claims abstract description 11
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 claims abstract description 10
- 229910021485 fumed silica Inorganic materials 0.000 claims abstract description 9
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 claims abstract description 8
- 239000001103 potassium chloride Substances 0.000 claims abstract description 5
- 235000011164 potassium chloride Nutrition 0.000 claims abstract description 5
- 235000019270 ammonium chloride Nutrition 0.000 claims abstract description 4
- 239000003795 chemical substances by application Substances 0.000 claims description 9
- 230000000996 additive effect Effects 0.000 claims description 6
- 150000004687 hexahydrates Chemical class 0.000 claims description 3
- 229940013553 strontium chloride Drugs 0.000 claims 1
- 229910001631 strontium chloride Inorganic materials 0.000 claims 1
- AHBGXTDRMVNFER-UHFFFAOYSA-L strontium dichloride Chemical compound [Cl-].[Cl-].[Sr+2] AHBGXTDRMVNFER-UHFFFAOYSA-L 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 8
- 238000000034 method Methods 0.000 abstract description 3
- RSIJVJUOQBWMIM-UHFFFAOYSA-L sodium sulfate decahydrate Chemical compound O.O.O.O.O.O.O.O.O.O.[Na+].[Na+].[O-]S([O-])(=O)=O RSIJVJUOQBWMIM-UHFFFAOYSA-L 0.000 description 7
- 230000008014 freezing Effects 0.000 description 6
- 238000007710 freezing Methods 0.000 description 6
- 230000007774 longterm Effects 0.000 description 6
- 238000002844 melting Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- 238000003860 storage Methods 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 5
- 238000011835 investigation Methods 0.000 description 5
- 238000004781 supercooling Methods 0.000 description 5
- 230000015556 catabolic process Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 150000004685 tetrahydrates Chemical class 0.000 description 4
- 239000002562 thickening agent Substances 0.000 description 4
- 238000006731 degradation reaction Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 239000002667 nucleating agent Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000036571 hydration Effects 0.000 description 2
- 238000006703 hydration reaction Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- IOLCXVTUBQKXJR-UHFFFAOYSA-M potassium bromide Chemical compound [K+].[Br-] IOLCXVTUBQKXJR-UHFFFAOYSA-M 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 239000011435 rock Substances 0.000 description 2
- -1 salt hydrates Chemical class 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- JHJLBTNAGRQEKS-UHFFFAOYSA-M sodium bromide Chemical compound [Na+].[Br-] JHJLBTNAGRQEKS-UHFFFAOYSA-M 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 229920005439 Perspex® Polymers 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- SWLVFNYSXGMGBS-UHFFFAOYSA-N ammonium bromide Chemical compound [NH4+].[Br-] SWLVFNYSXGMGBS-UHFFFAOYSA-N 0.000 description 1
- PWHCIQQGOQTFAE-UHFFFAOYSA-L barium chloride dihydrate Chemical compound O.O.[Cl-].[Cl-].[Ba+2] PWHCIQQGOQTFAE-UHFFFAOYSA-L 0.000 description 1
- CJDPJFRMHVXWPT-UHFFFAOYSA-N barium sulfide Chemical compound [S-2].[Ba+2] CJDPJFRMHVXWPT-UHFFFAOYSA-N 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000010446 mirabilite Substances 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- BTRXYXNWHKNMAB-UHFFFAOYSA-N phosphoric acid;dodecahydrate Chemical compound O.O.O.O.O.O.O.O.O.O.O.O.OP(O)(O)=O BTRXYXNWHKNMAB-UHFFFAOYSA-N 0.000 description 1
- XVNVFKZODWAQKN-UHFFFAOYSA-N phosphoric acid;heptahydrate Chemical compound O.O.O.O.O.O.O.OP(O)(O)=O XVNVFKZODWAQKN-UHFFFAOYSA-N 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000004328 sodium tetraborate Substances 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K5/00—Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
- C09K5/02—Materials undergoing a change of physical state when used
- C09K5/06—Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
- C09K5/063—Materials absorbing or liberating heat during crystallisation; Heat storage materials
Definitions
- This invention concerns heat storage systems. More particularly, it concerns phase change materials based upon calcium chloride hexahydrate for use in thermal storage systems (such as low energy greenhouses) .
- phase change material first used in low energy heat storage systems was Glauber's salt, sodium sulphate decahydrate (Na 2 S0 4 .lOH-0) , which has a phase change temperature of about 32 C.
- sodium sulphate decahydrate changes its composition when cycled through a number of phase changes, and it exhibits a strong "undercooling” (called “supercooling” by some workers in this field) before it solidifies spontaneously. Undercooling by as much as 11 C is reported by Stein in his specification.
- phase change materials based on calcium chloride hexahydrate, CaCl ? .6H_0 are now preferred.
- his own- invention aimed at avoiding the known problems of sodium sulphate decahydrate, involves the use of another phase change material - paraffin wax - in small structures with metal wool dividers.
- phase change material sodium sulphate decahydrate, bisodium phosphate dodecahydrate and bisodium phosphate heptahydrate.
- phase change materials in small parcels - or microencapsulation of such materials - was a solution adopted by other workers and referred to by B Carlsson, H Stymne and G Wettermark in their paper entitled "An incongruent heat-of-fusion system - Ca.Cl ⁇ . 6E ⁇ 0 - made congruent through modification of the chemical composition of the system", which was published in Solar Energy, volume 23, 1979, pages 343 to 350.
- phase change materials in buildings have been suggested on a number of occasions. Some workers have recognised the problems inherent in the use of phase change materials and have suggested techniques or special arrangements to overcome the problems. Others have tended to ignore the problems. Examples of proposals involving the use of phase change materials in buildings include (i) the specification of Australian patent application No 47850/85 in the name of R K Prudhoe (a proposal for controlling the temperature fluctuations in buildings which contain electronic equipment and the like); (ii) the specification of Australian patent application No 49046/85 in the name of Kubota Ltd, which describes a greenhouse in which a phase change material is stored in a tank structure; and (iii) the paper by A Brandstetter, entitled “Phase change storage for greenhouses", published in Advances in Solar Energy Technology (Pergamon Press, 1988), pages 3353 to 3357, which describes a low energy greenhouse in which the heat storage medium is calcium chloride hexahydrate "appropriately formulated against supercooling and degradation".
- phase change materials have been proposed for use in a variety of situations.
- concept of the use of phase change materials as low temperature heat storage media, in greenhouses and other buildings, in heat pumps, in solar energy storage tanks and in industrial waste heat utilisation facilities is now well accepted. (This list is not exhaustive.)
- the production of a satisfactory phase change material, which can be cycled numerous times through the melting and freezing point has posed many problems to researchers in this field.
- the specification of Australian patent application No 55769/86 describes a number of phase change materials which have been investigated by N Yano, T Ueno and S Tsuboi.
- the preferred composition disclosed in that specification is a calcium chloride hexahydrate with additives including up to 5 per cent barium sulphide, from 0.001 to 5 per cent barium chloride dihydrate and from 0.001 to 0.1 per cent strontium chloride hexahydrate, with a bromide (potassium bromide, sodium bromide or ammonium bromide) added as a solidification point modifier and relatively large quantities of ultrafine silica powder and glycerine added as thickening agents.
- a bromide potassium bromide, sodium bromide or ammonium bromide
- the additives are (a) strontium chloride hexahydrate, as a nucleator, in quantities upward from 0.1 per cent (by weight) of the calcium chloride hexahydrate, (b) fumed silica in quantities ranging from 0.02 per cent to 1.0 per cent (by weight) of the calcium chloride hexahydrate, and (c) extra water above the stoichiometric quantity included in the calcium chloride hexahydrate in the range of from 1.0 per cent to 5.0 per cent (by weight) of the calcium chloride hexahydrate. In addition, from 0.001 per cent to 1.0 per cent (by weight) of sodium chloride may also be added.
- the strontium chloride hexahydrate is present in quantities ranging from 0.1 per cent to 4.0 per cent (by weight) of the calcium chloride hexahydrate. More preferably the upper concentration of the strontium chloride hexahydrate is about 2.0 per cent, and most preferably the strontium chloride hexahydrate comprises about 0.3 per cent (by weight) of the calcium chloride hexahydrate.
- compositions which are stable phase change materials is the outcome of a long-term investigation of the performance parameters of calcium chloride hexahydrate phase change materials in melt/freeze cycling experiments.
- Strontium chloride hexahydrate is known to be isomorphous with calcium chloride hexahydrate and to be capable of forming nearly ideal solid solutions with CaCl 2 .6H 2 0; and is also known to be a nucleator of the solidification of calcium chloride hexahydrate.
- the investigation showed that the minimum amount of strontium chloride hexahydrate that is required to sustain long-term nucleation stability is 0.1 per cent. Any lower concentration of strontium chloride hexahydrate is close to the limit of dissolution of SrCl-. ⁇ H-O in calcium chloride hexahydrate.
- extra water that is, water in excess of the quantity required stoichiometrically for the hexahydrate formulation
- the use of "extra water” has been proposed in relation to sodium sulphate decahydrate and some other salt hydrates by S Furbo in the article entitled “Heat Storage Units Using Salt Hydrates", which was published in Sunworld, volume 6, No 5, pages 134 to 139, 1982.
- water in excess of the quantity required stoichiometrically was not proposed in this paper.
- the investigation by the present inventors showed that the extra water is required to ensure the long-term stability of the phase change material.
- the minimum quantity of extra water is 1.0 per cent (by weight), which corresponds to a degree of hydration of 6.123, and the maximum quantity of extra water is about 5.0 per cent, which corresponds to a degree of hydration of 6.61, which was determined on the basis of storage efficiency considerations.
- Variations to the basic formulation of the present invention are possible.
- sodium chloride is preferably included in concentrations of from 0.001 per cent to 1.0 per cent (by weight).
- sodium chloride has been an implicit additive in most of the prior art formulations of phase change materials based on calcium chloride hexahydrate, • for technical grade CaCl 2 .6H 2 0 has sodium chloride as one of its impurities.
- Up to approximately 0.4 per cent (by weight) of sodium chloride can form a solid solution with calcium chloride hexahydrate in the temperature range in which phase change materials are normally used.
- the preferred addition of sodium chloride is in the range of from 0.2 per cent to 1.0 per cent (by weight) or the calcium chloride hexahydrate.
- the preferred formulation of the present invention comprises calcium chloride hexahydrate to which has been added (a) about 0.3 wt per cent strontium chloride hexahydrate;
- Such a formulation has a solid/liquid transition temperature of 29.6 JL 0.2 C. This transition temperature can be reduced down to about 22 C by the addition of up to 10 wt per cent each of ammonium chloride and potassium chloride.
- phase change materials have a light colour.
- the formulations of the present invention which have been discussed above have a light colour in the solid state and are colourless in the liquid state. Thus those formulations, like the other phase change materials, are not good absorbers of radiant energy. Indeed, most phase change materials used in the past have been stored in opaque containers and the heat transfer to, and from, the phase change materials has occurred by conduction.
- phase change materials generally (including the formulations of the present invention) can be achieved by colouring the materials so that they have a dark colour, preferably black, and by holding the materials in transparent containers, such as containers made from glass or perspex.
- phase change material formulation of the present invention is the addition of a chemically inert colouring agent.
- a colouring agent preferably a black, or at least a dark, colouring agent
- a convenient technique for tinting the phase change material is to mix black drawing ink into the formulation, using ultrasonic activation to ensure a substantially uniform distribution of colour within the material.
- phase change materials 60 grams of a calcium chloride hexahydrate formulation containing additives against incongruent melting and supercooling, in accordance with the present invention as described above, was placed in an 80 ml glass jar. 0.12 gram (0.2 wt per cent) of ROTRING " (trade mark) black drawing ink was added to the sample of the formulation. The formulation and the glass jar were held in warm water for 5 minutes in a 3-litres tank of an ultrasonic cleaner (model FX 10 having an output of 100 watts at 40 kHz). The resultant ultrasonic activation distributed the ink uniformly throughout the phase change material.
- an ultrasonic cleaner model FX 10 having an output of 100 watts at 40 kHz
- phase change material containing the black drawing ink was then subjected to freezing (at about 10°C), then melting (at about 45°C).
- the formulation was then held in its molten state for several days. At the end of this period, no segregation of the ink from the other components was observed.
- tinted and untinted phase change materials were placed in identical transparent containers and the containers were exposed to full solar radiation.
- the tinted (black) formulation consistently melted in less than one third the time taken for the untinted samples to melt. Measurements of the temperatures of the formulations during heating showed that the dark pphhaassee cchhaannggee mmaatteerriiaall wwaass uupp to 8 C hotter than the untinted control formulation.
- the tinted formulation In over 20 melt/freeze cycles, the tinted formulation has shown no indication of deterioration in its performance as a heat storage medium.
- tinted phase change material is particularly suitable for use within greenhouses, where it will be able to be exposed to radiant energy when stored in a transparent container.
- phase change material In another experiment, some 300 kg of calcium chloride phase change material, held in 6 litre plastic containers, was used as the basis of an off peak heating system for a laboratory. In this experiment, the phase change material was heated with off-peak electricity and, with the aid of a water circulation heat transport system, delivered its stored heat when required. At the time of writing this specification, the material is still in satisfactory working order in the fourth winter season of the use of the heating system.
- Phase change materials having untinted formulations in accordance with the present invention have also been tested in a low energy greenhouse mounted on a roof of a building of The Australian National University, in Canberra, Australia.
- one of the formulations of the present invention was the calcium chloride hexahydrate "appropriately formulated against supercooling and degradation" used to obtain the experimental data reported in the aforementioned paper by A Brandstetter, entitled “Phase change storage for greenhouses”.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combustion & Propulsion (AREA)
- Thermal Sciences (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
Abstract
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| AU4878/89 | 1989-06-23 | ||
| AUPJ487889 | 1989-06-23 | ||
| AU59275/90A AU640154B2 (en) | 1989-06-23 | 1990-06-22 | Calcium chloride hexahydrate formulations for low temperature heat storage applications |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| EP0478637A1 true EP0478637A1 (fr) | 1992-04-08 |
| EP0478637A4 EP0478637A4 (en) | 1992-08-12 |
Family
ID=25632297
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP19900909576 Withdrawn EP0478637A4 (en) | 1989-06-23 | 1990-06-22 | Calcium chloride hexahydrate formulations for low temperature heat storage applications |
Country Status (2)
| Country | Link |
|---|---|
| EP (1) | EP0478637A4 (fr) |
| WO (1) | WO1991000324A1 (fr) |
Families Citing this family (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE59703293D1 (de) * | 1997-02-05 | 2001-05-10 | Va Tech Wabag Ag Winterthur | Verfahren zur Erzeugung von Calciumchlorid-Schuppen und Anwendung des Verfahrens |
| US7704584B2 (en) * | 2007-06-13 | 2010-04-27 | Alderman Robert J | Thermal insulation with thin phase change layer |
| US7641812B2 (en) | 2007-06-13 | 2010-01-05 | Alderman Robert J | Thermal insulation with thin phase change layer |
| CN102827574A (zh) * | 2011-06-17 | 2012-12-19 | 北京中瑞森新能源科技有限公司 | 一种相变温度为31℃的无机相变材料(pcm-31) |
| CN102827575A (zh) * | 2011-06-17 | 2012-12-19 | 北京中瑞森新能源科技有限公司 | 一种相变温度为32℃的无机相变材料(pcm-32) |
| CN102827578A (zh) * | 2011-06-17 | 2012-12-19 | 北京中瑞森新能源科技有限公司 | 一种相变温度为35℃的无机相变材料(pcm-35) |
| CN102827576A (zh) * | 2011-06-17 | 2012-12-19 | 北京中瑞森新能源科技有限公司 | 一种相变温度为33℃的无机相变材料(pcm-33) |
| CN102827582A (zh) * | 2011-06-17 | 2012-12-19 | 北京中瑞森新能源科技有限公司 | 一种相变温度为39℃的无机相变材料(pcm-39) |
| CN102268244A (zh) * | 2011-08-01 | 2011-12-07 | 天津科技大学 | 一种低温无机共晶盐相变材料的制备方法 |
| CN102268245B (zh) * | 2011-08-15 | 2014-12-10 | 天津科技大学 | 一种室温无机相变材料的制备方法 |
| CN103484065A (zh) * | 2012-06-14 | 2014-01-01 | 中瑞森(天津)新能源科技有限公司 | 一种相变温度为5℃的无机相变材料 |
| CN103484070A (zh) * | 2012-06-15 | 2014-01-01 | 中瑞森(天津)新能源科技有限公司 | 一种相变温度为19℃的无机相变材料 |
| CN103484074A (zh) * | 2012-06-15 | 2014-01-01 | 中瑞森(天津)新能源科技有限公司 | 一种相变温度为15℃的无机相变材料 |
| CN105062429A (zh) * | 2015-07-31 | 2015-11-18 | 江苏启能新能源材料有限公司 | 一种粉体相变储能材料及其制备方法 |
| JP7014752B2 (ja) | 2019-06-03 | 2022-02-01 | 矢崎総業株式会社 | 蓄熱材組成物及び建築物の冷暖房用の蓄熱システム |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0011357A1 (fr) * | 1978-09-29 | 1980-05-28 | National Research Development Corporation | Utilisation d'un mélange d'hydrates pour emmagasiner la chaleur à une température constante et accumulateur de chaleur contenant ce mélange |
| NL183657C (nl) * | 1980-08-21 | 1988-12-16 | Mitsubishi Electric Corp | Materiaal op basis van calciumchloridehydraat voor het opslaan van warmte. |
| JPS57170977A (en) * | 1981-04-15 | 1982-10-21 | Dow Chemical Co | Reversible phase transfer composition of calcium chloride hexahydrate and potassium chloride |
| JPS57185377A (en) * | 1981-05-08 | 1982-11-15 | Mitsubishi Electric Corp | Heat-accumulating material |
| EP0240583B1 (fr) * | 1986-04-08 | 1991-07-03 | Kubota Corporation | Composition pour stocker la chaleur |
-
1990
- 1990-06-22 EP EP19900909576 patent/EP0478637A4/en not_active Withdrawn
- 1990-06-22 WO PCT/AU1990/000264 patent/WO1991000324A1/fr not_active Ceased
Also Published As
| Publication number | Publication date |
|---|---|
| EP0478637A4 (en) | 1992-08-12 |
| WO1991000324A1 (fr) | 1991-01-10 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP0478637A1 (fr) | Compositions a base d'hexahydrate de chlorure de calcium utilisees pour l'accumulation de chaleur a basse temperature | |
| US4585572A (en) | Reversible phase change composition for storing thermal energy | |
| Lane et al. | Solar heat storage: latent heat materials | |
| US3986969A (en) | Thixotropic mixture and method of making same | |
| EP0240583B1 (fr) | Composition pour stocker la chaleur | |
| JP6814771B2 (ja) | 蓄熱材組成物及び建築物の冷暖房用の蓄熱システム | |
| US4329242A (en) | Hydrated Mg(NO3)2 /MgCl2 reversible phase change compositions | |
| US4360442A (en) | Ethylene carbonate as a phase-change heat storage medium | |
| WO1994004630A1 (fr) | Compositions de matieres a changement de phase destinees a l'emmasinage de chaleur a basse temperature | |
| US4272391A (en) | Hydrated Mg(NO3)2 reversible phase change compositions | |
| US4273666A (en) | Hydrated Mg(NO3)2 reversible phase change compositions | |
| CA1243195A (fr) | Composition a changement de phase reversible pour le stockage d'energie | |
| AU640154B2 (en) | Calcium chloride hexahydrate formulations for low temperature heat storage applications | |
| AU669739B2 (en) | Phase change material formulations for low temperature heat storage applications | |
| EP0659863B1 (fr) | Matériau pour accumulateur de chaleur latente | |
| CA2060215A1 (fr) | Compositions a base de chlorure de calcium hexahydrate pour le stockage thermique a basse temperature | |
| JPH05500523A (ja) | 低温蓄熱用のための塩化カルシウム6水和物配合物 | |
| KR0150063B1 (ko) | 난방 및 냉방용 잠열 축열재 | |
| CN101289610A (zh) | 一种室温相变储能介质及制备方法 | |
| JPS6221038B2 (fr) | ||
| JPS5952920B2 (ja) | 潜熱蓄熱材 | |
| JPH0237957B2 (fr) | ||
| JPS60203689A (ja) | 蓄熱材 | |
| JPS6043388B2 (ja) | 蓄熱材 | |
| JPH0141672B2 (fr) |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 19920123 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL SE |
|
| A4 | Supplementary search report drawn up and despatched |
Effective date: 19920622 |
|
| AK | Designated contracting states |
Kind code of ref document: A4 Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL SE |
|
| 17Q | First examination report despatched |
Effective date: 19930910 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
| 18D | Application deemed to be withdrawn |
Effective date: 19941206 |