[go: up one dir, main page]

EP0304530A1 - Titanium aluminum alloys containing niobium, vanadium and molybdenum - Google Patents

Titanium aluminum alloys containing niobium, vanadium and molybdenum Download PDF

Info

Publication number
EP0304530A1
EP0304530A1 EP87630153A EP87630153A EP0304530A1 EP 0304530 A1 EP0304530 A1 EP 0304530A1 EP 87630153 A EP87630153 A EP 87630153A EP 87630153 A EP87630153 A EP 87630153A EP 0304530 A1 EP0304530 A1 EP 0304530A1
Authority
EP
European Patent Office
Prior art keywords
molybdenum
alloys
alloy
vanadium
niobium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP87630153A
Other languages
German (de)
French (fr)
Other versions
EP0304530B1 (en
Inventor
Martin John Blackburn
Michael Price Smith
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RTX Corp
Original Assignee
United Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US06/424,668 priority Critical patent/US4716020A/en
Application filed by United Technologies Corp filed Critical United Technologies Corp
Priority to DE8787630153T priority patent/DE3779314D1/en
Priority to EP19870630153 priority patent/EP0304530B1/en
Publication of EP0304530A1 publication Critical patent/EP0304530A1/en
Application granted granted Critical
Publication of EP0304530B1 publication Critical patent/EP0304530B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium

Definitions

  • This invention relates to titanium base alloys of the Ti3Al (alpha-two) type which have both good ele­vated temperature properties and sufficient low tem­perature ductility to make them useful in an engineering sense.
  • the present invention is an improvement on the alloys described in U.S. Patent No. 4,292,077, issued to the applicants herein and having common assignee herewith.
  • the new alloys are comprised of aluminum, niobium and titanium.
  • the compositional ranges for the patented alloys were quite narrow since changes in properties were dis­covered to be very sensitive to the precise composition.
  • the patented alloys contain titanium, 25-27 atomic percent aluminum and 11-16 atomic percent niobium.
  • the alloys have at least 1.5% tensile ductility at room temperature and good elevated temperature creep strength, thus permitting their potential substitution for certain nickel base alloys such as INCO 713C.
  • vanadium partially replaces niobium in atomic amounts of 1-4%. This substitution desirably lowers the density of the alloy but at the same time the favorable high temperature properties are retained.
  • An optimum atomic composition range for this embodiment is 24-26% aluminum, 10-12% niobium and 2-4% vanadium.
  • An object of the invention is to provide Ti3Al type alloys which have a superior combination of creep rupture life and tensile strength at elevated tem­peratures in the 600°C range, but which alloys at the same time have sufficient ductility to enable their use at room temperature and their fabrication by con­ventional processes associated with titanium base alloys.
  • new titanium base alloys contain by atomic percent 25-27 aluminum, 11-16 (niobium + molybdenum) and 0.5-4 molybdenum. Preferably they have 0.5-1.5 Mo.
  • the lighter weight alloy containing vanadium in substitution for a portion of the niobium is the lighter weight alloy containing vanadium in substitution for a portion of the niobium.
  • Such an alloy contains by atomic percent 25-27 Al, 11-16 (Nb + V + Mo), 1-4 (V + Mo), at least 0.5 Mo, balance titanium. More preferably, the light weight alloy contains 9-11 Nb, 1-3 V and 0.5-3 Mo, balance titanium.
  • molybdenum substantially increases high temperature ultimate tensile strength and creep rupture properties, compared to the essential alloys of our prior invention which did not contain molybdenum.
  • the alloys of the present invention are based essentially on the compositions which we disclose in our U.S. Patent No. 4,292,077, the disclosure of which is incorporated by reference. Those alloys contain a critical combination of Ti, Nb and Al. In the patent we showed that the essential invention could be en­hanced by including substituting 4% V for Nb, thereby lowering density. In making and disclosing the present invention, we have used the light weight vanadium containing version of our prior invention. Our work described herein shows that Mo is a par­ticularly unique and valuable addition to the essential Ti-Nb-Al alloys of our prior patent.
  • alloys described herein were manufactured using conventional titanium base alloy technology, basically vacuum arc melting and isothermal forging which is quite familiar (albeit isothermal forging is a recent improvement). Alloys of the Ti3Al compo­sition have been developed to the extent that large ingots, weighing up to 245 kg may be procured on a routine basis from commercial sources. In the in­vention, the alloys are cast, forged and heat treated. The procedures for manufacture and testing of forgings are the same as those described in U.S. Patent 4,292,077.
  • An exemplary alloy demonstrating the invention is Ti-25Al-10Nb-3V-1Mo. (All compositions hereinafter are in atomic percent unless otherwise stated.)
  • the alloy has a density of about 3% greater than that of Ti-25Al-10Nb-4V, which is 4.5 g/cc.
  • the alloy was isothermally beta forged (the cylindrical cast ingot pressed to a disk shape approximately 14% of the original ingot height) at a temperature of about 1120°C. This is about 40°C over the beta transus, estimated to be about 1080°C.
  • Tables 1 and 2 show respectively the tensile and creep rupture properties of the alloy. Table 1.
  • Figure 1 shows how the ultimate tensile strength to density ratio of our new alloy compares with those of a similar alloy lacking molybdenum and two commercial alloys, alloy Ti-6-2-4-2 and nickel base alloy INCO 713C. It is seen that the new alloy pro­vides a significant improvement.
  • Figure 2 shows how the density-adjusted stress for 300 hr rupture life at 650°C for the alloy con­taining molybdenum is substantially improved over the creep rupture life for a similar alloy lacking molybdenum.
  • our alloys will be characterized in their optimally forged and heat treated condition by a tensile ductility at room temperature of at least 1.5%, typically about 2.5%; an ultimate tensile strength of 1000 MPa at 25°C; and a 650°C/372 MPa creep life of at least 150 hours, typically about 300 hours. They have stress-to-density ratios of the order of 2 kPa/m3, compared to less than 1.5 kPa/m3 for the alloys of our prior patent, and compared to even lower values for older alloys.
  • Our new alloys also have desirably increased dynamic elastic modulus compared to other alloys, as indicated in Table 3.
  • the Ti-25Al-10Nb-3V-1Mo 650°C modulus is almost 30% greater than the value for Ti-25Al-10Nb-4V, and a significant improvement over commercial alloys as well.
  • the modulus was measured by mechanically stimulating resonant vibration of a beam of known dimensions and measuring the frequency re­sponse thereof. Calculation is made from known dynamics relationships. Table 3.
  • Table 4 shows the lightest and heaviest em­bodiments of our invention in weight percent. We provide this as a reference for the future. Table 4. Weight Percentages (w/o) for the Invention in Atomic Percentages (a/o) Alloy Element Al Mo Nb V Ti A a/o 25 4 12 -- 59 w/o 13.5 7.7 27.3 -- 56.5 B a/o 27 0.5 10.5 -- 62 w/o 15.4 1.0 20.6 -- 63 C a/o 25 1.5 14.5 -- 59 w/o 13.5 2.9 26.9 -- 56.7 D a/o 27 0.5 10.5 -- 62 w/o 15.4 1.0 20.6 -- 63.0 E a/o 25 3.5 12.0 0.5 59 w/o 13.6 6.7 22.4 0.5 56.8 F a/o 27.0 0.5 7.0 3.5 62 w/o 16.0 1.0 14.2 3.8 65.0 G a/o 25 3 11 1 60 w/o 13.7 5.9 2
  • tungsten Since tungsten is known to be metallurgically equivalent to molybdenum in titanium alloys, it will be sub­stitutional for molybdenum in the present invention. However, the use of tungsten will result in an alloy with higher density and therefore, less desirable density-corrected properties than those which result from the use of molybdenum.
  • the alloy made as described above is best used with limited time exposure at temperature in the 565-675°C range. We have noticed some instability, in that yield strength increased and ductility de­creased after several hundreds of hours exposure. Further heat treatment development may avoid the in­stability.
  • the heat treatment which the alloys of the present invention should be given is similar to that disclosed previously in U.S. Patent No. 4,292,077.
  • Solutioning or forging should be conducted above the beta transus, followed by aging between 700-900°C for 2-24 hours.
  • the cooling rate from the solutioning or forging temperature should be that which produces a fine Widmanstatten structure characterized by acicular alpha two structures of about 50 x 5 x 10 ⁇ 6m dimension mixed with beta phase lathes, generally as shown in Figure 7(b) of the referenced patent.
  • the conditions necessary to achieve this will depend on the size of the article, but generally cooling in air or the equivalent will be suitable for most small articles.
  • An alternative heat treatment comprises solutioning above the beta transus followed by quenching in a molten salt bath maintained about 750°C, followed by air cooling.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Catalysts (AREA)
  • Forging (AREA)

Abstract

The high temperature strength of density ratio of titanium aluminum niobium alloys of the Ti₃Al (alpha two) type is increased when molybdenum is added. New alloys contain by atomic percent 25-27 aluminum, 11-16 (niobium + molybdenum), 1-4 molybdenum, balance titanium. When vanadium replaces up to 3.5% molybdenum a lighter weight alloy is produced, The new alloys have higher elastic modulus and higher creep strength to density ratio than alloys without molybdenum.

Description

    Technical Field
  • This invention relates to titanium base alloys of the Ti₃Al (alpha-two) type which have both good ele­vated temperature properties and sufficient low tem­perature ductility to make them useful in an engineering sense.
  • Background Art
  • The present invention is an improvement on the alloys described in U.S. Patent No. 4,292,077, issued to the applicants herein and having common assignee herewith. As indicated in the patent, the new alloys are comprised of aluminum, niobium and titanium. The compositional ranges for the patented alloys were quite narrow since changes in properties were dis­covered to be very sensitive to the precise composition. Generally, the patented alloys contain titanium, 25-27 atomic percent aluminum and 11-16 atomic percent niobium. The alloys have at least 1.5% tensile ductility at room temperature and good elevated temperature creep strength, thus permitting their potential substitution for certain nickel base alloys such as INCO 713C.
  • In an important embodiment of the prior invention, vanadium partially replaces niobium in atomic amounts of 1-4%. This substitution desirably lowers the density of the alloy but at the same time the favorable high temperature properties are retained. An optimum atomic composition range for this embodiment is 24-26% aluminum, 10-12% niobium and 2-4% vanadium.
  • While the foregoing patented alloys meet the requirement of having creep rupture life at 650°/380 MPa which is equal to INCO 713C on a density adjusted basis, the alloys have less tensile strength at temperatures up to 400°C than does the commercial beta processed alloy Ti-6-2-4-2 (by weight percent Ti-6Al-2Sn-4Zr-2Mo). Consequently, composi­tional modifications of the patented alloys were evaluated to see if improvements could be achieved. As the general field of titanium alloys indicates, there are many potential alloying ingredients. But, as the prior work demonstrated, the composition of useful Ti₃Al alloys is extremely critical. Many elemental additions which have been common in other titanium alloys were previously shown to be of no advantage in Ti₃Al alloy.
  • Disclosure of the Invention
  • An object of the invention is to provide Ti₃Al type alloys which have a superior combination of creep rupture life and tensile strength at elevated tem­peratures in the 600°C range, but which alloys at the same time have sufficient ductility to enable their use at room temperature and their fabrication by con­ventional processes associated with titanium base alloys.
  • According to the invention, new titanium base alloys contain by atomic percent 25-27 aluminum, 11-16 (niobium + molybdenum) and 0.5-4 molybdenum. Preferably they have 0.5-1.5 Mo. As especially pre­ferred embodiment of the invention is the lighter weight alloy containing vanadium in substitution for a portion of the niobium. Such an alloy contains by atomic percent 25-27 Al, 11-16 (Nb + V + Mo), 1-4 (V + Mo), at least 0.5 Mo, balance titanium. More preferably, the light weight alloy contains 9-11 Nb, 1-3 V and 0.5-3 Mo, balance titanium.
  • The incorporation of molybdenum substantially increases high temperature ultimate tensile strength and creep rupture properties, compared to the essential alloys of our prior invention which did not contain molybdenum.
  • The foregoing and other objects, features and advantages of the present invention will become more apparent from the following description of preferred embodiments and accompanying drawings.
  • Brief Description of Drawings
    • Figure 1 is a graph showing the comparative ultimate tensile strength-to-density ratio for various known alloys, compared to the invention.
    • Figure 2 is a bar chart showing comparative stress rupture properties on a density adjusted basis for the invention compared to various known alloys.
    Best Mode for Carrying Out the Invention
  • The best mode of the invention is described in terms of atomic percent of elements. Those skilled in the metallurgical arts will recognize the limitations on stating the invention by weight percent and the utility of stating the invention by the preferred atomic percent; they will be able to readily convert from atomic percents to exact weight percents for particular embodiment alloys.
  • The alloys of the present invention are based essentially on the compositions which we disclose in our U.S. Patent No. 4,292,077, the disclosure of which is incorporated by reference. Those alloys contain a critical combination of Ti, Nb and Al. In the patent we showed that the essential invention could be en­hanced by including substituting 4% V for Nb, thereby lowering density. In making and disclosing the present invention, we have used the light weight vanadium containing version of our prior invention. Our work described herein shows that Mo is a par­ticularly unique and valuable addition to the essential Ti-Nb-Al alloys of our prior patent.
  • The alloys described herein were manufactured using conventional titanium base alloy technology, basically vacuum arc melting and isothermal forging which is quite familiar (albeit isothermal forging is a recent improvement). Alloys of the Ti₃Al compo­sition have been developed to the extent that large ingots, weighing up to 245 kg may be procured on a routine basis from commercial sources. In the in­vention, the alloys are cast, forged and heat treated. The procedures for manufacture and testing of forgings are the same as those described in U.S. Patent 4,292,077.
  • An exemplary alloy demonstrating the invention is Ti-25Al-10Nb-3V-1Mo. (All compositions hereinafter are in atomic percent unless otherwise stated.) The alloy has a density of about 3% greater than that of Ti-25Al-10Nb-4V, which is 4.5 g/cc. The alloy was isothermally beta forged (the cylindrical cast ingot pressed to a disk shape approximately 14% of the original ingot height) at a temperature of about 1120°C. This is about 40°C over the beta transus, estimated to be about 1080°C. Tables 1 and 2 show respectively the tensile and creep rupture properties of the alloy. Table 1.
    Tensile Properties of Isothermally Beta Forged and Heat Treated Ti-25Al-10Nb-3V-1Mo Alloy
    Specimen Temperature °C 0.2% Yield Strength MPa Ultimate Tensile Strength-MPa El% RA%
    A 25 825 1047 2.2 1.7
    B 260 831 1058 9.2 14.1
    C 427 729 950 12.1 16.9
    D 538 647 967 9.2 13.0
    E 650 640 835 9.1 14.3
    Table 2.
    Creep-Rupture Properties of Isothermally Beta Forged and Heat Treated Ti-25Al-10Nb-3V-1Mo Alloy
    Specimen Test Conditions °C/MPa Time in Hours to
    0.2% El 0.5% El 1.0% El Rupture
    F 650/380 2.8 31.1 184.5 *
    G 650/380 1.4 12.0 66.3 222.8
    H 593/413 27.0 405.6 * *
    * Test terminated at 502 Hours without rupture
  • Figure 1 shows how the ultimate tensile strength to density ratio of our new alloy compares with those of a similar alloy lacking molybdenum and two commercial alloys, alloy Ti-6-2-4-2 and nickel base alloy INCO 713C. It is seen that the new alloy pro­vides a significant improvement.
  • Figure 2 shows how the density-adjusted stress for 300 hr rupture life at 650°C for the alloy con­taining molybdenum is substantially improved over the creep rupture life for a similar alloy lacking molybdenum.
  • Generally, our alloys will be characterized in their optimally forged and heat treated condition by a tensile ductility at room temperature of at least 1.5%, typically about 2.5%; an ultimate tensile strength of 1000 MPa at 25°C; and a 650°C/372 MPa creep life of at least 150 hours, typically about 300 hours. They have stress-to-density ratios of the order of 2 kPa/m³, compared to less than 1.5 kPa/m³ for the alloys of our prior patent, and compared to even lower values for older alloys.
  • Our new alloys also have desirably increased dynamic elastic modulus compared to other alloys, as indicated in Table 3. The Ti-25Al-10Nb-3V-1Mo 650°C modulus is almost 30% greater than the value for Ti-25Al-10Nb-4V, and a significant improvement over commercial alloys as well. The modulus was measured by mechanically stimulating resonant vibration of a beam of known dimensions and measuring the frequency re­sponse thereof. Calculation is made from known dynamics relationships. Table 3.
    Dynamic Modulus of Selected Alloys (10⁷kPa)
    Temperature - °C
    20 315 650
    Ti-6Al-2Sn-4Zr-2Mo 11.9 10.4 8.6
    Ti-25Al-10Nb-4V 10.1 9.7 8.7
    Ti-25Al-10Nb-3V-1Mo 12.6 12.1 11.2
  • As much as 6-8% Mo may be included in our new alloys, since as Mo content rises, creep strength and stiffness rise. However, density and oxidation re­sistance (necessary for high temperature gas turbine use) decrease. Thus, for such alloys the Mo should be limited to about 4% and preferably it is 0.5-1.5%. Our basic Ti-Nb-Al-Mo alloys are useful, but they are ever more useful when V is used in place of Nb in accord with out prior invention. But since V like Mo decreases oxidation resistance, the total content of (V + Mo) should be maintained at less than 4%. Thus, out new alloys will essentially consist of Ti, Al, Nb, Mo. They preferably will contain V. Tungsten may substitute in part or whole for Mo, as indicated below. Other intentional additions may be included in our essential alloys, such as less than 1% C or Si in replacement of Ti.
  • Table 4 shows the lightest and heaviest em­bodiments of our invention in weight percent. We provide this as a reference for the future. Table 4.
    Weight Percentages (w/o) for the Invention in Atomic Percentages (a/o)
    Alloy Element
    Al Mo Nb V Ti
    A a/o 25 4 12 -- 59
    w/o 13.5 7.7 27.3 -- 56.5
    B a/o 27 0.5 10.5 -- 62
    w/o 15.4 1.0 20.6 -- 63
    C a/o 25 1.5 14.5 -- 59
    w/o 13.5 2.9 26.9 -- 56.7
    D a/o 27 0.5 10.5 -- 62
    w/o 15.4 1.0 20.6 -- 63.0
    E a/o 25 3.5 12.0 0.5 59
    w/o 13.6 6.7 22.4 0.5 56.8
    F a/o 27.0 0.5 7.0 3.5 62
    w/o 16.0 1.0 14.2 3.8 65.0
    G a/o 25 3 11 1 60
    w/o 13.7 5.9 20.8 1.0 58.6
    H a/o 27 0.5 9 0.5 63
    w/o 15.6 1.0 18.0 0.6 64.8
  • In our work consideration was given to other elements which might be substituted in Ti-Nb-Al-V alloys to achieve the same results as molybdenum. We made the alloys Ti-25Al-8Nb-X, where X was variously 1W, 1Ta, 1Hf, and 1V. We did not discern any distinction be­tween the ingredients, all the alloys having poor creep strength. In addition, reference to Table 4 in our Patent 4,292,077 will show that there is no con­sistent effect of Hf, Zr, or Sn in Ti-24Al-11Nb alloys. We made the alloys Ti-24Al-11Nb-Z, where Z was variously 0.5Hf, 1Zr, (1Zr-0.5Si), 0.9C, 1.4Hf and (1.5Hf-0.9C), and found that compared to Ti-24Al-11Nb the alloys had about the same or inferior creep properties, and about the same tensile properties. Other beta stabilizers, such as iron, chromium or nickel are unsuitable for use in the present invention be­cause they form undesirable phases after high tem­perature exposure. Their addition also reduces the high temperature properties of our type of titanium alloys. Thus, our studies make us conclude that molybdenum is unique in our invention, in combination with the narrow ranges of other elements. Since tungsten is known to be metallurgically equivalent to molybdenum in titanium alloys, it will be sub­stitutional for molybdenum in the present invention. However, the use of tungsten will result in an alloy with higher density and therefore, less desirable density-corrected properties than those which result from the use of molybdenum.
  • The properties of our molybdenum containing alloys were found to be sensitive to microstructure. Based on the prior work, it was felt that the nature of the Widmanstatten platelet array was the key micro-­structural feature affecting properties. However, in testing it was found that specimens were produced with coarse non-uniform beta grain size. These test bars had associated with them lower tensile ductility, lower fatigue life, and higher creep rupture strength than the other specimens. Analysis showed that in our previous work alloys (Ti-25Al-10Nb-4V) had been redundantly upset and redrawn on a conventional forging press. This working broke up the cast structure and resulted in much finer uniform grain structure than resulted in some of the molybdenum containing alloys. Consequently, we conclude that it is desirable with our new alloy to provide some repetitious working prior to isothermally forging the billet to the final desired shape. The desired microstructure will have an ASTM grain size of about 2-4 (0.15-0.20 mm nominal dimension).
  • The alloy made as described above is best used with limited time exposure at temperature in the 565-675°C range. We have noticed some instability, in that yield strength increased and ductility de­creased after several hundreds of hours exposure. Further heat treatment development may avoid the in­stability.
  • Generally, the heat treatment which the alloys of the present invention should be given is similar to that disclosed previously in U.S. Patent No. 4,292,077. Solutioning or forging should be conducted above the beta transus, followed by aging between 700-900°C for 2-24 hours. The cooling rate from the solutioning or forging temperature should be that which produces a fine Widmanstatten structure characterized by acicular alpha two structures of about 50 x 5 x 10⁻⁶m dimension mixed with beta phase lathes, generally as shown in Figure 7(b) of the referenced patent. The conditions necessary to achieve this will depend on the size of the article, but generally cooling in air or the equivalent will be suitable for most small articles. Of course, pre­cautions should be taken to protect the forgings from contamination from the environment, similar to steps followed with the conventional alloys of titanium. An alternative heat treatment comprises solutioning above the beta transus followed by quenching in a molten salt bath maintained about 750°C, followed by air cooling.
  • Although this invention has been shown and de­scribed with respect to a preferred embodiment, it will be understood by those skilled in the art that various changes in form and detail thereof may be made without departing from the spirit and scope of the claimed in­vention.

Claims (11)

1. A titanium aluminum alloy consisting essentially by automatic percent of 25-27 aluminum, 11-16 (niobium + molybdenum 0.5-4 molybdenum, balance titanium.
2. The alloy of claim 1 having 0.5-1.5 molybdenum.
3. The alloy of claim 1 wherein 0.5-3.5 vanadium is substituted for niobium, the alloy containing 1-4 (molybdenum + vanadium).
4. The alloy of claim 3 having 1-3 vanadium and 0.5-3 molybdenum.
5. The alloy of claim 3 having 3 vanadium and 1 molybdenum.
6. The alloy of claim 1 wherein up to 4 atomic percent tungsten is substituted for molybdenum.
7. The alloy of claim 1 heat treated first at a temperature above the beta transus, then cooled at a controlled rate, sufficient to produce a fine Widmanstatten structure.
8. The alloy of claim 8 further heat treated by aging at 700-900°C for 4-24 hours.
9. The alloys of claim 1 having a tensile ductility at room temperature of at least 1.5%.
10. The alloys of claim 1 having a creep stress to density ratio of 650°C of greater than 1.6 kPa per kg per m³.
11. The alloy of claim 1 having a 650°C dynamic elastic modulus of greater than 9 x 10⁷ kPa.
EP19870630153 1982-09-27 1987-08-27 Titanium aluminum alloys containing niobium, vanadium and molybdenum Expired EP0304530B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US06/424,668 US4716020A (en) 1982-09-27 1982-09-27 Titanium aluminum alloys containing niobium, vanadium and molybdenum
DE8787630153T DE3779314D1 (en) 1987-08-27 1987-08-27 TITANIUM ALUMINUM ALLOYS CONTAINING NIOB, VANADIUM AND MOLYBDAEN.
EP19870630153 EP0304530B1 (en) 1987-08-27 1987-08-27 Titanium aluminum alloys containing niobium, vanadium and molybdenum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19870630153 EP0304530B1 (en) 1987-08-27 1987-08-27 Titanium aluminum alloys containing niobium, vanadium and molybdenum

Publications (2)

Publication Number Publication Date
EP0304530A1 true EP0304530A1 (en) 1989-03-01
EP0304530B1 EP0304530B1 (en) 1992-05-20

Family

ID=8198353

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19870630153 Expired EP0304530B1 (en) 1982-09-27 1987-08-27 Titanium aluminum alloys containing niobium, vanadium and molybdenum

Country Status (2)

Country Link
EP (1) EP0304530B1 (en)
DE (1) DE3779314D1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0863219A1 (en) * 1997-03-05 1998-09-09 ONERA (Office National d'Etudes et de Recherches Aérospatiales) Titanium aluminide usable at elevated temperatures
CN109371268A (en) * 2018-09-30 2019-02-22 中国科学院金属研究所 A kind of preparation method of high temperature, high thermal stability, high creep resistance titanium alloy rod

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8333923B2 (en) 2007-02-28 2012-12-18 Caterpillar Inc. High strength gray cast iron

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2880087A (en) * 1957-01-18 1959-03-31 Crucible Steel Co America Titanium-aluminum alloys
DE1533180A1 (en) * 1966-05-27 1969-12-04 Winter Dr Heinrich Titanium alloy for pistons of internal combustion engines
FR2462484A1 (en) * 1979-07-25 1981-02-13 United Technologies Corp TITANIUM ALLOY OF THE TI3AL TYPE
US4716020A (en) * 1982-09-27 1987-12-29 United Technologies Corporation Titanium aluminum alloys containing niobium, vanadium and molybdenum

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2880087A (en) * 1957-01-18 1959-03-31 Crucible Steel Co America Titanium-aluminum alloys
DE1533180A1 (en) * 1966-05-27 1969-12-04 Winter Dr Heinrich Titanium alloy for pistons of internal combustion engines
FR2462484A1 (en) * 1979-07-25 1981-02-13 United Technologies Corp TITANIUM ALLOY OF THE TI3AL TYPE
US4716020A (en) * 1982-09-27 1987-12-29 United Technologies Corporation Titanium aluminum alloys containing niobium, vanadium and molybdenum

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0863219A1 (en) * 1997-03-05 1998-09-09 ONERA (Office National d'Etudes et de Recherches Aérospatiales) Titanium aluminide usable at elevated temperatures
FR2760469A1 (en) * 1997-03-05 1998-09-11 Onera (Off Nat Aerospatiale) TITANIUM ALUMINUM FOR USE AT HIGH TEMPERATURES
US6176949B1 (en) 1997-03-05 2001-01-23 Onera (Office National D'etudes Et De Recherches Aerospatiales) Titanium aluminide which can be used at high temperature
CN109371268A (en) * 2018-09-30 2019-02-22 中国科学院金属研究所 A kind of preparation method of high temperature, high thermal stability, high creep resistance titanium alloy rod

Also Published As

Publication number Publication date
EP0304530B1 (en) 1992-05-20
DE3779314D1 (en) 1992-06-25

Similar Documents

Publication Publication Date Title
US4716020A (en) Titanium aluminum alloys containing niobium, vanadium and molybdenum
EP2435591B1 (en) Near-beta titanium alloy for high strength applications and methods for manufacturing the same
EP0408313B1 (en) Titanium base alloy and method of superplastic forming thereof
US4292077A (en) Titanium alloys of the Ti3 Al type
EP0421070B1 (en) Method of modifying multicomponent titanium alloys and alloy produced
US5746846A (en) Method to produce gamma titanium aluminide articles having improved properties
EP0361524A1 (en) Ni-base superalloy and method for producing the same
EP0388527B1 (en) Improved titanium aluminide alloys
US5256369A (en) Titanium base alloy for excellent formability and method of making thereof and method of superplastic forming thereof
US4386976A (en) Dispersion-strengthened nickel-base alloy
EP3775307B1 (en) High temperature titanium alloys
US20040099350A1 (en) Titanium alloys, methods of forming the same, and articles formed therefrom
EP3844314B1 (en) Creep resistant titanium alloys
EP0378545B1 (en) Titanium alloys
EP0330081B1 (en) Oxide dispersion-strengthened alloy having high strength at intermediate temperatures
EP0476043B1 (en) Improved nickel aluminide alloy for high temperature structural use
US5362441A (en) Ti-Al-V-Mo-O alloys with an iron group element
KR102332018B1 (en) High temperature titanium alloy and method for manufacturing the same
EP0379798A1 (en) Titanium base alloy for superplastic forming
US11708630B2 (en) Titanium alloy with moderate strength and high ductility
EP0388830A1 (en) Process for production of titanium and titanium alloy materials having fine equiaxial microstructure
EP0304530B1 (en) Titanium aluminum alloys containing niobium, vanadium and molybdenum
US3243290A (en) Tantalum base alloy
US3441407A (en) Titanium-base alloys
CA1301487C (en) Titanium aluminum alloys containing niobium, vanadium and molybdenum

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19890731

17Q First examination report despatched

Effective date: 19910319

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

ET Fr: translation filed
REF Corresponds to:

Ref document number: 3779314

Country of ref document: DE

Date of ref document: 19920625

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000724

Year of fee payment: 14

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020501

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060706

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20060803

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20070826