EP0349331B1 - Color photographic material - Google Patents
Color photographic material Download PDFInfo
- Publication number
- EP0349331B1 EP0349331B1 EP89306645A EP89306645A EP0349331B1 EP 0349331 B1 EP0349331 B1 EP 0349331B1 EP 89306645 A EP89306645 A EP 89306645A EP 89306645 A EP89306645 A EP 89306645A EP 0349331 B1 EP0349331 B1 EP 0349331B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- carbon atoms
- group
- coupler
- alkyl
- photographic element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000463 material Substances 0.000 title abstract description 5
- 239000003112 inhibitor Substances 0.000 claims abstract description 23
- 238000011161 development Methods 0.000 claims abstract description 19
- -1 silver halide Chemical class 0.000 claims description 51
- 239000000839 emulsion Substances 0.000 claims description 43
- 125000004432 carbon atom Chemical group C* 0.000 claims description 32
- 229910052709 silver Inorganic materials 0.000 claims description 28
- 239000004332 silver Substances 0.000 claims description 28
- 125000000217 alkyl group Chemical group 0.000 claims description 25
- 229910052739 hydrogen Inorganic materials 0.000 claims description 16
- 239000001257 hydrogen Substances 0.000 claims description 16
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 13
- 125000003545 alkoxy group Chemical group 0.000 claims description 10
- 125000003118 aryl group Chemical group 0.000 claims description 10
- WSNMPAVSZJSIMT-UHFFFAOYSA-N COc1c(C)c2COC(=O)c2c(O)c1CC(O)C1(C)CCC(=O)O1 Chemical compound COc1c(C)c2COC(=O)c2c(O)c1CC(O)C1(C)CCC(=O)O1 WSNMPAVSZJSIMT-UHFFFAOYSA-N 0.000 claims description 7
- 125000004453 alkoxycarbonyl group Chemical group 0.000 claims description 7
- 125000001951 carbamoylamino group Chemical group C(N)(=O)N* 0.000 claims description 7
- 125000005420 sulfonamido group Chemical group S(=O)(=O)(N*)* 0.000 claims description 7
- 125000004093 cyano group Chemical group *C#N 0.000 claims description 6
- 125000001424 substituent group Chemical group 0.000 claims description 6
- JAAIPIWKKXCNOC-UHFFFAOYSA-N 1h-tetrazol-1-ium-5-thiolate Chemical compound SC1=NN=NN1 JAAIPIWKKXCNOC-UHFFFAOYSA-N 0.000 claims description 5
- 125000004104 aryloxy group Chemical group 0.000 claims description 5
- 125000000623 heterocyclic group Chemical group 0.000 claims description 5
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 claims description 4
- 239000012964 benzotriazole Substances 0.000 claims description 4
- 229910052736 halogen Inorganic materials 0.000 claims description 4
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 claims description 4
- 125000005346 substituted cycloalkyl group Chemical group 0.000 claims description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 3
- 125000005161 aryl oxy carbonyl group Chemical group 0.000 claims description 3
- 125000004448 alkyl carbonyl group Chemical group 0.000 claims description 2
- 125000004429 atom Chemical group 0.000 claims description 2
- WCPAKWJPBJAGKN-UHFFFAOYSA-N oxadiazole Chemical compound C1=CON=N1 WCPAKWJPBJAGKN-UHFFFAOYSA-N 0.000 claims description 2
- 125000000547 substituted alkyl group Chemical group 0.000 claims description 2
- 125000003107 substituted aryl group Chemical group 0.000 claims description 2
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 claims description 2
- 125000005843 halogen group Chemical group 0.000 claims 1
- 150000001875 compounds Chemical class 0.000 abstract description 9
- 239000010410 layer Substances 0.000 description 29
- 238000011160 research Methods 0.000 description 19
- 239000000975 dye Substances 0.000 description 12
- 239000003795 chemical substances by application Substances 0.000 description 10
- 108010010803 Gelatin Proteins 0.000 description 7
- 239000008273 gelatin Substances 0.000 description 7
- 229920000159 gelatin Polymers 0.000 description 7
- 235000019322 gelatine Nutrition 0.000 description 7
- 235000011852 gelatine desserts Nutrition 0.000 description 7
- 230000006872 improvement Effects 0.000 description 6
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 239000010944 silver (metal) Substances 0.000 description 4
- ZUNKMNLKJXRCDM-UHFFFAOYSA-N silver bromoiodide Chemical compound [Ag].IBr ZUNKMNLKJXRCDM-UHFFFAOYSA-N 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 125000002252 acyl group Chemical group 0.000 description 3
- 125000004423 acyloxy group Chemical group 0.000 description 3
- 150000002367 halogens Chemical group 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 125000004390 alkyl sulfonyl group Chemical group 0.000 description 2
- 125000004414 alkyl thio group Chemical group 0.000 description 2
- 125000004391 aryl sulfonyl group Chemical group 0.000 description 2
- 125000005110 aryl thio group Chemical group 0.000 description 2
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 description 2
- 229920002301 cellulose acetate Polymers 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 2
- AJDUTMFFZHIJEM-UHFFFAOYSA-N n-(9,10-dioxoanthracen-1-yl)-4-[4-[[4-[4-[(9,10-dioxoanthracen-1-yl)carbamoyl]phenyl]phenyl]diazenyl]phenyl]benzamide Chemical compound O=C1C2=CC=CC=C2C(=O)C2=C1C=CC=C2NC(=O)C(C=C1)=CC=C1C(C=C1)=CC=C1N=NC(C=C1)=CC=C1C(C=C1)=CC=C1C(=O)NC1=CC=CC2=C1C(=O)C1=CC=CC=C1C2=O AJDUTMFFZHIJEM-UHFFFAOYSA-N 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- 239000004848 polyfunctional curative Substances 0.000 description 2
- 230000001235 sensitizing effect Effects 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 125000000020 sulfo group Chemical group O=S(=O)([*])O[H] 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 239000001043 yellow dye Substances 0.000 description 2
- GVEYRUKUJCHJSR-UHFFFAOYSA-N (4-azaniumyl-3-methylphenyl)-ethyl-(2-hydroxyethyl)azanium;sulfate Chemical compound OS(O)(=O)=O.OCCN(CC)C1=CC=C(N)C(C)=C1 GVEYRUKUJCHJSR-UHFFFAOYSA-N 0.000 description 1
- ILKZXYARHQNMEF-UHFFFAOYSA-N (4-azaniumyl-3-methylphenyl)-ethyl-(2-methoxyethyl)azanium;4-methylbenzenesulfonate Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1.CC1=CC=C(S(O)(=O)=O)C=C1.COCCN(CC)C1=CC=C(N)C(C)=C1 ILKZXYARHQNMEF-UHFFFAOYSA-N 0.000 description 1
- YXIWHUQXZSMYRE-UHFFFAOYSA-N 1,3-benzothiazole-2-thiol Chemical class C1=CC=C2SC(S)=NC2=C1 YXIWHUQXZSMYRE-UHFFFAOYSA-N 0.000 description 1
- YHMYGUUIMTVXNW-UHFFFAOYSA-N 1,3-dihydrobenzimidazole-2-thione Chemical class C1=CC=C2NC(S)=NC2=C1 YHMYGUUIMTVXNW-UHFFFAOYSA-N 0.000 description 1
- 150000005208 1,4-dihydroxybenzenes Chemical class 0.000 description 1
- BAXOFTOLAUCFNW-UHFFFAOYSA-N 1H-indazole Chemical class C1=CC=C2C=NNC2=C1 BAXOFTOLAUCFNW-UHFFFAOYSA-N 0.000 description 1
- JKFYKCYQEWQPTM-UHFFFAOYSA-N 2-azaniumyl-2-(4-fluorophenyl)acetate Chemical compound OC(=O)C(N)C1=CC=C(F)C=C1 JKFYKCYQEWQPTM-UHFFFAOYSA-N 0.000 description 1
- FLFWJIBUZQARMD-UHFFFAOYSA-N 2-mercapto-1,3-benzoxazole Chemical class C1=CC=C2OC(S)=NC2=C1 FLFWJIBUZQARMD-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- 229910021607 Silver chloride Inorganic materials 0.000 description 1
- 229910021612 Silver iodide Inorganic materials 0.000 description 1
- MPLZNPZPPXERDA-UHFFFAOYSA-N [4-(diethylamino)-2-methylphenyl]azanium;chloride Chemical compound [Cl-].CC[NH+](CC)C1=CC=C(N)C(C)=C1 MPLZNPZPPXERDA-UHFFFAOYSA-N 0.000 description 1
- SJOOOZPMQAWAOP-UHFFFAOYSA-N [Ag].BrCl Chemical compound [Ag].BrCl SJOOOZPMQAWAOP-UHFFFAOYSA-N 0.000 description 1
- HOLVRJRSWZOAJU-UHFFFAOYSA-N [Ag].ICl Chemical compound [Ag].ICl HOLVRJRSWZOAJU-UHFFFAOYSA-N 0.000 description 1
- 125000004171 alkoxy aryl group Chemical group 0.000 description 1
- 125000005036 alkoxyphenyl group Chemical group 0.000 description 1
- 125000005422 alkyl sulfonamido group Chemical group 0.000 description 1
- 125000004397 aminosulfonyl group Chemical group NS(=O)(=O)* 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 125000005129 aryl carbonyl group Chemical group 0.000 description 1
- 125000005160 aryl oxy alkyl group Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 125000003354 benzotriazolyl group Chemical class N1N=NC2=C1C=CC=C2* 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 238000004061 bleaching Methods 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 229910052798 chalcogen Inorganic materials 0.000 description 1
- 150000001787 chalcogens Chemical class 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000010946 fine silver Substances 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 229940042795 hydrazides for tuberculosis treatment Drugs 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 239000006224 matting agent Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- QRBFSNYYMHZRGU-UHFFFAOYSA-N n-[2-(4-amino-n-ethyl-3-methylanilino)ethyl]methanesulfonamide;sulfuric acid;hydrate Chemical compound O.OS(O)(=O)=O.CS(=O)(=O)NCCN(CC)C1=CC=C(N)C(C)=C1 QRBFSNYYMHZRGU-UHFFFAOYSA-N 0.000 description 1
- FECCTLUIZPFIRN-UHFFFAOYSA-N n-[2-[2-amino-5-(diethylamino)phenyl]ethyl]methanesulfonamide;hydrochloride Chemical compound Cl.CCN(CC)C1=CC=C(N)C(CCNS(C)(=O)=O)=C1 FECCTLUIZPFIRN-UHFFFAOYSA-N 0.000 description 1
- RMHJJUOPOWPRBP-UHFFFAOYSA-N naphthalene-1-carboxamide Chemical compound C1=CC=C2C(C(=O)N)=CC=CC2=C1 RMHJJUOPOWPRBP-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000002667 nucleating agent Substances 0.000 description 1
- 230000000269 nucleophilic effect Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 150000004989 p-phenylenediamines Chemical class 0.000 description 1
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000027756 respiratory electron transport chain Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- ADZWSOLPGZMUMY-UHFFFAOYSA-M silver bromide Chemical compound [Ag]Br ADZWSOLPGZMUMY-UHFFFAOYSA-M 0.000 description 1
- 229940045105 silver iodide Drugs 0.000 description 1
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 125000005504 styryl group Chemical group 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 1
- 238000006276 transfer reaction Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03C—PHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
- G03C7/00—Multicolour photographic processes or agents therefor; Regeneration of such processing agents; Photosensitive materials for multicolour processes
- G03C7/30—Colour processes using colour-coupling substances; Materials therefor; Preparing or processing such materials
- G03C7/32—Colour coupling substances
- G03C7/3225—Combination of couplers of different kinds, e.g. yellow and magenta couplers in a same layer or in different layers of the photographic material
Definitions
- This invention relates to color photographic elements.
- it relates to color photographic elements with a particular combination of development inhibitor releasing compound and cyan dye-forming coupler.
- Photographic couplers which release a development inhibitor in a controlled manner are described in U.S. Patents 4,248,962 and 4,409,323, inter alia. These couplers comprise a coupler moiety which has a timing group joined in its coupling position. A development inhibitor is attached to the timing group and is released from it after the bond between the timing group and the coupler is cleaved as a result of reaction between the coupler and oxidized color developing agent. Mechanisms by which such release of the development inhibitor from the timing group can occur include an intermolecular nucleophilic displacement reaction, an electron transfer reaction, and a hydrolysis reaction. Development inhibitors also can be released, as a function of development, from timing groups which are released from compounds which are not couplers such as the hydrazides of U.S. Patent 4,684,604 and the hydroquinones of European Patent Application 0,167,168.
- cyan dye-forming image couplers that contain a ureido group in the 2-position.
- a photographic element comprising a support bearing a silver halide emulsion layer having associated therewith a DIR compound having the structure I: wherein: CAR is a carrier moiety, TIME is a timing group and INH is a development inhibitor moiety; together with a cyan dye-forming coupler having the structure II: wherein: m is 0 or 1; n is 0, 1 or 2; Y is halogen, or sulfonyl; Q is -O- or -NH-; R1 is an unsubstituted or a substituted, straight or branched chain alkyl group having from 1 to 20 carbon atoms, an unsubstituted or a substituted cycloalkyl group having from 3 to 8 carbon atoms in the ring, an alkylcarbonyl or an alkoxycarbonyl group having from 1 to 20 carbon atoms in the alkyl or the alkoxy moiety; R2 is as defined for R
- substituents include hydroxy, halogen, or alkoxy having from 1 to 8 carbon atoms.
- substituents include alkyl, aryl, alkoxy, aryloxy, alkylthio, arylthio, hydroxy, halogen, alkoxycarbonyl, aryloxycarbonyl, carboxy, acyl, acyloxy, carbonamido, carbamoyl, alkylsulfonyl, arylsulfonyl, sulfonamido and sulfamoyl groups wherein the alkyl and aryl substituents, and the alkyl and aryl moieties of the alkoxy, aryloxy, alkylthio, arylthio, alkoxycarbonyl, arylcarbonyl, acyl, acyloxy, carbonamido, carbamoyl, alkylsulfonyl, arylsulfonyl, sulfonamido and sulfamoyl substituents can contain, respectively, from
- Coupling off groups defined by Z are well known to those skilled in the art.
- coupling-off groups include alkoxy, aryloxy, heteroyloxy, sulfonyloxy, acyloxy, acyl, heterocyclyl, sulfonamido, phosphonyloxy and arylazo. These coupling-off groups are described in the art, for example, in U.S. Patent Nos. 2,455,169; 3,227,551; 3,432,521; 3,476,563; 3,617,291; 3,880,661; 4,052,212 and 4,134,766; and in U.K. Patents and published application Nos. 1,466,728; 1,531,927; 1,533,039; 2,006,755A and 2,017,704A.
- Suitable coupling-off groups which can be represented by Z are: -OCH3, -OC6H5, -OCH2CONHCH2CH2OH, -OCH2CONHCH2CH2OCH3, -OCH2CONHCH2CH2OCOCH3, -OCH2CH2NHSO2CH3, and Especially preferred Z groups are hydrogen and where R4 is an alkyl or an alkoxy group having from 1 to 10 carbon atoms.
- cyano group is in the para position with respect to the ureido group and n is 0.
- n 0, the cyano group is para to the ureido group, R1 is alkyl of 1 to 20 carbon atoms and R2 is hydrogen or alkyl of 1 to 4 carbon atoms.
- n 0, the cyano group is para to the ureido group, R1 is alkyl of 1 to 14 carbon atoms, R2 is hydrogen and R3 is alkyl of 2 to 24 carbon atoms.
- the carrier moiety can be any moiety which, as a result of reaction with oxidized color developing agent, will release the timing group.
- the carrier is a coupler, but it can be another group, such a hydrazide, a hydrazine or a hydroquinone.
- Coupler moieties can form a colored or colorless, diffusible or nondiffusible, reaction product with oxidized color developing agent. Preferred are cyan dye-forming coupler moieties.
- the DIR compounds are DIR couplers represented by the structure where COUP is a coupler moiety.
- the preferred - INH group is a mercaptotetrazole or benzotriazole inhibitor.
- the DIR compound is a cyan dye-forming DIR coupler and is contained in a red-sensitive silver halide emulsion layer together with the cyan dye-forming image coupler or the DIR compound is a yellow dye-forming DIR coupler and is contained in a red-sensitive silver halide emulsion layer together with the cyan dye-forming image coupler.
- Particularly preferred are couplers where COUP is a naphtholic cyan dye-forming coupler moiety represented by the following generalized structure: where: the unsatisfied bond represents the point of attachment of the timing group, and BALL is a ballast group such as aryl and alkyl, especially alkoxyaryl and aryloxyalkyl.
- COUP is a yellow dye forming coupler moiety having one of the structures or where the unsatisfied bond is the point of attachment to the timing group
- BALL is a ballast group such as alkoxycarbonyl, alkoxy, alkylsulfonamido and alkylsulfamyl
- X is as defined below
- Y is alkyl such as methyl and t-butyl, and aryl such as phenyl and alkoxy phenyl.
- TIME timing groups, represented by TIME, for use in these couplers are described in the aforementioned ′962 and ′323 patents and European Patent Application 0255085.
- timing groups which have the structures: and where: p is 1 to 4; q is 0 or 1; A is -O- or R5 is hydrogen, alkyl of 1-20 carbon atoms or aryl of 6 to 20 carbon atoms; and X is hydrogen and one or more substituents independently selected from hydroxy, cyano, fluoro, chloro, bromo, iodo, nitro, alkyl, alkoxy, aryl, aryloxy, alkoxycarbonyl, aryloxycarbonyl, carbonamido, and sulfonamido X is preferably hydrogen, cyano, nitro or sulfonamido.
- the development inhibitor which is eventually released from the DIR coupler can be any of the development inhibitors known in the art, such as mercaptotetrazoles, selenotetrazoles, mercaptobenzothiazoles, selenobenzothiazoles, mercaptobenzoxazoles, selenobenzoxazoles, mercaptobenzimidazoles, selenobenzimidazoles, benzotriazoles, and benzodiazoles.
- the compounds and couplers used in this invention are, in general, known compounds and can be prepared by techniques known in the art. Compounds, described in the copending applications referred to above on page 6 are novel and can be prepared by the procedures described in those applications.
- the coupler combinations used in the elements of this invention can be incorporated in silver halide emulsions and the emulsions can be coated on a support to form a photographic element.
- one or both of the couplers can be incorporated in photographic elements adjacent the silver halide emulsion where, during development, the coupler will be in reactive association with development products such as oxidized color developing agent.
- the photographic elements can be either single color or multicolor elements.
- the cyan dye-forming coupler is usually associated with a red-sensitive emulsion, although it could be associated with an unsensitized emulsion or an emulsion sensitized to a different region of the spectrum.
- Multicolor elements contain dye image-forming units sensitive to each of the three primary regions of the spectrum. Each unit can be comprised of a single emulsion layer or of multiple emulsion layers sensitive to a given region of the spectrum.
- the layers of the element, including the layers of the image-forming units, can be arranged in various orders as known in the art.
- a typical multicolor photographic element comprises a support bearing a cyan dye image-forming unit comprising at least one red-sensitive silver halide emulsion layer having associated therewith at least one cyan dye-forming coupler, a magenta image forming unit comprising at least one green-sensitive silver halide emulsion layer having associated therewith at least one magenta dye-forming coupler and a yellow dye image-forming unit comprising at least one blue-sensitive silver halide emulsion layer having associated therewith at least one yellow dye-forming coupler.
- the element can contain additional layers, such as filter layers, interlayers, overcoat layers, subbing layers, and the like.
- the silver halide emulsions employed in the elements of this invention can be comprised of silver bromide, silver chloride, silver iodide, silver chlorobromide, silver chloroiodide, silver bromoiodide, silver chlorobromoiodide or mixtures thereof.
- the emulsions can include silver halide grains of any conventional shape or size. Specifically, the emulsions can include coarse, medium or fine silver halide grains. High aspect ratio tabular grain emulsions are specifically contemplated, such as those disclosed by Wilgus et al U.S. Patent 4,434,226, Daubendiek et al U.S. Patent 4,414,310, Wey U.S.
- Patent 4,399,215 Solberg et al U.S. Patent 4,433,048, Mignot U.S. Patent 4,386,156, Evans et al U.S. Patent 4,504,570, Maskasky U.S. Patent 4,400,463, Wey et al U.S. Patent 4,414,306, Maskasky U.S. Patents 4,435,501 and 4,643,966 and Daubendiek et al U.S. Patents 4,672,027 and 4,693,964.
- silver bromoiodide grains with a higher molar proportion of iodide in the core of the grain than in the periphery of the grain such as those described in GB 1,027,146; JA 54/48,521; US 4,379,837; US 4,444,877; US 4,665,012; US 4,686,178; US 4,565,778; US 4,728,602; US 4,668,614; US 4,636,461; EP 264,954.
- the silver halide emulsions can be either monodisperse or polydisperse as precipitated.
- the grain size distribution of the emulsions can be controlled by silver halide grain separation techniques or by blending silver halide emulsions of differing grain sizes.
- Sensitizing compounds such as compounds of copper, thallium, lead, bismuth, cadmium and Group VIII noble metals, can be present during precipitation of the silver halide emulsion.
- the emulsions can be surface-sensitive emulsions, i.e., emulsions that form latent images primarily on the surfaces of the silver halide grains, or internal latent image-forming emulsions, i.e., emulsions that form latent images predominantly in the interior of the silver halide grains.
- the emulsions can be negative-working emulsions, such as surface-sensitive emulsions or unfogged internal latent image-forming emulsions, or direct-positive emulsions of the unfogged, internal latent image-forming type, which are positive-working when development is conducted with uniform light exposure or in the presence of a nucleating agent.
- the silver halide emulsions can be surface sensitized.
- Noble metal e.g., gold
- middle chalcogen e.g., sulfur, selenium, or tellurium
- reduction sensitizers employed individually or in combination, are specifically contemplated.
- Typical chemical sensitizers are listed in Research Disclosure , Item 17643, cited above, Section III.
- the silver halide emulsions can be spectrally sensitized with dyes from a variety of classes, including the polymethine dye class, which includes the cyanines, merocyanines, complex cyanines and merocyanines (i.e., tri-, tetra-, and poly-nuclear cyanines and merocyanines), oxonols, hemioxonols, styryls, merostyryls, and streptocyanines.
- Illustrative spectral sensitizing dyes are disclosed in Research Disclosure , Item 17643, cited above, Section IV.
- Suitable vehicles for the emulsion layers and other layers of elements of this invention are described in Research Disclosure Item 17643, Section IX and the publications cited therein.
- the elements of this invention can include additional couplers as described in Research Disclosure Section VII, paragraphs D, E, F and G and the publications cited therein. These additional couplers can be incorporated as described in Research Disclosure Section VII, paragraph C and the publications cited therein.
- the photographic elements of this invention can contain brighteners (Research Disclosure Section V), antifoggants and stabilizers (Research Disclosure Section VI), antistain agents and image dye stabilizers (Research Disclosure Section VII, paragraphs I and J), light absorbing and scattering materials (Research Disclosure Section VIII), hardeners (Research Disclosure Section XI), plasticizers and lubricants (Research Disclosure Section XII), antistatic agents (Research Disclosure Section XIII), matting agents (Research Disclosure Section XVI) and development modifiers (Research Disclosure Section XXI).
- the photographic elements can be coated on a variety of supports as described in Research Disclosure Section XVII and the references described therein.
- Photographic elements can be exposed to actinic radiation, typically in the visible region of the spectrum, to form a latent image as described in Research Disclosure Section XVIII and then processed to form a visible dye image as described in Research Disclosure Section XIX.
- Processing to form a visible dye image includes the step of contacting the element with a color developing agent to reduce developable silver halide and oxidize the color developing agent. Oxidized color developing agent in turn reacts with the coupler to yield a dye.
- Preferred color developing agents are p-phenylene diamines.
- 4-amino-3-methyl-N,N-diethylaniline hydrochloride 4-amino-3-methyl-N-ethyl-N- ⁇ -(methanesulfonamido)ethylaniline sulfate hydrate, 4-amino-3-methyl-N-ethyl-N- ⁇ -hydroxyethylaniline sulfate, 4-amino-3- ⁇ -(methanesulfonamido)ethyl-N,N-diethylaniline hydrochloride and 4-amino-N-ethyl-N-(2-methoxyethyl)-m-toluidine di-p-toluene sulfonic acid.
- this processing step leads to a negative image.
- this step can be preceded by development with a non-chromogenic developing agent to develop exposed silver halide, but not form dye, and then uniform fogging of the element to render unexposed silver halide developable.
- a direct positive emulsion can be employed to obtain a positive image.
- couplers for use in the elements of the invention are shown in Tables I and II above.
- Photographic elements were prepared with the following layers, in the order indicated, on a cellulose acetate film support:
- Layer 1 Red sensitized AgBrI emulsion (having an average grain diameter of 0.52»m, 6.4 mole % I) (1.61g Ag/m2, 2.69g gel/m2), cyan image coupler (see Table III) and cyan DIR coupler (see Table III). Equimolar quantities of image couplers were used in the elements and the DIR couplers were used in amounts that would give essentially the same density and gamma in each of the elements after exposure and processing.
- Layer 2 Overcoat layer of gelatin (1.08 g/m2) and Hardener bisvinylsulfonylmethane coated at 1.75% by weight of total gelatin.
- the dried coatings were exposed (1/15 sec.) to daylight through a graduated density step wedge and processed at 37.8°C, as follows:
- Color photographic elements were prepared with the following layers, in the order indicated, on a cellulose acetate film support.
- Layer 1 A slow cyan dye-forming layer comprising a blend of a red-sensitized 0.42»m silver bromoiodide emulsion (6.1 mol% I) at 1.29g Ag/m2 and a red-sensitized 0.21»m AgBrI emulsion (4.8 mole% I) at 0.43g Ag/m2, gelatin (2.69g/m2), a masking coupler 1-hydroxy-4-(4-[2-(8-acetamido-1-hydroxy-3,6-disulfonaphthyl)azo]phenoxy)-2-( ⁇ -[2,4-di-tert.-amylphenoxy]butyl)naphthamide dipyridine salt (0.041g/m2), a cyan dye-forming coupler (see Table IV) and a DIR coupler (see Table IV).
- Layer 2 A fast cyan dye-forming layer comprising a 0.76»m silver bromoiodide emulsion (6 mole% I) at 1.08g Ag/m2, gelatin (1.61g/m2), a cyan dye-forming coupler (see Table IV) and a DIR coupler (see Table IV).
- Layer 5 A gelatin overcoat layer (2.8g/m2) hardened with bisvinylsulfonylmethane at 1.75% by weight of total gelatin. Equimolar quantities of the image coupler (C-1 or II-1) were used and the quantity of DIR coupler (I-2) was chosen to give essentially the same density and gamma in the exposed and processed element.
- Multicolor photographic elements were prepared having the following schematic structure. In this structure the numbers in parenthesis show the coverage in g/m2.
- the amounts of couplers in each of the cyan dye forming layers were chosen to give essentially the same density and contrast in the exposed and processed elements.
- the dried coatings were exposed (1/500 sec), through a graduated density step wedge (Wratten 29 filter), and processed for 3-1/4 minutes in the C-41 process described in the British Journal of Photography Annual, 1977, pages 201-205.
- the AMT acutance values for 35 mm film system were calculated as described in the previous example.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Silver Salt Photography Or Processing Solution Therefor (AREA)
- Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)
Abstract
Description
- This invention relates to color photographic elements. In a particular aspect, it relates to color photographic elements with a particular combination of development inhibitor releasing compound and cyan dye-forming coupler.
- Photographic couplers which release a development inhibitor in a controlled manner are described in U.S. Patents 4,248,962 and 4,409,323, inter alia. These couplers comprise a coupler moiety which has a timing group joined in its coupling position. A development inhibitor is attached to the timing group and is released from it after the bond between the timing group and the coupler is cleaved as a result of reaction between the coupler and oxidized color developing agent. Mechanisms by which such release of the development inhibitor from the timing group can occur include an intermolecular nucleophilic displacement reaction, an electron transfer reaction, and a hydrolysis reaction. Development inhibitors also can be released, as a function of development, from timing groups which are released from compounds which are not couplers such as the hydrazides of U.S. Patent 4,684,604 and the hydroquinones of European Patent Application 0,167,168.
- One of the advantageous effects obtained as a result of release of a development inhibitor, either directly from a coupler or other carrier moiety, or through a timing group as described above, is an improvement in sharpness of the resulting photographic image.
- Also known are cyan dye-forming image couplers that contain a ureido group in the 2-position.
- Lau, U.S. Patent 4,333,999 issued June 8, 1982, describes cyan dye-forming couplers containing p-cyanophenylureido substituents in the 2-position of the coupler. These couplers are described as yielding dyes having desirable hues and good stability properties.
- U.S. Patent 4,775,616 issued October 4, 1988, describes couplers which improve upon those described in the ′999 patent by modifying the 5-position substituent. The ′999 and ′616 patents suggest the use of the cyan couplers therein described in combination with DIR couplers, but do not specifically suggest that they be used with couplers of the type described in the ′962 or ′323 patents.
- U.S. Patents 4,434,225 and 4,609,619 describe phenolic cyan dye-forming couplers containing a ureido group in the 2-position. Use of one of these couplers with a DIR coupler is mentioned in these patents. However, they do not describe any particular combination of phenolic coupler and DIR coupler nor the particular advantage deriving from the selection of the present invention.
- It would be desirable to provide color photographic materials which have improved sharpness.
- We have found that unexpected improvements in sharpness can be obtained with a photographic element comprising a support bearing a silver halide emulsion layer having associated therewith a DIR compound having the structure I:
wherein:
CAR is a carrier moiety,
TIME is a timing group and
INH is a development inhibitor moiety; together with a cyan dye-forming coupler having the structure II:
wherein:
m is 0 or 1;
n is 0, 1 or 2;
Y is halogen, or sulfonyl;
Q is -O- or -NH-;
R¹ is an unsubstituted or a substituted, straight or branched chain alkyl group having from 1 to 20 carbon atoms, an unsubstituted or a substituted cycloalkyl group having from 3 to 8 carbon atoms in the ring, an alkylcarbonyl or an alkoxycarbonyl group having from 1 to 20 carbon atoms in the alkyl or the alkoxy moiety;
R² is as defined for R¹ or is hydrogen;
R³ is an unsubstituted or a substituted alkyl group having from 1 to 24 carbon atoms, an unsubstituted or a substituted cycloalkyl group having from 3 to 8 carbon atoms in the ring, an unsubstituted or a substituted aryl group having from 6 to 24 carbon atoms, or an unsubstituted or a substituted heterocyclic group having from 3 to 8 atoms in the heterocyclic ring, wherein the hetero ring atoms can be nitrogen, oxygen, or sulfur;
when R³ is a primary alkyl group, R¹ contains at least 2 carbon atoms;
Z is hydrogen or a coupling-off group; and
the -CN substituent on the phenyl ureido group is para or meta to the ureido group. - When the R¹ and R² groups are substituted, such substituents include hydroxy, halogen, or alkoxy having from 1 to 8 carbon atoms.
- When the R³ group is substituted, such substituents include alkyl, aryl, alkoxy, aryloxy, alkylthio, arylthio, hydroxy, halogen, alkoxycarbonyl, aryloxycarbonyl, carboxy, acyl, acyloxy, carbonamido, carbamoyl, alkylsulfonyl, arylsulfonyl, sulfonamido and sulfamoyl groups wherein the alkyl and aryl substituents, and the alkyl and aryl moieties of the alkoxy, aryloxy, alkylthio, arylthio, alkoxycarbonyl, arylcarbonyl, acyl, acyloxy, carbonamido, carbamoyl, alkylsulfonyl, arylsulfonyl, sulfonamido and sulfamoyl substituents can contain, respectively, from 1 to 10 carbon atoms and from 6 to 30 carbon atoms and can be further substituted with such substituents.
- Coupling off groups defined by Z are well known to those skilled in the art.
- Representative classes of coupling-off groups include alkoxy, aryloxy, heteroyloxy, sulfonyloxy, acyloxy, acyl, heterocyclyl, sulfonamido, phosphonyloxy and arylazo. These coupling-off groups are described in the art, for example, in U.S. Patent Nos. 2,455,169; 3,227,551; 3,432,521; 3,476,563; 3,617,291; 3,880,661; 4,052,212 and 4,134,766; and in U.K. Patents and published application Nos. 1,466,728; 1,531,927; 1,533,039; 2,006,755A and 2,017,704A.
-
- While improvements in sharpness are obtained when couplers of Structure II, above, are used in combination with DIR compounds of Structure I above, especially advantageous effects are obtained with the following preferred couplers of Structure II.
- In a preferred embodiment the cyano group is in the para position with respect to the ureido group and n is 0.
- In a particular preferred embodiment, n is 0, the cyano group is para to the ureido group, R¹ is alkyl of 1 to 20 carbon atoms and R² is hydrogen or alkyl of 1 to 4 carbon atoms.
- In an especially preferred embodiment, n is 0, the cyano group is para to the ureido group, R¹ is alkyl of 1 to 14 carbon atoms, R² is hydrogen and R³ is alkyl of 2 to 24 carbon atoms.
- The DIR compounds which satisfy Structure I are known in the art and are described in such patents as U.S. Patent 4,248,962; 4,409,323; 4,684,604; 4,737,451; U.K. Patent Application 2,099,167; and EP Published Applications 167,168 and 255,085, as well as in U.S. Patents 4,546,073; 4,564,587; 4,618,571; 4,698,297; and OLS 3,307,506. Other useful DIR compounds are described in DeSelms and Kapecki U.S. Patent 4,782,012, issued November 1, 1988; Szajewski, Poslusny and Slusarek U.S. Patent Application Serial No. 209,741, filed June 21, 1988; and Begley, Carmody and Buchanan U.S. Patent Applications 213,416 and 214,090, both filed June 30, 1988.
- The carrier moiety, represented by CAR, can be any moiety which, as a result of reaction with oxidized color developing agent, will release the timing group. Preferably the carrier is a coupler, but it can be another group, such a hydrazide, a hydrazine or a hydroquinone. Coupler moieties can form a colored or colorless, diffusible or nondiffusible, reaction product with oxidized color developing agent. Preferred are cyan dye-forming coupler moieties.
-
- Preferably the DIR compound is a cyan dye-forming DIR coupler and is contained in a red-sensitive silver halide emulsion layer together with the cyan dye-forming image coupler
or the DIR compound is a yellow dye-forming DIR coupler and is contained in a red-sensitive silver halide emulsion layer together with the cyan dye-forming image coupler.
Particularly preferred are couplers where COUP is a naphtholic cyan dye-forming coupler moiety represented by the following generalized structure:
where:
the unsatisfied bond represents the point of attachment of the timing group, and
BALL is a ballast group such as aryl and alkyl, especially alkoxyaryl and aryloxyalkyl. - Also useful are compounds where COUP is a yellow dye forming coupler moiety having one of the structures
or
where
the unsatisfied bond is the point of attachment to the timing group,
BALL is a ballast group such as alkoxycarbonyl, alkoxy, alkylsulfonamido and alkylsulfamyl,
X is as defined below, and
Y is alkyl such as methyl and t-butyl, and aryl such as phenyl and alkoxy phenyl. - Preferred timing groups, represented by TIME, for use in these couplers are described in the aforementioned ′962 and ′323 patents and European Patent Application 0255085.
- Particularly preferred are those timing groups which have the structures:
and
where:
p is 1 to 4;
q is 0 or 1;
A is -O- or
R⁵ is hydrogen, alkyl of 1-20 carbon atoms or aryl of 6 to 20 carbon atoms; and
X is hydrogen and one or more substituents independently selected from hydroxy, cyano, fluoro, chloro, bromo, iodo, nitro, alkyl, alkoxy, aryl, aryloxy, alkoxycarbonyl, aryloxycarbonyl, carbonamido, and sulfonamido X is preferably hydrogen, cyano, nitro or sulfonamido. - The development inhibitor which is eventually released from the DIR coupler can be any of the development inhibitors known in the art, such as mercaptotetrazoles, selenotetrazoles, mercaptobenzothiazoles, selenobenzothiazoles, mercaptobenzoxazoles, selenobenzoxazoles, mercaptobenzimidazoles, selenobenzimidazoles, benzotriazoles, and benzodiazoles. Preferred are mercaptotetrazole inhibitors, benzotriazole inhibitors, and oxadiazole inhibitors. Particularly preferred are those inhibitors which are substituted with groups that cause them to be deactivated when they diffuse into processing solution. Such inhibitors are described in U.S. Patent 4,477,563, U.K. Patent Application 2,099,167 and U.S. Patent 4,782,012 issued November 1, 1988. Other useful inhibitors are described in Japanese Published Patent Applications 60-233650, 60-225156, 60-182438 and European Published Patent Applications 0167168, 0101621, 0192199, 0157146.
-
- The compounds and couplers used in this invention are, in general, known compounds and can be prepared by techniques known in the art. Compounds, described in the copending applications referred to above on page 6 are novel and can be prepared by the procedures described in those applications.
- The coupler combinations used in the elements of this invention can be incorporated in silver halide emulsions and the emulsions can be coated on a support to form a photographic element. Alternatively, one or both of the couplers can be incorporated in photographic elements adjacent the silver halide emulsion where, during development, the coupler will be in reactive association with development products such as oxidized color developing agent.
- The photographic elements can be either single color or multicolor elements. In a multicolor element, the cyan dye-forming coupler is usually associated with a red-sensitive emulsion, although it could be associated with an unsensitized emulsion or an emulsion sensitized to a different region of the spectrum. Multicolor elements contain dye image-forming units sensitive to each of the three primary regions of the spectrum. Each unit can be comprised of a single emulsion layer or of multiple emulsion layers sensitive to a given region of the spectrum. The layers of the element, including the layers of the image-forming units, can be arranged in various orders as known in the art.
- A typical multicolor photographic element comprises a support bearing a cyan dye image-forming unit comprising at least one red-sensitive silver halide emulsion layer having associated therewith at least one cyan dye-forming coupler, a magenta image forming unit comprising at least one green-sensitive silver halide emulsion layer having associated therewith at least one magenta dye-forming coupler and a yellow dye image-forming unit comprising at least one blue-sensitive silver halide emulsion layer having associated therewith at least one yellow dye-forming coupler. The element can contain additional layers, such as filter layers, interlayers, overcoat layers, subbing layers, and the like.
- In the following discussion of suitable materials for use in the elements of this invention, reference will be made to Research Disclosure, December 1978, Item 17643, published by Kenneth Mason Publications, Ltd., The Old Harbourmaster's, 8 North Street, Emsworth, Hampshire PO10 7DD, ENGLAND. This publication will be identified hereafter by the term "Research Disclosure."
- The silver halide emulsions employed in the elements of this invention can be comprised of silver bromide, silver chloride, silver iodide, silver chlorobromide, silver chloroiodide, silver bromoiodide, silver chlorobromoiodide or mixtures thereof. The emulsions can include silver halide grains of any conventional shape or size. Specifically, the emulsions can include coarse, medium or fine silver halide grains. High aspect ratio tabular grain emulsions are specifically contemplated, such as those disclosed by Wilgus et al U.S. Patent 4,434,226, Daubendiek et al U.S. Patent 4,414,310, Wey U.S. Patent 4,399,215, Solberg et al U.S. Patent 4,433,048, Mignot U.S. Patent 4,386,156, Evans et al U.S. Patent 4,504,570, Maskasky U.S. Patent 4,400,463, Wey et al U.S. Patent 4,414,306, Maskasky U.S. Patents 4,435,501 and 4,643,966 and Daubendiek et al U.S. Patents 4,672,027 and 4,693,964. Also specifically contemplated are those silver bromoiodide grains with a higher molar proportion of iodide in the core of the grain than in the periphery of the grain, such as those described in GB 1,027,146; JA 54/48,521; US 4,379,837; US 4,444,877; US 4,665,012; US 4,686,178; US 4,565,778; US 4,728,602; US 4,668,614; US 4,636,461; EP 264,954. The silver halide emulsions can be either monodisperse or polydisperse as precipitated. The grain size distribution of the emulsions can be controlled by silver halide grain separation techniques or by blending silver halide emulsions of differing grain sizes.
- Sensitizing compounds, such as compounds of copper, thallium, lead, bismuth, cadmium and Group VIII noble metals, can be present during precipitation of the silver halide emulsion.
- The emulsions can be surface-sensitive emulsions, i.e., emulsions that form latent images primarily on the surfaces of the silver halide grains, or internal latent image-forming emulsions, i.e., emulsions that form latent images predominantly in the interior of the silver halide grains. The emulsions can be negative-working emulsions, such as surface-sensitive emulsions or unfogged internal latent image-forming emulsions, or direct-positive emulsions of the unfogged, internal latent image-forming type, which are positive-working when development is conducted with uniform light exposure or in the presence of a nucleating agent.
- The silver halide emulsions can be surface sensitized. Noble metal (e.g., gold), middle chalcogen (e.g., sulfur, selenium, or tellurium), and reduction sensitizers, employed individually or in combination, are specifically contemplated. Typical chemical sensitizers are listed in Research Disclosure, Item 17643, cited above, Section III.
- The silver halide emulsions can be spectrally sensitized with dyes from a variety of classes, including the polymethine dye class, which includes the cyanines, merocyanines, complex cyanines and merocyanines (i.e., tri-, tetra-, and poly-nuclear cyanines and merocyanines), oxonols, hemioxonols, styryls, merostyryls, and streptocyanines. Illustrative spectral sensitizing dyes are disclosed in Research Disclosure, Item 17643, cited above, Section IV.
- Suitable vehicles for the emulsion layers and other layers of elements of this invention are described in Research Disclosure Item 17643, Section IX and the publications cited therein.
- In addition to the couplers described herein the elements of this invention can include additional couplers as described in Research Disclosure Section VII, paragraphs D, E, F and G and the publications cited therein. These additional couplers can be incorporated as described in Research Disclosure Section VII, paragraph C and the publications cited therein.
- The photographic elements of this invention can contain brighteners (Research Disclosure Section V), antifoggants and stabilizers (Research Disclosure Section VI), antistain agents and image dye stabilizers (Research Disclosure Section VII, paragraphs I and J), light absorbing and scattering materials (Research Disclosure Section VIII), hardeners (Research Disclosure Section XI), plasticizers and lubricants (Research Disclosure Section XII), antistatic agents (Research Disclosure Section XIII), matting agents (Research Disclosure Section XVI) and development modifiers (Research Disclosure Section XXI).
- The photographic elements can be coated on a variety of supports as described in Research Disclosure Section XVII and the references described therein.
- Photographic elements can be exposed to actinic radiation, typically in the visible region of the spectrum, to form a latent image as described in Research Disclosure Section XVIII and then processed to form a visible dye image as described in Research Disclosure Section XIX. Processing to form a visible dye image includes the step of contacting the element with a color developing agent to reduce developable silver halide and oxidize the color developing agent. Oxidized color developing agent in turn reacts with the coupler to yield a dye.
- Preferred color developing agents are p-phenylene diamines. Especially preferred are 4-amino-3-methyl-N,N-diethylaniline hydrochloride, 4-amino-3-methyl-N-ethyl-N-β-(methanesulfonamido)ethylaniline sulfate hydrate, 4-amino-3-methyl-N-ethyl-N-β-hydroxyethylaniline sulfate, 4-amino-3-β-(methanesulfonamido)ethyl-N,N-diethylaniline hydrochloride and 4-amino-N-ethyl-N-(2-methoxyethyl)-m-toluidine di-p-toluene sulfonic acid.
- With negative working silver halide this processing step leads to a negative image. To obtain a positive (or reversal) image, this step can be preceded by development with a non-chromogenic developing agent to develop exposed silver halide, but not form dye, and then uniform fogging of the element to render unexposed silver halide developable. Alternatively, a direct positive emulsion can be employed to obtain a positive image.
- Development is followed by the conventional steps of bleaching, fixing, or bleach-fixing, to remove silver and silver halide, washing and drying.
- The following examples further illustrate this invention. In these examples, comparative couplers having the following structures were employed:
-
- The structures of couplers for use in the elements of the invention are shown in Tables I and II above.
- Photographic elements were prepared with the following layers, in the order indicated, on a cellulose acetate film support:
- Layer 1: Red sensitized AgBrI emulsion (having an average grain diameter of 0.52»m, 6.4 mole % I) (1.61g Ag/m², 2.69g gel/m²), cyan image coupler (see Table III) and cyan DIR coupler (see Table III). Equimolar quantities of image couplers were used in the elements and the DIR couplers were used in amounts that would give essentially the same density and gamma in each of the elements after exposure and processing.
- Layer 2: Overcoat layer of gelatin (1.08 g/m²) and Hardener bisvinylsulfonylmethane coated at 1.75% by weight of total gelatin.
-
-
- The above data show a clearly discernible improvement in sharpness is obtained when a DIR coupler is used in combination with a 4-equivalent cyan dye-forming phenolic coupler having a para-cyanophenylureido group in the 2-position, and a sulfo containing ballast in the 5-position (II-2) vs a phenoxy ballast (C-1) in the 5-position. A similar result is obtained with the 2-equivalent couplers II-1 and II-5 vs C-2. It should be noted that two-equivalent image couplers give better sharpness than do four-equivalent image couplers.
- Color photographic elements were prepared with the following layers, in the order indicated, on a cellulose acetate film support.
- Layer 1: A slow cyan dye-forming layer comprising a blend of a red-sensitized 0.42»m silver bromoiodide emulsion (6.1 mol% I) at 1.29g Ag/m² and a red-sensitized 0.21»m AgBrI emulsion (4.8 mole% I) at 0.43g Ag/m², gelatin (2.69g/m²), a masking coupler 1-hydroxy-4-(4-[2-(8-acetamido-1-hydroxy-3,6-disulfonaphthyl)azo]phenoxy)-2-(Δ-[2,4-di-tert.-amylphenoxy]butyl)naphthamide dipyridine salt (0.041g/m²), a cyan dye-forming coupler (see Table IV) and a DIR coupler (see Table IV).
- Layer 2: A fast cyan dye-forming layer comprising a 0.76»m silver bromoiodide emulsion (6 mole% I) at 1.08g Ag/m², gelatin (1.61g/m²), a cyan dye-forming coupler (see Table IV) and a DIR coupler (see Table IV).
- Layers 3 and 4: Gelatin at 2.85g/m².
- Layer 5: A gelatin overcoat layer (2.8g/m²) hardened with bisvinylsulfonylmethane at 1.75% by weight of total gelatin. Equimolar quantities of the image coupler (C-1 or II-1) were used and the quantity of DIR coupler (I-2) was chosen to give essentially the same density and gamma in the exposed and processed element.
-
- The above data show that a combination of a DIR coupler such as II-2 with a phenolic cyan dye-forming coupler having both a p-cyanophenylureido group in the 2-position, and a sulfo-containing ballast in the 5-position provides a sharpness improvement in comparison to a similar coupler combination in which the cyan dye-forming coupler does not have a sulfo-ballast in the 5-position.
-
- The amounts of couplers in each of the cyan dye forming layers were chosen to give essentially the same density and contrast in the exposed and processed elements. The dried coatings were exposed (1/500 sec), through a graduated density step wedge (Wratten 29 filter), and processed for 3-1/4 minutes in the C-41 process described in the British Journal of Photography Annual, 1977, pages 201-205. The AMT acutance values for 35 mm film system were calculated as described in the previous example.
- The data show that within each set one obtains an improvement in sharpness as evidenced by the increase in AMT values with the combinations of this invention compared with combinations using the comparison image coupler C-1.
Claims (10)
- A color photographic element comprising a support and a silver halide emulsion layer characterized in that there is associated therewith
a DIR compound having the structure I: wherein:
CAR is a carrier moiety;
TIME is a timing group; and
INH is a development inhibitor moiety;
together with a cyan dye-forming image coupler having the structure II: wherein:
m is 0 or 1;
n is 0, 1 or 2;
Y is halogen, or sulfonyl;
Q is -O- or -NH-;
R¹ is an unsubstituted or a substituted, straight or branched chain alkyl group having from 1 to 20 carbon atoms, an unsubstituted or a substituted cycloalkyl group having from 3 to 8 carbon atoms in the ring, an alkylcarbonyl or an alkoxycarbonyl group having from 1 to 20 carbon atoms in the alkyl or the alkoxy moiety;
R² is as defined for R¹ or is hydrogen;
R³ is an unsubstituted or a substituted alkyl group having from 1 to 24 carbon atoms, an unsubstituted or a substituted cycloalkyl group having from 3 to 8 carbon atoms in the ring, an unsubstituted or a substituted aryl group having from 6 to 24 carbon atoms, or an unsubstituted or a substituted heterocyclic group having from 3 to 8 atoms in the heterocyclic ring;
when R³ is a primary alkyl group, R¹ contains at least 2 carbon atoms;
Z is hydrogen or a coupling-off group; and the -CN substituent on the phenyl ureido group is para or meta to the ureido group. - A color photographic element of claim 1 wherein, in structure II, the cyano group is in the para position and n is 0.
- A color photographic element of claim 2, wherein, in structure II, R¹ is alkyl of 1 to 20 carbon atoms and R² is hydrogen or alkyl of 1 to 4 carbon atoms.
- A color photographic element of claim 2, wherein, in structure II, R¹ is alkyl of 1 to 14 carbon atoms, R² is hydrogen and R³ is alkyl of 2 to 24 carbon atoms.
- A color photographic element of any one of claims 2 to 4, wherein, in structure I, CAR is a cyan or yellow dye-forming coupler moiety,
TIME has one of the structures: and where:
p is 1 to 4;
q is 0 or 1;
A is -O- or R⁵ is hydrogen, alkyl of 1-20 carbon atoms or aryl of 6 to 20 carbon atoms;
X is hydrogen and one or more substituents independently selected from hydroxy, cyano, fluoro, chloro, bromo, iodo, nitro, alkyl, alkoxy, aryl, aryloxy, alkoxycarbonyl, aryloxycarbonyl, carbonamido, and sulfonamido and
INH is a mercaptotetrazole inhibitor, or benzotriazole inhibitor or a oxadiazole inhibitor. - A photographic element of claim 5, wherein the DIR coupler has one of the structures:
or wherein:
BALL is a ballast group;
R⁵ is hydrogen, alkyl of 1-20 carbon atoms or aryl of 6 to 20 carbon atoms;
INH is a mercaptotetrazole or a benzotriazole inhibitor;
X is hydrogen, cyano, nitro or sulfonamido;
p is 1-4 and
q is 0 or 1. - A color photographic element of claim 1, wherein the DIR compound is a cyan dye-forming DIR coupler and is contained in a red-sensitive silver halide emulsion layer together with the cyan dye-forming image coupler.
- A color photographic element of claim 1, wherein the DIR compound is a yellow dye-forming DIR coupler and is contained in a red-sensitive silver halide emulsion layer together with the cyan dye-forming image coupler.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US21341588A | 1988-06-30 | 1988-06-30 | |
| US213415 | 1988-06-30 |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| EP0349331A2 EP0349331A2 (en) | 1990-01-03 |
| EP0349331A3 EP0349331A3 (en) | 1990-06-27 |
| EP0349331B1 true EP0349331B1 (en) | 1995-03-22 |
Family
ID=22795041
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP89306645A Expired - Lifetime EP0349331B1 (en) | 1988-06-30 | 1989-06-30 | Color photographic material |
Country Status (4)
| Country | Link |
|---|---|
| EP (1) | EP0349331B1 (en) |
| JP (1) | JPH0247650A (en) |
| AT (1) | ATE120285T1 (en) |
| DE (1) | DE68921802T2 (en) |
Families Citing this family (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5759733A (en) * | 1987-11-28 | 1998-06-02 | Ricoh Company, Ltd. | Liquid developer for electrostatic electrophotography |
| CA2010000A1 (en) * | 1989-04-07 | 1990-10-07 | Paul B. Merkel | Photographic recording material containing a cyan dye-forming coupler |
| JPH0380245A (en) * | 1989-08-24 | 1991-04-05 | Konica Corp | Silver halide color photographic sensitive material |
| JP2860411B2 (en) * | 1990-03-30 | 1999-02-24 | 富士写真フイルム株式会社 | Silver halide color photographic materials |
| JPH03288848A (en) * | 1990-04-06 | 1991-12-19 | Fuji Photo Film Co Ltd | Silver halide color photographic sensitive material |
| JP2715342B2 (en) * | 1991-02-15 | 1998-02-18 | 富士写真フイルム株式会社 | Silver halide color photographic materials |
| US5250400A (en) * | 1992-02-26 | 1993-10-05 | Eastman Kodak Company | Photographic material and process comprising a pyrazolotriazole coupler |
| EP0570973B1 (en) * | 1992-05-22 | 1998-11-18 | Eastman Kodak Company | Color photographic materials and methods containing DIR or DIAR couplers and phenolic coupler solvents |
| US5380633A (en) * | 1993-01-15 | 1995-01-10 | Eastman Kodak Company | Image information in color reversal materials using weak and strong inhibitors |
| US5399466A (en) * | 1993-01-15 | 1995-03-21 | Eastman Kodak Company | [Method of processing] photographic elements having fogged grains and development inhibitors for interimage |
| US5399465A (en) * | 1993-01-15 | 1995-03-21 | Eastman Kodak Company | Method of processing reversal elements comprising selected development inhibitors and absorber dyes |
| US5411839A (en) * | 1993-01-15 | 1995-05-02 | Eastman Kodak Company | Image formation in color reversal materials using strong inhibitors |
| US5399467A (en) * | 1993-10-29 | 1995-03-21 | Eastman Kodak Company | Photographic couplers having a ballast containing a sulfone or sulfoxide group |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS56114946A (en) * | 1980-02-15 | 1981-09-09 | Konishiroku Photo Ind Co Ltd | Silver halide photographic sensitive material |
| US4775616A (en) * | 1986-12-12 | 1988-10-04 | Eastman Kodak Company | Cyan dye-forming couplers and photographic materials containing same |
-
1989
- 1989-06-29 JP JP1165537A patent/JPH0247650A/en active Pending
- 1989-06-30 EP EP89306645A patent/EP0349331B1/en not_active Expired - Lifetime
- 1989-06-30 AT AT89306645T patent/ATE120285T1/en active
- 1989-06-30 DE DE68921802T patent/DE68921802T2/en not_active Expired - Fee Related
Also Published As
| Publication number | Publication date |
|---|---|
| EP0349331A3 (en) | 1990-06-27 |
| JPH0247650A (en) | 1990-02-16 |
| EP0349331A2 (en) | 1990-01-03 |
| ATE120285T1 (en) | 1995-04-15 |
| DE68921802D1 (en) | 1995-04-27 |
| DE68921802T2 (en) | 1995-11-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP0349331B1 (en) | Color photographic material | |
| EP0356925B1 (en) | Photographic element and process comprising a development inhibitor releasing coupler and a yellow dye-forming coupler | |
| US5272043A (en) | Photographic material and process comprising DIR coupler | |
| EP0403019B1 (en) | Photographic material and process | |
| US5389504A (en) | Color photographic elements containing a combination of pyrazolone and pyrazoloazole couplers | |
| US5188926A (en) | Photographic elements having carbonamide coupler solvents and addenda to reduce sensitizing dye stain | |
| JPH07199427A (en) | Silver halide negative photographic element containing hue-correcting coupler | |
| US5387500A (en) | Color photographic elements containing a combination of pyrazoloazole couplers | |
| EP0485965A1 (en) | Photographic silver halide material and process | |
| US5021555A (en) | Color photographic material | |
| US5051343A (en) | Photographic elements containing removable couplers | |
| EP0572054B1 (en) | Photographic silver halide colour materials | |
| US5192646A (en) | Photographic elements having sulfoxide coupler solvents and addenda to reduce sensitizing dye stain | |
| US5314792A (en) | Photographic element and process providing improved color rendition | |
| US5360713A (en) | Yellow dye-forming couplers and color photographic elements containing these couplers | |
| EP0518101B1 (en) | Photographic element and process comprising a development inhibitor releasing coupler and a yellow dye-forming coupler | |
| JPH06347956A (en) | Color coupler for photograph and photograph element containing color coupler thereof | |
| EP0348134A2 (en) | Photographic materials having releasable compounds | |
| EP0600563B1 (en) | Yellow couplers having an aryloxy coupling-off group which contains an orthopolarizable functional group | |
| EP0653676B1 (en) | Photographic couplers having a ballast containing a sulfone or sulfoxide group | |
| US5250398A (en) | Photographic silver halide material and process comprising water-solubilized naphtholic coupler | |
| EP0600561B1 (en) | Yellow couplers having ionizable and/or solubilizing aaryloxy coupling-off groups. | |
| EP0443159B1 (en) | Cyan dye-forming couplers and photographic recording materials containing same | |
| JPH07175189A (en) | Photograph element wherin color turbidity is decreased |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE |
|
| PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
| AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE |
|
| 17P | Request for examination filed |
Effective date: 19901212 |
|
| 17Q | First examination report despatched |
Effective date: 19931008 |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 19950322 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19950322 Ref country code: BE Effective date: 19950322 Ref country code: ES Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19950322 Ref country code: AT Effective date: 19950322 Ref country code: LI Effective date: 19950322 Ref country code: CH Effective date: 19950322 |
|
| REF | Corresponds to: |
Ref document number: 120285 Country of ref document: AT Date of ref document: 19950415 Kind code of ref document: T |
|
| REF | Corresponds to: |
Ref document number: 68921802 Country of ref document: DE Date of ref document: 19950427 |
|
| ET | Fr: translation filed | ||
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19950622 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19950629 Year of fee payment: 7 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19950630 |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
| 26N | No opposition filed | ||
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19970101 |
|
| NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 19970101 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19990504 Year of fee payment: 11 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19990602 Year of fee payment: 11 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19990624 Year of fee payment: 11 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000630 |
|
| GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20000630 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010228 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010403 |