EP0232101B1 - Light-sensitive silver halide color photographic material - Google Patents
Light-sensitive silver halide color photographic material Download PDFInfo
- Publication number
- EP0232101B1 EP0232101B1 EP19870300640 EP87300640A EP0232101B1 EP 0232101 B1 EP0232101 B1 EP 0232101B1 EP 19870300640 EP19870300640 EP 19870300640 EP 87300640 A EP87300640 A EP 87300640A EP 0232101 B1 EP0232101 B1 EP 0232101B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- silver halide
- light
- group
- sensitive silver
- magenta coupler
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- -1 silver halide Chemical class 0.000 title claims description 173
- 229910052709 silver Inorganic materials 0.000 title claims description 131
- 239000004332 silver Substances 0.000 title claims description 131
- 239000000463 material Substances 0.000 title claims description 58
- 239000000839 emulsion Substances 0.000 claims description 80
- 239000003795 chemical substances by application Substances 0.000 claims description 38
- 150000001875 compounds Chemical class 0.000 claims description 28
- 125000003118 aryl group Chemical group 0.000 claims description 22
- MCSKRVKAXABJLX-UHFFFAOYSA-N pyrazolo[3,4-d]triazole Chemical compound N1=NN=C2N=NC=C21 MCSKRVKAXABJLX-UHFFFAOYSA-N 0.000 claims description 21
- 125000000217 alkyl group Chemical group 0.000 claims description 16
- 230000035945 sensitivity Effects 0.000 claims description 12
- 125000005842 heteroatom Chemical group 0.000 claims description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 11
- 125000001424 substituent group Chemical group 0.000 claims description 10
- 125000004442 acylamino group Chemical group 0.000 claims description 9
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 claims description 9
- 229910052757 nitrogen Inorganic materials 0.000 claims description 9
- 125000003545 alkoxy group Chemical group 0.000 claims description 8
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 7
- 229910052717 sulfur Chemical group 0.000 claims description 7
- 125000004423 acyloxy group Chemical group 0.000 claims description 6
- 125000002490 anilino group Chemical group [H]N(*)C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 claims description 6
- 125000004104 aryloxy group Chemical group 0.000 claims description 6
- 125000004414 alkyl thio group Chemical group 0.000 claims description 5
- 125000005110 aryl thio group Chemical group 0.000 claims description 5
- 238000005859 coupling reaction Methods 0.000 claims description 5
- 125000004434 sulfur atom Chemical group 0.000 claims description 5
- 125000004429 atom Chemical group 0.000 claims description 4
- 150000002148 esters Chemical class 0.000 claims description 4
- 229910052760 oxygen Inorganic materials 0.000 claims description 4
- 239000001301 oxygen Chemical group 0.000 claims description 4
- ZRHUHDUEXWHZMA-UHFFFAOYSA-N 1,4-dihydropyrazol-5-one Chemical compound O=C1CC=NN1 ZRHUHDUEXWHZMA-UHFFFAOYSA-N 0.000 claims description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical group [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 125000004432 carbon atom Chemical group C* 0.000 claims description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 3
- 229910052736 halogen Inorganic materials 0.000 claims description 3
- 150000002367 halogens Chemical class 0.000 claims description 3
- 125000005647 linker group Chemical group 0.000 claims description 3
- 125000001624 naphthyl group Chemical group 0.000 claims description 3
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 claims description 3
- 229940124530 sulfonamide Drugs 0.000 claims description 3
- 150000003456 sulfonamides Chemical group 0.000 claims description 3
- 239000011593 sulfur Chemical group 0.000 claims description 3
- TXWZIBMKHBHFTB-UHFFFAOYSA-N [(carbamothioylamino)sulfanylamino]urea Chemical group C(=O)(N)NNSNC(=S)N TXWZIBMKHBHFTB-UHFFFAOYSA-N 0.000 claims description 2
- 125000000751 azo group Chemical group [*]N=N[*] 0.000 claims description 2
- 150000003457 sulfones Chemical group 0.000 claims description 2
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 claims description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical group O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims 1
- 229910052739 hydrogen Inorganic materials 0.000 claims 1
- 239000001257 hydrogen Substances 0.000 claims 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims 1
- 125000000547 substituted alkyl group Chemical group 0.000 claims 1
- 125000003107 substituted aryl group Chemical group 0.000 claims 1
- 239000010410 layer Substances 0.000 description 105
- 239000000975 dye Substances 0.000 description 54
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 41
- 238000000034 method Methods 0.000 description 33
- 230000001235 sensitizing effect Effects 0.000 description 22
- 238000012545 processing Methods 0.000 description 20
- 238000011161 development Methods 0.000 description 16
- 239000000243 solution Substances 0.000 description 16
- 239000000084 colloidal system Substances 0.000 description 15
- 239000004094 surface-active agent Substances 0.000 description 14
- 239000006185 dispersion Substances 0.000 description 13
- 108010010803 Gelatin Proteins 0.000 description 12
- 238000000576 coating method Methods 0.000 description 12
- 229920000159 gelatin Polymers 0.000 description 12
- 239000008273 gelatin Substances 0.000 description 12
- 235000019322 gelatine Nutrition 0.000 description 12
- 235000011852 gelatine desserts Nutrition 0.000 description 12
- 238000009835 boiling Methods 0.000 description 11
- 239000011248 coating agent Substances 0.000 description 11
- 239000000126 substance Substances 0.000 description 9
- KXDAEFPNCMNJSK-UHFFFAOYSA-N Benzamide Chemical compound NC(=O)C1=CC=CC=C1 KXDAEFPNCMNJSK-UHFFFAOYSA-N 0.000 description 8
- 239000002904 solvent Substances 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 239000013078 crystal Substances 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 150000003839 salts Chemical class 0.000 description 7
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 6
- 206010070834 Sensitisation Diseases 0.000 description 6
- 230000006866 deterioration Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000003960 organic solvent Substances 0.000 description 6
- 230000008313 sensitization Effects 0.000 description 6
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 5
- 239000002250 absorbent Substances 0.000 description 5
- 230000002745 absorbent Effects 0.000 description 5
- 238000004061 bleaching Methods 0.000 description 5
- 125000005843 halogen group Chemical group 0.000 description 5
- DZVCFNFOPIZQKX-LTHRDKTGSA-M merocyanine Chemical compound [Na+].O=C1N(CCCC)C(=O)N(CCCC)C(=O)C1=C\C=C\C=C/1N(CCCS([O-])(=O)=O)C2=CC=CC=C2O\1 DZVCFNFOPIZQKX-LTHRDKTGSA-M 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 239000000837 restrainer Substances 0.000 description 5
- ANRHNWWPFJCPAZ-UHFFFAOYSA-M thionine Chemical compound [Cl-].C1=CC(N)=CC2=[S+]C3=CC(N)=CC=C3N=C21 ANRHNWWPFJCPAZ-UHFFFAOYSA-M 0.000 description 5
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 239000012190 activator Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000005282 brightening Methods 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 238000004945 emulsification Methods 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- 230000002209 hydrophobic effect Effects 0.000 description 4
- 125000004433 nitrogen atom Chemical group N* 0.000 description 4
- 230000003449 preventive effect Effects 0.000 description 4
- 239000003381 stabilizer Substances 0.000 description 4
- 230000003068 static effect Effects 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 3
- 229910019142 PO4 Inorganic materials 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 3
- 239000012670 alkaline solution Substances 0.000 description 3
- 125000004397 aminosulfonyl group Chemical group NS(=O)(=O)* 0.000 description 3
- 239000002216 antistatic agent Substances 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 238000000149 argon plasma sintering Methods 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 238000004040 coloring Methods 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 3
- 239000004816 latex Substances 0.000 description 3
- 229920000126 latex Polymers 0.000 description 3
- 125000004430 oxygen atom Chemical group O* 0.000 description 3
- 235000021317 phosphate Nutrition 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 239000011241 protective layer Substances 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 230000005070 ripening Effects 0.000 description 3
- ZUNKMNLKJXRCDM-UHFFFAOYSA-N silver bromoiodide Chemical compound [Ag].IBr ZUNKMNLKJXRCDM-UHFFFAOYSA-N 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- CLDZVCMRASJQFO-UHFFFAOYSA-N 2,5-bis(2,4,4-trimethylpentan-2-yl)benzene-1,4-diol Chemical compound CC(C)(C)CC(C)(C)C1=CC(O)=C(C(C)(C)CC(C)(C)C)C=C1O CLDZVCMRASJQFO-UHFFFAOYSA-N 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- CDAWCLOXVUBKRW-UHFFFAOYSA-N 2-aminophenol Chemical class NC1=CC=CC=C1O CDAWCLOXVUBKRW-UHFFFAOYSA-N 0.000 description 2
- DLFVBJFMPXGRIB-UHFFFAOYSA-N Acetamide Chemical compound CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical group OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- XCFIVNQHHFZRNR-UHFFFAOYSA-N [Ag].Cl[IH]Br Chemical compound [Ag].Cl[IH]Br XCFIVNQHHFZRNR-UHFFFAOYSA-N 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 125000002252 acyl group Chemical group 0.000 description 2
- 125000004453 alkoxycarbonyl group Chemical group 0.000 description 2
- LEQAOMBKQFMDFZ-UHFFFAOYSA-N alpha-ketodiacetal Natural products O=CC=O LEQAOMBKQFMDFZ-UHFFFAOYSA-N 0.000 description 2
- 125000000129 anionic group Chemical group 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 239000007844 bleaching agent Substances 0.000 description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- MSZJEPVVQWJCIF-UHFFFAOYSA-N butylazanide Chemical compound CCCC[NH-] MSZJEPVVQWJCIF-UHFFFAOYSA-N 0.000 description 2
- 125000001951 carbamoylamino group Chemical group C(N)(=O)N* 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical group 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 125000004093 cyano group Chemical group *C#N 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 125000002883 imidazolyl group Chemical group 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 238000004321 preservation Methods 0.000 description 2
- JEXVQSWXXUJEMA-UHFFFAOYSA-N pyrazol-3-one Chemical class O=C1C=CN=N1 JEXVQSWXXUJEMA-UHFFFAOYSA-N 0.000 description 2
- 125000003226 pyrazolyl group Chemical group 0.000 description 2
- 239000002516 radical scavenger Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- ADZWSOLPGZMUMY-UHFFFAOYSA-M silver bromide Chemical compound [Ag]Br ADZWSOLPGZMUMY-UHFFFAOYSA-M 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- 125000003831 tetrazolyl group Chemical group 0.000 description 2
- 150000003568 thioethers Chemical class 0.000 description 2
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 description 2
- 125000001425 triazolyl group Chemical group 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- LUMLZKVIXLWTCI-NSCUHMNNSA-N (e)-2,3-dichloro-4-oxobut-2-enoic acid Chemical compound OC(=O)C(\Cl)=C(/Cl)C=O LUMLZKVIXLWTCI-NSCUHMNNSA-N 0.000 description 1
- YLVACWCCJCZITJ-UHFFFAOYSA-N 1,4-dioxane-2,3-diol Chemical compound OC1OCCOC1O YLVACWCCJCZITJ-UHFFFAOYSA-N 0.000 description 1
- CBCKQZAAMUWICA-UHFFFAOYSA-N 1,4-phenylenediamine Chemical compound NC1=CC=C(N)C=C1 CBCKQZAAMUWICA-UHFFFAOYSA-N 0.000 description 1
- SIQZJFKTROUNPI-UHFFFAOYSA-N 1-(hydroxymethyl)-5,5-dimethylhydantoin Chemical compound CC1(C)N(CO)C(=O)NC1=O SIQZJFKTROUNPI-UHFFFAOYSA-N 0.000 description 1
- FYBFGAFWCBMEDG-UHFFFAOYSA-N 1-[3,5-di(prop-2-enoyl)-1,3,5-triazinan-1-yl]prop-2-en-1-one Chemical compound C=CC(=O)N1CN(C(=O)C=C)CN(C(=O)C=C)C1 FYBFGAFWCBMEDG-UHFFFAOYSA-N 0.000 description 1
- KJCVRFUGPWSIIH-UHFFFAOYSA-N 1-naphthol Chemical compound C1=CC=C2C(O)=CC=CC2=C1 KJCVRFUGPWSIIH-UHFFFAOYSA-N 0.000 description 1
- YKUDHBLDJYZZQS-UHFFFAOYSA-N 2,6-dichloro-1h-1,3,5-triazin-4-one Chemical compound OC1=NC(Cl)=NC(Cl)=N1 YKUDHBLDJYZZQS-UHFFFAOYSA-N 0.000 description 1
- AGBXYHCHUYARJY-UHFFFAOYSA-N 2-phenylethenesulfonic acid Chemical compound OS(=O)(=O)C=CC1=CC=CC=C1 AGBXYHCHUYARJY-UHFFFAOYSA-N 0.000 description 1
- KFZMGEQAYNKOFK-UHFFFAOYSA-N 2-propanol Substances CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 1
- XRZDIHADHZSFBB-UHFFFAOYSA-N 3-oxo-n,3-diphenylpropanamide Chemical class C=1C=CC=CC=1NC(=O)CC(=O)C1=CC=CC=C1 XRZDIHADHZSFBB-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- KHBQMWCZKVMBLN-UHFFFAOYSA-N Benzenesulfonamide Chemical compound NS(=O)(=O)C1=CC=CC=C1 KHBQMWCZKVMBLN-UHFFFAOYSA-N 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- 229920002284 Cellulose triacetate Polymers 0.000 description 1
- 229940090898 Desensitizer Drugs 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- SPAGIJMPHSUYSE-UHFFFAOYSA-N Magnesium peroxide Chemical compound [Mg+2].[O-][O-] SPAGIJMPHSUYSE-UHFFFAOYSA-N 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 1
- 101150004094 PRO2 gene Proteins 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- 229910021607 Silver chloride Inorganic materials 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Natural products NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 1
- FJWGYAHXMCUOOM-QHOUIDNNSA-N [(2s,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6s)-4,5-dinitrooxy-2-(nitrooxymethyl)-6-[(2r,3r,4s,5r,6s)-4,5,6-trinitrooxy-2-(nitrooxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-3,5-dinitrooxy-6-(nitrooxymethyl)oxan-4-yl] nitrate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O)O[C@H]1[C@@H]([C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@@H](CO[N+]([O-])=O)O1)O[N+]([O-])=O)CO[N+](=O)[O-])[C@@H]1[C@@H](CO[N+]([O-])=O)O[C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O FJWGYAHXMCUOOM-QHOUIDNNSA-N 0.000 description 1
- SJOOOZPMQAWAOP-UHFFFAOYSA-N [Ag].BrCl Chemical compound [Ag].BrCl SJOOOZPMQAWAOP-UHFFFAOYSA-N 0.000 description 1
- HOLVRJRSWZOAJU-UHFFFAOYSA-N [Ag].ICl Chemical compound [Ag].ICl HOLVRJRSWZOAJU-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 125000000738 acetamido group Chemical group [H]C([H])([H])C(=O)N([H])[*] 0.000 description 1
- 125000003668 acetyloxy group Chemical group [H]C([H])([H])C(=O)O[*] 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 125000005250 alkyl acrylate group Chemical group 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- 125000004390 alkyl sulfonyl group Chemical group 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- VXAUWWUXCIMFIM-UHFFFAOYSA-M aluminum;oxygen(2-);hydroxide Chemical compound [OH-].[O-2].[Al+3] VXAUWWUXCIMFIM-UHFFFAOYSA-M 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 150000001414 amino alcohols Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 125000005161 aryl oxy carbonyl group Chemical group 0.000 description 1
- 125000004391 aryl sulfonyl group Chemical group 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 239000000987 azo dye Substances 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-M benzenesulfonate Chemical compound [O-]S(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-M 0.000 description 1
- 229940077388 benzenesulfonate Drugs 0.000 description 1
- 150000001558 benzoic acid derivatives Chemical class 0.000 description 1
- 125000001231 benzoyloxy group Chemical group C(C1=CC=CC=C1)(=O)O* 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 125000000051 benzyloxy group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])O* 0.000 description 1
- 125000005997 bromomethyl group Chemical group 0.000 description 1
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 1
- 150000001661 cadmium Chemical class 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 229920006317 cationic polymer Polymers 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 125000004218 chloromethyl group Chemical group [H]C([H])(Cl)* 0.000 description 1
- 150000001860 citric acid derivatives Chemical class 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000007766 curtain coating Methods 0.000 description 1
- 125000000596 cyclohexenyl group Chemical group C1(=CCCCC1)* 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- 150000002012 dioxanes Chemical class 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- 125000005448 ethoxyethyl group Chemical group [H]C([H])([H])C([H])([H])OC([H])([H])C([H])([H])* 0.000 description 1
- 238000007765 extrusion coating Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 150000002314 glycerols Chemical class 0.000 description 1
- 229940015043 glyoxal Drugs 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- 150000002366 halogen compounds Chemical class 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- CRPAPNNHNVVYKL-UHFFFAOYSA-N hexadecane-1-sulfonamide Chemical compound CCCCCCCCCCCCCCCCS(N)(=O)=O CRPAPNNHNVVYKL-UHFFFAOYSA-N 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 150000002430 hydrocarbons Chemical group 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- LOCAIGRSOJUCTB-UHFFFAOYSA-N indazol-3-one Chemical class C1=CC=C2C(=O)N=NC2=C1 LOCAIGRSOJUCTB-UHFFFAOYSA-N 0.000 description 1
- 229940079865 intestinal antiinfectives imidazole derivative Drugs 0.000 description 1
- 150000002503 iridium Chemical class 0.000 description 1
- 150000002505 iron Chemical class 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 125000004184 methoxymethyl group Chemical group [H]C([H])([H])OC([H])([H])* 0.000 description 1
- 125000002816 methylsulfanyl group Chemical group [H]C([H])([H])S[*] 0.000 description 1
- 125000004170 methylsulfonyl group Chemical group [H]C([H])([H])S(*)(=O)=O 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000001617 migratory effect Effects 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- ZAKLKBFCSHJIRI-UHFFFAOYSA-N mucochloric acid Natural products OC1OC(=O)C(Cl)=C1Cl ZAKLKBFCSHJIRI-UHFFFAOYSA-N 0.000 description 1
- QEALYLRSRQDCRA-UHFFFAOYSA-N myristamide Chemical compound CCCCCCCCCCCCCC(N)=O QEALYLRSRQDCRA-UHFFFAOYSA-N 0.000 description 1
- YKYONYBAUNKHLG-UHFFFAOYSA-N n-Propyl acetate Natural products CCCOC(C)=O YKYONYBAUNKHLG-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004998 naphthylethyl group Chemical group C1(=CC=CC2=CC=CC=C12)CC* 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- MCSAJNNLRCFZED-UHFFFAOYSA-N nitroethane Chemical compound CC[N+]([O-])=O MCSAJNNLRCFZED-UHFFFAOYSA-N 0.000 description 1
- LYGJENNIWJXYER-UHFFFAOYSA-N nitromethane Chemical compound C[N+]([O-])=O LYGJENNIWJXYER-UHFFFAOYSA-N 0.000 description 1
- 238000010534 nucleophilic substitution reaction Methods 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 125000002971 oxazolyl group Chemical group 0.000 description 1
- RPQRDASANLAFCM-UHFFFAOYSA-N oxiran-2-ylmethyl prop-2-enoate Chemical compound C=CC(=O)OCC1CO1 RPQRDASANLAFCM-UHFFFAOYSA-N 0.000 description 1
- 125000001820 oxy group Chemical group [*:1]O[*:2] 0.000 description 1
- QUBQYFYWUJJAAK-UHFFFAOYSA-N oxymethurea Chemical compound OCNC(=O)NCO QUBQYFYWUJJAAK-UHFFFAOYSA-N 0.000 description 1
- 229950005308 oxymethurea Drugs 0.000 description 1
- 150000004989 p-phenylenediamines Chemical class 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 125000000538 pentafluorophenyl group Chemical group FC1=C(F)C(F)=C(*)C(F)=C1F 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 description 1
- 125000003356 phenylsulfanyl group Chemical group [*]SC1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 125000003170 phenylsulfonyl group Chemical group C1(=CC=CC=C1)S(=O)(=O)* 0.000 description 1
- 125000005496 phosphonium group Chemical group 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 239000004848 polyfunctional curative Substances 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 229940090181 propyl acetate Drugs 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 150000003222 pyridines Chemical class 0.000 description 1
- 125000004076 pyridyl group Chemical group 0.000 description 1
- GZTPJDLYPMPRDF-UHFFFAOYSA-N pyrrolo[3,2-c]pyrazole Chemical class N1=NC2=CC=NC2=C1 GZTPJDLYPMPRDF-UHFFFAOYSA-N 0.000 description 1
- 150000003856 quaternary ammonium compounds Chemical class 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 239000001397 quillaja saponaria molina bark Substances 0.000 description 1
- 125000005493 quinolyl group Chemical group 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000000452 restraining effect Effects 0.000 description 1
- 150000003283 rhodium Chemical class 0.000 description 1
- 229930182490 saponin Natural products 0.000 description 1
- 150000007949 saponins Chemical class 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 1
- 239000007962 solid dispersion Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 125000005504 styryl group Chemical group 0.000 description 1
- IIACRCGMVDHOTQ-UHFFFAOYSA-N sulfamic acid Chemical class NS(O)(=O)=O IIACRCGMVDHOTQ-UHFFFAOYSA-N 0.000 description 1
- 125000000020 sulfo group Chemical group O=S(=O)([*])O[H] 0.000 description 1
- 125000000565 sulfonamide group Chemical group 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-O sulfonium group Chemical group [SH3+] RWSOTUBLDIXVET-UHFFFAOYSA-O 0.000 description 1
- 125000006296 sulfonyl amino group Chemical group [H]N(*)S(*)(=O)=O 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000003718 tetrahydrofuranyl group Chemical group 0.000 description 1
- 150000003475 thallium Chemical class 0.000 description 1
- 125000001113 thiadiazolyl group Chemical group 0.000 description 1
- 125000000335 thiazolyl group Chemical group 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 150000004886 thiomorpholines Chemical class 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 125000003866 trichloromethyl group Chemical group ClC(Cl)(Cl)* 0.000 description 1
- 150000003639 trimesic acids Chemical class 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 150000003672 ureas Chemical class 0.000 description 1
- 150000003673 urethanes Chemical class 0.000 description 1
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 150000003751 zinc Chemical class 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03C—PHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
- G03C7/00—Multicolour photographic processes or agents therefor; Regeneration of such processing agents; Photosensitive materials for multicolour processes
- G03C7/30—Colour processes using colour-coupling substances; Materials therefor; Preparing or processing such materials
- G03C7/32—Colour coupling substances
- G03C7/3225—Combination of couplers of different kinds, e.g. yellow and magenta couplers in a same layer or in different layers of the photographic material
Definitions
- This invention relates to a light-sensitive silver halide photographic material, and, particularly, to a light-sensitive silver halide color photographic material having improved sharpness and graininess.
- light-sensitive material In recent years, image quality of light-sensitive silver halide photographic materials (hereinafter "light-sensitive material”) has been remarkably improved, but sharpness and graininess can not necessarily be said to have been sufficiently improved.
- light-sensitive material in a print enlarged from a small format (such as 110 film and disc film) negative type color film, coarseness in images (or graininess) and also poor sharpness make the level of image quality of the print extremely low. This is because the graininess and the sharpness of the negative type films have not been made suitable for high magnification prints.
- the latter technique includes a method employing a so-called DIR coupler, and a method employing an unsharp mask.
- the method employing an unsharp mask may sometimes cause the sharpness to be lowered and the graininess to be deteriorated so as to give a limit in practical use.
- the method employing the DIR coupler is well known, and useful DIR couplers include the compounds disclosed in Japanese Patent Publication No. 34933/1980, Japanese Unexamined Patent Publication No. 93344/1982, U.S. Patents No. 3,227,554, No. 3,615,506, No. 3,617,291 and No. 3,701,783.
- the edge effect is strengthened by using the DIR couplers
- the MTF modulation transfer function
- the improvement of MTF at a higher frequency region which is necessary for achieving a high enlargement magnification, can not be expected, because of accompanying undesirable side effects such as the lowering of sensitivity and the lowering of density.
- DIR couplers such as diffusible DIR and timing DIR couplers having so-called long distance effectiveness are used, but MTF may be improved at a region shifted to a lower frequency, and there will not be so great an improvement in sharpness at the high enlargement magnification.
- DE 2643965 discloses a light-sensitive colour photographic material comprising 5-pyrazolone type magenta couplers which are said to produce sufficient colour correction effect without adversely affecting the graininess of the image, even when the developing time is shorter.
- couplers have attracted notice as magenta couplers.
- Such couplers show not only so little secondary absorption as to be advantageous in the colour reproducibility, but also such good colour developing performance as to need less coupler. Accordingly, they have been found to be very advantageous for making a film thinner and effective for improving sharpness.
- An object of this invention is to provide a light-sensitive silver halide colour photographic material which has not only remarkably improved colour reproducibility and sharpness, but also improved graininess.
- a light-sensitive silver halide colour photographic material having at least one mono-disperse light-sensitive silver halide emulsion layer containing a pyrazolotriazole type magenta coupler and a coloured magenta coupler, wherein the layer containing the pyrazolotriazole type magenta coupler and the coloured magenta coupler comprises 17 mole % or more of said coloured magenta coupler based on the amount of all couplers in said layer.
- the pyrazolotriazole type magenta coupler according to this invention may preferably include the compound represented by Formula (I) or (II) shown below.
- R 1 and R 2 each represent an optionally substituted group, an aryl group or a hetero ring, and these alkyl group, aryl group and hetero ring may be linked through an oxygen atom, a nitrogen atom or an sulfur atom.
- the above alkyl group, aryl group and hetero ring may also be linked through a linking group selected from the following groups: acylamino, carbamoyl, sulfonamide, sulfamoylcarbonyl, carbonyloxy, oxycarbonyl, ureido, thioureido, thioamide, sulfone and sulfonyloxy.
- the alkyl group represented by R 1 or R 2 includes a straight chain or branched alkyl group having 1 to 20 carbon atoms (for example, methyl, ethyl, propyl, i-propyl, sec-butyl, n-butyl, t-butyl, n-octyl, t-octyl, dodecyl, octadecyl).
- These groups may further have a substituent (for example, a halogen atom, nitro, cyano, alkoxy, aryl, oxy, amino, acylamino, carbamoyl, sulfonamide, sulfamoyl, imide, alkylthio, arylthio, aryl, alkoxycarbonyl and acyl).
- a substituent for example, a halogen atom, nitro, cyano, alkoxy, aryl, oxy, amino, acylamino, carbamoyl, sulfonamide, sulfamoyl, imide, alkylthio, arylthio, aryl, alkoxycarbonyl and acyl.
- the group may include chloromethyl, bromomethyl, trichloromethyl, ,8-nitroethyl, o-cyanobutyl, methoxymethyl, ethoxyethyl, phenoxyethyl, N-methylaminoethyl, dimethylaminobutyl, acetaminoethyl, benzoylamino, propyl, ethyl carbamoylethyl, methanesulfonamide ethyl, ethyl thioethyl, p-methoxyphenylthiomethyl, phenylmethyl, p-chlorophenylmethyl, naphthylethyl, ethoxycarbonylethyl, acetylethyl.
- the aryl group includes a phenyl group and a naphthyl group, and may have a substituent including the substituents for the above alkyl group.
- the hetero ring includes a 5- or 6-membered ring having at least any one of a nitrogen atom, an oxygen atom and a sulfur atom, and may be aromatic or may not be aromatic.
- a nitrogen atom an oxygen atom and a sulfur atom
- it includes pyridyl, quinolyl, pyrolyl, morpholyl, furanyl, tetrahydrofuranyl, pyrazolyl, triazolyl, tetrazolyl, thiazolyl, oxazolyl, imidazolyl, thiadiazolyl. These may also have a substituent corresponding to the substituents for the alkyl group.
- R 1 and R 2 may be linked to each other to form a hydrocarbon ring (for example, cyclopropyl, cyclopentyl, cyclohexyl, cyclohexenyl).
- a hydrocarbon ring for example, cyclopropyl, cyclopentyl, cyclohexyl, cyclohexenyl.
- the compound wherein the alkyl group, the aryl group or the hetero ring represented by R 1 or R 2 is linked to each other through the linking group mentioned above or the nitrogen atom, oxygen atom or sulfur atom may include, for example, the following:
- R 2' represents an alkyl group, an aryl group or a hetero ring
- R 2'' and R 2''' each represent a hydrogen atom, an alkyl group, an aryl group or a hetero ring.
- the hetero ring group is a pyrazolotriazole type compound
- a bis type pyrazolotriazole type compound is formed, which is of course a magenta coupler included in this invention.
- Z represents a hydrogen atom or a group which may be eliminated when a dye is formed through coupling with an oxidized product of an aromatic primary amine color developing agent.
- it may include, for example, a halogen atom, an alkoxy group, an aryloxy group, an acyloxy group, an arylthio group, an alkylthio group, and a (wherein Z 2 represents a group of atoms necessary for the formation of a 5- or 6-membered ring, said atoms being carbon, oxygen, nitrogen or sulfur atoms together with the nitrogen atom) group.
- the group represented by may include, for example, the following: Exemplary compounds represented by Formula (I) or (II) are shown below:
- the colored magenta coupler according to this invention preferably includes the compound represented by the following formula:
- Cp represents a magenta coupler residual group (provided, however, that the azo group is attached to an active site of the magenta coupler), and R 3 represents an aryl group (including the group having a substituent).
- the magenta coupler residual group represented by Cp preferably includes 5-pyrazolone magenta couplers and coupler residual groups derived from pyrazolotriazole type magenta couplers, and particularly preferably includes the one represented by Formula (IV) shown below:
- R 4 represents an aryl group
- R 5 represents an acylamino group, an anilino group, a ureido group or a carbamoyl group and preferably represents an anilino group
- R 4 and R 5 may each be substituted.
- the aryl group represented by R 4 is preferably a phenyl group.
- the substituent for the aryl group represented by R 4 may include, for example, a halogen atom (for example, fluorine, chlorine, bromine), an alkyl group (for example, methyl, ethyl), an alkoxy group (for example, methoxy, ethoxy), an aryloxy group (for example, phenyloxy, naphthyloxy), an acylamino group (for example, benzamide, a-(2,4-di-t-amyl- phenoxy)butylamide), a sulfonylamino group (for example, benzenesulfonamide, n-hexadecansulfonamide), a sulfamoyl group (for example, methylsulfamoyl, phenylsulfamoyl), a carbamoyl group (for example, an n-but
- a sulfonyl group for example, methylsulfonyl, n-dodecylsulfonyl, benzenesulfonyl
- an acyloxy group for example, methylsulfonyl, n-dodecylsulfonyl, benzenesulfonyl
- an acyloxy group for example, methylsulfonyl, n-dodecylsulfonyl, benzenesulfonyl
- an acyloxy group for example, methylsulfonyl, n-dodecylsulfonyl, benzenesulfonyl
- an acyloxy group for example, methylsulfonyl, n-dodecylsulfonyl, benzenesulfonyl
- an acyloxy group for example, methylsulfonyl, n
- R 4 are phenyl, 2,4,6-trichlorophenyl, pentachlorophenyl, pentafluorophenyl, 2,4-6-trimethylphenyl, 2-chloro-4,6-dimethylphenyl, 2,6-dichloro-4-methylphenyl, 2,4-dichloro-6-methylphenyl, 2,4-dichloro-6-methoxylphenyl, 2,6-dichloro-4-methoxylphenyl, or 2,6-dichloro-4-[a-(2,4-di-t-amylphenoxy)-acetamide]phenyl.
- the acylamino group represented by R 5 may include, for example, pivaloylamino, n-tetradecanamide, a-(3-pentadecylphenoxy)butylamide, 3-[a-(2,4-di-t-amylphenoxy)acetamido]benzamide, benzamide, 3-ac- etoamidobenzamide, 3-(3-n-dodecylsuccinimide)benzamide, or 3-(4-n-dodecyloxybenzenesulfonamide)-benzamide.
- the anilino group represented by R 5 may include, for example, anilino, 2-chloroanilino, 2,4-dich- loroanilino, 2,4-dichloro-5-methoxyanilino, 4-cyanoanilino, 2-chloro-5-[a-(2,4-di-t-amylphenoxy)butylamido]-anilino,2-chloro-5-(3-octadecenylsuccinimide)anilino, 2-chloro-5-n-tetradecanamidoanilino, 2-chloro-5-[a-(3-t-butyl-4-hydroxyphenoxy)tetradecanamido]anilino, or 2-chloro-5-n-hexadecansulfoamidoanilino.
- the ureido group represented by R 5 may include, for example, methylureido, phenylureido, or 3-[a-(2,4-di-t-amylphenoxy)butylamido]phenylureido.
- the carbamoyl group represented by R 5 may include, for example, n-tetradecylcarbamoyl, phenylcarbamoyl, or 3-[a-(2,4-di-t-amylphenoxy)acetamide]phenylcarbamoyl.
- the aryl group represented by R 3 is preferably a phenyl group or a naphthyl group.
- the substituent for the aryl group represented by R 1 may include, for example, a halogen atom, an alkyl group, an alkoxy group, an aryloxy group, a hydroxyl group, an acyloxy group, a carboxyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, an alkylthio group, an arylthio group, an alkylsulfonyl group, an arylsulfonyl group, an acyl group, a sulfonamide group, a carbamoyl group, or a sulfamoyl group.
- substituents include an alkyl group, a hydroxyl group, an alkoxy group and acylamino group.
- Examples of the colored magenta couplers represented by Formula (III) are shown below, but by no means limited to these.
- the colored magenta coupler according to this invention can be synthesized following methods disclosed in, for example, Japanese Unexamined Patent Publications No. 123625/1974, No. 131448/1974, No. 42121/1977, No. 102723/1977, No. 52532/1979, No. 1726/1983, U.S. Patents No. 2,763,552, No. 2,801,171, No. 3,519,429.
- the pyrazolotriazole type magenta coupler and the colored magenta coupler of this invention can be used in any layer or layers of the above silver halide emulsion layers, but, in general, they are used in a green-sensitive silver halide emulsion layer.
- the green sensitive silver halide emulsion layer preferably comprises two or more emulsion layers
- the couplers are required to be used in at least one of the emulsion layers, and preferably used in two or more of the emulsion layers.
- the couplers should preferably be used in at least the most sensitive layer.
- the pyrazolotriazole type magenta coupler of this invention may be used usually in the range of 1 x 10- 3 mole to 1 mole, preferably 1 x 10- 2 mole to 8 x 10- 1 , per 1 mole of silver halide in the monodisperse light-sensitive silver halide emulsion layer. However, in the interest of the sharpness, it is preferably used in an amount of 50 mole % or more, more preferably from 60 to 80 mole %, based on the amount of all couplers in the layer in which the coupler is added.
- the colored magenta coupler of this invention is required to be used in an amount of 17 mole % or more, preferably not less than 20 mole % and less than 50 mole %, more preferably not less than 30 mole % and less than 50 mole %, based on the amount of all couplers in a layer in which the coupler is present.
- the layer containing the magenta coupler and the colored magenta coupler of this invention may contain magenta couplers not of this invention.
- the magenta couplers not of this invention should generally be present in an amount of less than 20 mole % based on the amount of all couplers.
- pyrazolone compounds can be used advantageously.
- usable magenta couplers include those disclosed in Japanese Unexamined Patent Publications No. 111631/1974, No. 29236/1981, No. 94752/1982, Japanese Patent Publication No. 27930/1973, U.S. Patents No. 2,600,788, No. 3,062,653, No. 3,408,194, No. 3,519,429, and Research Disclosure No. 12443.
- magenta coupler of this invention When adding the magenta coupler of this invention and the other couplers, they can be incorporated into the green-sensitive silver halide emulsion layer by an oil protection dispersion method or a latex dispersion method. If the couplers are alkali soluble, they may be added as an alkaline solution.
- Typical DIR compounds usable with this invention include DIR couplers wherein a group capable of forming a compound showing a development-restraining action when eliminated from an active site of a coupler, is introduced into the active site, which are disclosed, for example, in British Patent No. 935,454, U.S. Patents No. 3,227,554, No. 4,095,984, No. 4,149,886, Japanese Unexamined Patent Publication No. 151944/1982.
- the above DIR couplers have a property that, when coupled with an oxidized product in a color developing agent, a mother nucleus of the coupler forms a dye and releases a development restrainer.
- timing DIR compounds which, when reacted with an oxidized product in a color developing agent, the mother nucleus forms a dye or a colorless compound and the eliminated timing group releases a development restrainer by an intramolecular nucleophilic substitution reaction or elimination reaction, as disclosed in Japanese Unexamined Patent Publications No. 145135/1979, No. 114946/1981 and No. 154234/1982.
- timing DIR compounds in which, when reacted with an oxidized product in a color developing agent, the timing group as mentioned above becomes bonded to the coupler mother nucleus capable of forming a perfectly diffusible dye.
- the DIR compounds that can be used in combination with this invention are preferably added to a light-sensitive silver halide emulsion layer.
- Two or more kinds of the DIR compounds may be contained in the same layer, or, alternatively, DIR compounds of the same kind may be contained in different layers.
- these DIR compounds are used preferably in an amount of 2 x 10- 4 to 1 x 10 -1 , more preferably 1 x 10- 3 to 2 x 10- 2 , per mole of silver in the emulsion layer.
- timing DIR compounds or diffusible DIR compounds wherein the released restraining group is migratory.
- any silver halide may be used including silver bromide, silver iodobromide, silver iodochloride, silver chlorobromide, silver chloroiodobromide and silver chloride which are used in ordinary silver halide emulsions, but preferably silver bromide, silver iodobromide and silver chloroiodobromide.
- Silver halide grains used in the silver halide emulsions may be obtained by an acidic method, a neutral method or an ammoniacal method.
- the grains may be allowed to grow at one time, or grow after seed grains have been formed.
- the method of preparing the seed grains and the method of growing them may be same or different.
- the silver halide emulsion may be obtained by simultaneously mixing halide ions and silver ions, or by preparing an aqueous solution in which either one of them is present and then mixing into it the other of them.
- it may be formed by successively simultaneously adding halide ions and silver ions while controlling pH and pAg in the mixing vessel.
- Halogen formulation in a grain may be varied by employing a conversion method in an arbitrary step during formation of AgX.
- silver halide solvents such as ammonia, thioether and thiourea can be used.
- metal ions may be added to the grains by use of at least one cadmium salt, zinc salt, lead salt, thallium salt, iridium salt (including a complex salt), rhodium salt (including a complex salt), or iron salt (including a complex salt) in order to incorporate any of these metal elements on the inside of the grains and/or the surface of the grains, and also reduction sensitizing nuclei may be introduced on the inside of the grains and/or the surface of the grains by placing the grains in a suitable reductive atmosphere.
- the silver halide emulsion may be either one from which unnecessary soluble salts have been removed after completion of the growth of silver halide grains, or one from which they have not been removed.
- the salts can be removed according to the method disclosed in Research Disclosure (hereinafter simply "RD") No. 17643, Paragraph II.
- the silver halide grains may be any of those having uniform distribution of silver halide formulation in a grain, or core/shell grains having different silver halide formulation between the inside portion and the surface layer of a grain.
- the silver halide grains may be grains such that a latent image is formed chiefly on the surface, or grains such that a latent image is formed chiefly in the inside of a grain.
- the silver halide grains may have any regular crystal form such as a cube, an octahedron and a tetradecahedron, or those having an irregular crystal form such as a sphere and a plate. In these grains, there may also be used those having any ratio of the ⁇ 100 ⁇ face to the ⁇ 111 ⁇ face. Also, they may have a composite form of these crystal forms, or comprise a mix of grains having various crystal forms.
- the size of the silver halide grains those having grain size of 0.05 to 30 ⁇ , preferably 0.1 to 20 ⁇ , may be used.
- the silver halide emulsion has a narrow grain size distribution (hereafter called a "monodispersed emulsion").
- the monodispersed emulsion herein mentioned refers to an emulsion having a value of 0.20 or less when the standard deviation of grain size distribution is divided by the average grain size (the grain size refers to the diameter of a grain in the case of a spherical silver halide, and, in the case of a grain having a shape other than the spherical shape, it refers to the diameter calculated by converting a projected image of the grain into a round image having the same area) and it may be used alone or as a mixture of several kinds. Also, the polydispersed emulsion and the monodispersed emulsion may by used by mixing them.
- the silver halide emulsion may be used by mixing two or more kinds of silver halide emulsions which have been separately formed.
- the silver halide emulsion can be chemically sensitized according to conventional methods. Namely, a sulfur sensitization method, a selenium sensitization method, a reduction sensitization method and a noble metal sensitization method using noble metal compounds such as gold and so forth can be used alone or in combination.
- the silver halide emulsion can be optically sensitized to a desired wavelength region by using a dye known as a sensitizing dye in the field of photography.
- the sensitizing dye may be used alone, or may be used in combination with two or more of the dyes. Together with the sensitizing dye, a dye having itself no spectral sensitization effect, or a supersensitizing agent which is a compound substantially absorbing no visible light and capable of strengthening the sensitizing action of the sensitizing dye, may be contained in the emulsion.
- the sensitizing dye there may be used cyanine dyes, merocyanine dyes, composite cyanine dyes, composite merocyanine dyes, holopolar cyanine dyes, hemicyanine dyes, sterile dyes and hemioxanol dyes.
- Particularly useful dyes are cyanine dyes, merocyanine dyes and composite merocyanine dyes.
- a compound known as an antifoggant or a stabilizer in the field of photography may be added during chemical ripening, after completion of chemical ripening and/or before coating of a silver halide emulsion after completion of chemical ripening, for the purpose of preventing a light-sensitive material from becoming fogged during manufacturing steps, during preservation or during photographic processing, or for the purpose of keeping the photographic performance stable.
- gelatin As a binder (or protective colloid) for the silver halide emulsion, it is advantageous to use gelatin, but it is also possible to use hydrophilic colloids such as gelatin derivatives, a graft polymer of gelatin with other macromolecules, other proteins, sugar derivatives, cellulose derivatives and synthetic hydrophilic high molecular substances such as homopolymers or copolymers.
- hydrophilic colloids such as gelatin derivatives, a graft polymer of gelatin with other macromolecules, other proteins, sugar derivatives, cellulose derivatives and synthetic hydrophilic high molecular substances such as homopolymers or copolymers.
- Photographic emulsion layers and other hydrophilic colloid layers of the light-sensitive material in which the silver halide emulsion of this invention is used can be hardened by using one or more kinds of hardening agents that can crosslink binder (or protective colloid) molecules to enhance the film strength.
- the hardening agents can be added in such an amount that a light-sensitive material can be hardened to the extent that no hardening agent is required to be added in the processing solution. It, however, is also possible to add the hardening agent in the processing solution.
- aldehydes such as formaldehyde, glyoxal and glutaraldehyde
- N-methylol compounds such as dimethylol urea and methyloldimethylhydantoin
- dioxane derivatives such as 2,3-dihydroxydioxane
- active vinyl compounds such as 1,3,5-triacryloyl- hexahydro-s-triazine and 1,3-vinylsulfonyl-2-propanol
- active halogen compounds such as 2,4-dichloro-6-hydroxy-s-triazine
- mucohalogeno-acids such as mucochloric acid and mucophenoxychloric acid.
- a plasticizer can be added to the silver halide emulsion layers and/or other hydrophilic colloid layers of the light-sensitive material for the purpose of enhancing flexibility.
- Preferable plasticizers include the compounds disclosed in RD No. 17643, Paragraph XII-A.
- a dispersion (latex) of a water insoluble or hardly soluble synthetic polymer can be contained in the photographic emulsion layers and other hydrophilic colloid layers.
- a dye-forming coupler capable of forming a dye through a coupling reaction with an oxidized product of an aromatic primary amine developing agent (for example, p-phenylenediamine derivative, aminophenol derivative) is used in the emulsion layers of the light-sensitive material.
- the dye forming coupler is selected in a manner such that there is formed a dye capable of absorbing spectral light in a light-sensitive emulsion layer, and thus a yellow dye-forming coupler is used in a blue-sensitive emulsion layer; a magenta dye-forming coupler, in a green-sensitive emulsion layer; and a cyan dye-forming coupler, in a red-sensitive emulsion layer.
- the light-sensitive silver halide color photographic material may also be prepared by using the couplers in a manner different from the above combination, depending on the purpose.
- These dye-forming couplers may preferably have a group having 8 or more of carbon atoms, which is called a ballast group and makes the couplers non-diffusible.
- These dye-forming couplers may be either four equivalent ones wherein silver ions of 4 molecules must be reduced in order for a dye of 1 molecule to be formed, or two equivalent ones wherein silver ions of 2 molecules may only be reduced.
- the dye-forming couplers may contain a compound that can release a photographically useful substance such as a development accelerator, a bleach accelerator, a developer, a silver halide solvent, a toning agent, a hardening agent, a fogging agent, an antifoggant, a chemical sensitizer, a spectral sensitizer or a desensitizer, through coupling with an oxidized product of a developing agent.
- a photographically useful substance such as a development accelerator, a bleach accelerator, a developer, a silver halide solvent, a toning agent, a hardening agent, a fogging agent, an antifoggant, a chemical sensitizer, a spectral sensitizer or a desensitizer, through coupling with an oxidized product of a developing agent.
- a colorless coupler (also called a competing coupler) which performs a coupling reaction with an oxidized product of an aromatic primary amine developing agent, but does not form any dye, can be also used in combination with the dye-forming couplers.
- yellow dye-forming coupler known acylacetoanilido type couplers can be preferably used. Among them, benzoyl acetoanilide type compounds and pivaloyl acetoanilide type compounds are preferable.
- usable yellow couplers include those disclosed, for example, in U.S. Patents No. 2,875,057, No. 3,265,506, No. 3,408,194, No. 3,551,155, No. 3,582,322, No. 3,725,072 and No. 3,891,445; German Patent No. 1,547,868, German Patent Application Publications No. 2,219,917, No. 2,261,361 and No. 2,414,006, British Patent No. 1,425,020; Japanese Patent Publication No.
- cyan dye-forming couplers phenol type couplers and naphthol type couplers are generally used.
- Specific examples of usable cyan couplers include those disclosed, for example, in U.S. Patents No. 2,423,730, No. 2,474,293, No. 2,801,171, No. 2,895,826, No. 3,476,563, No. 3,737,326, No. 3,758,308 and No. 3,893,044, Japanese Unexamined Patent Publications No. 37425/1972, No. 10135/1975, No. 25228/1975, No. 112038/1975, No. 117422/1975, No. 130441/1975, or couplers disclosed in Japanese Unexamined Patent Publication No. 98731/1983.
- hydrophobic compounds can be dispersed by use of various methods including a solid dispersion method, a latex dispersion method, an oil-in-water emulsification dispersion method which can be appropriately selected depending on the chemical structure of the hydrophobic compounds, such as couplers.
- a solid dispersion method a latex dispersion method
- an oil-in-water emulsification dispersion method which can be appropriately selected depending on the chemical structure of the hydrophobic compounds, such as couplers.
- the oil-in-water emulsification dispersion method conventionally known methods for dispersing hydrophobic additives such as couplers can be applied.
- the method may be carried out by dissolving the couplers in a high boiling organic solvent having a boiling point of 150°C or more, optionally together with a low boiling and/or water soluble organic solvent. Then carrying out the emulsification dispersion in a hydrophilic binder such as an aqueous gelatin solution by use of a surface active agent and a dispersing means such as a stirrer, a homogenizer, a colloid mill, a flow jet mixer, or an ultrasonic device; followed by adding the dispersion to a hydrophilic colloid layer solution. There may be inserted a step of removing the dispersing solution or, at the same time of the dispersion, the low boiling organic solvent as well.
- a hydrophilic binder such as an aqueous gelatin solution
- a dispersing means such as a stirrer, a homogenizer, a colloid mill, a flow jet mixer, or an ultrasonic device
- the high boiling solvent to be used may include organic solvents having a boiling point of 150°C or more such as phenol derivatives, alkyl phthalates, phosphates, citrates, benzoates, alkyl amides, aliphatic acid esters and trimesic acid esters which do not react with an oxidized product of a developing agent.
- organic solvents having a boiling point of 150°C or more such as phenol derivatives, alkyl phthalates, phosphates, citrates, benzoates, alkyl amides, aliphatic acid esters and trimesic acid esters which do not react with an oxidized product of a developing agent.
- the organic solvent which has a low boiling point and is substantially soluble in water may include ethyl acetate, propyl acetate, butyl acetate, butanol, chloroform, carbon tetrachloride, nitromethane, nitroethane, benzene.
- dye-forming couplers colored couplers, DIR couplers, DIR compounds, image stabilizers, color fog preventive agents, ultraviolet absorbents, brightening agents have an acid radical substituent such as carboxylic acid and sulfonic acid, they can be introduced in a hydrophilic colloid as an alkaline aqueous solution.
- anionic surface active agents As a dispersion auxiliary used when hydrophobic compounds are dissolved in a solvent comprising a low boiling solvent alone or in combination with a high boiling solvent and dispersed in water using a mechanical means or ultrasonic wave, there can be used anionic surface active agents, nonionic surface active agents, cationic surface active agent and amphoteric surface active agents.
- a color fog preventive agent can be used in order to prevent color turbidity from being caused by the migration of an oxidized product or an electron migrator of a developing agent between emulsion layers (between the same color sensitive layers and/or different color sensitive layers) of the light-sensitive material, or to prevent the deterioration of sharpness or formation of overly conspicuous graininess.
- the color fog preventive agent may be contained in the emulsion layers per se, or may be contained in an intermediate layer provided between emulsion layers.
- An image stabilizing agent for preventing the deterioration of dye images can be used in the light-sensitive material.
- Preferably usable compounds include the compounds disclosed in RD No. 17643, Paragraph VII-J.
- Hydrophilic colloid layers such as protective layers and intermediate layers of a light-sensitive material may contain an ultraviolet absorbent in order to prevent fog due to static discharge caused by charging of the light-sensitive material by friction, and to prevent deterioration of images due to ultraviolet rays.
- a formalin scavenger can be used in the light-sensitive material in order to prevent deterioration of the magenta dye-forming couplers due to the presence of formalin during the preservation of light-sensitive materials.
- an ultraviolet absorbent and so forth are contained in the hydrophilic colloid layers of the light-sensitive material, they may be mordanted by using a mordant such as a cationic polymer.
- Compounds such as development accelerators and development restrainers that may change the developing properties, or bleach accelerators can be added to the silver halide emulsion layers and/or other hydrophilic colloid layers of the light-sensitive material.
- the compounds preferably usable as development accelerators include the compounds disclosed in RD No. 17643, Paragraphs XXI-B to -D, and preferable development restrainers include the compounds disclosed in RD No. 17643, Paragraph XXI-E.
- a black and white development accelerator and/or a precursor thereof may also be used.
- the emulsion layers of the light-sensitive photographic material may contain polyalkylene oxides or derivatives thereof such as ethers, esters or amines; thioether compounds; thiomorpholines; quaternary ammonium compounds; urethane derivatives; urea derivatives; imidazole derivatives.
- polyalkylene oxides or derivatives thereof such as ethers, esters or amines; thioether compounds; thiomorpholines; quaternary ammonium compounds; urethane derivatives; urea derivatives; imidazole derivatives.
- a brightening agent can be used for the purpose of increasing the whiteness of the white ground and also making less conspicuous the coloring of the white ground portion.
- Compounds preferably usable as the brightening agent are disclosed in RD No. 17643, Paragraph V.
- the light-sensitive material can be provided with auxiliary layers such as a filter layer, an anti-halation layer and an anti-irradiation layer.
- auxiliary layers such as a filter layer, an anti-halation layer and an anti-irradiation layer.
- These layers and/or the emulsion layers may contain a dye that may be flowed out of the light-sensitive material, or bleached, during the development processing.
- a dye may include oxonol dyes, hemioxonol dyes, styryl dyes, merocyanine dyes, cyanine dyes, azo dyes.
- a matte agent can be added for the purpose of decreasing the gloss of the light-sensitive material, improving the writing performance, and preventing mutual sticking of light-sensitive materials.
- Any such agents can be used, for example, silicon dioxide, titanium dioxide, magnesium dioxide, aluminum dioxide, barium sulfate, calcium carbonate, polymers of acrylic acid and methacrylic acid and esters thereof, polyvinyl resins, polymers of polycarbonates and styrene and copolymers thereof.
- the matte agent may preferably have a grain size of 0.05 11. to 10 ⁇ . It is added preferably in an amount of 1 to 300 mg/m 2.
- a lubricant can be added to the light-sensitive material in order to decrease sliding friction.
- An antistatic agent aiming at preventing static charge can be added to the light-sensitive material.
- the antistatic agent may be used in an antistatic layer provided on the side of the support where no emulsion layer is laminated, or may be used in an emulsion layer and/or a protective colloid layer other than the emulsion layers provided on the side of a support on which emulsion layers are laminated.
- Antistatic agents preferably used are the compounds disclosed in RD No. 17643, Paragraph XIII.
- a variety of surface active agents can be used for the purpose of improving coating performance, preventing static charge, improving slidability, emulsification dispersion, preventing adhesion, or improving photographic performances (such as development acceleration, hardening and sensitization).
- the support used in the light-sensitive material of this invention may include flexible reflective supports made of paper or synthetic paper laminated with a-olefin polymers (for example, polyethylene, polypropylene, an ethylene/butene copolymer); films comprising semisynthetic or synthetic high molecular compounds such as cellulose acetate, cellulose nitrate, polystyrene, polyvinyl chloride, polyethylene terephthalate, polycarbonate and polyamide; flexible supports comprising these films provided with a reflection layer; glass; metals; ceramics.
- a-olefin polymers for example, polyethylene, polypropylene, an ethylene/butene copolymer
- films comprising semisynthetic or synthetic high molecular compounds such as cellulose acetate, cellulose nitrate, polystyrene, polyvinyl chloride, polyethylene terephthalate, polycarbonate and polyamide
- flexible supports comprising these films provided with a reflection layer; glass; metals; ceramics
- the light-sensitive material may be applied directly on the surface of the support having been subjected to corona discharging, ultraviolet irradiation, flame treatment, or through interposition of at least one subbing layer for improving adhesion, antistatic performance, dimensional stability, abrasion resistance, hardness, anti-halation performance, friction characteristics and/or other characteristics of the surface of the support.
- a thickening agent may be used in order to improve the coating performance.
- a hardening agent which has a fast reactivity and therefore may cause gelation before coating if previously added in a coating solution, it is preferably mixed just before the coating by a static mixer.
- Particularly useful coating method may include extrusion coating and curtain coating by which two or more layers can be simultaneously coated, but packet coating is also useful for certain purposes. Coating rate can be arbitrarily selected.
- surface active agents there is no particular limitation on the possible surface active agents, but there may be added, for example, natural surface active agents such as saponin; nonionic surface active agents such as alkylene oxides, glycerols and glycidols; cationic surface active agents such as higher alkyl amines, quaternary ammonium salts, pyridines and other hetero cyclic rings, and phosphoniums or sulfoniums; anionic surface active agents containing an acidic group such as carboxylic acid, sulfonic acid, phosphoric acid, sulfate and phosphate; and amphoteric surface active agents such as amino acids, aminosulfonic acids, and sulfate or phosphate of amino alcohols.
- fluorine type surface active agents for example, it is also possible to use fluorine type surface active agents.
- color photographic processing is carried out after exposure.
- the color processing is carried out according to steps comprising a color developing step, a bleaching step, a fixing step, a water washing step, and optionally a stabilizing step.
- the processing step using a bleaching solution and the processing step using a fixing solution can be replaced by a bleach-fixing step using a combined bleaching and fixing solution. It is also possible to carry out a monobath processing which employs a combined developing and bleaching and fixing solution that can carry out color developing, bleaching and fixing in one bath.
- the processing may further comprise a pre-hardening step, a neutralizing step, a stop fixing step and a post-hardening step.
- a color developing agent or a precursor thereof may be contained in advance in the materials in order to perform, in place of the color developing step, activator processing which carries out developing in an activator solution. Also, the activator processing can be applied in the monobath process.
- the color developing solution generally comprises an alkaline aqueous solution containing a color developing agent.
- the color developing agent is an aromatic primary amine color developing agent, including aminophenol type and p-phenylenediamine type derivatives.
- These color developing agents can be used in the form of salts of organic acids and inorganic acids, and there can be used, for example, hydrochloride, sulfate, p-toluenesulfonate, sulfite, oxalate, benzenesulfonate.
- These compounds may be used generally in a concentration of about 0.1 to 30 g per 1 liter of a color developing solution, preferably in concentration of about 1 to 15 g per 1 liter. An amount less than 0.1 g may result in insufficient color development density.
- the above color developing agent may be used alone or in combination with one or more kinds of them. Further, the above color developing agent may be incorporated into the color photographic material per se. In such a case, the light-sensitive silver halide color photographic material can also be processed by using an alkaline solution (an activator) in place of the color developing solution, and can be bleach-fixed immediately after the processing by the alkaline solution.
- an alkaline solution an activator
- the addition amount to the light-sensitive silver halide photographic material refers to an amount per 1 m 2 unless particularly mentioned. Also, the amounts of silver halide and colloidal silver are shown by calculating them in terms of silver.
- Antihalation layer (HC-1)
- a gelatin layer containing black colloidal silver is provided.
- Sensitizing dye I ... 6 x 10- 5 mole per 1 mole of silver.
- Sensitizing dye II ...1.0 x 10- 5 mole per 1 mole of silver.
- Cyan coupler (C-1) ... 0.06 mole per 1 mole of silver.
- Colored cyan coupler (CC-1) ... 0.003 mole per 1 mole of silver.
- DIR compound (D-12) ... 0.0015 mole per 1 mole of silver.
- DIR compound (D-15) ... 0.004 mole per 1 mole of silver.
- Sensitizing dye I ... 3 x 10- 5 mole per 1 mole of silver.
- Sensitizing dye II ...1.0 x 10- 5 mole per 1 mole of silver.
- Cyan coupler (C-1) ... 0.02 mole per 1 mole of silver.
- Colored cyan coupler (CC-1) ... 0.0015 mole per 1 mole of silver.
- DIR compound (D-15) ... 0.001 mole per 1 mole of silver.
- a gelatin layer same as the second layer.
- Emulsion I Coated silver weight: 1.3 g/m 2 .
- Sensitizing dye III ... 2.5 x 10- 5 mole per 1 mole of silver.
- Sensitizing dye IV ...1.2 x 10- 5 mole per 1 mole of silver.
- Magenta coupler (M-1) ... 0.9 mole per 1 mole of silver.
- Colored magenta coupler (CM-1) ... 0.017 mole per 1 mole of silver.
- DIR compound (D-12) ... 0.0010 mole per 1 mole of silver.
- DIR compound (D-17) ... 0.0030 mole per 1 mole of silver.
- Emulsion II ... Coated silver weight: 1.1 g/m 2 .
- Sensitizing dye III ... 1.5 x 10- 5 mole per 1 mole of silver.
- Sensitizing dye IV ...1.0 x 10- 5 mole per 1 mole of silver.
- Magenta coupler (M-1) ... 0.020 mole per 1 mole of silver.
- Colored magenta coupler (CM-1) ... 0.004 mole per 1 mole of silver.
- DIR compound (D-12) ... 0.0010 mole per 1 mole of silver.
- Sensitizing dye V ... 1.3 x 10- 5 mole per 1 mole of silver.
- Yellow coupler (Y-1) ... 0.29 mole per 1 mole of silver.
- Sensitizing dye V ... 1.0 x 10- 5 mole per 1 mole of silver.
- Yellow coupler (Y-1) ... 0.08 mole per 1 mole of silver.
- a gelatin layer comprising silver iodobromide (Agl: 1 mole %; average grain size: 0.07 ⁇ m), having a coated silver weight of 0.5 g/m 2 , and containing ultraviolet absorbents UV-1 and UV-2.
- Twelfth layer Second protective layer (Pro-2)
- a gelatin hardener (H-1) and a surface active agent were added in addition to the above compositions.
- the processing solution used in each of the processing steps had the following formulation.
- the amount of couplers added is indicated in terms of mole % per 1 mole of silver halide; the numerals in parentheses in the column of the amount indicate proportional percentage (%) to all the couplers in the corresponding layer; MTF indicates a relative value when Sample 1 was assumed to be 100; RMS is indicated by a 1,000 time value of the standard deviation in the density value fluctuation caused when a density point of the minimum density + 0.7 was scanned by use of a microdensitometer having an open scanning area of 250 ⁇ m 2. Accordingly, the values indicate that, the larger the MTF is and the smaller the RMS is, the higher image quality has been achieved.
- magenta coupler comprises pyrazolotriazole type magenta coupler and the colored magenta coupler is contained in the proportion of 17 % or more of the amount of all couplers in the layer containing the same.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Silver Salt Photography Or Processing Solution Therefor (AREA)
Description
- This invention relates to a light-sensitive silver halide photographic material, and, particularly, to a light-sensitive silver halide color photographic material having improved sharpness and graininess.
- In recent years, image quality of light-sensitive silver halide photographic materials (hereinafter "light-sensitive material") has been remarkably improved, but sharpness and graininess can not necessarily be said to have been sufficiently improved. In particular, in a print enlarged from a small format (such as 110 film and disc film) negative type color film, coarseness in images (or graininess) and also poor sharpness make the level of image quality of the print extremely low. This is because the graininess and the sharpness of the negative type films have not been made suitable for high magnification prints.
- Conventionally, there have been known a variety of techniques for improving sharpness. They include a technique for preventing light scattering, and a technique for improving the edge effect.
- The latter technique includes a method employing a so-called DIR coupler, and a method employing an unsharp mask. Of these, the method employing an unsharp mask may sometimes cause the sharpness to be lowered and the graininess to be deteriorated so as to give a limit in practical use. The method employing the DIR coupler is well known, and useful DIR couplers include the compounds disclosed in Japanese Patent Publication No. 34933/1980, Japanese Unexamined Patent Publication No. 93344/1982, U.S. Patents No. 3,227,554, No. 3,615,506, No. 3,617,291 and No. 3,701,783. However, when the edge effect is strengthened by using the DIR couplers, the MTF (modulation transfer function) is improved at a lower frequency region, but the improvement of MTF at a higher frequency region, which is necessary for achieving a high enlargement magnification, can not be expected, because of accompanying undesirable side effects such as the lowering of sensitivity and the lowering of density. It is possible to minimize the fall of sensitivity and density if DIR couplers such as diffusible DIR and timing DIR couplers having so-called long distance effectiveness are used, but MTF may be improved at a region shifted to a lower frequency, and there will not be so great an improvement in sharpness at the high enlargement magnification.
- On the other hand, as a technique for preventing light scattering, it has been known to add a coloring substance, decrease the amount of silver halide, or make the film thinner. Drastic reduction of coated silver weight may decrease the number of color developing spots and cause deterioration of graininess. It is also possible to reduce the amount of gelatin, coupler or coupler solvent in a coating solution, but any of these measures may cause deterioration of coating performance or lowering of color density and so have their own limits.
- Attempts have been made to suppress light scattering and increase sharpness by adding a colouring substance as mentioned above, but no satisfactory result has occurred.
- DE 2643965 discloses a light-sensitive colour photographic material comprising 5-pyrazolone type magenta couplers which are said to produce sufficient colour correction effect without adversely affecting the graininess of the image, even when the developing time is shorter.
- In recent years, pyrazolotriazole type couplers have attracted notice as magenta couplers. Such couplers show not only so little secondary absorption as to be advantageous in the colour reproducibility, but also such good colour developing performance as to need less coupler. Accordingly, they have been found to be very advantageous for making a film thinner and effective for improving sharpness.
- However, it was found that the pyrazolotriazole type couplers can not be expected to have an improving effect in respect of graininess.
- Accordingly, in the system employing the pyrazolotriazole type couplers, attempts have been made to develop a technique for improving graininess.
- An object of this invention is to provide a light-sensitive silver halide colour photographic material which has not only remarkably improved colour reproducibility and sharpness, but also improved graininess.
- According to this invention there is provided a light-sensitive silver halide colour photographic material having at least one mono-disperse light-sensitive silver halide emulsion layer containing a pyrazolotriazole type magenta coupler and a coloured magenta coupler, wherein the layer containing the pyrazolotriazole type magenta coupler and the coloured magenta coupler comprises 17 mole % or more of said coloured magenta coupler based on the amount of all couplers in said layer.
-
- In the above Formula (I) and (II), R1 and R2 each represent an optionally substituted group, an aryl group or a hetero ring, and these alkyl group, aryl group and hetero ring may be linked through an oxygen atom, a nitrogen atom or an sulfur atom. The above alkyl group, aryl group and hetero ring may also be linked through a linking group selected from the following groups: acylamino, carbamoyl, sulfonamide, sulfamoylcarbonyl, carbonyloxy, oxycarbonyl, ureido, thioureido, thioamide, sulfone and sulfonyloxy.
- The alkyl group represented by R1 or R2 includes a straight chain or branched alkyl group having 1 to 20 carbon atoms (for example, methyl, ethyl, propyl, i-propyl, sec-butyl, n-butyl, t-butyl, n-octyl, t-octyl, dodecyl, octadecyl). These groups may further have a substituent (for example, a halogen atom, nitro, cyano, alkoxy, aryl, oxy, amino, acylamino, carbamoyl, sulfonamide, sulfamoyl, imide, alkylthio, arylthio, aryl, alkoxycarbonyl and acyl). Specifically, the group may include chloromethyl, bromomethyl, trichloromethyl, ,8-nitroethyl, o-cyanobutyl, methoxymethyl, ethoxyethyl, phenoxyethyl, N-methylaminoethyl, dimethylaminobutyl, acetaminoethyl, benzoylamino, propyl, ethyl carbamoylethyl, methanesulfonamide ethyl, ethyl thioethyl, p-methoxyphenylthiomethyl, phenylmethyl, p-chlorophenylmethyl, naphthylethyl, ethoxycarbonylethyl, acetylethyl.
- The aryl group includes a phenyl group and a naphthyl group, and may have a substituent including the substituents for the above alkyl group.
- The hetero ring includes a 5- or 6-membered ring having at least any one of a nitrogen atom, an oxygen atom and a sulfur atom, and may be aromatic or may not be aromatic. For example, it includes pyridyl, quinolyl, pyrolyl, morpholyl, furanyl, tetrahydrofuranyl, pyrazolyl, triazolyl, tetrazolyl, thiazolyl, oxazolyl, imidazolyl, thiadiazolyl. These may also have a substituent corresponding to the substituents for the alkyl group.
- R1 and R2 may be linked to each other to form a hydrocarbon ring (for example, cyclopropyl, cyclopentyl, cyclohexyl, cyclohexenyl).
- The compound wherein the alkyl group, the aryl group or the hetero ring represented by R1 or R2 is linked to each other through the linking group mentioned above or the nitrogen atom, oxygen atom or sulfur atom may include, for example, the following:
Here, R2' represents an alkyl group, an aryl group or a hetero ring; R2'' and R2''' each represent a hydrogen atom, an alkyl group, an aryl group or a hetero ring. - When the hetero ring group is a pyrazolotriazole type compound, a bis type pyrazolotriazole type compound is formed, which is of course a magenta coupler included in this invention.
-
- In the above formulas, Z represents a hydrogen atom or a group which may be eliminated when a dye is formed through coupling with an oxidized product of an aromatic primary amine color developing agent.
- Specifically, it may include, for example, a halogen atom, an alkoxy group, an aryloxy group, an acyloxy group, an arylthio group, an alkylthio group, and a
(wherein Z2 represents a group of atoms necessary for the formation of a 5- or 6-membered ring, said atoms being carbon, oxygen, nitrogen or sulfur atoms together with the nitrogen atom) group. - Examples thereof are shown below:
- Halogen atoms: Chlorine, bromine and fluorine.
- Alkoxy group: An ethoxy group, a benzyloxy group, a methoxyethyl carbamoylmethoxy group, a tetradecyl carbamoylmethoxy group.
- Aryloxy group: A phenoxy group, a 4-methoxyphenoxy group, a 4-nitrophenoxy group.
- Acyloxy group: An acetoxy group, a myristoyloxy group, a benzoyloxy group.
- Arylthio group: A phenylthio group, a 2-butoxy-5-octylphenylthio group, a 2,5-dihexyloxyphenylthio group.
- Alkylthio group: A methylthio group, an octylthio group, a hexadecylthio group, a benzylthio group, a 2-(diethylamino)ethylthio group, an ethoxycarbonylmethylthio group, an ethoxyethylthio group, a phenox- yethylthio group.
group: wherein Z2 represents a group of atoms which completes a 5- or 6- membered ring containing at least one carbon, nitrogen, oxygen or sulfur together with the nitrogen; Examples of the group include A pyrazolyl group, an imidazolyl group, a triazolyl group, a tetrazolyl group. -
- The colored magenta coupler according to this invention preferably includes the compound represented by the following formula:
- Formula (III): Cp-N = N-R3
- In the formula, Cp represents a magenta coupler residual group (provided, however, that the azo group is attached to an active site of the magenta coupler), and R3 represents an aryl group (including the group having a substituent).
- The magenta coupler residual group represented by Cp preferably includes 5-pyrazolone magenta couplers and coupler residual groups derived from pyrazolotriazole type magenta couplers, and particularly preferably includes the one represented by Formula (IV) shown below:
- Formula (IV):
- In the formula, R4 represents an aryl group; R5 represents an acylamino group, an anilino group, a ureido group or a carbamoyl group and preferably represents an anilino group; and R4 and R5 may each be substituted.
- The aryl group represented by R4 is preferably a phenyl group. The substituent for the aryl group represented by R4 may include, for example, a halogen atom (for example, fluorine, chlorine, bromine), an alkyl group (for example, methyl, ethyl), an alkoxy group (for example, methoxy, ethoxy), an aryloxy group (for example, phenyloxy, naphthyloxy), an acylamino group (for example, benzamide, a-(2,4-di-t-amyl- phenoxy)butylamide), a sulfonylamino group (for example, benzenesulfonamide, n-hexadecansulfonamide), a sulfamoyl group (for example, methylsulfamoyl, phenylsulfamoyl), a carbamoyl group (for example, an n-butylcarbamoyl group, a phenyl carbamoyl group). a sulfonyl group (for example, methylsulfonyl, n-dodecylsulfonyl, benzenesulfonyl), an acyloxy group, an ester group, a carboxyl group, a sulfo group, a cyano group, or a nitro group.
- Specific examples of R4 are phenyl, 2,4,6-trichlorophenyl, pentachlorophenyl, pentafluorophenyl, 2,4-6-trimethylphenyl, 2-chloro-4,6-dimethylphenyl, 2,6-dichloro-4-methylphenyl, 2,4-dichloro-6-methylphenyl, 2,4-dichloro-6-methoxylphenyl, 2,6-dichloro-4-methoxylphenyl, or 2,6-dichloro-4-[a-(2,4-di-t-amylphenoxy)-acetamide]phenyl.
- The acylamino group represented by R5 may include, for example, pivaloylamino, n-tetradecanamide, a-(3-pentadecylphenoxy)butylamide, 3-[a-(2,4-di-t-amylphenoxy)acetamido]benzamide, benzamide, 3-ac- etoamidobenzamide, 3-(3-n-dodecylsuccinimide)benzamide, or 3-(4-n-dodecyloxybenzenesulfonamide)-benzamide.
- The anilino group represented by R5 may include, for example, anilino, 2-chloroanilino, 2,4-dich- loroanilino, 2,4-dichloro-5-methoxyanilino, 4-cyanoanilino, 2-chloro-5-[a-(2,4-di-t-amylphenoxy)butylamido]-anilino,2-chloro-5-(3-octadecenylsuccinimide)anilino, 2-chloro-5-n-tetradecanamidoanilino, 2-chloro-5-[a-(3-t-butyl-4-hydroxyphenoxy)tetradecanamido]anilino, or 2-chloro-5-n-hexadecansulfoamidoanilino.
- The ureido group represented by R5 may include, for example, methylureido, phenylureido, or 3-[a-(2,4-di-t-amylphenoxy)butylamido]phenylureido.
- The carbamoyl group represented by R5 may include, for example, n-tetradecylcarbamoyl, phenylcarbamoyl, or 3-[a-(2,4-di-t-amylphenoxy)acetamide]phenylcarbamoyl.
- The aryl group represented by R3 is preferably a phenyl group or a naphthyl group.
- The substituent for the aryl group represented by R1 may include, for example, a halogen atom, an alkyl group, an alkoxy group, an aryloxy group, a hydroxyl group, an acyloxy group, a carboxyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, an alkylthio group, an arylthio group, an alkylsulfonyl group, an arylsulfonyl group, an acyl group, a sulfonamide group, a carbamoyl group, or a sulfamoyl group.
- Particularly preferably substituents include an alkyl group, a hydroxyl group, an alkoxy group and acylamino group.
-
- The colored magenta coupler according to this invention can be synthesized following methods disclosed in, for example, Japanese Unexamined Patent Publications No. 123625/1974, No. 131448/1974, No. 42121/1977, No. 102723/1977, No. 52532/1979, No. 1726/1983, U.S. Patents No. 2,763,552, No. 2,801,171, No. 3,519,429.
- The pyrazolotriazole type magenta coupler and the colored magenta coupler of this invention can be used in any layer or layers of the above silver halide emulsion layers, but, in general, they are used in a green-sensitive silver halide emulsion layer. The green sensitive silver halide emulsion layer preferably comprises two or more emulsion layers When the green-sensitive silver halide emulsion layer comprises two or more emulsion layers, the couplers are required to be used in at least one of the emulsion layers, and preferably used in two or more of the emulsion layers. When the green-sensitive silver halide emulsion layer comprises two or more emulsion layers which are different in sensitivity, the couplers should preferably be used in at least the most sensitive layer.
- The pyrazolotriazole type magenta coupler of this invention may be used usually in the range of 1 x 10-3 mole to 1 mole, preferably 1 x 10-2 mole to 8 x 10-1, per 1 mole of silver halide in the monodisperse light-sensitive silver halide emulsion layer. However, in the interest of the sharpness, it is preferably used in an amount of 50 mole % or more, more preferably from 60 to 80 mole %, based on the amount of all couplers in the layer in which the coupler is added.
- Also, the colored magenta coupler of this invention is required to be used in an amount of 17 mole % or more, preferably not less than 20 mole % and less than 50 mole %, more preferably not less than 30 mole % and less than 50 mole %, based on the amount of all couplers in a layer in which the coupler is present.
- The layer containing the magenta coupler and the colored magenta coupler of this invention may contain magenta couplers not of this invention. However, the magenta couplers not of this invention should generally be present in an amount of less than 20 mole % based on the amount of all couplers.
- The magenta couplers that can be used together in the green-sensitive silver halide emulsion layer of this invention include pyrazolone compounds, indazolone compounds, cyanoacetyl compounds and pyrazoloazole compounds not of this invention. In particular, pyrazolone compounds can be used advantageously.
- Specific examples of usable magenta couplers include those disclosed in Japanese Unexamined Patent Publications No. 111631/1974, No. 29236/1981, No. 94752/1982, Japanese Patent Publication No. 27930/1973, U.S. Patents No. 2,600,788, No. 3,062,653, No. 3,408,194, No. 3,519,429, and Research Disclosure No. 12443.
- When adding the magenta coupler of this invention and the other couplers, they can be incorporated into the green-sensitive silver halide emulsion layer by an oil protection dispersion method or a latex dispersion method. If the couplers are alkali soluble, they may be added as an alkaline solution.
- From the viewpoints of color reproducibility, sharpness and graininess, it is preferable to use a DIR compound as well.
- Typical DIR compounds usable with this invention include DIR couplers wherein a group capable of forming a compound showing a development-restraining action when eliminated from an active site of a coupler, is introduced into the active site, which are disclosed, for example, in British Patent No. 935,454, U.S. Patents No. 3,227,554, No. 4,095,984, No. 4,149,886, Japanese Unexamined Patent Publication No. 151944/1982. The above DIR couplers have a property that, when coupled with an oxidized product in a color developing agent, a mother nucleus of the coupler forms a dye and releases a development restrainer. Also included are compounds that can release a development restrainer but form no dye when coupled with an oxidized product in a color developing agent, as disclosed in U.S. Patents No. 3,652,345, No. 3,928,041, No. 3,958,993, No. 3,961,959 and No. 4,052,213, Japanese Unexamined Patent Publications No. 110529/1978, No. 13333/1979, No. 161237/1980.
- Also usable with this invention are timing DIR compounds which, when reacted with an oxidized product in a color developing agent, the mother nucleus forms a dye or a colorless compound and the eliminated timing group releases a development restrainer by an intramolecular nucleophilic substitution reaction or elimination reaction, as disclosed in Japanese Unexamined Patent Publications No. 145135/1979, No. 114946/1981 and No. 154234/1982.
- Also usable with this invention are timing DIR compounds in which, when reacted with an oxidized product in a color developing agent, the timing group as mentioned above becomes bonded to the coupler mother nucleus capable of forming a perfectly diffusible dye.
- Typical examples of the DIR compounds are shown below.
-
- The DIR compounds that can be used in combination with this invention are preferably added to a light-sensitive silver halide emulsion layer.
- Two or more kinds of the DIR compounds may be contained in the same layer, or, alternatively, DIR compounds of the same kind may be contained in different layers.
- In general, these DIR compounds are used preferably in an amount of 2 x 10-4 to 1 x 10-1, more preferably 1 x 10-3 to 2 x 10-2, per mole of silver in the emulsion layer.
- For the purpose of improving image quality, it is preferable to use timing DIR compounds, or diffusible DIR compounds wherein the released restraining group is migratory.
- In a silver halide emulsion used in this invention, any silver halide may be used including silver bromide, silver iodobromide, silver iodochloride, silver chlorobromide, silver chloroiodobromide and silver chloride which are used in ordinary silver halide emulsions, but preferably silver bromide, silver iodobromide and silver chloroiodobromide.
- Silver halide grains used in the silver halide emulsions may be obtained by an acidic method, a neutral method or an ammoniacal method. The grains may be allowed to grow at one time, or grow after seed grains have been formed. The method of preparing the seed grains and the method of growing them may be same or different.
- The silver halide emulsion may be obtained by simultaneously mixing halide ions and silver ions, or by preparing an aqueous solution in which either one of them is present and then mixing into it the other of them. Alternatively, taking into account the critical growth rate of silver halide crystals, it may be formed by successively simultaneously adding halide ions and silver ions while controlling pH and pAg in the mixing vessel. By such procedures, there can be obtained silver halide grains having regular crystal form and substantially uniform grain size. Halogen formulation in a grain may be varied by employing a conversion method in an arbitrary step during formation of AgX.
- During the growth of silver halide grains, silver halide solvents such as ammonia, thioether and thiourea can be used.
- In the course of formation and/or growth of the silver halide grains, metal ions may be added to the grains by use of at least one cadmium salt, zinc salt, lead salt, thallium salt, iridium salt (including a complex salt), rhodium salt (including a complex salt), or iron salt (including a complex salt) in order to incorporate any of these metal elements on the inside of the grains and/or the surface of the grains, and also reduction sensitizing nuclei may be introduced on the inside of the grains and/or the surface of the grains by placing the grains in a suitable reductive atmosphere.
- The silver halide emulsion may be either one from which unnecessary soluble salts have been removed after completion of the growth of silver halide grains, or one from which they have not been removed. When the salts are removed, they can be removed according to the method disclosed in Research Disclosure (hereinafter simply "RD") No. 17643, Paragraph II.
- The silver halide grains may be any of those having uniform distribution of silver halide formulation in a grain, or core/shell grains having different silver halide formulation between the inside portion and the surface layer of a grain.
- The silver halide grains may be grains such that a latent image is formed chiefly on the surface, or grains such that a latent image is formed chiefly in the inside of a grain.
- The silver halide grains may have any regular crystal form such as a cube, an octahedron and a tetradecahedron, or those having an irregular crystal form such as a sphere and a plate. In these grains, there may also be used those having any ratio of the {100} face to the {111} face. Also, they may have a composite form of these crystal forms, or comprise a mix of grains having various crystal forms.
- As for the size of the silver halide grains, those having grain size of 0.05 to 30 µ, preferably 0.1 to 20 µ, may be used.
- The silver halide emulsion has a narrow grain size distribution (hereafter called a "monodispersed emulsion"). The monodispersed emulsion herein mentioned refers to an emulsion having a value of 0.20 or less when the standard deviation of grain size distribution is divided by the average grain size (the grain size refers to the diameter of a grain in the case of a spherical silver halide, and, in the case of a grain having a shape other than the spherical shape, it refers to the diameter calculated by converting a projected image of the grain into a round image having the same area) and it may be used alone or as a mixture of several kinds. Also, the polydispersed emulsion and the monodispersed emulsion may by used by mixing them.
- The silver halide emulsion may be used by mixing two or more kinds of silver halide emulsions which have been separately formed.
- The silver halide emulsion can be chemically sensitized according to conventional methods. Namely, a sulfur sensitization method, a selenium sensitization method, a reduction sensitization method and a noble metal sensitization method using noble metal compounds such as gold and so forth can be used alone or in combination.
- The silver halide emulsion can be optically sensitized to a desired wavelength region by using a dye known as a sensitizing dye in the field of photography. The sensitizing dye may be used alone, or may be used in combination with two or more of the dyes. Together with the sensitizing dye, a dye having itself no spectral sensitization effect, or a supersensitizing agent which is a compound substantially absorbing no visible light and capable of strengthening the sensitizing action of the sensitizing dye, may be contained in the emulsion.
- As the sensitizing dye, there may be used cyanine dyes, merocyanine dyes, composite cyanine dyes, composite merocyanine dyes, holopolar cyanine dyes, hemicyanine dyes, sterile dyes and hemioxanol dyes.
- Particularly useful dyes are cyanine dyes, merocyanine dyes and composite merocyanine dyes.
- To the silver halide emulsion, a compound known as an antifoggant or a stabilizer in the field of photography may be added during chemical ripening, after completion of chemical ripening and/or before coating of a silver halide emulsion after completion of chemical ripening, for the purpose of preventing a light-sensitive material from becoming fogged during manufacturing steps, during preservation or during photographic processing, or for the purpose of keeping the photographic performance stable.
- As a binder (or protective colloid) for the silver halide emulsion, it is advantageous to use gelatin, but it is also possible to use hydrophilic colloids such as gelatin derivatives, a graft polymer of gelatin with other macromolecules, other proteins, sugar derivatives, cellulose derivatives and synthetic hydrophilic high molecular substances such as homopolymers or copolymers.
- Photographic emulsion layers and other hydrophilic colloid layers of the light-sensitive material in which the silver halide emulsion of this invention is used can be hardened by using one or more kinds of hardening agents that can crosslink binder (or protective colloid) molecules to enhance the film strength. The hardening agents can be added in such an amount that a light-sensitive material can be hardened to the extent that no hardening agent is required to be added in the processing solution. It, however, is also possible to add the hardening agent in the processing solution.
- For example, there can be used, alone or in combination, aldehydes (such as formaldehyde, glyoxal and glutaraldehyde), N-methylol compounds (such as dimethylol urea and methyloldimethylhydantoin), dioxane derivatives (such as 2,3-dihydroxydioxane), active vinyl compounds (such as 1,3,5-triacryloyl- hexahydro-s-triazine and 1,3-vinylsulfonyl-2-propanol), active halogen compounds (such as 2,4-dichloro-6-hydroxy-s-triazine), mucohalogeno-acids (such as mucochloric acid and mucophenoxychloric acid).
- A plasticizer can be added to the silver halide emulsion layers and/or other hydrophilic colloid layers of the light-sensitive material for the purpose of enhancing flexibility. Preferable plasticizers include the compounds disclosed in RD No. 17643, Paragraph XII-A.
- For the purpose of improving dimensional stability a dispersion (latex) of a water insoluble or hardly soluble synthetic polymer can be contained in the photographic emulsion layers and other hydrophilic colloid layers.
- For example, there can be used, alone or in combination, alkyl acrylate or methacrylate, alkoxyalkyl acrylate or methacrylate, glycidyl acrylate or methacrylate, acrylamide or methacrylamide, vinyl esters (such as vinyl acetate), acrylonitrile, olefin, or styrene; or polymers containing monomer components comprising a combination of these with acrylic acid, methacrylic acid, o:,,8-unsaturated dicarboxylic acid, hydroxyalkyl acrylate or methacrylate, sulfoalkyl acrylate or methacrylate, styrene sulfonic acid.
- In color development processing, a dye-forming coupler capable of forming a dye through a coupling reaction with an oxidized product of an aromatic primary amine developing agent (for example, p-phenylenediamine derivative, aminophenol derivative) is used in the emulsion layers of the light-sensitive material. In the usual case, the dye forming coupler is selected in a manner such that there is formed a dye capable of absorbing spectral light in a light-sensitive emulsion layer, and thus a yellow dye-forming coupler is used in a blue-sensitive emulsion layer; a magenta dye-forming coupler, in a green-sensitive emulsion layer; and a cyan dye-forming coupler, in a red-sensitive emulsion layer. However, the light-sensitive silver halide color photographic material may also be prepared by using the couplers in a manner different from the above combination, depending on the purpose.
- These dye-forming couplers may preferably have a group having 8 or more of carbon atoms, which is called a ballast group and makes the couplers non-diffusible. These dye-forming couplers may be either four equivalent ones wherein silver ions of 4 molecules must be reduced in order for a dye of 1 molecule to be formed, or two equivalent ones wherein silver ions of 2 molecules may only be reduced. The dye-forming couplers may contain a compound that can release a photographically useful substance such as a development accelerator, a bleach accelerator, a developer, a silver halide solvent, a toning agent, a hardening agent, a fogging agent, an antifoggant, a chemical sensitizer, a spectral sensitizer or a desensitizer, through coupling with an oxidized product of a developing agent.
- A colorless coupler (also called a competing coupler) which performs a coupling reaction with an oxidized product of an aromatic primary amine developing agent, but does not form any dye, can be also used in combination with the dye-forming couplers.
- As the yellow dye-forming coupler, known acylacetoanilido type couplers can be preferably used. Among them, benzoyl acetoanilide type compounds and pivaloyl acetoanilide type compounds are preferable. Specific examples of usable yellow couplers include those disclosed, for example, in U.S. Patents No. 2,875,057, No. 3,265,506, No. 3,408,194, No. 3,551,155, No. 3,582,322, No. 3,725,072 and No. 3,891,445; German Patent No. 1,547,868, German Patent Application Publications No. 2,219,917, No. 2,261,361 and No. 2,414,006, British Patent No. 1,425,020; Japanese Patent Publication No. 10783/1976; Japanese Unexamined Patent Publications No. 26133/1972, No. 73147/1973, No. 6341/1975, No. 87650/1975, No. 123342/1975, No. 130442/1975, No. 21827/1976, No. 102636/1976, No. 82424/1977, No. 115219/1977 and No. 95346/1983.
- As the cyan dye-forming couplers, phenol type couplers and naphthol type couplers are generally used. Specific examples of usable cyan couplers include those disclosed, for example, in U.S. Patents No. 2,423,730, No. 2,474,293, No. 2,801,171, No. 2,895,826, No. 3,476,563, No. 3,737,326, No. 3,758,308 and No. 3,893,044, Japanese Unexamined Patent Publications No. 37425/1972, No. 10135/1975, No. 25228/1975, No. 112038/1975, No. 117422/1975, No. 130441/1975, or couplers disclosed in Japanese Unexamined Patent Publication No. 98731/1983.
- Among the dye-forming couplers, colored couplers, DIR couplers, DIR compounds, image stabilizers, color fog preventive agents, ultraviolet absorbents, brightening agents which are not required to be absorbed on the surface of silver halide crystals, hydrophobic compounds can be dispersed by use of various methods including a solid dispersion method, a latex dispersion method, an oil-in-water emulsification dispersion method which can be appropriately selected depending on the chemical structure of the hydrophobic compounds, such as couplers. As the oil-in-water emulsification dispersion method, conventionally known methods for dispersing hydrophobic additives such as couplers can be applied. Usually, the method may be carried out by dissolving the couplers in a high boiling organic solvent having a boiling point of 150°C or more, optionally together with a low boiling and/or water soluble organic solvent. Then carrying out the emulsification dispersion in a hydrophilic binder such as an aqueous gelatin solution by use of a surface active agent and a dispersing means such as a stirrer, a homogenizer, a colloid mill, a flow jet mixer, or an ultrasonic device; followed by adding the dispersion to a hydrophilic colloid layer solution. There may be inserted a step of removing the dispersing solution or, at the same time of the dispersion, the low boiling organic solvent as well.
- The high boiling solvent to be used may include organic solvents having a boiling point of 150°C or more such as phenol derivatives, alkyl phthalates, phosphates, citrates, benzoates, alkyl amides, aliphatic acid esters and trimesic acid esters which do not react with an oxidized product of a developing agent.
- Together with the high boiling solvent, or in place thereof, a low boiling or water soluble organic solvent can be used. The organic solvent which has a low boiling point and is substantially soluble in water may include ethyl acetate, propyl acetate, butyl acetate, butanol, chloroform, carbon tetrachloride, nitromethane, nitroethane, benzene.
- When the dye-forming couplers, colored couplers, DIR couplers, DIR compounds, image stabilizers, color fog preventive agents, ultraviolet absorbents, brightening agents have an acid radical substituent such as carboxylic acid and sulfonic acid, they can be introduced in a hydrophilic colloid as an alkaline aqueous solution.
- As a dispersion auxiliary used when hydrophobic compounds are dissolved in a solvent comprising a low boiling solvent alone or in combination with a high boiling solvent and dispersed in water using a mechanical means or ultrasonic wave, there can be used anionic surface active agents, nonionic surface active agents, cationic surface active agent and amphoteric surface active agents.
- A color fog preventive agent can be used in order to prevent color turbidity from being caused by the migration of an oxidized product or an electron migrator of a developing agent between emulsion layers (between the same color sensitive layers and/or different color sensitive layers) of the light-sensitive material, or to prevent the deterioration of sharpness or formation of overly conspicuous graininess.
- The color fog preventive agent may be contained in the emulsion layers per se, or may be contained in an intermediate layer provided between emulsion layers.
- An image stabilizing agent for preventing the deterioration of dye images can be used in the light-sensitive material. Preferably usable compounds include the compounds disclosed in RD No. 17643, Paragraph VII-J.
- Hydrophilic colloid layers such as protective layers and intermediate layers of a light-sensitive material may contain an ultraviolet absorbent in order to prevent fog due to static discharge caused by charging of the light-sensitive material by friction, and to prevent deterioration of images due to ultraviolet rays.
- A formalin scavenger can be used in the light-sensitive material in order to prevent deterioration of the magenta dye-forming couplers due to the presence of formalin during the preservation of light-sensitive materials.
- When a dyestuff, an ultraviolet absorbent and so forth are contained in the hydrophilic colloid layers of the light-sensitive material, they may be mordanted by using a mordant such as a cationic polymer.
- Compounds such as development accelerators and development restrainers that may change the developing properties, or bleach accelerators can be added to the silver halide emulsion layers and/or other hydrophilic colloid layers of the light-sensitive material. The compounds preferably usable as development accelerators include the compounds disclosed in RD No. 17643, Paragraphs XXI-B to -D, and preferable development restrainers include the compounds disclosed in RD No. 17643, Paragraph XXI-E. For the purposes of development acceleration a black and white development accelerator and/or a precursor thereof may also be used.
- For the purposes of increasing sensitivity, increasing contrast, and accelerating development, the emulsion layers of the light-sensitive photographic material may contain polyalkylene oxides or derivatives thereof such as ethers, esters or amines; thioether compounds; thiomorpholines; quaternary ammonium compounds; urethane derivatives; urea derivatives; imidazole derivatives.
- In the light-sensitive material, a brightening agent can be used for the purpose of increasing the whiteness of the white ground and also making less conspicuous the coloring of the white ground portion. Compounds preferably usable as the brightening agent are disclosed in RD No. 17643, Paragraph V.
- The light-sensitive material can be provided with auxiliary layers such as a filter layer, an anti-halation layer and an anti-irradiation layer. These layers and/or the emulsion layers may contain a dye that may be flowed out of the light-sensitive material, or bleached, during the development processing. Such a dye may include oxonol dyes, hemioxonol dyes, styryl dyes, merocyanine dyes, cyanine dyes, azo dyes.
- To the silver halide emulsion layers and/or other hydrophilic colloid layers of the light-sensitive material, a matte agent can be added for the purpose of decreasing the gloss of the light-sensitive material, improving the writing performance, and preventing mutual sticking of light-sensitive materials. Any such agents can be used, for example, silicon dioxide, titanium dioxide, magnesium dioxide, aluminum dioxide, barium sulfate, calcium carbonate, polymers of acrylic acid and methacrylic acid and esters thereof, polyvinyl resins, polymers of polycarbonates and styrene and copolymers thereof. The matte agent may preferably have a grain size of 0.05 11. to 10 µ. It is added preferably in an amount of 1 to 300 mg/m2.
- A lubricant can be added to the light-sensitive material in order to decrease sliding friction.
- An antistatic agent aiming at preventing static charge can be added to the light-sensitive material. The antistatic agent may be used in an antistatic layer provided on the side of the support where no emulsion layer is laminated, or may be used in an emulsion layer and/or a protective colloid layer other than the emulsion layers provided on the side of a support on which emulsion layers are laminated. Antistatic agents preferably used are the compounds disclosed in RD No. 17643, Paragraph XIII.
- In the photographic emulsion layers and/or other hydrophilic colloid layers, a variety of surface active agents can be used for the purpose of improving coating performance, preventing static charge, improving slidability, emulsification dispersion, preventing adhesion, or improving photographic performances (such as development acceleration, hardening and sensitization).
- The support used in the light-sensitive material of this invention may include flexible reflective supports made of paper or synthetic paper laminated with a-olefin polymers (for example, polyethylene, polypropylene, an ethylene/butene copolymer); films comprising semisynthetic or synthetic high molecular compounds such as cellulose acetate, cellulose nitrate, polystyrene, polyvinyl chloride, polyethylene terephthalate, polycarbonate and polyamide; flexible supports comprising these films provided with a reflection layer; glass; metals; ceramics.
- The light-sensitive material may be applied directly on the surface of the support having been subjected to corona discharging, ultraviolet irradiation, flame treatment, or through interposition of at least one subbing layer for improving adhesion, antistatic performance, dimensional stability, abrasion resistance, hardness, anti-halation performance, friction characteristics and/or other characteristics of the surface of the support.
- In the coating of the light-sensitive material, a thickening agent may be used in order to improve the coating performance. Also, in the case of, for example, a hardening agent, which has a fast reactivity and therefore may cause gelation before coating if previously added in a coating solution, it is preferably mixed just before the coating by a static mixer.
- Particularly useful coating method may include extrusion coating and curtain coating by which two or more layers can be simultaneously coated, but packet coating is also useful for certain purposes. Coating rate can be arbitrarily selected.
- There is no particular limitation on the possible surface active agents, but there may be added, for example, natural surface active agents such as saponin; nonionic surface active agents such as alkylene oxides, glycerols and glycidols; cationic surface active agents such as higher alkyl amines, quaternary ammonium salts, pyridines and other hetero cyclic rings, and phosphoniums or sulfoniums; anionic surface active agents containing an acidic group such as carboxylic acid, sulfonic acid, phosphoric acid, sulfate and phosphate; and amphoteric surface active agents such as amino acids, aminosulfonic acids, and sulfate or phosphate of amino alcohols. For the same purpose, it is also possible to use fluorine type surface active agents.
- To obtain color images by using the light-sensitive material of this invention, color photographic processing is carried out after exposure. The color processing is carried out according to steps comprising a color developing step, a bleaching step, a fixing step, a water washing step, and optionally a stabilizing step. The processing step using a bleaching solution and the processing step using a fixing solution can be replaced by a bleach-fixing step using a combined bleaching and fixing solution. It is also possible to carry out a monobath processing which employs a combined developing and bleaching and fixing solution that can carry out color developing, bleaching and fixing in one bath.
- In combination with these processing steps, the processing may further comprise a pre-hardening step, a neutralizing step, a stop fixing step and a post-hardening step. In these processings, a color developing agent or a precursor thereof may be contained in advance in the materials in order to perform, in place of the color developing step, activator processing which carries out developing in an activator solution. Also, the activator processing can be applied in the monobath process.
- The color developing solution generally comprises an alkaline aqueous solution containing a color developing agent. The color developing agent is an aromatic primary amine color developing agent, including aminophenol type and p-phenylenediamine type derivatives. These color developing agents can be used in the form of salts of organic acids and inorganic acids, and there can be used, for example, hydrochloride, sulfate, p-toluenesulfonate, sulfite, oxalate, benzenesulfonate.
- These compounds may be used generally in a concentration of about 0.1 to 30 g per 1 liter of a color developing solution, preferably in concentration of about 1 to 15 g per 1 liter. An amount less than 0.1 g may result in insufficient color development density.
- The above color developing agent may be used alone or in combination with one or more kinds of them. Further, the above color developing agent may be incorporated into the color photographic material per se. In such a case, the light-sensitive silver halide color photographic material can also be processed by using an alkaline solution (an activator) in place of the color developing solution, and can be bleach-fixed immediately after the processing by the alkaline solution.
- Specific examples of this invention will be described below, but working embodiments of this invention are by no means limited to these.
- In all of Examples shown below, the addition amount to the light-sensitive silver halide photographic material refers to an amount per 1 m2 unless particularly mentioned. Also, the amounts of silver halide and colloidal silver are shown by calculating them in terms of silver.
- On a support made of triacetyl cellulose film, the respective layers as shown below were formed successively from the side of the support to produce a multi-layer color photographic element, Sample-1.
- A gelatin layer containing black colloidal silver.
- A gelatin layer containing an emulsified dispersion of 2,5-di-t-octylhydroquinone.
- Comprising AgBrl containing 8 mole % of Agl; an average grain size (r) of 0.30 I1.m.
- Monodispersed emulsion (Emulsion I) ... Coated silver weight: 1.5 g/m2.
- Sensitizing dye I ... 6 x 10-5 mole per 1 mole of silver.
- Sensitizing dye II ...1.0 x 10-5 mole per 1 mole of silver.
- Cyan coupler (C-1) ... 0.06 mole per 1 mole of silver.
- Colored cyan coupler (CC-1) ... 0.003 mole per 1 mole of silver.
- DIR compound (D-12) ... 0.0015 mole per 1 mole of silver.
- DIR compound (D-15) ... 0.004 mole per 1 mole of silver.
- Comprising AgBrl containing 7.0 mole % of Agl; an average grain size (r) of 0.65 µm.
- Monodispersed emulsion (Emulsion II) ... Coated silver weight: 1.3 g/m2.
- Sensitizing dye I ... 3 x 10-5 mole per 1 mole of silver.
- Sensitizing dye II ...1.0 x 10-5 mole per 1 mole of silver.
- Cyan coupler (C-1) ... 0.02 mole per 1 mole of silver.
- Colored cyan coupler (CC-1) ... 0.0015 mole per 1 mole of silver.
- DIR compound (D-15) ... 0.001 mole per 1 mole of silver.
- A gelatin layer, same as the second layer.
- Emulsion I ... Coated silver weight: 1.3 g/m2.
- Sensitizing dye III ... 2.5 x 10-5 mole per 1 mole of silver.
- Sensitizing dye IV ...1.2 x 10-5 mole per 1 mole of silver.
- Magenta coupler (M-1) ... 0.9 mole per 1 mole of silver.
- Colored magenta coupler (CM-1) ... 0.017 mole per 1 mole of silver.
- DIR compound (D-12) ... 0.0010 mole per 1 mole of silver.
- DIR compound (D-17) ... 0.0030 mole per 1 mole of silver.
- Emulsion II ... Coated silver weight: 1.1 g/m2.
- Sensitizing dye III ... 1.5 x 10-5 mole per 1 mole of silver.
- Sensitizing dye IV ...1.0 x 10-5 mole per 1 mole of silver.
- Magenta coupler (M-1) ... 0.020 mole per 1 mole of silver.
- Colored magenta coupler (CM-1) ... 0.004 mole per 1 mole of silver.
- DIR compound (D-12) ... 0.0010 mole per 1 mole of silver.
- A gelatin layer containing an emulsified dispersion comprising yellow colloidal silver and 2,5-di-t-octylhydroquinone.
- Comprising AgBrl containing 6 mole % of Agl; an average grain size of 0.38 um.
- Monodispersed emulsion (Emulsion III) ... Coated silver weight: 0.9 g/m2.
- Sensitizing dye V ... 1.3 x 10-5 mole per 1 mole of silver.
- Yellow coupler (Y-1) ... 0.29 mole per 1 mole of silver.
- DIR compound (D-3) ... 0.01 mole per 1 mole of silver.
- Comprising AgBrl containing 10 mole % of Agl; an average grain size (r) of 0.8 µm.
- Monodispersed emulsion (Emulsion IV) ... Coated silver weight: 0.5 g/m2.
- Sensitizing dye V ... 1.0 x 10-5 mole per 1 mole of silver.
- Yellow coupler (Y-1) ... 0.08 mole per 1 mole of silver.
- DIR compound (D-3) ... 0.002 mole per 1 mole of silver.
- A gelatin layer comprising silver iodobromide (Agl: 1 mole %; average grain size: 0.07 µm), having a coated silver weight of 0.5 g/m2, and containing ultraviolet absorbents UV-1 and UV-2.
- A gelatin layer containing polymethyl methacrylate particles (diameter: 1.5 µm) and formalin scavenger (HS-1 ).
- To each of the layers, a gelatin hardener (H-1) and a surface active agent were added in addition to the above compositions.
- The compounds contained in the respective layers of Sample 1 are as follows:
- Sensitizing dye I:
- Anhydro
- 5,5'-dichloro-9-ethyl-3,3'-di-(3-sulfopropyl)-thiacarbocyanine hydroxide
- Sensitizing dye II:
- Anhydro
- 9-ethyl-3,3'-di-(3-sulfopropyl)-4,5,4',5'-dibenzothiacarbocyaninehydroxide
- Sensitizing dye III:
- Anhydro
- 5,5'-diphenyl-9-ethyl-3,3'-di-(3-sulfopropyl)-oxacarbocyanine hydroxide
- Sensitizing dye IV:
- Anhydro 9-ethyl-3,3'-di-(3-sulfopropyl)-5,6,5',6'-dibenzooxacarbocyanine hydroxide
- Sensitizing dye V:
- Anhydro
- 3,3'-di-(3-sulfopropyl)-4,5-benzo-5'-methoxythiacyanine
- Subsequently, Samples 2 to 12 wherein the magenta coupler and the colored magenta coupler were varied as shown in Table 1 were produced.
- Samples 1 to 12 thus produced were exposed, and thereafter subjected to the following development processing.
-
-
- Results obtained are shown in Table 1.
- In Table 1, the amount of couplers added is indicated in terms of mole % per 1 mole of silver halide; the numerals in parentheses in the column of the amount indicate proportional percentage (%) to all the couplers in the corresponding layer; MTF indicates a relative value when Sample 1 was assumed to be 100; RMS is indicated by a 1,000 time value of the standard deviation in the density value fluctuation caused when a density point of the minimum density + 0.7 was scanned by use of a microdensitometer having an open scanning area of 250 µm2. Accordingly, the values indicate that, the larger the MTF is and the smaller the RMS is, the higher image quality has been achieved.
- As will be apparent from Table 1, both the sharpness and the graininess are remarkably improved in the samples in which the magenta coupler comprises pyrazolotriazole type magenta coupler and the colored magenta coupler is contained in the proportion of 17 % or more of the amount of all couplers in the layer containing the same.
-
Claims (19)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP14605/86 | 1986-01-25 | ||
| JP1460586 | 1986-01-25 |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| EP0232101A2 EP0232101A2 (en) | 1987-08-12 |
| EP0232101A3 EP0232101A3 (en) | 1989-01-25 |
| EP0232101B1 true EP0232101B1 (en) | 1994-03-23 |
Family
ID=11865832
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP19870300640 Expired - Lifetime EP0232101B1 (en) | 1986-01-25 | 1987-01-26 | Light-sensitive silver halide color photographic material |
Country Status (3)
| Country | Link |
|---|---|
| EP (1) | EP0232101B1 (en) |
| JP (1) | JPS62253170A (en) |
| DE (1) | DE3789394D1 (en) |
Families Citing this family (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2681163B2 (en) * | 1988-07-07 | 1997-11-26 | コニカ株式会社 | Silver halide color photographic materials |
| JPH03160441A (en) * | 1989-11-20 | 1991-07-10 | Konica Corp | Silver halide color photographic sensitive material |
| US5466568A (en) * | 1993-09-30 | 1995-11-14 | Eastman Kodak Company | Photographic element containing an azopyrazolone masking coupler exhibiting reduced fog |
| US5482821A (en) * | 1993-09-30 | 1996-01-09 | Eastman Kodak Company | Photographic element containing an azopyrazolone masking coupler exhibiting improved keeping |
| EP0646842A1 (en) * | 1993-09-30 | 1995-04-05 | Eastman Kodak Company | Photographic element containing an azopyrazolone masking coupler exhibiting improved keeping |
| DE69401632T2 (en) * | 1993-09-30 | 1997-08-14 | Eastman Kodak Co | Photographic element containing an azopyrazolone mask coupler with improved shelf life |
Family Cites Families (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5242121A (en) * | 1975-09-30 | 1977-04-01 | Fuji Photo Film Co Ltd | Color photographic light sensitive material |
| JPS58113935A (en) * | 1981-12-26 | 1983-07-07 | Konishiroku Photo Ind Co Ltd | Silver halide color photosensitive material |
| JPS58147743A (en) * | 1982-02-25 | 1983-09-02 | Konishiroku Photo Ind Co Ltd | Silver halide color photographic sensitive material |
| JPS59177551A (en) * | 1983-03-28 | 1984-10-08 | Konishiroku Photo Ind Co Ltd | Silver halide color photosensitive material |
| JPS60168143A (en) * | 1984-02-10 | 1985-08-31 | Konishiroku Photo Ind Co Ltd | Silver halid color photosensitive material |
| JPS60262158A (en) * | 1984-06-08 | 1985-12-25 | Fuji Photo Film Co Ltd | Silver halide color photographic sensitive material |
| JPS6172242A (en) * | 1984-09-14 | 1986-04-14 | Konishiroku Photo Ind Co Ltd | Photosensitive silver halide photographic material |
-
1987
- 1987-01-26 DE DE87300640T patent/DE3789394D1/en not_active Expired - Lifetime
- 1987-01-26 JP JP1556087A patent/JPS62253170A/en active Pending
- 1987-01-26 EP EP19870300640 patent/EP0232101B1/en not_active Expired - Lifetime
Also Published As
| Publication number | Publication date |
|---|---|
| JPS62253170A (en) | 1987-11-04 |
| EP0232101A3 (en) | 1989-01-25 |
| DE3789394D1 (en) | 1994-04-28 |
| EP0232101A2 (en) | 1987-08-12 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP2557221B2 (en) | Silver halide photographic material | |
| EP0208502A2 (en) | Light-sensitive silver halide color photographic material | |
| EP0232101B1 (en) | Light-sensitive silver halide color photographic material | |
| JPH0623831B2 (en) | Silver halide color photographic light-sensitive material having a novel layer structure | |
| JPH0766165B2 (en) | Silver halide color photographic light-sensitive material | |
| US4968594A (en) | Silver halide color photographic material | |
| JP2519031B2 (en) | Silver halide photographic material | |
| JP2566393B2 (en) | Silver halide photographic material | |
| JP2557210B2 (en) | Silver halide color photosensitive material | |
| JP2532838B2 (en) | Silver halide color photographic light-sensitive material capable of obtaining stable images | |
| JP2532840B2 (en) | Silver halide photographic light-sensitive material with excellent drying property | |
| JPH0625859B2 (en) | Silver halide color photographic light-sensitive material having a novel layer structure | |
| JP2607063B2 (en) | Multilayer silver halide color photographic material | |
| JP2678233B2 (en) | Silver halide color photographic materials | |
| JPS62170956A (en) | Silver halide photographic sensitive material | |
| JP2514325B2 (en) | Silver halide photographic light-sensitive material with improved graininess and storability | |
| JP2532839B2 (en) | Silver halide color photographic light-sensitive material with improved sharpness and color reproducibility | |
| JPH0715562B2 (en) | Silver halide color photosensitive material | |
| JPS62195655A (en) | Silver halide photographic sensitive material containing novel coupler | |
| JPS62168155A (en) | Silver halide photographic sensitive material | |
| JPH0715563B2 (en) | Silver halide color photographic light-sensitive material | |
| JPH0664317B2 (en) | Silver halide photographic light-sensitive material with improved image quality | |
| JPH0581026B2 (en) | ||
| JPH0664319B2 (en) | Silver halide photographic light-sensitive material | |
| JPH0577061B2 (en) |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): DE FR GB |
|
| PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
| AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): DE FR GB |
|
| 17P | Request for examination filed |
Effective date: 19890712 |
|
| RAP3 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: KONICA CORPORATION |
|
| 17Q | First examination report despatched |
Effective date: 19911022 |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19940323 Ref country code: DE Effective date: 19940323 |
|
| REF | Corresponds to: |
Ref document number: 3789394 Country of ref document: DE Date of ref document: 19940428 |
|
| EN | Fr: translation not filed | ||
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19950117 Year of fee payment: 9 |
|
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
| 26N | No opposition filed | ||
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19960126 |
|
| GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19960126 |