EP0228151A1 - Acidic, aqueous phosphate-coating solutions for use in a process for phosphate-coating metal surfaces - Google Patents
Acidic, aqueous phosphate-coating solutions for use in a process for phosphate-coating metal surfaces Download PDFInfo
- Publication number
- EP0228151A1 EP0228151A1 EP86306622A EP86306622A EP0228151A1 EP 0228151 A1 EP0228151 A1 EP 0228151A1 EP 86306622 A EP86306622 A EP 86306622A EP 86306622 A EP86306622 A EP 86306622A EP 0228151 A1 EP0228151 A1 EP 0228151A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- ion
- phosphate
- zinc
- solution
- treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000002378 acidificating effect Effects 0.000 title claims abstract description 25
- 238000000034 method Methods 0.000 title claims description 41
- 230000008569 process Effects 0.000 title claims description 37
- 229910052751 metal Inorganic materials 0.000 title claims description 31
- 239000002184 metal Substances 0.000 title claims description 31
- 238000000576 coating method Methods 0.000 title description 22
- 239000011248 coating agent Substances 0.000 title description 15
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims abstract description 76
- 229910019142 PO4 Inorganic materials 0.000 claims abstract description 56
- 239000010452 phosphate Substances 0.000 claims abstract description 56
- -1 fluoride ions Chemical class 0.000 claims abstract description 19
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims abstract description 18
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims abstract description 16
- BTJIUGUIPKRLHP-UHFFFAOYSA-N 4-nitrophenol Chemical compound OC1=CC=C([N+]([O-])=O)C=C1 BTJIUGUIPKRLHP-UHFFFAOYSA-N 0.000 claims abstract description 5
- 238000011282 treatment Methods 0.000 claims description 68
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 32
- 239000007921 spray Substances 0.000 claims description 27
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 24
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 claims description 24
- 239000011701 zinc Substances 0.000 claims description 24
- 229910052725 zinc Inorganic materials 0.000 claims description 24
- 241000519995 Stachys sylvatica Species 0.000 claims description 19
- 229940085991 phosphate ion Drugs 0.000 claims description 19
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 claims description 18
- WAEMQWOKJMHJLA-UHFFFAOYSA-N Manganese(2+) Chemical compound [Mn+2] WAEMQWOKJMHJLA-UHFFFAOYSA-N 0.000 claims description 17
- 229910001437 manganese ion Inorganic materials 0.000 claims description 17
- 229910052742 iron Inorganic materials 0.000 claims description 16
- 239000000203 mixture Substances 0.000 claims description 16
- 125000002091 cationic group Chemical group 0.000 claims description 14
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 13
- 229910001453 nickel ion Inorganic materials 0.000 claims description 11
- 239000004615 ingredient Substances 0.000 claims description 9
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims description 8
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 claims description 7
- 229940005654 nitrite ion Drugs 0.000 claims description 7
- 238000007598 dipping method Methods 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- 239000004411 aluminium Substances 0.000 claims 1
- 238000013459 approach Methods 0.000 claims 1
- 150000002500 ions Chemical class 0.000 abstract description 5
- 229910002651 NO3 Inorganic materials 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 54
- XTEGARKTQYYJKE-UHFFFAOYSA-M Chlorate Chemical compound [O-]Cl(=O)=O XTEGARKTQYYJKE-UHFFFAOYSA-M 0.000 description 13
- 238000004070 electrodeposition Methods 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 10
- 229910052748 manganese Inorganic materials 0.000 description 10
- 239000011572 manganese Substances 0.000 description 10
- 235000002908 manganese Nutrition 0.000 description 10
- 238000005406 washing Methods 0.000 description 10
- 229910000831 Steel Inorganic materials 0.000 description 9
- 239000010959 steel Substances 0.000 description 9
- 239000012141 concentrate Substances 0.000 description 8
- 235000008504 concentrate Nutrition 0.000 description 8
- 229940005989 chlorate ion Drugs 0.000 description 7
- 229910001335 Galvanized steel Inorganic materials 0.000 description 6
- 239000008397 galvanized steel Substances 0.000 description 6
- 239000000758 substrate Substances 0.000 description 5
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- MIVBAHRSNUNMPP-UHFFFAOYSA-N manganese(2+);dinitrate Chemical compound [Mn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MIVBAHRSNUNMPP-UHFFFAOYSA-N 0.000 description 4
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical compound [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 description 4
- 239000008399 tap water Substances 0.000 description 4
- 235000020679 tap water Nutrition 0.000 description 4
- ONDPHDOFVYQSGI-UHFFFAOYSA-N zinc nitrate Chemical compound [Zn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ONDPHDOFVYQSGI-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000012267 brine Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000003750 conditioning effect Effects 0.000 description 3
- 239000008367 deionised water Substances 0.000 description 3
- 229910021641 deionized water Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 238000005755 formation reaction Methods 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 3
- LRXTYHSAJDENHV-UHFFFAOYSA-H zinc phosphate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LRXTYHSAJDENHV-UHFFFAOYSA-H 0.000 description 3
- 229910000165 zinc phosphate Inorganic materials 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 229910001297 Zn alloy Inorganic materials 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 description 2
- 239000008199 coating composition Substances 0.000 description 2
- 238000005238 degreasing Methods 0.000 description 2
- 238000005237 degreasing agent Methods 0.000 description 2
- 239000013527 degreasing agent Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 description 2
- CPSYWNLKRDURMG-UHFFFAOYSA-L hydron;manganese(2+);phosphate Chemical compound [Mn+2].OP([O-])([O-])=O CPSYWNLKRDURMG-UHFFFAOYSA-L 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 229910000008 nickel(II) carbonate Inorganic materials 0.000 description 2
- ZULUUIKRFGGGTL-UHFFFAOYSA-L nickel(ii) carbonate Chemical compound [Ni+2].[O-]C([O-])=O ZULUUIKRFGGGTL-UHFFFAOYSA-L 0.000 description 2
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 2
- 235000010288 sodium nitrite Nutrition 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- RILZRCJGXSFXNE-UHFFFAOYSA-N 2-[4-(trifluoromethoxy)phenyl]ethanol Chemical compound OCCC1=CC=C(OC(F)(F)F)C=C1 RILZRCJGXSFXNE-UHFFFAOYSA-N 0.000 description 1
- 206010059837 Adhesion Diseases 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 1
- FMRLDPWIRHBCCC-UHFFFAOYSA-L Zinc carbonate Chemical compound [Zn+2].[O-]C([O-])=O FMRLDPWIRHBCCC-UHFFFAOYSA-L 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000002390 adhesive tape Substances 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- CAMXVZOXBADHNJ-UHFFFAOYSA-N ammonium nitrite Chemical compound [NH4+].[O-]N=O CAMXVZOXBADHNJ-UHFFFAOYSA-N 0.000 description 1
- 229940063013 borate ion Drugs 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 1
- 239000010960 cold rolled steel Substances 0.000 description 1
- 238000007739 conversion coating Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- NAAXGLXYRDSIRS-UHFFFAOYSA-L dihydrogen phosphate;manganese(2+) Chemical compound [Mn+2].OP(O)([O-])=O.OP(O)([O-])=O NAAXGLXYRDSIRS-UHFFFAOYSA-L 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- VNWHJJCHHGPAEO-UHFFFAOYSA-N fluoroboronic acid Chemical compound OB(O)F VNWHJJCHHGPAEO-UHFFFAOYSA-N 0.000 description 1
- 229940104869 fluorosilicate Drugs 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000011656 manganese carbonate Substances 0.000 description 1
- 235000006748 manganese carbonate Nutrition 0.000 description 1
- 229940093474 manganese carbonate Drugs 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 229910000016 manganese(II) carbonate Inorganic materials 0.000 description 1
- XMWCXZJXESXBBY-UHFFFAOYSA-L manganese(ii) carbonate Chemical compound [Mn+2].[O-]C([O-])=O XMWCXZJXESXBBY-UHFFFAOYSA-L 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 150000002815 nickel Chemical class 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910000159 nickel phosphate Inorganic materials 0.000 description 1
- JOCJYBPHESYFOK-UHFFFAOYSA-K nickel(3+);phosphate Chemical compound [Ni+3].[O-]P([O-])([O-])=O JOCJYBPHESYFOK-UHFFFAOYSA-K 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 235000010344 sodium nitrate Nutrition 0.000 description 1
- 239000004317 sodium nitrate Substances 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- LJRGBERXYNQPJI-UHFFFAOYSA-M sodium;3-nitrobenzenesulfonate Chemical compound [Na+].[O-][N+](=O)C1=CC=CC(S([O-])(=O)=O)=C1 LJRGBERXYNQPJI-UHFFFAOYSA-M 0.000 description 1
- MUADFEZFSKAZLT-UHFFFAOYSA-M sodium;3-nitrobenzoate Chemical compound [Na+].[O-]C(=O)C1=CC=CC([N+]([O-])=O)=C1 MUADFEZFSKAZLT-UHFFFAOYSA-M 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 150000003751 zinc Chemical class 0.000 description 1
- 239000011667 zinc carbonate Substances 0.000 description 1
- 235000004416 zinc carbonate Nutrition 0.000 description 1
- 229910000010 zinc carbonate Inorganic materials 0.000 description 1
- MFXMOUUKFMDYLM-UHFFFAOYSA-L zinc;dihydrogen phosphate Chemical compound [Zn+2].OP(O)([O-])=O.OP(O)([O-])=O MFXMOUUKFMDYLM-UHFFFAOYSA-L 0.000 description 1
- LKCUKVWRIAZXDU-UHFFFAOYSA-L zinc;hydron;phosphate Chemical compound [Zn+2].OP([O-])([O-])=O LKCUKVWRIAZXDU-UHFFFAOYSA-L 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/34—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
- C23C22/36—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
- C23C22/364—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing also manganese cations
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/34—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
- C23C22/36—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
- C23C22/364—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing also manganese cations
- C23C22/365—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing also manganese cations containing also zinc and nickel cations
Definitions
- the present invention relates to an acidic aqueous phosphate solution and a process for phosphating a metal surface with said solution. More particularly, it relates to a solution and a process for forming a phosphate film especially suitable for cationic electrocoating, and is particularly applicable to metal surfaces which include an iron-based surface and a zinc-based surface such as an automobile body.
- Japanese Patent Publication (unexamined) No. l07784/l980 (laid-open to the public on August l9, l980) discloses a process for treating a metal surface by dip treatment, followed by spray treatment, with an acidic aqueous phosphate solution containing from 0.5 to l.5 g/l of zinc ion, from 5 to 30 g/l of phosphate ion, and from 0.0l to 0.2 g/l of nitrite ion and/or from 0.05 to 2 g/l of m-nitrobenzenesulfonate ion.
- Said process is reported to be capable of providing a phosphate film which is effective for forming a coating by cationic electrocoating having excellent adhesion and corrosion-resistance on complicated articles having many pocket portions like car bodies.
- Japanese Patent Publication (unexamined) No. l45l80/l980 (laid-open to the public on November l2, l980) discloses a process for treating a metal surface by spray treatment with an acidic aqueous phosphate solution containing from 0.4 to l.0 g/l of zinc ion, from 5 to 40 g/l of phosphate ion, from 2.0 to 5.0 g/l of chlorate ion, and from 0.0l to 0.2 g/l of nitrite ion. Further, Japanese Patent Publication (unexamined) No.
- l52l83/l980 discloses an acidic aqueous phosphate solution containing from 0.08 to 0.20 wt. % of zinc ion, from 0.8 to 3.0 wt. % of phosphate ion, from 0.05 to 0.35 wt. % of chlorate ion, from 0.00l to 0.l0 wt. % of nitrite ion, and complex fluoride ion in an amount calculated by the formula: 0.4 ⁇ y ⁇ 0.63x - 0.042, wherein x is the concentration in wt. % of zinc ion and y is the concentration in wt. % of the complex fluoride ion.
- These prior art processes are reported to be capable of providing excellent adhesion and corrosion-resistance to the coating by cationic electrocoating.
- each spot having a diameter of from l mm to 2 mm.
- These white spots will cause craters in subsequent treatment, thereby resulting in inferior coatings.
- the mechanism by which white spots are formed is believed to be as follows: In a first stage, there appear many pits, at the edge portions of which the galvanized layer is gradually dissolved in the form of concentric circles through an excessive etching reaction. As the growth of each pit continues, zinc phospate is precipitated in the center portion thereof, However, at the peripheral portions, the iron surface is exposed, which forms a galvanic cell with the zinc metal, thereby continuing the dissolution of the zinc.
- the present invention represents a further improvement in the above techniques for phosphating as a substrate treatment under cationic electrocoating.
- an object of the present invention is to provide an acidic aqueous phosphate solution which can give a phosphate film capable of providing excellent adhesion and corrosion-resistance to coatings from cationic electrocoating.
- Another object of the present invention is to provide an acidic aqueous phosphate solution which provides excellent phosphate films on metal surfaces which include an iron-based surface, a zinc-based surface, and/or an aluminum-based surface.
- Another object of the present invention is to provide an acidic aqueous phosphate solution which will not cause any white spots or at least any significant white spots on galvanized steel even in the dip treatment thereof.
- Another object of the present invention is to provide an acidic aqueous phosphate solution which can give said phosphate film by treatment at low temperature.
- a further object of the present invention is to provide a process for forming a phosphate film with said acidic aqueous phosphate solution.
- a further object of the present invention is to provide a process by which a phosphate film can be satisfactorily formed on an article having a complicated shape like a car body.
- a further object of the present invention is to provide a process by which a phosphate film can be satisfactorily formed on an article having a complicated shape like a car body.
- a further object of the present invention is to provide an aqueous concentrated composition for formulating said acidic aqueous phosphate solution.
- phosphating compositions which are chlorate-free or at least substantially chlorate-free and which have a chloride ion level below 0.5 g/l provide excellent phosphate-coatings on iron, zinc, and aluminum-based surfaces, without the formation of deleterious white spots. It is important to the beneficial results of the present invention that the chloride ion level be consistently maintained below 0.5 g/l, which means that not only the chloride ion itself, but also the chlorate ion should not be added to the phosphating compositions, since the chlorate ion will be reduced to the chloride ion as the phosphating composition is used.
- the metal surfaces treated in accordance with the present invention include iron-based surfaces, zinc-based surfaces, aluminum-based surfaces, and their respective alloy-based surfaces. These metal surfaces can be treated either separately or in combination.
- the advantage of the present invention is most prominently exhibited when the treatment is carried out on metal surfaces which include both an iron-based surface and a zinc-based surface, as, for example, in a car body.
- Examples of zinc-based surfaces include galvanized steel plate, galvanealed steel plate, electrogalvanized steel plate, electro zinc-alloy plated steel plate, complex electrogalvanized steel plate, electro zinc-alloy plated steel plate, complex electrogalvanized steel plate, etc.
- the acidic aqueous phosphate solutions of the invention contain:
- the content of manganese ion is less than 0.2 g/l the manganese content in the phosphate film formed on zinc-based surfaces is very small; therefore the adhesion between the substrate and the coating after the cationic electrocoating becomes insufficient.
- the manganese ion is present in an amount of more than 4 g/l, no further beneficial effects are obtained for the coating, and the solution forms excessive precipitates, making it impossible to obtain a stable solution.
- the manganese content in the phosphate film formed on the metal substrates shoulu be in the range of from about l to about 20% by weight, based on the weight of the film, in order to have a phosphate film which exhibits the performance requirements for cationic electrocoating.
- the phosphate film containing the amount of manganese specified above also forms part of the present invention.
- the manganese content can be calculated from the formula (W M /W C ) ⁇ l00 %.
- the amount of fluoride ion in the phosphating solution is less than 0.05 g/l, micronization of the phosphate film, improvement of corrosion-resistance after coating, and phosphating treatment at a reduced temperature cannot be attained.
- the fluoride ion can be present in an amount above 3 g/l, but use thereof in such quantities will not provide any greater effects than are obtainable by the phosphating solutions of the invention.
- the fluoride ion is contained in the form of a complex fluoride ion, e.g. the fluoroborate ion or the fluorosilicate ion, although the F ⁇ ion itself can also be used.
- the weight ratio of zinc ion to phosphate ion be l : (l0 to 30). In this ratio an even phosphate film is obtained which exhibits all of the performance requirements needed for cationic electrocoating.
- the weight ratio of zinc ion to manganese ion is preferably l : (0.5 to 2). In this ratio it is possible to obtain in an economic manner a phosphate film which contains the required amount of manganese and which displays all of the beneficial effects provided by the present invention.
- the solutions of the invention it is desirable for the solutions to have a total acidity of l0 to 50 points, a free acidity of 0.3 to 2.0 points, and an acid ratio of l0 to 50.
- the phosphate film can be obtained economically, and with the free acidity in the above range, the phosphate film can be obtained evenly without excessive etching of the metal surface.
- Adjustments in the solution to ootain and maintain the above points and ratio can be achieved by use of an alkali metal hydroxide or ammonium hydroxide as required.
- Sources of the ingredients of the phosphating solutions of the invention include the following: as to the zinc ion; zinc oxide, zinc carbonate, zinc nitrate, etc.; as to the phosphate ion, phosphoric acid, zinc phosphate, zinc monohydrogen phosphate, zinc dihydrogen phosphate, manganese phosphate, manganese monohydrogen phosphate, manganese dihydrogen phosphate, etc.; as to the manganese ion; manganese carbonate, manganese nitrate, the above manganese phosphate compounds, etc.; as to the fluoride ion, hydrofluoric acid, fluoroboric acid, fluorosilicic acid, fluorotitanic acid, and their metal salts (e.g., zinc salt, nickel salt, etc.; however, the sodium salt is excluded as it does not produce the desired effect); and as to the phosphating acccelerator, sodium nitrite, ammonium nitrite, sodium m-
- the phosphating solutions of the invention can further contain, as an optional ingredient, nickel ion.
- the content of the nickel ion should be from about 0.l to about 4 g/l, preferably about 0.3 to about 2 g/l.
- nickel ion is present with the manganese ion, performance of the resulting phosphate film is further improved, i.e., the adhesion and corrosion-resistance of the coating obtained after cationic electrocoating are further improved.
- the weight ratio of zinc ion to the sum of the manganese ion and the nickel ion is desirably l : (0.5 to 5.0), preferably l : (0.8 to 2.5).
- the supply source of nickel ion can be, for example, nickel carbonate, nickel nitrate, nickel phosphate, etc.
- the phosphate film formed by the solutions of the present invention is a zinc phosphate-type film.
- Such films formed on iron-based metal surfaces contain from about 25 to about 40 wt. % of zinc, from about 3 to about ll wt. % of iron, from about l to about 20 wt. % of manganese, and from 0 to about 4 wt. % of nickel.
- the process of the present invention for phosphating metal surfaces by use of the phosphating solutions of the invention can be carried out by spray treatment, dip treatment, or by a combination of such treatments.
- Spray treatment can usually be effected by spraying 5 or more seconds in order to form an adequate phosphate film which exhibits the desired performance characteristics.
- a treatment can be carried out using a cycle comprising first a spray treatment for about 5 to about 30 seconds, followed by discontinuing the treatment for about 5 to 30 seconds and then spray treating again for at least 5 seconds with a total spray treatment time of at least 40 seconds. This cycle can be carried out once, twice, or three times.
- Dip treatment is an embodiment which is more preferable than spray treatment in the process of the present invention.
- the dip treatment is usually effected for at least l5 seconds, preferably for about 30 to about l20 seconds.
- treatment can be carried out by first dip treating for at least l5 seconds and then spray treating for at least 2 seconds.
- the treatment can be effected by first spray treating for at least 5 seconds, and then dip treating for at least l5 seconds.
- the former combination of first dip treating and then spray treating is especially advantageous for articles having complicated shapes like a car body.
- a dip treatment for from about 30 to about 90 seconds, and then carry out the spray treatment for from about 5 to about 45 seconds.
- the treating temperature can be from about 30 to about 70°C, preferably from about 35 to about 60°C. This temperature range is approximately l0 to l5°C lower than that which is used in the prior art processes. Treating tempertures below 30°C should not be used due to an unacceptable increase in the time required to produce an acceptable coating. Conversely, when the treating temperature is too high, the phosphating accelerator is decomposed and excess precipitate is formed causing the components in the solution to become unbalanced and making it difficult to obtain satisfactory phosphate films.
- a convenient spray pressure is from 0.6 to 2 Kg/cm2G.
- a preferred mode of treatment in the process of the present invention is a dip treatment or a combined treatment using a dip treatment first and then a spray treatment.
- a metal surface is first subjected to a spray treatment and/or a dip treatment with an alkaline degreasing agent at a temperature of 50 to 60°C for 2 minutes; followed by washing with tap water; spray treatment and/or dip treatment with a surface conditioner at room temperature for l0 to 30 seconds; dip treatment with the solution of the present invention at a temperature of about 30 to about 70°C for at least l5 seconds; and washing with tap water and then with deionized water, in that order. Thereafter, it is desirable to after-treat with an acidulated rinse common to the industry such as a dilute chromate solution.
- This after-treatment is preferably adopted even when the present invention is carried out by spray treatment, or by a combined treatment comprising a spray treatment, followed by a dip treatment.
- a phosphate film which gives greater corrosion-resistance to a siccative coating can be obtained.
- an acidic aqueous phosphate solution of the present invention comprising:
- the present invention further provides a concentrated aqueous composition for formulating the acidic aqueous phosphate solutions of the present invention.
- the acidic aqueous treating solutions are conveniently prepared by diluting an aqueous concentrate which contains a number of the solution ingredients in proper weight ratios, and then adding other ingredients as needed to prepare the treating solutions of the invention.
- the concentrates are advantageously formulated to contain zinc ion, phosphate ion, manganese ion, fluoride ion, and optionally, nickel ion, in a weight proportion of 0.l to 2 : 5 to 50 : 0.2 to 4 : at least 0.05 : 0.l to 4.
- the concentrates preferably contain a weight proportion of the above ingredients of 0.5 to l.5 : l0 to 30 : 0.6 to 3 : 0.l to 3 : 0.3 to 2.
- the concentrates are preferably formulated to contain at least about 25 g/l, more preferably from about 50 g/l to l30 g/l of zinc ion.
- care must be taken in forming the concentrates. For example, when manganese ion and complex fluoride ion are present together in a concentrate with sodium ion, a precipitate is formed. Also, it is not advisable to add any phosphating accelerator to the concentrate, since the accelerators tend to decompose and cause other problems.
- a concentrated composition comprising 3.0 wt. % of zinc oxide, l.8 wt. % of nickel carbonate (II), 48.2 wt. % of 75 % phosphoric acid, l0.0 wt. % of manganese nitrate (II) hydrate (20 wt. % manganese content), 7.9 wt. % of 40 % fluorosilicic acid, and 29.l wt. % of water.
- This concentrate is then diluted with water to 2.5 vol. %, followed by the addition of an aqueous solution of 20 % sodium nitrite to give an acidic phosphating solution of the invention.
- the present solution preferably contains not more than about 0.2 g/l of chlorate ion. It is especially preferred that the solution contains no chlorate.
- the present invention is advantageous in avoiding white spots, especially on galvanized steel, particularly when the phosphating treatment comprises dipping.
- the present solution contains at least about l.05 g/l, especially at least about l.l g/l, of zinc ion, for instance from about l.05 to about l.5 g/l of zinc ion, especially when the phosphating treatment comprises dipping.
- the solution contains at least about l5 g/l of phosphate ion, for instance from about l5 to about 50 g/l, especially from about l5 to about 30 g/l, of phosphate ion.
- the solution contains more than about 4.0 g/l, especially more than about 5 g/l, of nitrate ion.
- the solution may contain from about 5 to about l5 g/l, especially from about 5 to about l0 g/l, of nitrate ion.
- the solution contains from about 0.3 g/l, especially more than about 0.4 g/l, of nickel ion.
- the solution may contain from about 0.4 to about 4 g/l, especially from about 0.4 to about 2 g/l, of nickel ion.
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Treatment Of Metals (AREA)
- Aftertreatments Of Artificial And Natural Stones (AREA)
- Laminated Bodies (AREA)
- Materials For Medical Uses (AREA)
Abstract
Description
- The present invention relates to an acidic aqueous phosphate solution and a process for phosphating a metal surface with said solution. More particularly, it relates to a solution and a process for forming a phosphate film especially suitable for cationic electrocoating, and is particularly applicable to metal surfaces which include an iron-based surface and a zinc-based surface such as an automobile body.
- Japanese Patent Publication (unexamined) No. l07784/l980 (laid-open to the public on August l9, l980) discloses a process for treating a metal surface by dip treatment, followed by spray treatment, with an acidic aqueous phosphate solution containing from 0.5 to l.5 g/l of zinc ion, from 5 to 30 g/l of phosphate ion, and from 0.0l to 0.2 g/l of nitrite ion and/or from 0.05 to 2 g/l of m-nitrobenzenesulfonate ion. Said process is reported to be capable of providing a phosphate film which is effective for forming a coating by cationic electrocoating having excellent adhesion and corrosion-resistance on complicated articles having many pocket portions like car bodies.
- Japanese Patent Publication (unexamined) No. l45l80/l980 (laid-open to the public on November l2, l980) discloses a process for treating a metal surface by spray treatment with an acidic aqueous phosphate solution containing from 0.4 to l.0 g/l of zinc ion, from 5 to 40 g/l of phosphate ion, from 2.0 to 5.0 g/l of chlorate ion, and from 0.0l to 0.2 g/l of nitrite ion. Further, Japanese Patent Publication (unexamined) No. l52l83/l980 (laid-open to the public on November 27, l980) discloses an acidic aqueous phosphate solution containing from 0.08 to 0.20 wt. % of zinc ion, from 0.8 to 3.0 wt. % of phosphate ion, from 0.05 to 0.35 wt. % of chlorate ion, from 0.00l to 0.l0 wt. % of nitrite ion, and complex fluoride ion in an amount calculated by the formula: 0.4 ≧ y ≧ 0.63x - 0.042, wherein x is the concentration in wt. % of zinc ion and y is the concentration in wt. % of the complex fluoride ion. These prior art processes are reported to be capable of providing excellent adhesion and corrosion-resistance to the coating by cationic electrocoating.
- However, in a recent development in the automobile industry there has come to be used for car bodies steel components plated on one surface only with zinc or alloyed zinc, with the object of further improving corrosion-resistance after the application of the siccative coating. It has however come to be recognized that, when the above prior art compositions and processes are applied to such materials (i.e. to metal surfaces which include both an iron-based surface and a zinc-based surface), on the iron-based surface a phosphate film suitable as a substrate to be coated by cationic electrocoating can be formed as desired, but a phosphate film formed on a zinc-based surface is significantly inferior to that formed on the iron-based surface.
- There has been developed a composition and process to solve the above-mentioned problems which occur on zinc-based surfaces in components which include both an iron-based surface and a zinc-based surface. This is the invention disclosed in Japanese Patent Publication (unexamined) No. l52472/l982 (laid-open to the public on September 20, l982). That Publication discloses dipping the metal surface in an acidic aqueous phosphate solution comprising from 0.5 to l.5 g/l of zinc ion, from 5 to 30 g/l of phosphate ion, from 0.6 to 3 g/l of manganese ion and a phosphating accelerator.
- However, in the zinc phosphate treatment of galvanized steel, there often results an abnormal coating with white spots, each spot having a diameter of from l mm to 2 mm. This is particularly true with an electroplated galvanized steel and especially in the dip treatment thereof. These white spots will cause craters in subsequent treatment, thereby resulting in inferior coatings. The mechanism by which white spots are formed is believed to be as follows: In a first stage, there appear many pits, at the edge portions of which the galvanized layer is gradually dissolved in the form of concentric circles through an excessive etching reaction. As the growth of each pit continues, zinc phospate is precipitated in the center portion thereof, However, at the peripheral portions, the iron surface is exposed, which forms a galvanic cell with the zinc metal, thereby continuing the dissolution of the zinc.
- As a consequence, an excess quantity of zinc phosphate crystals are precipitated and accumulate as "snow" at the peripheral portions of the spots, which can readily be observed by the naked eye.
- Unfortunately, no solution to this problem has been found heretofor to consistently avoid the formation of such white spots.
- The present invention represents a further improvement in the above techniques for phosphating as a substrate treatment under cationic electrocoating.
- Accordingly, an object of the present invention is to provide an acidic aqueous phosphate solution which can give a phosphate film capable of providing excellent adhesion and corrosion-resistance to coatings from cationic electrocoating.
- Another object of the present invention is to provide an acidic aqueous phosphate solution which provides excellent phosphate films on metal surfaces which include an iron-based surface, a zinc-based surface, and/or an aluminum-based surface.
- Another object of the present invention is to provide an acidic aqueous phosphate solution which will not cause any white spots or at least any significant white spots on galvanized steel even in the dip treatment thereof.
- Another object of the present invention is to provide an acidic aqueous phosphate solution which can give said phosphate film by treatment at low temperature.
- A further object of the present invention is to provide a process for forming a phosphate film with said acidic aqueous phosphate solution.
- A further object of the present invention is to provide a process by which a phosphate film can be satisfactorily formed on an article having a complicated shape like a car body.
- A further object of the present invention is to provide a process by which a phosphate film can be satisfactorily formed on an article having a complicated shape like a car body.
- A further object of the present invention is to provide an aqueous concentrated composition for formulating said acidic aqueous phosphate solution.
- Other objects and advantages of the present invention will become apparent from the following disclosure.
- It has now been found that phosphating compositions which are chlorate-free or at least substantially chlorate-free and which have a chloride ion level below 0.5 g/l provide excellent phosphate-coatings on iron, zinc, and aluminum-based surfaces, without the formation of deleterious white spots. It is important to the beneficial results of the present invention that the chloride ion level be consistently maintained below 0.5 g/l, which means that not only the chloride ion itself, but also the chlorate ion should not be added to the phosphating compositions, since the chlorate ion will be reduced to the chloride ion as the phosphating composition is used.
- As stated above, the metal surfaces treated in accordance with the present invention include iron-based surfaces, zinc-based surfaces, aluminum-based surfaces, and their respective alloy-based surfaces. These metal surfaces can be treated either separately or in combination. The advantage of the present invention is most prominently exhibited when the treatment is carried out on metal surfaces which include both an iron-based surface and a zinc-based surface, as, for example, in a car body. Examples of zinc-based surfaces include galvanized steel plate, galvanealed steel plate, electrogalvanized steel plate, electro zinc-alloy plated steel plate, complex electrogalvanized steel plate, electro zinc-alloy plated steel plate, complex electrogalvanized steel plate, etc.
- The acidic aqueous phosphate solutions of the invention contain:
- a) from about 0.l to about l.5 g/l, preferably from about 0.5 to about l.4 g/l of zinc ion;
- b) from about 5 to about 50 g/l, preferably from about l0 to about 30 g/l, of phospate ion;
- c) from about 0.2 to about 4 g/l, preferably from about 0.6 to about 3 g/l, of manganese ion;
- d) at least about 0.05 g/l, preferably from about 0.l to about 3 g/l, of a fluoride ion;
- e) less than 0.5 g/l of chloride ion, and
- f) a phosphating accelerator (conversion coating accelerator) which is one or more of the following:
- (i) from about 0.0l to about 0.2 g/l, preferably from about 0.04 to about 0.l5 g/l, of nitrite ion;
- (ii) from about l to about l0 g/l, preferably from about 2 to about 8 g/l, of nitrate ion;
- (iii) from about 0.5 to about 5 g/l, preferably from about l to about l.5 g/l of hydrogen peroxide (based on l00 % H₂O₂);
- (iv) from about 0.05 to about 2 g/l, preferably from about 0.l to about l.5 g/l, of m-nitrobenzenesulfonate ion;
- (v) from about 0.05 to about 2 g/l, preferably from about 0.l to about l.5 g/l, of m-nitrobenzoate ion; and
- (vi) from aout 0.05 to about 2 g/l, preferably from about 0.l to about l.5 g/l, of p-nitrophenol.
- When the content of the zinc ion in the above acidic phosphate solution is less than about 0.l g/l, an even phosphate film is not formed on the iron-based surfaces. When the zinc ion content exceeds about l.5 g/l, then on both iron-based and zinc-based surfaces continuing formation of the phosphate film occurs, causing a build-up of said film, with the result that the film shows a decrease in adhesion and becomes unsuitable as a substrate for cationic electrocoating.
- When the content of phosphate ion in the above solution is less than about 5 g/l, an uneven phosphate film is apt to be formed. When the phosphate ion content is more than 50 g/l, no further benefits result, and it is therefore economically disadvantageous to use additional quantities of phosphate chemicals.
- When the content of manganese ion is less than 0.2 g/l the manganese content in the phosphate film formed on zinc-based surfaces is very small; therefore the adhesion between the substrate and the coating after the cationic electrocoating becomes insufficient. When the manganese ion is present in an amount of more than 4 g/l, no further beneficial effects are obtained for the coating, and the solution forms excessive precipitates, making it impossible to obtain a stable solution.
- The manganese content in the phosphate film formed on the metal substrates shoulu be in the range of from about l to about 20% by weight, based on the weight of the film, in order to have a phosphate film which exhibits the performance requirements for cationic electrocoating. The phosphate film containing the amount of manganese specified above also forms part of the present invention.
- The content of manganese in the phosphate film can be determined according to conventional procedures. For example, a phosphated test piece [S(m²); W₁(g)] is dipped in an aqueous solution of 5 % by weight of chromic acid at 75°C for 5 minutes to dissolve the film, and the weight of the test piece after treatment [W₂(g)] is measured. The amount of film [Wc(g/m²)] is obtained by calculating the formula: [Wc = (W₁ - W₂)/S]. Then, the amount of manganese which dissolved into said aqueous solution of chromic acid [A(l)] is determined by the atomic light absorption process [M(g/l)] to obtain the total amount of the dissolved manganese [WM = A×M/s(g/M²)]. Using the thus obtained amount and the above film amount, the manganese content can be calculated from the formula (WM/WC) × l00 %.
- When the amount of fluoride ion in the phosphating solution is less than 0.05 g/l, micronization of the phosphate film, improvement of corrosion-resistance after coating, and phosphating treatment at a reduced temperature cannot be attained. The fluoride ion can be present in an amount above 3 g/l, but use thereof in such quantities will not provide any greater effects than are obtainable by the phosphating solutions of the invention. Preferably, the fluoride ion is contained in the form of a complex fluoride ion, e.g. the fluoroborate ion or the fluorosilicate ion, although the F⁻ ion itself can also be used.
- It has been found that when the chloride ion concentration in the phosphating solution reaches or exceeds 0.5 g/l (500 ppm), there occurs an excessive etching reaction which results in undesirable white spots on zinc surfaces. Though the presence of chlorate ions themselves may not directly cause the development of white spots, they are gradually changed to chloride ions and accumulate in that form in the bath liquid thereby causing white spots as mentioned hereinabove.
- Furthermore, the combination of manganese and fluoride ions has been found to be effective for the formulation of useful phosphating solutions containing no chlorate ions.
- In the phosphating solutions of the invention it is preferably that the weight ratio of zinc ion to phosphate ion be l : (l0 to 30). In this ratio an even phosphate film is obtained which exhibits all of the performance requirements needed for cationic electrocoating. The weight ratio of zinc ion to manganese ion is preferably l : (0.5 to 2). In this ratio it is possible to obtain in an economic manner a phosphate film which contains the required amount of manganese and which displays all of the beneficial effects provided by the present invention.
- In the phosphating solutions of the invention, it is desirable for the solutions to have a total acidity of l0 to 50 points, a free acidity of 0.3 to 2.0 points, and an acid ratio of l0 to 50. With the total acidity in the above range, the phosphate film can be obtained economically, and with the free acidity in the above range, the phosphate film can be obtained evenly without excessive etching of the metal surface. Adjustments in the solution to ootain and maintain the above points and ratio can be achieved by use of an alkali metal hydroxide or ammonium hydroxide as required.
- Sources of the ingredients of the phosphating solutions of the invention include the following: as to the zinc ion; zinc oxide, zinc carbonate, zinc nitrate, etc.; as to the phosphate ion, phosphoric acid, zinc phosphate, zinc monohydrogen phosphate, zinc dihydrogen phosphate, manganese phosphate, manganese monohydrogen phosphate, manganese dihydrogen phosphate, etc.; as to the manganese ion; manganese carbonate, manganese nitrate, the above manganese phosphate compounds, etc.; as to the fluoride ion, hydrofluoric acid, fluoroboric acid, fluorosilicic acid, fluorotitanic acid, and their metal salts (e.g., zinc salt, nickel salt, etc.; however, the sodium salt is excluded as it does not produce the desired effect); and as to the phosphating acccelerator, sodium nitrite, ammonium nitrite, sodium m-nitrobenzenesul fonate, sodium m-nitrobenzoate, aqueous hydrogen peroxide, nitric acid, sodium nitrate, zinc nitrate, manganese nitrate, nickel nitrate, etc.
- The phosphating solutions of the invention can further contain, as an optional ingredient, nickel ion. The content of the nickel ion should be from about 0.l to about 4 g/l, preferably about 0.3 to about 2 g/l. When nickel ion is present with the manganese ion, performance of the resulting phosphate film is further improved, i.e., the adhesion and corrosion-resistance of the coating obtained after cationic electrocoating are further improved. In phosphating solutions containing nickel ion, the weight ratio of zinc ion to the sum of the manganese ion and the nickel ion is desirably l : (0.5 to 5.0), preferably l : (0.8 to 2.5). The supply source of nickel ion can be, for example, nickel carbonate, nickel nitrate, nickel phosphate, etc.
- The phosphate film formed by the solutions of the present invention is a zinc phosphate-type film. Such films formed on iron-based metal surfaces contain from about 25 to about 40 wt. % of zinc, from about 3 to about ll wt. % of iron, from about l to about 20 wt. % of manganese, and from 0 to about 4 wt. % of nickel.
- The process of the present invention for phosphating metal surfaces by use of the phosphating solutions of the invention can be carried out by spray treatment, dip treatment, or by a combination of such treatments. Spray treatment can usually be effected by spraying 5 or more seconds in order to form an adequate phosphate film which exhibits the desired performance characteristics. As to this spray treatment, a treatment can be carried out using a cycle comprising first a spray treatment for about 5 to about 30 seconds, followed by discontinuing the treatment for about 5 to 30 seconds and then spray treating again for at least 5 seconds with a total spray treatment time of at least 40 seconds. This cycle can be carried out once, twice, or three times.
- Dip treatment is an embodiment which is more preferable than spray treatment in the process of the present invention. In order to form an adquate phosphate film which exhibits the desired performance characteristics, the dip treatment is usually effected for at least l5 seconds, preferably for about 30 to about l20 seconds. Also, treatment can be carried out by first dip treating for at least l5 seconds and then spray treating for at least 2 seconds. Alternatively, the treatment can be effected by first spray treating for at least 5 seconds, and then dip treating for at least l5 seconds. The former combination of first dip treating and then spray treating is especially advantageous for articles having complicated shapes like a car body. For such articles, it is preferable to first carry out a dip treatment for from about 30 to about 90 seconds, and then carry out the spray treatment for from about 5 to about 45 seconds. In this process, it is advantageous to effect the spray treatment for as long a time as is possible within the limitations of the automotive production line, in order to remove the sludge which adheres to the article during the dip treatment stage.
- In the present process, the treating temperature can be from about 30 to about 70°C, preferably from about 35 to about 60°C. This temperature range is approximately l0 to l5°C lower than that which is used in the prior art processes. Treating tempertures below 30°C should not be used due to an unacceptable increase in the time required to produce an acceptable coating. Conversely, when the treating temperature is too high, the phosphating accelerator is decomposed and excess precipitate is formed causing the components in the solution to become unbalanced and making it difficult to obtain satisfactory phosphate films.
- In spray treatments, a convenient spray pressure is from 0.6 to 2 Kg/cm²G.
- As described above, a preferred mode of treatment in the process of the present invention is a dip treatment or a combined treatment using a dip treatment first and then a spray treatment.
- An advantageous procedure for treating metal surfaces using a series of pre-coating treatment processes followed by phosphating in accordance with the process of the present invention is as follows:
- A metal surface is first subjected to a spray treatment and/or a dip treatment with an alkaline degreasing agent at a temperature of 50 to 60°C for 2 minutes; followed by washing with tap water; spray treatment and/or dip treatment with a surface conditioner at room temperature for l0 to 30 seconds; dip treatment with the solution of the present invention at a temperature of about 30 to about 70°C for at least l5 seconds; and washing with tap water and then with deionized water, in that order. Thereafter, it is desirable to after-treat with an acidulated rinse common to the industry such as a dilute chromate solution. This after-treatment is preferably adopted even when the present invention is carried out by spray treatment, or by a combined treatment comprising a spray treatment, followed by a dip treatment. By introducing this after-treatment, a phosphate film which gives greater corrosion-resistance to a siccative coating can be obtained.
- When carrying out the dip treatment or the dip treatment followed by spray treatment, which is the preferred treating method of the present invention, it is advantageous to use an acidic aqueous phosphate solution of the present invention comprising:
- a′) from about 0.5 to about l.5 g/l, preferably from about 0.7 to about l.2 g/l, of zinc ion,
- b′) from about 5 to about 30 g/l, preferably from about l0 to about 20 g/l, of phosphate ion,
- c′) from about 0.6 to about 3 g/l, preferably from about O.8 to about 2 g/l, of manganese ion,
- d′) at least about 0.05 g/l, preferably from about 0.l to about 2 g/l, of a fluoride ion,
- e′) less than 0.5 g/l of chloride ion, and
- f′) a phosphating accelerator in a quantity given above
- When using the above dipping solution of the invention in the process of the invention on a metal surface, especially a metal surface which includes both an iron-based surface and a zinc-based surface, there is formed thereon in an economic manner a fine, even, and dense phosphate film which provides excellent adhesion and corrosion-resistance to coatings formed by cationic electrocoating, and which is substantially free of white spots.
- The present invention further provides a concentrated aqueous composition for formulating the acidic aqueous phosphate solutions of the present invention. The acidic aqueous treating solutions are conveniently prepared by diluting an aqueous concentrate which contains a number of the solution ingredients in proper weight ratios, and then adding other ingredients as needed to prepare the treating solutions of the invention. The concentrates are advantageously formulated to contain zinc ion, phosphate ion, manganese ion, fluoride ion, and optionally, nickel ion, in a weight proportion of 0.l to 2 : 5 to 50 : 0.2 to 4 : at least 0.05 : 0.l to 4. The concentrates preferably contain a weight proportion of the above ingredients of 0.5 to l.5 : l0 to 30 : 0.6 to 3 : 0.l to 3 : 0.3 to 2. The concentrates are preferably formulated to contain at least about 25 g/l, more preferably from about 50 g/l to l30 g/l of zinc ion. However, care must be taken in forming the concentrates. For example, when manganese ion and complex fluoride ion are present together in a concentrate with sodium ion, a precipitate is formed. Also, it is not advisable to add any phosphating accelerator to the concentrate, since the accelerators tend to decompose and cause other problems.
- As an example of a useful concentrated aqueous composition, there is formulated a concentrated composition comprising 3.0 wt. % of zinc oxide, l.8 wt. % of nickel carbonate (II), 48.2 wt. % of 75 % phosphoric acid, l0.0 wt. % of manganese nitrate (II) hydrate (20 wt. % manganese content), 7.9 wt. % of 40 % fluorosilicic acid, and 29.l wt. % of water. This concentrate is then diluted with water to 2.5 vol. %, followed by the addition of an aqueous solution of 20 % sodium nitrite to give an acidic phosphating solution of the invention.
- Practical and preferred embodiments of the present invention are illustratively shown in the following Examples and Comparative Examples. It is to be understood, however, that the present invention is not limited to these examples.
-
- (l) Metal to be subjected to treatment
Electrogalvanized steel plate - (2) Acidic aqueous phosphate solution
The compositions shown in Table l were used - (3) Treating process:
The surfaces of the above metal were simultaneously treated in accordance with the following processes:
Degreasing, water washing, surface conditioning, phosphating, water washing, pure water washing, drying, coating. - (4) Treating Conditions:
- (a) Degreasing:
Using an alkaline degreasing agent ("RIDOLINE SD200" made by Nippon Paint Co., 2 wt. % concentration), spray treatment was carried out at 60°C for l minute, followed by dip treatment for 2 minutes. - (b) Washing with water:
Using tap water, washing was carried out at room temperature for l5 seconds. - (c) Surface conditioning:
Using a surface conditioning agent ("FIXODINE 5N-5" made by Nippon Paint Co., 0.l wt. % concentration), dip treatment was made at room temperature for l5 seconds. - (d) Phosphating:
Using the above acidic aqueous phosphate solution, dip treatment was carried out at 52°C for l20 seconds - (e) Water washing:
Using tap water, washing was carried out at room temperature for l5 seconds. - (f) Pure water washing:
Using deionized water, dip treatment was effected at room temperature for l5 seconds. - (g) Drying was carried out with hot blown air at l00°C for l0 minutes.
The appearance of each phosphated plate thus obtained and the weight of the phospate film thereof were determined. - (h) Coating:
A cationic electrocoating composition ("POWER TOP U-30 Dark Grey" made by Nippon Paint Co.) was coated to a film thickness of 20µ (voltage l80 V, electricity applying time 3 minutes), and the surface was baked at l80°C for 30 minutes. A number of each of the resulting electrocoated plates were used for the brine spray test.
The remaining non-tested electrocoated plates were coated with an intermediate coating composition ("ORGA T0778 Grey" made by Nippon Paint Co.) to a film thickness of 30µ then with a top coating composition ("ORGA T0626 Margaret White" made by Nippon Paint Co.) to a film thickness of 40µ to obtain coated plates having a total of 3-coatings and 3-bakings, which were then used for the adhesion test and the spot rust test.
- (a) Degreasing:
- (5) Test results:
The results are shown in Table 2. Each test method is shown below.- (a) Brine spray test (JIS-Z-287l):
Cross cuts were made on the electrocoated plate, on which 5 % brine spraying was carried out for 500 hours (zinc-plated steel plate) or l,000 hours (cold rolled steel plate). - (b) Adhesion test:
The coated plate was dipped in deionized water at 50°C for l0 days, after which it was provided with grids (l00 squares each) made at lmm intervals and at 2mm intervals using a sharp cutter. To each surface of the thus treated plate, an adhesive tape was applied, after which it was peeled off and the number of the remaining coated squares on the coated plate was counted. - (c) White spot test:
Presence of white spots was examined by visual observation
0... no white spot X... white spots
Additionally, a scanning electron microscopic photograph confirmed the presence of white spot of phosphate film on electro galvanized steel plate.
- (a) Brine spray test (JIS-Z-287l):
- As can be seen from the above Table 2, use of the compositions of the examples of the invention produce commercially highly acceptable phosphate coatings, while those of the comparative examples in which the chloride ion level is over 0.5 g,l produce commercially unsatisfactory coatings. It should be noted that while Example l contained a small quantity of chlorate ion (0.2 g/l) which did not deleteriously affect the results obtained using the fresh bath, it is not recommended that the composition of Example l be employed commercially since maintaining even this low chlorate level in the bath as the bath continues to be used will eventually result in the reduction of sufficient chlorate ion to elevate the chloride ion level above 0.5 g/l.
- The present solution preferably contains not more than about 0.2 g/l of chlorate ion. It is especially preferred that the solution contains no chlorate.
- The present invention is advantageous in avoiding white spots, especially on galvanized steel, particularly when the phosphating treatment comprises dipping.
- In an advantageous embodiment, the present solution contains at least about l.05 g/l, especially at least about l.l g/l, of zinc ion, for instance from about l.05 to about l.5 g/l of zinc ion, especially when the phosphating treatment comprises dipping.
- In another advantageous embodiment, the solution contains at least about l5 g/l of phosphate ion, for instance from about l5 to about 50 g/l, especially from about l5 to about 30 g/l, of phosphate ion.
- In a further advantageous embodiment, the solution contains more than about 4.0 g/l, especially more than about 5 g/l, of nitrate ion. Thus, the solution may contain from about 5 to about l5 g/l, especially from about 5 to about l0 g/l, of nitrate ion.
- In a yet further advantagous embodiment, the solution contains from about 0.3 g/l, especially more than about 0.4 g/l, of nickel ion. Thus, the solution may contain from about 0.4 to about 4 g/l, especially from about 0.4 to about 2 g/l, of nickel ion.
- These advantageous embodiments are especially advantageous for the avoidance of white spots and the provision of other advantageous properties to the phosphated surface.
- When a solution is stated herein to comprise specified ingredients, in a preferred embodiment it consists essentially of these ingredients.
- However the fluoride ion is provided, it is measured herein in terms of F ion.
Claims (22)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| AT86306622T ATE99002T1 (en) | 1985-08-27 | 1986-08-27 | ACIDIC AQUEOUS PHOSPHATE COATING SOLUTIONS FOR A PROCESS FOR PHOSPHATE COATING METALLIC SURFACE. |
| EP93200125A EP0544650B1 (en) | 1985-08-27 | 1986-08-27 | A process for phosphate-coating metal surfaces |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US77003185A | 1985-08-27 | 1985-08-27 | |
| US770031 | 1985-08-27 |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP93200125.8 Division-Into | 1986-08-27 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| EP0228151A1 true EP0228151A1 (en) | 1987-07-08 |
| EP0228151B1 EP0228151B1 (en) | 1993-12-22 |
Family
ID=25087256
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP86306622A Revoked EP0228151B1 (en) | 1985-08-27 | 1986-08-27 | Acidic, aqueous phosphate-coating solutions for use in a process for phosphate-coating metal surfaces |
| EP93200125A Revoked EP0544650B1 (en) | 1985-08-27 | 1986-08-27 | A process for phosphate-coating metal surfaces |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP93200125A Revoked EP0544650B1 (en) | 1985-08-27 | 1986-08-27 | A process for phosphate-coating metal surfaces |
Country Status (5)
| Country | Link |
|---|---|
| EP (2) | EP0228151B1 (en) |
| AT (2) | ATE99002T1 (en) |
| DE (2) | DE3650659T2 (en) |
| HK (1) | HK1007771A1 (en) |
| SG (1) | SG52645A1 (en) |
Cited By (19)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0258922A1 (en) * | 1986-09-05 | 1988-03-09 | Metallgesellschaft Ag | Process for producing phosphate coatings and their use |
| EP0381190A1 (en) * | 1989-01-31 | 1990-08-08 | Nihon Parkerizing Co., Ltd. | Phosphate treatment solution for composite structures and method for treatment |
| WO1990012901A1 (en) * | 1989-04-21 | 1990-11-01 | Henkel Kommanditgesellschaft Auf Aktien | Process not using chlorate or nitrite for the production of nickel and manganese-containing zinc phosphate films |
| EP0401616A1 (en) * | 1989-06-03 | 1990-12-12 | Henkel Kommanditgesellschaft auf Aktien | Process for applying manganese containing phosphate coatings on metallic surfaces |
| WO1991002829A3 (en) * | 1989-08-17 | 1991-04-04 | Henkel Kgaa | Process for producing manganese-containing zinc phosphate coatings on galvanized steel |
| EP0439377A1 (en) * | 1990-01-26 | 1991-07-31 | Ppg Industries, Inc. | Method of applying a zinc-nickel-manganese phosphate coating. |
| JPH03267378A (en) * | 1990-03-16 | 1991-11-28 | Mazda Motor Corp | Method for phosphating metal surface and phosphating solution |
| US5238506A (en) * | 1986-09-26 | 1993-08-24 | Chemfil Corporation | Phosphate coating composition and method of applying a zinc-nickel-manganese phosphate coating |
| WO1995004842A1 (en) * | 1993-08-06 | 1995-02-16 | Metallgesellschaft Aktiengesellschaft | Phosphate treatment process for steel strip with one galvanised surface |
| WO1995007370A1 (en) * | 1993-09-06 | 1995-03-16 | Henkel Kommanditgesellschaft Auf Aktien | Nickel-free phosphatization process |
| US5597465A (en) * | 1994-08-05 | 1997-01-28 | Novamax Itb S.R.L. | Acid aqueous phosphatic solution and process using same for phosphating metal surfaces |
| US5714047A (en) * | 1994-08-05 | 1998-02-03 | Novamax Itb S.R.L. | Acid aqueous phosphatic solution and process using same for phosphating metal surfaces |
| US5868820A (en) * | 1995-09-28 | 1999-02-09 | Ppg Industries, Inc. | Aqueous coating compositions and coated metal surfaces |
| EP0974682A1 (en) * | 1998-07-18 | 2000-01-26 | Henkel Kommanditgesellschaft auf Aktien | Method and apparatus for the chemical treatment of metalsurfaces |
| US6090224A (en) * | 1995-03-29 | 2000-07-18 | Henkel Kommanditgesellschaft Auf Aktien | Phosphating process with a copper-containing re-rinsing stage |
| WO2001066826A1 (en) * | 2000-03-07 | 2001-09-13 | Chemetall Gmbh | Method for applying a phosphate covering and use of metal parts thus phospated |
| DE10109480A1 (en) * | 2001-02-28 | 2002-09-05 | Volkswagen Ag | Coating aluminum surface, e.g. of car chassis, involves forming phosphate layers on surface by spraying, in which aluminum is complexed using fluoride or other complex former before dip coating |
| US6447662B1 (en) | 1998-08-01 | 2002-09-10 | Henkel Kommanditgesellschaft Auf Aktien | Process for phosphatizing, rerinsing and cathodic electro-dipcoating |
| CN104032293A (en) * | 2014-06-11 | 2014-09-10 | 安徽江南机械有限责任公司 | Highly corrosion-resistant environment-friendly black phosphatizing liquid without nickel single component |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP6675297B2 (en) * | 2016-12-09 | 2020-04-01 | Dmg森精機株式会社 | Information processing method, information processing system, and information processing apparatus |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS55107784A (en) | 1979-02-13 | 1980-08-19 | Nippon Paint Co Ltd | Phosphate-treating method for forming metal surface suited for electrodeposition painting |
| JPS55145180A (en) | 1979-05-02 | 1980-11-12 | Nippon Paint Co Ltd | Phosphate-treating method of metal surface for cationic electrocoating |
| JPS55152183A (en) | 1979-05-11 | 1980-11-27 | Nippon Paint Co Ltd | Composition for forming zinc phosphate layer on metal surface |
| JPS57152472A (en) | 1981-03-16 | 1982-09-20 | Nippon Paint Co Ltd | Phosphating method for metallic surface for cation type electrodeposition painting |
| EP0106459A1 (en) * | 1982-08-24 | 1984-04-25 | HENKEL CORPORATION (a Delaware Corp.) | Phosphate coating metal surfaces |
| GB2148951A (en) * | 1983-11-02 | 1985-06-05 | Pyrene Chemical Services Ltd | Phosphating processes and compositions |
| WO1985003089A1 (en) * | 1984-01-06 | 1985-07-18 | Ford Motor Company | Alkaline resistance phosphate conversion coatings |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4595424A (en) * | 1985-08-26 | 1986-06-17 | Parker Chemical Company | Method of forming phosphate coating on zinc |
-
1986
- 1986-08-27 AT AT86306622T patent/ATE99002T1/en not_active IP Right Cessation
- 1986-08-27 DE DE3650659T patent/DE3650659T2/en not_active Revoked
- 1986-08-27 AT AT93200125T patent/ATE160592T1/en not_active IP Right Cessation
- 1986-08-27 SG SG1996007305A patent/SG52645A1/en unknown
- 1986-08-27 EP EP86306622A patent/EP0228151B1/en not_active Revoked
- 1986-08-27 EP EP93200125A patent/EP0544650B1/en not_active Revoked
- 1986-08-27 DE DE3689442T patent/DE3689442T2/en not_active Revoked
-
1998
- 1998-06-26 HK HK98106842A patent/HK1007771A1/en not_active IP Right Cessation
Patent Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS55107784A (en) | 1979-02-13 | 1980-08-19 | Nippon Paint Co Ltd | Phosphate-treating method for forming metal surface suited for electrodeposition painting |
| JPS55145180A (en) | 1979-05-02 | 1980-11-12 | Nippon Paint Co Ltd | Phosphate-treating method of metal surface for cationic electrocoating |
| EP0123980A1 (en) * | 1979-05-02 | 1984-11-07 | Amchem Products, Inc. | Composition and process for zinc phosphate coating a metal surface and a process for painting the coated surface |
| JPS55152183A (en) | 1979-05-11 | 1980-11-27 | Nippon Paint Co Ltd | Composition for forming zinc phosphate layer on metal surface |
| JPS57152472A (en) | 1981-03-16 | 1982-09-20 | Nippon Paint Co Ltd | Phosphating method for metallic surface for cation type electrodeposition painting |
| EP0106459A1 (en) * | 1982-08-24 | 1984-04-25 | HENKEL CORPORATION (a Delaware Corp.) | Phosphate coating metal surfaces |
| GB2148951A (en) * | 1983-11-02 | 1985-06-05 | Pyrene Chemical Services Ltd | Phosphating processes and compositions |
| WO1985003089A1 (en) * | 1984-01-06 | 1985-07-18 | Ford Motor Company | Alkaline resistance phosphate conversion coatings |
Cited By (29)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0258922A1 (en) * | 1986-09-05 | 1988-03-09 | Metallgesellschaft Ag | Process for producing phosphate coatings and their use |
| US5238506A (en) * | 1986-09-26 | 1993-08-24 | Chemfil Corporation | Phosphate coating composition and method of applying a zinc-nickel-manganese phosphate coating |
| EP0381190A1 (en) * | 1989-01-31 | 1990-08-08 | Nihon Parkerizing Co., Ltd. | Phosphate treatment solution for composite structures and method for treatment |
| WO1990012901A1 (en) * | 1989-04-21 | 1990-11-01 | Henkel Kommanditgesellschaft Auf Aktien | Process not using chlorate or nitrite for the production of nickel and manganese-containing zinc phosphate films |
| EP0401616A1 (en) * | 1989-06-03 | 1990-12-12 | Henkel Kommanditgesellschaft auf Aktien | Process for applying manganese containing phosphate coatings on metallic surfaces |
| WO1990015167A1 (en) * | 1989-06-03 | 1990-12-13 | Henkel Kommanditgesellschaft Auf Aktien | Process for producing manganese-containing phosphate coatings on metal surfaces |
| WO1991002829A3 (en) * | 1989-08-17 | 1991-04-04 | Henkel Kgaa | Process for producing manganese-containing zinc phosphate coatings on galvanized steel |
| EP0439377A1 (en) * | 1990-01-26 | 1991-07-31 | Ppg Industries, Inc. | Method of applying a zinc-nickel-manganese phosphate coating. |
| JPH03267378A (en) * | 1990-03-16 | 1991-11-28 | Mazda Motor Corp | Method for phosphating metal surface and phosphating solution |
| WO1995004842A1 (en) * | 1993-08-06 | 1995-02-16 | Metallgesellschaft Aktiengesellschaft | Phosphate treatment process for steel strip with one galvanised surface |
| US5792283A (en) * | 1993-09-06 | 1998-08-11 | Henkel Kommanditgesellschaft Auf Aktien | Nickel-free phosphating process |
| AU678284B2 (en) * | 1993-09-06 | 1997-05-22 | Henkel Kommanditgesellschaft Auf Aktien | Nickel-free phosphatization process |
| WO1995007370A1 (en) * | 1993-09-06 | 1995-03-16 | Henkel Kommanditgesellschaft Auf Aktien | Nickel-free phosphatization process |
| CN1041001C (en) * | 1993-09-06 | 1998-12-02 | 汉克尔股份两合公司 | Nickel-free method for phosphating metal surfaces |
| US5714047A (en) * | 1994-08-05 | 1998-02-03 | Novamax Itb S.R.L. | Acid aqueous phosphatic solution and process using same for phosphating metal surfaces |
| US5597465A (en) * | 1994-08-05 | 1997-01-28 | Novamax Itb S.R.L. | Acid aqueous phosphatic solution and process using same for phosphating metal surfaces |
| US6090224A (en) * | 1995-03-29 | 2000-07-18 | Henkel Kommanditgesellschaft Auf Aktien | Phosphating process with a copper-containing re-rinsing stage |
| US5868820A (en) * | 1995-09-28 | 1999-02-09 | Ppg Industries, Inc. | Aqueous coating compositions and coated metal surfaces |
| US6171409B1 (en) | 1998-07-18 | 2001-01-09 | Henkel Kommanditgesellschaft Auf Aktien | Process for the chemical treatment of metal surfaces and installation suitable therefor |
| EP0974682A1 (en) * | 1998-07-18 | 2000-01-26 | Henkel Kommanditgesellschaft auf Aktien | Method and apparatus for the chemical treatment of metalsurfaces |
| US6447662B1 (en) | 1998-08-01 | 2002-09-10 | Henkel Kommanditgesellschaft Auf Aktien | Process for phosphatizing, rerinsing and cathodic electro-dipcoating |
| WO2001066826A1 (en) * | 2000-03-07 | 2001-09-13 | Chemetall Gmbh | Method for applying a phosphate covering and use of metal parts thus phospated |
| AU778285B2 (en) * | 2000-03-07 | 2004-11-25 | Chemetall Gmbh | Method for applying a phosphate covering and use of metal parts thus phospated |
| US7208053B2 (en) | 2000-03-07 | 2007-04-24 | Chemetall Gmbh | Method for applying a phosphate covering and use of metal parts thus phospated |
| CN100334255C (en) * | 2000-03-07 | 2007-08-29 | 坎梅陶尔股份有限公司 | Method for applying a phosphate covering and use of metal parts thus phospated |
| KR100841156B1 (en) * | 2000-03-07 | 2008-06-24 | 케메탈 게엠베하 | How to apply the phosphate coating |
| DE10109480A1 (en) * | 2001-02-28 | 2002-09-05 | Volkswagen Ag | Coating aluminum surface, e.g. of car chassis, involves forming phosphate layers on surface by spraying, in which aluminum is complexed using fluoride or other complex former before dip coating |
| CN104032293A (en) * | 2014-06-11 | 2014-09-10 | 安徽江南机械有限责任公司 | Highly corrosion-resistant environment-friendly black phosphatizing liquid without nickel single component |
| CN104032293B (en) * | 2014-06-11 | 2016-02-17 | 安徽江南机械有限责任公司 | One not nickeliferous single component high anti-corrosion environmental protection black phosphating solution |
Also Published As
| Publication number | Publication date |
|---|---|
| EP0228151B1 (en) | 1993-12-22 |
| ATE160592T1 (en) | 1997-12-15 |
| HK1007771A1 (en) | 1999-04-23 |
| HK1012681A1 (en) | 1999-08-06 |
| DE3689442D1 (en) | 1994-02-03 |
| EP0544650B1 (en) | 1997-11-26 |
| DE3650659T2 (en) | 1998-07-02 |
| ATE99002T1 (en) | 1994-01-15 |
| DE3650659D1 (en) | 1998-01-08 |
| DE3689442T2 (en) | 1994-06-16 |
| SG52645A1 (en) | 1998-09-28 |
| EP0544650A1 (en) | 1993-06-02 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US4961794A (en) | Phosphate coatings for metal surfaces | |
| EP0544650B1 (en) | A process for phosphate-coating metal surfaces | |
| EP0596947B1 (en) | Zinc phosphate conversion coating composition and process | |
| US5238506A (en) | Phosphate coating composition and method of applying a zinc-nickel-manganese phosphate coating | |
| HK1007771B (en) | Acidic, aqueous phosphate-coating solutions for use in a process for phosphate-coating metal surfaces | |
| HK1007576B (en) | Zinc phosphate conversion coating composition and process | |
| US4486241A (en) | Composition and process for treating steel | |
| PL166676B1 (en) | Method of phosphate treating metal surfaces | |
| CA1224121A (en) | Process for phosphating metals | |
| US5000799A (en) | Zinc-nickel phosphate conversion coating composition and process | |
| JP3137535B2 (en) | Zinc-containing metal-coated steel sheet composite excellent in coatability and method for producing the same | |
| JPH05287549A (en) | Zinc phosphate treatment on metallic surface for cation type electrodeposition coating | |
| EP0452638A1 (en) | Method for phosphating metal surfaces | |
| US6497771B1 (en) | Aqueous solution and method for phosphatizing metallic surfaces | |
| US5244512A (en) | Method for treating metal surface with zinc phosphate | |
| EP0321059A1 (en) | Process for phosphating metal surfaces | |
| US6342107B1 (en) | Phosphate coatings for metal surfaces | |
| US5232523A (en) | Phosphate coatings for metal surfaces | |
| SK112598A3 (en) | Zinc phosphatizing with low quantity of copper and manganese | |
| US5888315A (en) | Composition and process for forming an underpaint coating on metals | |
| US6168674B1 (en) | Process of phosphatizing metal surfaces | |
| US3519494A (en) | Method for coating ferrous metal surfaces | |
| US5932292A (en) | Zinc phosphate conversion coating composition and process | |
| JPH0380877B2 (en) | ||
| HK1012681B (en) | A process for phosphate-coating metal surfaces |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE DE FR GB IT NL SE |
|
| 17P | Request for examination filed |
Effective date: 19880105 |
|
| 17Q | First examination report despatched |
Effective date: 19891019 |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE DE FR GB IT NL SE |
|
| REF | Corresponds to: |
Ref document number: 99002 Country of ref document: AT Date of ref document: 19940115 Kind code of ref document: T |
|
| REF | Corresponds to: |
Ref document number: 3689442 Country of ref document: DE Date of ref document: 19940203 |
|
| ITF | It: translation for a ep patent filed | ||
| ET | Fr: translation filed | ||
| PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
| 26 | Opposition filed |
Opponent name: METALLGESELLSCHAFT AG Effective date: 19940920 |
|
| NLR1 | Nl: opposition has been filed with the epo |
Opponent name: METALLGESELLSCHAFT AG. |
|
| EAL | Se: european patent in force in sweden |
Ref document number: 86306622.1 |
|
| RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: HENKEL CORPORATION (A DELAWARE CORP.) |
|
| NLT2 | Nl: modifications (of names), taken from the european patent patent bulletin |
Owner name: HENKEL CORPORATION (A DELAWARE CORP.) |
|
| PLBO | Opposition rejected |
Free format text: ORIGINAL CODE: EPIDOS REJO |
|
| APAC | Appeal dossier modified |
Free format text: ORIGINAL CODE: EPIDOS NOAPO |
|
| APAE | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOS REFNO |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19990802 Year of fee payment: 14 Ref country code: FR Payment date: 19990802 Year of fee payment: 14 Ref country code: DE Payment date: 19990802 Year of fee payment: 14 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19990803 Year of fee payment: 14 Ref country code: AT Payment date: 19990803 Year of fee payment: 14 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19990810 Year of fee payment: 14 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19990819 Year of fee payment: 14 |
|
| APAC | Appeal dossier modified |
Free format text: ORIGINAL CODE: EPIDOS NOAPO |
|
| RDAH | Patent revoked |
Free format text: ORIGINAL CODE: EPIDOS REVO |
|
| RDAG | Patent revoked |
Free format text: ORIGINAL CODE: 0009271 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT REVOKED |
|
| 27W | Patent revoked |
Effective date: 20000404 |
|
| GBPR | Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state |
Free format text: 20000404 |
|
| NLR2 | Nl: decision of opposition | ||
| APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |