EP0131468B1 - Ultraviolet absorbing polymers comprising 2-hydroxy-5-acrylyloxalkylphenyl-2h-benzotriazoles - Google Patents
Ultraviolet absorbing polymers comprising 2-hydroxy-5-acrylyloxalkylphenyl-2h-benzotriazoles Download PDFInfo
- Publication number
- EP0131468B1 EP0131468B1 EP84304700A EP84304700A EP0131468B1 EP 0131468 B1 EP0131468 B1 EP 0131468B1 EP 84304700 A EP84304700 A EP 84304700A EP 84304700 A EP84304700 A EP 84304700A EP 0131468 B1 EP0131468 B1 EP 0131468B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- hydroxy
- benzotriazole
- chloro
- compound
- copolymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229920000642 polymer Polymers 0.000 title description 24
- 229920001577 copolymer Polymers 0.000 claims description 43
- 239000000178 monomer Substances 0.000 claims description 40
- 239000000203 mixture Substances 0.000 claims description 33
- 150000001875 compounds Chemical class 0.000 claims description 24
- -1 ethylene, propylene Chemical group 0.000 claims description 20
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Natural products C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 19
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical group COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 claims description 12
- 229920001519 homopolymer Polymers 0.000 claims description 8
- 229910052736 halogen Inorganic materials 0.000 claims description 7
- 150000002367 halogens Chemical class 0.000 claims description 7
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 claims description 5
- 125000002947 alkylene group Chemical group 0.000 claims description 5
- 229910052739 hydrogen Inorganic materials 0.000 claims description 5
- CHKKZILXOJVMAD-UHFFFAOYSA-N 2-(benzotriazol-2-yl)-4-(2-hydroxyethyl)phenol Chemical compound OCCC1=CC=C(O)C(N2N=C3C=CC=CC3=N2)=C1 CHKKZILXOJVMAD-UHFFFAOYSA-N 0.000 claims description 4
- WIZVALYRXUIVMS-UHFFFAOYSA-N 2-tert-butyl-6-(5-chlorobenzotriazol-2-yl)-4-(3-hydroxypropyl)phenol Chemical compound CC(C)(C)C1=CC(CCCO)=CC(N2N=C3C=C(Cl)C=CC3=N2)=C1O WIZVALYRXUIVMS-UHFFFAOYSA-N 0.000 claims description 4
- SOQNQQKHYUJRNL-UHFFFAOYSA-N 3-[3-(5-chlorobenzotriazol-2-yl)-4-hydroxyphenyl]propyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCCC1=CC=C(O)C(N2N=C3C=C(Cl)C=CC3=N2)=C1 SOQNQQKHYUJRNL-UHFFFAOYSA-N 0.000 claims description 4
- KARGMXZXPAWXQJ-UHFFFAOYSA-N 3-[3-(benzotriazol-2-yl)-4-hydroxyphenyl]propyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCCC1=CC=C(O)C(N2N=C3C=CC=CC3=N2)=C1 KARGMXZXPAWXQJ-UHFFFAOYSA-N 0.000 claims description 4
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 claims description 4
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 claims description 3
- ARUBLMZSTOWROM-UHFFFAOYSA-N 2-(benzotriazol-2-yl)-4-(3-hydroxypropyl)phenol Chemical compound OCCCC1=CC=C(O)C(N2N=C3C=CC=CC3=N2)=C1 ARUBLMZSTOWROM-UHFFFAOYSA-N 0.000 claims description 3
- OFLPBAZQIRUWFV-UHFFFAOYSA-N 2-[3-(5-chlorobenzotriazol-2-yl)-4-hydroxyphenyl]ethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCC1=CC=C(O)C(N2N=C3C=C(Cl)C=CC3=N2)=C1 OFLPBAZQIRUWFV-UHFFFAOYSA-N 0.000 claims description 3
- RLWDBZIHAUEHLO-UHFFFAOYSA-N 3-[3-tert-butyl-5-(5-chlorobenzotriazol-2-yl)-4-hydroxyphenyl]propyl 2-methylprop-2-enoate Chemical compound CC(C)(C)C1=CC(CCCOC(=O)C(=C)C)=CC(N2N=C3C=C(Cl)C=CC3=N2)=C1O RLWDBZIHAUEHLO-UHFFFAOYSA-N 0.000 claims description 3
- XMXLADVBMKZFKN-UHFFFAOYSA-N 2-(5-chlorobenzotriazol-2-yl)-4-(2-hydroxyethyl)phenol Chemical compound OCCC1=CC=C(O)C(N2N=C3C=C(Cl)C=CC3=N2)=C1 XMXLADVBMKZFKN-UHFFFAOYSA-N 0.000 claims description 2
- KLEKGCMQFSSPJM-UHFFFAOYSA-N 2-(5-chlorobenzotriazol-2-yl)-4-(3-hydroxypropyl)phenol Chemical compound OCCCC1=CC=C(O)C(N2N=C3C=C(Cl)C=CC3=N2)=C1 KLEKGCMQFSSPJM-UHFFFAOYSA-N 0.000 claims description 2
- JLBJTVDPSNHSKJ-UHFFFAOYSA-N 4-Methylstyrene Chemical compound CC1=CC=C(C=C)C=C1 JLBJTVDPSNHSKJ-UHFFFAOYSA-N 0.000 claims description 2
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 claims description 2
- GYCMBHHDWRMZGG-UHFFFAOYSA-N Methylacrylonitrile Chemical compound CC(=C)C#N GYCMBHHDWRMZGG-UHFFFAOYSA-N 0.000 claims description 2
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 claims description 2
- 150000001252 acrylic acid derivatives Chemical class 0.000 claims description 2
- 150000002734 metacrylic acid derivatives Chemical class 0.000 claims description 2
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 claims description 2
- JFEQQRQRRBZMGE-UHFFFAOYSA-N 2-(benzotriazol-2-yl)-6-tert-butyl-4-(3-hydroxypropyl)phenol Chemical compound CC(C)(C)C1=CC(CCCO)=CC(N2N=C3C=CC=CC3=N2)=C1O JFEQQRQRRBZMGE-UHFFFAOYSA-N 0.000 claims 1
- GPHPMJLQACOKIQ-UHFFFAOYSA-N 3-[3-(benzotriazol-2-yl)-5-tert-butyl-4-hydroxyphenyl]propyl 2-methylprop-2-enoate Chemical compound CC(C)(C)C1=CC(CCCOC(=O)C(=C)C)=CC(N2N=C3C=CC=CC3=N2)=C1O GPHPMJLQACOKIQ-UHFFFAOYSA-N 0.000 claims 1
- 125000003011 styrenyl group Chemical group [H]\C(*)=C(/[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 claims 1
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 27
- 210000000695 crystalline len Anatomy 0.000 description 20
- 239000012964 benzotriazole Substances 0.000 description 19
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 18
- 239000000243 solution Substances 0.000 description 18
- 238000002360 preparation method Methods 0.000 description 17
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 16
- 230000009102 absorption Effects 0.000 description 16
- 238000010521 absorption reaction Methods 0.000 description 16
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 16
- 239000000543 intermediate Substances 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 9
- 229920002554 vinyl polymer Polymers 0.000 description 9
- 239000006096 absorbing agent Substances 0.000 description 8
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 7
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 150000001565 benzotriazoles Chemical class 0.000 description 6
- KJIFKLIQANRMOU-UHFFFAOYSA-N oxidanium;4-methylbenzenesulfonate Chemical compound O.CC1=CC=C(S(O)(=O)=O)C=C1 KJIFKLIQANRMOU-UHFFFAOYSA-N 0.000 description 6
- 229920001897 terpolymer Polymers 0.000 description 6
- 238000002834 transmittance Methods 0.000 description 6
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical group C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 5
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 5
- 239000005977 Ethylene Substances 0.000 description 5
- 239000000987 azo dye Substances 0.000 description 5
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 5
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 4
- 230000008033 biological extinction Effects 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 238000007334 copolymerization reaction Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 229920001155 polypropylene Polymers 0.000 description 4
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 4
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Chemical group CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 4
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 4
- 239000011541 reaction mixture Substances 0.000 description 4
- 238000010992 reflux Methods 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 210000001525 retina Anatomy 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 229940117958 vinyl acetate Drugs 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- 206010002945 Aphakia Diseases 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 229920000877 Melamine resin Polymers 0.000 description 3
- 229920002292 Nylon 6 Polymers 0.000 description 3
- 239000005062 Polybutadiene Substances 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 3
- 238000002835 absorbance Methods 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 150000001991 dicarboxylic acids Chemical class 0.000 description 3
- 239000000706 filtrate Substances 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 229920000578 graft copolymer Polymers 0.000 description 3
- 239000005457 ice water Substances 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 3
- 229920002857 polybutadiene Polymers 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- 229920006324 polyoxymethylene Polymers 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 229910000029 sodium carbonate Inorganic materials 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- 238000004383 yellowing Methods 0.000 description 3
- HJIAMFHSAAEUKR-UHFFFAOYSA-N (2-hydroxyphenyl)-phenylmethanone Chemical class OC1=CC=CC=C1C(=O)C1=CC=CC=C1 HJIAMFHSAAEUKR-UHFFFAOYSA-N 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 2
- YCCILVSKPBXVIP-UHFFFAOYSA-N 2-(4-hydroxyphenyl)ethanol Chemical compound OCCC1=CC=C(O)C=C1 YCCILVSKPBXVIP-UHFFFAOYSA-N 0.000 description 2
- VCYCUECVHJJFIQ-UHFFFAOYSA-N 2-[3-(benzotriazol-2-yl)-4-hydroxyphenyl]ethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCC1=CC=C(O)C(N2N=C3C=CC=CC3=N2)=C1 VCYCUECVHJJFIQ-UHFFFAOYSA-N 0.000 description 2
- IJFPGBDXKWTYIJ-UHFFFAOYSA-N 2-tert-butyl-4-(3-hydroxypropyl)phenol Chemical compound CC(C)(C)C1=CC(CCCO)=CC=C1O IJFPGBDXKWTYIJ-UHFFFAOYSA-N 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- 0 CC(C(O*c(cc1)cc(NCN=C(C=CC(Cl)=C2)C2=NC)c1O)=O)=C Chemical compound CC(C(O*c(cc1)cc(NCN=C(C=CC(Cl)=C2)C2=NC)c1O)=O)=C 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 229920002367 Polyisobutene Polymers 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 235000021355 Stearic acid Nutrition 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 235000013877 carbamide Nutrition 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 150000001993 dienes Chemical class 0.000 description 2
- WNAHIZMDSQCWRP-UHFFFAOYSA-N dodecane-1-thiol Chemical compound CCCCCCCCCCCCS WNAHIZMDSQCWRP-UHFFFAOYSA-N 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- VXNZUUAINFGPBY-UHFFFAOYSA-N ethyl ethylene Natural products CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 2
- IVJISJACKSSFGE-UHFFFAOYSA-N formaldehyde;1,3,5-triazine-2,4,6-triamine Chemical compound O=C.NC1=NC(N)=NC(N)=N1 IVJISJACKSSFGE-UHFFFAOYSA-N 0.000 description 2
- 238000004817 gas chromatography Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 2
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 2
- 239000012044 organic layer Substances 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 229920001748 polybutylene Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920006254 polymer film Polymers 0.000 description 2
- 229910000027 potassium carbonate Inorganic materials 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 239000005060 rubber Substances 0.000 description 2
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical compound [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 description 2
- 239000008117 stearic acid Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- IMNBHNRXUAJVQE-UHFFFAOYSA-N (4-benzoyl-3-hydroxyphenyl) 2-methylprop-2-enoate Chemical compound OC1=CC(OC(=O)C(=C)C)=CC=C1C(=O)C1=CC=CC=C1 IMNBHNRXUAJVQE-UHFFFAOYSA-N 0.000 description 1
- OJOWICOBYCXEKR-KRXBUXKQSA-N (5e)-5-ethylidenebicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(=C/C)/CC1C=C2 OJOWICOBYCXEKR-KRXBUXKQSA-N 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N 1-propanol Substances CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical compound C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 1
- ZXDDPOHVAMWLBH-UHFFFAOYSA-N 2,4-Dihydroxybenzophenone Chemical class OC1=CC(O)=CC=C1C(=O)C1=CC=CC=C1 ZXDDPOHVAMWLBH-UHFFFAOYSA-N 0.000 description 1
- KPYNPYLYIYBHEI-UHFFFAOYSA-N 2,6-ditert-butyl-4-(3-hydroxypropyl)phenol Chemical compound CC(C)(C)C1=CC(CCCO)=CC(C(C)(C)C)=C1O KPYNPYLYIYBHEI-UHFFFAOYSA-N 0.000 description 1
- NMMXJQKTXREVGN-UHFFFAOYSA-N 2-(4-benzoyl-3-hydroxyphenoxy)ethyl prop-2-enoate Chemical compound OC1=CC(OCCOC(=O)C=C)=CC=C1C(=O)C1=CC=CC=C1 NMMXJQKTXREVGN-UHFFFAOYSA-N 0.000 description 1
- DPJCXCZTLWNFOH-UHFFFAOYSA-N 2-nitroaniline Chemical compound NC1=CC=CC=C1[N+]([O-])=O DPJCXCZTLWNFOH-UHFFFAOYSA-N 0.000 description 1
- CRNBYOFAUNVIBK-UHFFFAOYSA-N 2-tert-butyl-6-[(4-chloro-2-nitrophenyl)diazenyl]-4-(3-hydroxypropyl)phenol Chemical compound CC(C)(C)C1=CC(CCCO)=CC(N=NC=2C(=CC(Cl)=CC=2)[N+]([O-])=O)=C1O CRNBYOFAUNVIBK-UHFFFAOYSA-N 0.000 description 1
- YCGKJPVUGMBDDS-UHFFFAOYSA-N 3-(6-azabicyclo[3.1.1]hepta-1(7),2,4-triene-6-carbonyl)benzamide Chemical compound NC(=O)C1=CC=CC(C(=O)N2C=3C=C2C=CC=3)=C1 YCGKJPVUGMBDDS-UHFFFAOYSA-N 0.000 description 1
- NICVMTDIJVRSQX-UHFFFAOYSA-N 3-[3-tert-butyl-5-(5-chlorobenzotriazol-2-yl)-4-hydroxyphenyl]propyl but-2-enoate Chemical compound CC(C)(C)C1=CC(CCCOC(=O)C=CC)=CC(N2N=C3C=C(Cl)C=CC3=N2)=C1O NICVMTDIJVRSQX-UHFFFAOYSA-N 0.000 description 1
- PBGKNXWGYQPUJK-UHFFFAOYSA-N 4-chloro-2-nitroaniline Chemical compound NC1=CC=C(Cl)C=C1[N+]([O-])=O PBGKNXWGYQPUJK-UHFFFAOYSA-N 0.000 description 1
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- PXMJCECEFTYEKE-UHFFFAOYSA-N Benzenepropanoic acid, 3,5-bis(1,1-dimethylethyl)-4-hydroxy-, methyl ester Chemical compound COC(=O)CCC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 PXMJCECEFTYEKE-UHFFFAOYSA-N 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-N Carbamic acid Chemical class NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 description 1
- 208000002177 Cataract Diseases 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 229920001634 Copolyester Polymers 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 1
- 229920000571 Nylon 11 Polymers 0.000 description 1
- 229920000299 Nylon 12 Polymers 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229920002396 Polyurea Polymers 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 1
- 241000584803 Xanthosia rotundifolia Species 0.000 description 1
- CKIDCRFWPRVLEU-UHFFFAOYSA-N [3-(benzotriazol-2-yl)-4-hydroxyphenyl] prop-2-enoate Chemical compound OC1=CC=C(OC(=O)C=C)C=C1N1N=C2C=CC=CC2=N1 CKIDCRFWPRVLEU-UHFFFAOYSA-N 0.000 description 1
- ABOOBORVRDHATB-UHFFFAOYSA-N [3-[3-(5-chlorobenzotriazol-2-yl)-2-hydroxy-5-methylphenyl]-3-methylbutyl] 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCC(C)(C)C1=CC(C)=CC(N2N=C3C=C(Cl)C=CC3=N2)=C1O ABOOBORVRDHATB-UHFFFAOYSA-N 0.000 description 1
- YIMQCDZDWXUDCA-UHFFFAOYSA-N [4-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCC(CO)CC1 YIMQCDZDWXUDCA-UHFFFAOYSA-N 0.000 description 1
- 150000001241 acetals Chemical class 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 229920006222 acrylic ester polymer Polymers 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229920005601 base polymer Polymers 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical class OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 229920001727 cellulose butyrate Polymers 0.000 description 1
- 229920003086 cellulose ether Polymers 0.000 description 1
- 229920006218 cellulose propionate Polymers 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 210000004087 cornea Anatomy 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 229920006037 cross link polymer Polymers 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- 239000012954 diazonium Substances 0.000 description 1
- 150000001989 diazonium salts Chemical class 0.000 description 1
- WGLUMOCWFMKWIL-UHFFFAOYSA-N dichloromethane;methanol Chemical compound OC.ClCCl WGLUMOCWFMKWIL-UHFFFAOYSA-N 0.000 description 1
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical class C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- XUCNUKMRBVNAPB-UHFFFAOYSA-N fluoroethene Chemical compound FC=C XUCNUKMRBVNAPB-UHFFFAOYSA-N 0.000 description 1
- 235000019256 formaldehyde Nutrition 0.000 description 1
- 229960004279 formaldehyde Drugs 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- AHAREKHAZNPPMI-UHFFFAOYSA-N hexa-1,3-diene Chemical compound CCC=CC=C AHAREKHAZNPPMI-UHFFFAOYSA-N 0.000 description 1
- 229920006158 high molecular weight polymer Polymers 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 239000004922 lacquer Substances 0.000 description 1
- 150000003951 lactams Chemical class 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000012280 lithium aluminium hydride Substances 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 238000010907 mechanical stirring Methods 0.000 description 1
- VHRYZQNGTZXDNX-UHFFFAOYSA-N methacryloyl chloride Chemical compound CC(=C)C(Cl)=O VHRYZQNGTZXDNX-UHFFFAOYSA-N 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 150000005673 monoalkenes Chemical class 0.000 description 1
- 229920005615 natural polymer Polymers 0.000 description 1
- HMZGPNHSPWNGEP-UHFFFAOYSA-N octadecyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCCCCCCCCCOC(=O)C(C)=C HMZGPNHSPWNGEP-UHFFFAOYSA-N 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 150000002924 oxiranes Chemical class 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-L phthalate(2-) Chemical compound [O-]C(=O)C1=CC=CC=C1C([O-])=O XNGIFLGASWRNHJ-UHFFFAOYSA-L 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 1
- 229920001084 poly(chloroprene) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920001195 polyisoprene Polymers 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920006380 polyphenylene oxide Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 229920002620 polyvinyl fluoride Polymers 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000005297 pyrex Substances 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000979 retarding effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 1
- 235000010288 sodium nitrite Nutrition 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 239000012265 solid product Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000012258 stirred mixture Substances 0.000 description 1
- 229920006132 styrene block copolymer Polymers 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000000967 suction filtration Methods 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 229920006305 unsaturated polyester Polymers 0.000 description 1
- 150000003672 ureas Chemical class 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 150000003751 zinc Chemical class 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F20/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
- C08F20/02—Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
- C08F20/10—Esters
- C08F20/34—Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
- C08F20/36—Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate containing oxygen in addition to the carboxy oxygen, e.g. 2-N-morpholinoethyl (meth)acrylate or 2-isocyanatoethyl (meth)acrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/34—Heterocyclic compounds having nitrogen in the ring
- C08K5/3467—Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
- C08K5/3472—Five-membered rings
- C08K5/3475—Five-membered rings condensed with carbocyclic rings
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/04—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
- G02B1/041—Lenses
- G02B1/043—Contact lenses
Definitions
- This invention relates to ultraviolet light absorbing polymer compositions, and more particularly, to polymer compositions comprising copolymers of 2-Hydroxy-5-acrylyloxyalkylphenyl-2H-benzotriazoles with one or more other monomers copolymerizable therewith, particularly acrylic monomers.
- This invention further relates to ocular devices, particularly intraocular lenses and contact lenses, prepared from such ultraviolet light absorbing polymers.
- UV absorbers or quenchers of various types are effective in inhibiting or retarding the destruction of the polymers to which they are added, their extractibility in various media and/or their volatility during the processing or fabrication of the polymers at elevated temperatures, provide a limitation on their utility.
- Examples of monomeric ultraviolet absorbers copolymerizable with acrylic monomers as disclosed in U.S. 4,304,895 for use in the preparation of UV absorbing hard contact lenses are 2-hydroxy-4-methacryloxy benzophenone and mixtures thereof.
- US-A-3,813,255 discloses an ultraviolet absorbing composition which is formed from a mixture of an aqueous solution of a hydrophilic colloid binder and a dispersion of a hydrophobic ultraviolet absorbing copolymer.
- the copolymer is obtained by emulsion copolymerisation of an ⁇ , ⁇ -ethylenically unsaturated monomer with a copolymerisable ultraviolet absorbing monomer.
- the ultraviolet absorbing monomer may comprise a 2-hydroxy-5-acrylyloxyphenyl-2H-benzotriazole.
- the composition is used in a photographic filter.
- UV absorbing lenses are particularly desirable for use by persons who have had their natural lenses surgically removed due to cataracts or some damage or natural deterioration of the lens.
- the visual correction of aphakia resulting from such lens removal requires the use of high plus corrective lens which may be in the form of spectacles, contact lens or intraocular lens.
- a portion of incident light entering the eye is normally absorbed by various parts of the eye so that only the unabsorbed or transmitted portion strikes the retina.
- the incident light is, of course, comprised of the entire spectrum of wavelengths including the ultraviolet, visible and infrared.
- the cornea preferentially absorbs that portion of the light with wavelengths up to about 300 nm.
- the crystalline lens preferentially absorbs the wavelengths from about 300 up to about 400 nm.
- the overall result of the various absorptions in the human eye is to permit the unabsorbed light to be transmitted to the retina, this light being defined by wavelength and intensity at each wavelength. It is apparent that in the aphakic eye, where there is no crystalline lens, light from 300 to 400 nm will be transmitted to the retina and that absorption in the visible range of the spectrum will also be changed to the extent that such visible light would have been absorbed by the crystalline lens. Accordingly, the entire spectrum of the light striking the retina in the aphakic eye is different from that in the normal eye.
- Intraocular lenses and hard contact lenses are presently produced by polymethylmethacrylate polymers which exhibit a combination of properties desirable for such products, particularly optical clarity, the capability of being cut and polished or molded to specific optical powers, and chemical inertness.
- UV absorbing lenses of PMMA are required to maintain these properties while achieving at least 85% absorption of light at 400 nm based on a polymer film thickness of 1 mm.
- the absorption must cut off sharply above 400 nm to avoid yellowing of the lens.
- benzotriazoles are copolymerizable with vinyl monomers such as methyl methacrylate to yield optically clear polymers useful in the preparation of intraocular and contact lenses. From 0.05 to 20% by weight of the benzotriazole compound may be incorporated in the copolymer, the minimum effective amount for 85% absorption at 400 nm and 1 mm film thickness depending upon the particular structure of the benzotriazole compound. More preferably, no more than 5.0% by weight of the benzotriazole compound is incorporated in the copolymer. High molecular weight homopolymers of the benzotriazole monomers may also be prepared and incorporated into a variety of organic materials to impart UV absorption properties thereto.
- benzotriazole monomers are prepared from 2'-hydroxy-5'-(hydroxyalkyl)phenyl-2H-benzotriazoles of the structure wherein
- the benzotriazole monomers of the present invention are those compositions defined by the structure wherein
- Particularly preferred compounds are those where X is H or chlorine, R 1 is H or t-butyl, R 2 is ethylene or propylene and R 3 is methyl.
- a particularly preferred benzotriazole UV absorbing monomer of the present invention is compound V above.
- This compound is copolymerizable with methyl methacrylate and other vinyl type monomers and imparts excellent UV absorbing properties to the copolymer even at concentrations of 1.0% or less.
- the preparation of this compound, its copolymerization with methyl methacrylate, and the UV transmission characteristics of the resulting polymer, are described in the following examples.
- the azo dye of Example 3 was dissolved in 1.7 I of ethanol. A solution of 151 g of glucose in 1.7 I of 2N sodium hydroxide was added to the azo dye solution. The mixture was stirred at room temperature and, after 24 hours of stirring, 131 g of zinc dust was added to the reaction mixture. The mixture was stirred for another two hours at room temperature. The zinc was separated by filtration and washed with ethanol, methylene chloride and ethanol. The filtrate and washings were combined and acidified with concentrated hydrochloric acid. The aqueous layer was extracted with methylene chloride. The combined organic layer was washed with 1 N hydrochloric acid and water, dried with potassium carbonate and evaporated.
- Methacrylyl chloride (5.9 ml) and triethylamine (8.5 ml) were added dropwise at -5°C to a solution of 2-(2'-hydroxy-5'-hydroxypropyl-3'-tert-butylphenyl)-5-chloro-2H-benzotriazole (20 g) in 250 ml of methylene chloride.
- the reaction mixture was stirred at 0°C overnight and then washed with 1 N hydrochloric acid and water.
- the methylene chloride solution of the product was dried with sodium sulfate, passed through alumina column and evaporated. The crude yield of the product was 22 g (90%).
- a polymerization grade sample was obtained by recrystallization from methanol-methylene chloride mixture, m.p. 74.5-76.5°C.
- Example 6 The procedure of Example 6 was followed using 0.2 g of the benzotriazole product of Example 5, 1.9 g of ethyl acrylate, 23.0 g of methyl methacrylate, 89 pl of 1-dodecanethiol, 0.12 g of stearic acid and 20.3 mg of azobisisobutyronitrile.
- a 1 mm thick film prepared of the resulting polymer which contained 0.8% of the benzotriazole showed transmittance of 3.4% at 400 nm and 0% at 395 nm.
- a UV transmittance curve for the polymer of this example is plotted in Figure 1 in comparison with a copolymer of methylmethacrylate containing 10 percent 4-(2'-Acrylyloxyethoxy)-2-hydroxybenzophenone (Copolymer A), a copolymerizable UV absorbing monomer of the prior art.
- the transmittance curve for a commercial acrylic resin not containing any UV absorber is also included for reference.
- a 2000 ml, three-necked flask was equipped with mechanical stirring, an addition funnel and a thermometer.
- Concentrated hydrochloric acid 150 ml, 1.8 mole
- solid o-nitroaniline 55.2 g, 0.4 mole
- the slurry was cooled in an ice bath and a solution of sodium nitrite (27 g, 0.39 mole) in water added dropwise while maintaining the internal temperature in the range of 0-5°C by external cooling.
- the solution was filtered to remove a small amount of solid particles.
- a solution of p-hydroxyphenethyl alcohol (55.2 g, 0.4 mole), sodium hydroxide (16 g, 0.4 mole), and sodium carbonate (120 g, 1.13 mole) in 600 ml of water was prepared and added dropwise to the reaction vessel with stirring over a period of 30 minutes while maintaining the internal temperature at 15 ⁇ 3°C.
- the intermediate azo compound separated as a dark red oil which partially solidified after two hours. It was collected by filtration in a sintered glass funnel and dissolved in 400 ml of 2N sodium hydroxide solution.
- Zinc dust 120 g, 1.84 mole was added to the solution in portions over a period of three hours while at the same time 200 ml of 25% sodium hydroxide solution was added dropwise.
- benzotriazole phenyl alcohols which are particularly useful as intermediates in the preparation of the preferred 2'-hydroxy-5'-acrylyloxyalkylphenyl-2H-benzotriazoles as follows:
- Example 8 and Example 9 were readily copolymerized with methylmethacrylate and ethylacrylate and hot pressed into films as described above. While both monomers were effective UV absorbers, significantly higher concentrations were required to achieve 85% absorption at 400 nm on 1 mm thick films as compared to the preferred monomer of Example 5. Comparative data is as follows:
- Extinction coefficients of the benzotriazole monomers of Examples 5, 8, and 9 and of Monomer A were measured in methylene chloride solution.
- Absorbance is determined according to conventional procedures using a UV-Visible Spectrophotometer as described, for example, in R. M. Silverstein and G. C. Bassler, "Spectrometric Identification of Organic Compounds", 2nd Edition, John Wiley & Sons, Inc., New York, 1967. Since s is proportional to absorbance, a compound which has a larger s gives greater UV absorption at lower concentrations.
- the benzotriazoles of the present invention absorb strongly in the UV range of 200-400 nm and to cut off sharply above 400 nm.
- the hydroxy benzophenone control (Monomer A) absorbs less strongly and exhibits a broader absorption band extending into the visible range. Extinction coefficient curves for the above monomers are plotted in Fig. 2, and the data are summarized in the following table:
- Example 8 The monomer of Example 8 (>99.9% pure) was homopolymerized in toluene at 50°C for 63 hours to obtain essentially 100% conversion to a high molecular weight polymer having an inherent viscosity of 1.87 dl/g measured as 0.5% by weight solution in chloroform at 25°C, Tg 116°C.
- the homopolymer was useful as an additive for incorporation in polymer films to enhance UV absorption properties.
- the monomer of Example 8 was copolymerized with methyl methacrylate, and with selected third monomers following the general procedure of Example 6 to obtain various copolymers and terpolymers useful in the manufacture of intraocular lenses.
- Preferred polymers were selected on the basis of Tg and melt index values amiable to injection molding, and on the basis of good optical clarity.
- Terpolymers of MMA with 16% of the monomer of Example 8 and either 6% stearyl methacrylate or 10% ethyl acrylate gave particularly good optical clarity with no significant yellowing effect.
- the benzotriazole monomer of Example 8 is accordingly a preferred UV absorber for applications where yellowing of the base polymer is to be avoided.
- the terpolymer films had transmittance values of 10-14% at 400 nm and 88-90% at 700 nm. Inherent viscosity of the terpolymer ranged in values from about 0.35 to 0.80, and Tg was in the order of 110-115°C.
- Comparable copolymers of MMA with 16% of the benzotriazole monomer of Example 9 and terpolymers with 10% ethyl acrylate were prepared and pressed into films. Transmittance values for those films was 4 ⁇ 5% at 400 nm and 85-88% at 700 nm, indicating that the monomer of Example 9 is a more effective UV absorber than the monomer of Example 8.
- the benzotriazoles of the present invention may be copolymerized with any of a number of unsaturated monomers to provide polymeric compositions having desirable UV absorbing characteristics.
- homopolymers or copolymers of the benzotriazoles of the present invention may be utilized as additives to a wide variety of organic polymers to provide UV absorption properties.
- Representative of the polymers and copolymers useful in conjunction with the benzotriazole monomers and polymers of the present invention are:
- compositions are copolymers comprising from 0.1 to 20% by weight of benzotriazoles of the present invention with other ethylenically unsaturated materials such as styrene, methylstyrene, acrylates, methacrylates, acrylamide, acrylonitrile, methacrylonitrile, vinylacetate, vinylidene chloride, vinyl chloride, vinyl fluoride, ethylene, propylene, and mixtures thereof.
- the homopolymers and copolymers of the benzotriazoles of the present invention find wide application in formulating UV absorbing plastics and other organic materials wherever such materials are exposed to UV radiation from either natural or artificial sources.
- the materials of the present invention are useful in many industrial applications such as in solar energy collectors, polymeric coatings, transparent plastic films, fluorescent light diffusers, packaging materials, vinyl window coverings, automobile paints and interior coverings, epoxys, fiberglass constructions and the like. Many other applications will be readily apparent to those familiar with this art as a result of proceeding specification.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Eyeglasses (AREA)
- Optical Filters (AREA)
Description
- This invention relates to ultraviolet light absorbing polymer compositions, and more particularly, to polymer compositions comprising copolymers of 2-Hydroxy-5-acrylyloxyalkylphenyl-2H-benzotriazoles with one or more other monomers copolymerizable therewith, particularly acrylic monomers. This invention further relates to ocular devices, particularly intraocular lenses and contact lenses, prepared from such ultraviolet light absorbing polymers.
- The absorption of radiation in the ultraviolet range by polymeric materials is a major cause of the light- induced degradation therein. It is standard practice to add a low molecular weight UV "stabilizer" to light- sensitive polymers to absorb the light in the destructive range or to quench the energy generated as a result of the excitation of the light-absorbing functional groups in the polymer.
- Although low molecular weight UV absorbers or quenchers of various types are effective in inhibiting or retarding the destruction of the polymers to which they are added, their extractibility in various media and/or their volatility during the processing or fabrication of the polymers at elevated temperatures, provide a limitation on their utility.
- This problem has been remedied to a considerable extent by the synthesis of copolymerizable monomers containing structural moieties capable of functioning as UV absorbers or quenchers. The copolymerization of such monomers results in the formation of copolymers with increased stability, i.e. resistance to degradation upon exposure to UV light with decreased extractibility and volatility. The addition of such copolymers to a suitable matrix polymer imparts these properties to the latter.
-
- Similarly, the copolymerization of an allyl-2-hydroxybenzophenone with an acrylate ester such as methyl methacrylate is described in U.S. 4,310,650, and, the copolymerization of ethylenically unsaturated derivatives of 2,4-dihydroxybenzophenone with other vinyl type comonomers is broadly disclosed in U.S. 3,162,676.
- US-A-3,813,255 discloses an ultraviolet absorbing composition which is formed from a mixture of an aqueous solution of a hydrophilic colloid binder and a dispersion of a hydrophobic ultraviolet absorbing copolymer. The copolymer is obtained by emulsion copolymerisation of an α,β-ethylenically unsaturated monomer with a copolymerisable ultraviolet absorbing monomer. The ultraviolet absorbing monomer may comprise a 2-hydroxy-5-acrylyloxyphenyl-2H-benzotriazole. The composition is used in a photographic filter.
- UV absorbing lenses are particularly desirable for use by persons who have had their natural lenses surgically removed due to cataracts or some damage or natural deterioration of the lens. The visual correction of aphakia resulting from such lens removal requires the use of high plus corrective lens which may be in the form of spectacles, contact lens or intraocular lens.
- A portion of incident light entering the eye is normally absorbed by various parts of the eye so that only the unabsorbed or transmitted portion strikes the retina. The incident light is, of course, comprised of the entire spectrum of wavelengths including the ultraviolet, visible and infrared.
- The cornea preferentially absorbs that portion of the light with wavelengths up to about 300 nm. The crystalline lens preferentially absorbs the wavelengths from about 300 up to about 400 nm. There is also a characteristic absorption of the visible portion of the spectrum by other parts of the eye. The overall result of the various absorptions in the human eye is to permit the unabsorbed light to be transmitted to the retina, this light being defined by wavelength and intensity at each wavelength. It is apparent that in the aphakic eye, where there is no crystalline lens, light from 300 to 400 nm will be transmitted to the retina and that absorption in the visible range of the spectrum will also be changed to the extent that such visible light would have been absorbed by the crystalline lens. Accordingly, the entire spectrum of the light striking the retina in the aphakic eye is different from that in the normal eye.
- Intraocular lenses and hard contact lenses are presently produced by polymethylmethacrylate polymers which exhibit a combination of properties desirable for such products, particularly optical clarity, the capability of being cut and polished or molded to specific optical powers, and chemical inertness. UV absorbing lenses of PMMA are required to maintain these properties while achieving at least 85% absorption of light at 400 nm based on a polymer film thickness of 1 mm. In addition, the absorption must cut off sharply above 400 nm to avoid yellowing of the lens.
- While the hydroxy benzophenones copolymerizable with acrylate monomers are effective UV absorbers and form chemically stable copolymers, relatively large amounts, i.e. 3 to 10% by weight, must be incorporated in the polymer to obtain 85% UV absorption at 400 nm and 1 mm thickness, and the compounds exhibit very broad absorption bands which extend into the visible range. Thus, polymers containing sufficient amounts of the benzophenone to provide effective UV absorption often have a significantly yellow cast.
- It is accordingly an object of the present invention to provide a copolymer composition with improved UV absorption characteristics. It is a further object to provide a new UV absorbing composition which is copolymerizable with vinyl monomers. A yet further object is to provide a new composition of matter which when copolymerized with acrylic-type monomers is effective to absorb at least 85% of incident UV light at 400 nm and 1 mm thickness.
- It is a further object to provide a new composition of matter which effectively absorbs UV light in the range of 300 to 400 nm but cuts off sharply above 400 nm.
- These and other objects of the present invention will be apparent from the ensuing description and claims.
-
- X is H or halogen,
- each R, is selected from the group consisting of H, CH3, t-alkyl of 4 to 6 carbons and
wherein R2 is C2-C'o alkylene which may be straight chain or branched, and R3 is H or CH3, provided that one R, is H, CH3, or t-alkyl and the other R, is - The above defined benzotriazoles are copolymerizable with vinyl monomers such as methyl methacrylate to yield optically clear polymers useful in the preparation of intraocular and contact lenses. From 0.05 to 20% by weight of the benzotriazole compound may be incorporated in the copolymer, the minimum effective amount for 85% absorption at 400 nm and 1 mm film thickness depending upon the particular structure of the benzotriazole compound. More preferably, no more than 5.0% by weight of the benzotriazole compound is incorporated in the copolymer. High molecular weight homopolymers of the benzotriazole monomers may also be prepared and incorporated into a variety of organic materials to impart UV absorption properties thereto.
-
- X is H, halogen or -OCH3;
- R1 is selected from the group consisting of H, CH3, and n-, sec- and tert-alkyl of 4 to 6 carbons; and
- R2 is a Cn alkylene which may be straight chain or branched wherein n is from 2 to 10.
-
- X is H or halogen,
- each R1 is selected from the group consisting of H, CH3, t-alkyl of 4 to 6 carbons and
wherein R2 is C2―C10 alkylene which may be straight chain or branched, and R3 is H or CH3, provided that one R1 is H, CH3, or t-alkyl and the other R1 is - Particularly preferred compounds are those where X is H or chlorine, R1 is H or t-butyl, R2 is ethylene or propylene and R3 is methyl.
-
- 2-(2'-Hydroxy-5'-methacrylyloxyethylphenyl)-2H-benzotriazole
- 2-(2'-Hydroxy-5'-methacrylyloxyethylphenyl)-5-chloro-2H-benzotriazole
- 2-(2'-Hydroxy-5'-methacrylyloxypropylphenyl)-2H-benzotriazole
- 2-(2'-Hydroxy-5'-methacrylyloxypropylphenyl)-5-chloro-2H-benzotriazole
- 2-(2'-Hydroxy-5'-methacrylyloxypropyl-3'-tert-butylphenyl)-5-chloro-2H-benzotriazole
- 2-[3'-(1",1"-dimethyl-3"-methacrylyloxypropyl)-2'-hydroxy-5'-methylphenyl]-5-chloro-2H-benzotriazole
- A particularly preferred benzotriazole UV absorbing monomer of the present invention is compound V above. This compound is copolymerizable with methyl methacrylate and other vinyl type monomers and imparts excellent UV absorbing properties to the copolymer even at concentrations of 1.0% or less. The preparation of this compound, its copolymerization with methyl methacrylate, and the UV transmission characteristics of the resulting polymer, are described in the following examples.
- A solution of methyl 3-(3',5'-di-tert-butyl-4'-hydroxyphenyl) propionate (117 g, 0.4 mol) in 200 ml of anhydrous ether was added dropwise to a mixture of lithium aluminum hydride (17 g, 0.45 mol) and anhydrous ether (800 ml) under an inert atmosphere with ice-water cooling. After the addition was completed, the reaction mixture was heated at reflux temperature for one hour, then cooled to room temperature. To the cooled mixture was added dropwise 80 ml of 3% sodium hydroxide aqueous solution with vigorous stirring and with ice-water cooling. After the addition was completed, the mixture was stirred at room temperature for 30 minutes. A white precipitate was separated by filtration and washed with ether. The filtrate and washings were combined and evaporated. The residue was vacuum distilled to give 101 g (95%) of the product.
- 3-(3',5'-Di-tert-butyl-4'-hydroxyphenyl)-1-propanol (100 g, 0.38 mol) was dissolved in 500 ml of trifluor- acetic acid. The solution was stirred at 40°C for six hours, then poured into an ice-water mixture. The mixture was extracted with methylene chloride. The methylene chloride layer was washed with aqueous sodium carbonate and evaporated. A solution of sodium hydroxide (25 g) in 400 ml of methanol was added to the residue. The mixture was stirred at room temperature for 30 minutes, neutralized with 1N hydrochloric acid and extracted with methylene chloride. The methylene chloride layer was washed with aqueous sodium carbonate and water, dried with anhydrous potassium carbonate, and evaporated. The residue was vacuum distilled to give 51 g (64%) of the product.
- 4-Chloro-2-nitroaniline (72 g, 0.42 mol) was diazotized in the usual manner such as described in the literature [H. E. Fierz-David and L. Blangley, "Fundamental Processes of Dye Chemistry" p. 247 (Interscience, New York 1949)]. The diazonium salt solution was added dropwise to a stirred mixture of 3-(3'-tert-butyl-4'-hydroxyphenyl)-1-propanol (88.5 g, 0.42 mol), concentrated hydrochloric acid (108 g), water (920 ml) and sodium lauryl sulfate (10 g) at 40°C. The mixture was stirred at 40°C for sixteen hours, then allowed to stand. After the azo dye settled, the supernatant liquid was decanted, The azo dye was washed with warm water, and the washings decanted. The azo dye was used for the next reaction without further purification.
- The azo dye of Example 3 was dissolved in 1.7 I of ethanol. A solution of 151 g of glucose in 1.7 I of 2N sodium hydroxide was added to the azo dye solution. The mixture was stirred at room temperature and, after 24 hours of stirring, 131 g of zinc dust was added to the reaction mixture. The mixture was stirred for another two hours at room temperature. The zinc was separated by filtration and washed with ethanol, methylene chloride and ethanol. The filtrate and washings were combined and acidified with concentrated hydrochloric acid. The aqueous layer was extracted with methylene chloride. The combined organic layer was washed with 1 N hydrochloric acid and water, dried with potassium carbonate and evaporated. The residue was vacuum distilled to give 107 g (61 %) of the benzotriazole. The distillate was further purified by column chromatography and recrystallization. A pure sample showed a m.p. of 110-1110C and A. max peaks at 311 and 350 nm (ε311 = 1.44 x 104, ε350 = 1.58 x 104 I mol-1 cm-1).
- Methacrylyl chloride (5.9 ml) and triethylamine (8.5 ml) were added dropwise at -5°C to a solution of 2-(2'-hydroxy-5'-hydroxypropyl-3'-tert-butylphenyl)-5-chloro-2H-benzotriazole (20 g) in 250 ml of methylene chloride. The reaction mixture was stirred at 0°C overnight and then washed with 1 N hydrochloric acid and water. The methylene chloride solution of the product was dried with sodium sulfate, passed through alumina column and evaporated. The crude yield of the product was 22 g (90%). A polymerization grade sample was obtained by recrystallization from methanol-methylene chloride mixture, m.p. 74.5-76.5°C.
- Other 2-(2'-hydroxy-5'-methacrylyloxyalkyl-3'-tert-butylphenyl)-5-chloro-2H-benzotriazoles are readily prepared using a similar procedure and substituting the appropriate benzotriazole alkanol for the intermediate of Example 1. Such compounds wherein the alkanol is C3 to Cs are described, for example, in U.S. Patent No. 4,260,832.
- 0.1 g of the benzotriazole product of Example 5, 2.0 g of ethyl acrylate, 22.9 g of methyl methacrylate, 89 pl of 1-dodecanethiol, 0.12 g of stearic acid and 20.3 mg of azobisisobutyronitrile were placed in a Pyrex° tube. The tube was flushed with argon and then sealed. The mixture was polymerized at 70°C for six hours. The resulting polymer containing 0.4% of the benzotriazole was hot pressed into 1 mm thick film. GPC showed that the UV absorbing group was chemically bonded in the polymer matrix. The film showed transmittance of 17.2% at 400 nm and 0% at 388 nm.
- The procedure of Example 6 was followed using 0.2 g of the benzotriazole product of Example 5, 1.9 g of ethyl acrylate, 23.0 g of methyl methacrylate, 89 pl of 1-dodecanethiol, 0.12 g of stearic acid and 20.3 mg of azobisisobutyronitrile. A 1 mm thick film prepared of the resulting polymer which contained 0.8% of the benzotriazole showed transmittance of 3.4% at 400 nm and 0% at 395 nm. A UV transmittance curve for the polymer of this example is plotted in Figure 1 in comparison with a copolymer of methylmethacrylate containing 10 percent 4-(2'-Acrylyloxyethoxy)-2-hydroxybenzophenone (Copolymer A), a copolymerizable UV absorbing monomer of the prior art. The transmittance curve for a commercial acrylic resin not containing any UV absorber is also included for reference.
- The following examples describe the preparation of other benzotriazole UV absorbing compounds within the scope of the present invention.
- The synthesis of the above compound involved the preparation and esterification of 2-(2'-hydroxy-5'-hydroxyethylphenyl)-2H-benzotriazole as illustrated by the following reaction scheme.
- A 2000 ml, three-necked flask was equipped with mechanical stirring, an addition funnel and a thermometer. Concentrated hydrochloric acid (150 ml, 1.8 mole) was placed in the reaction vessel and solid o-nitroaniline (55.2 g, 0.4 mole) was added with stirring. The slurry was cooled in an ice bath and a solution of sodium nitrite (27 g, 0.39 mole) in water added dropwise while maintaining the internal temperature in the range of 0-5°C by external cooling. The solution was filtered to remove a small amount of solid particles.
- A solution of p-hydroxyphenethyl alcohol (55.2 g, 0.4 mole), sodium hydroxide (16 g, 0.4 mole), and sodium carbonate (120 g, 1.13 mole) in 600 ml of water was prepared and added dropwise to the reaction vessel with stirring over a period of 30 minutes while maintaining the internal temperature at 15 ± 3°C. The intermediate azo compound separated as a dark red oil which partially solidified after two hours. It was collected by filtration in a sintered glass funnel and dissolved in 400 ml of 2N sodium hydroxide solution. Zinc dust (120 g, 1.84 mole) was added to the solution in portions over a period of three hours while at the
same time 200 ml of 25% sodium hydroxide solution was added dropwise. After completion of the addition, the suspension slowly changed from red to green in a mildly exothermic reaction. The mixture was heated at 70°C for one hour to complete the reaction, cooled to room temperature and filtered to remove zinc salts. The dark, brown filtrate was acidified with concentrated hydrochloric acid solution and the solid product was collected by suction filtration and dried in air. The crude solid was distilled on the Kugelrohr (220°C, 0.1 mm) giving a yellow oil which solidified in the receiver. Crystallization twice from acetone gave the product as a nearly colorless solid (32.64 g, mp 126-127°C). - 2-(2'-Hydroxy-5'-hydroxyethylphenyl)-2H-benzotriazole (150 g, 0.59 mol), methacrylic acid (55 ml, 0.65 mol), hydroquinone (2.4 g), p-toluenesulfonic acid monohydrate (3 g) and toluene (2 I) were placed in a 3 liter flask equipped with a Dean and Stark receiver. After 1.5 hours of refluxing the mixture, another 2.7 g of p-toluenesulfonic acid monohydrate was added and the refluxing was continued for another 15.5 hours. Approximately 10 ml of water was collected (theoretical: 10.6 g) and the yield of the desired compound was 93.7% as judged by a gas chromatography. Another 1 g of p-toluenesulfonic acid monohydrate was added and the refluxing was continued for another 3 hours. A yield of 95.6% was shown by a gas chromatography. After cooling the reaction mixture, it was washed with aqueous sodium hydrogen carbonate solution, water, 5% hydrochloric acid and water. The organic layer was dried with anhydrous magnesium sulfate and chromatographed through an alumina (Fisher, 80-200 mesh) column. After evaporation of the solvent, the residue was recrystallized from distilled methanol twice. Yield: 141.8 g (74%); Purity: >99.9% (G.C.). The IR and NMR data were consistent with the structure.
- The above compound was synthesized using a procedure analogous to that of Example 8, with 2-(2'-Hydroxy-5'-hydroxypropylphenyl)-2H-benzotriazole as the starting reactant. Comparable yields of purified monomer were obtained without difficulty.
- The benzotriazole phenyl alcohols which are particularly useful as intermediates in the preparation of the preferred 2'-hydroxy-5'-acrylyloxyalkylphenyl-2H-benzotriazoles as follows:
- a. 2-(2'-Hydroxy-5'-hydroxyethylphenyl)-2H-benzotriazole
as an intermediate in the preparation of 2-(2'-Hydroxy-5'-methacrylyloxyethylphenyl).2H-benzotriazole (I); - b. 2-(2'-Hydroxy-5'-hydroxyethylphenyl)-5-chloro-2H-benzotriazole
as an intermediate in the preparation of 2-(2'-Hydroxy-5'-methacrylyloxyethylphenyl)-5-chloro-2H-benzotriazole (II); - c. 2-(2'-Hydroxy-5'-hydroxypropylphenyl)-2H-benzotriazole
as an intermediate in the preparation of 2-(2'-Hydroxy-5'-methacrylyloxypropylphenyl)-2H-benzotriazole (III); - d. 2-(2'-Hydroxy-5'-hydroxypropylphenyl)-5-chloro-2H-benzotriazole
as an intermediate in the preparation of 2-(2'-Hydroxy-5'-methacrylyloxypropylphenyl)-5-chloro-2H-benzotriazole (IV); and - e. 2-(2'-Hydroxy-5'-hydroxypropyl-3'-tert-butylphenyl)-5-chloro-2H-benzotriazole
as an intermediate in the preparation of 2-(2'-Hydroxy-5'-methacrylyloxypropyl-3'-tert-butylphenyl)-5-chloro-2H-benzotriazole (V). - The monomers of Example 8 and Example 9 were readily copolymerized with methylmethacrylate and ethylacrylate and hot pressed into films as described above. While both monomers were effective UV absorbers, significantly higher concentrations were required to achieve 85% absorption at 400 nm on 1 mm thick films as compared to the preferred monomer of Example 5. Comparative data is as follows:
-
- c = concentration of the solute (mol/liter); and
- b = path length of radiation within the sample (cm).
- Absorbance is determined according to conventional procedures using a UV-Visible Spectrophotometer as described, for example, in R. M. Silverstein and G. C. Bassler, "Spectrometric Identification of Organic Compounds", 2nd Edition, John Wiley & Sons, Inc., New York, 1967. Since s is proportional to absorbance, a compound which has a larger s gives greater UV absorption at lower concentrations.
- The benzotriazoles of the present invention absorb strongly in the UV range of 200-400 nm and to cut off sharply above 400 nm. The hydroxy benzophenone control (Monomer A) absorbs less strongly and exhibits a broader absorption band extending into the visible range. Extinction coefficient curves for the above monomers are plotted in Fig. 2, and the data are summarized in the following table:
-
- Other 2-(2'-hydroxy-5'-methacrylyloxyalkylphenyl)-2H-benzotriazoles are readily prepared following the procedure of Example 8 using the appropriate 2-(2'-hydroxy-5'-hydroxyalkylphenyl)-2H-benzotriazole as the starting reactant. Alkyl groups containing from 2 to 8 carbon atoms are preferred for these compounds.
- The monomer of Example 8 (>99.9% pure) was homopolymerized in toluene at 50°C for 63 hours to obtain essentially 100% conversion to a high molecular weight polymer having an inherent viscosity of 1.87 dl/g measured as 0.5% by weight solution in chloroform at 25°C, Tg 116°C. The homopolymer was useful as an additive for incorporation in polymer films to enhance UV absorption properties.
- The monomer of Example 8 was copolymerized with methyl methacrylate, and with selected third monomers following the general procedure of Example 6 to obtain various copolymers and terpolymers useful in the manufacture of intraocular lenses. Preferred polymers were selected on the basis of Tg and melt index values amiable to injection molding, and on the basis of good optical clarity. Terpolymers of MMA with 16% of the monomer of Example 8 and either 6% stearyl methacrylate or 10% ethyl acrylate gave particularly good optical clarity with no significant yellowing effect. The benzotriazole monomer of Example 8 is accordingly a preferred UV absorber for applications where yellowing of the base polymer is to be avoided. The terpolymer films had transmittance values of 10-14% at 400 nm and 88-90% at 700 nm. Inherent viscosity of the terpolymer ranged in values from about 0.35 to 0.80, and Tg was in the order of 110-115°C.
- Comparable copolymers of MMA with 16% of the benzotriazole monomer of Example 9 and terpolymers with 10% ethyl acrylate were prepared and pressed into films. Transmittance values for those films was 4^5% at 400 nm and 85-88% at 700 nm, indicating that the monomer of Example 9 is a more effective UV absorber than the monomer of Example 8.
- The benzotriazoles of the present invention may be copolymerized with any of a number of unsaturated monomers to provide polymeric compositions having desirable UV absorbing characteristics. Alternatively, homopolymers or copolymers of the benzotriazoles of the present invention may be utilized as additives to a wide variety of organic polymers to provide UV absorption properties. Representative of the polymers and copolymers useful in conjunction with the benzotriazole monomers and polymers of the present invention are:
- a. Polymers which are derived from mono- or diolefins, e.g., polyethylene which can optionally be crosslinked, polypropylene, polyisobutylene, polymethylbutene-1, polymethylpentene-1, polyisoprene, polybutadiene.
- b. Mixtures of the homopolymers cited under (1), for example mixtures of polypropylene and polyethylene, polypropylene and polybutene-1, polypropylene and polyisobutylene.
- c. Copolymers of the monomers based on the homopolymers cited under (1), for example ethylene/ propylene copolymers, propylene/butene-1 copolymers, propylene/isobutylene copolymers, ethylene/ butene-1 copolymers as well as terpolymers of ethylene and propylene with a diene, for example hexadiene, dicyclopentadiene or ethylidene norbornene, and copolymers of a-olefins, e.g., ethylene with acrylic or methacrylic acid.
- d. Polystyrene.
- e. Copolymers of styrene and of -methylstyrene, for example styrene/butadiene copolymers, styrene/ acrylonitrile copolymers, styrene/acrylonitrile/methacrylate copolymers, styrene/acrylonitrile copolymers modified with acrylic ester polymers to provide impact strength as well as block copolymers, e.g., styrene/ butadiene/styrene block copolymers.
- f. Graft copolymers of styrene, for example the graft polymer of styrene to polybutadiene, the graft polymer of styrene with acrylonitrile to polybutadiene as well as mixtures thereof with the copolymers cited under (5), commonly referred to as acrylonitrile/butadiene/styrene or ABS plastics.
- g. Halogen-containing vinyl polymers, for example polyvinyl chloride, polyvinylidene chloride, polyvinyl fluoride, polychloroprene, chlorinated rubbers, vinyl chloride/vinylidene chloride copolymers, vinyl chloride/vinyl acetate copolymers, vinylidene chloride/vinyl acetate copolymers.
- h. Polymers which are derived from a,(3-unsaturated acids and derivatives thereof, polyacrylates and polymethacrylates, polyacrylic amides and polyacrylonitrile. The instant compounds are advantageously used in heat-curable acrylic resin lacquers which are composed of a copolymer of acrylic acid and one or more of its derivatives, and a melamine-formaldehyde resin.
- i. Polymers which are derived from unsaturated alcohols and amines and from the acyl derivatives thereof or acetals, for example polyvinyl alcohol, polyvinyl acetate, polyvinyl stearate, polyvinyl benzoate, polyvinyl maleate, polyvinyl butyral, polyallyl phthalate, polyallyl melamine and copolymers thereof with other vinyl compounds, for example ethylene/vinyl acetate copolymers.
- j. Homopolymers and copolymers which are derived from epoxides, for example polyethylene oxide or the polymers which are derived from bis-glycidyl ethers.
- k. Polyacetals, for example polyoxymethylene, as well as polyoxymethylenes which contain ethylene oxide as comonomer.
- I. Polyalkylene oxides, for example polyoxyethylene, polypropylene oxide or polybutylene oxide.
- m. Polyphenylene oxides.
- n. Polyurethanes and polyureas, such as in urethane coatings.
- o. Polycarbonates.
- p. Polysulfones.
- q. Polyamides and copolyamides which are derived from diamines and dicarboxylic acids and/or from aminocarboxylic acids or the corresponding lactams, for example polyamide 6, polyamide 6/6, polyamide 6/10, polyamide 11, polyamide 12, poly-m-phenylene-isophthalamide.
- r. Polyesters which are derived from dicarboxylic acids and dialcohols and/or from hydroxycarboxylic acids or the corresponding lactones, for example polyethylene glycol terephthalate, poly-1,4-dimethylol- cyclohexane terephthalate.
- s. Cross-linked polymers which are derived from aldehydes on the one hand and from phenols, ureas and melamine on the other, for example phenol/formaldehyde, urea/formaldehyde and melamine/form- aldehyde resins.
- t. Alkyd resins, for example glycerol/phthalic acid resins and mixtures thereof with melamine/form- aldehyde resins.
- u. Unsaturated polyesters resins which are derived from copolyesters of saturated and unsaturated dicarboxylic acids with polyhydric alcohols as well as from vinyl compounds as cross-linking agents and also the halogen-containing, flame-resistant modifications thereof.
- v. Natural polymers, for example cellulose, rubber, as well as the chemically modified homologous derivatives thereof, for example cellulose acetates, cellulose propionates and cellulose butyrates and the cellulose ethers, for example, methyl cellulose.
- Particularly useful compositions are copolymers comprising from 0.1 to 20% by weight of benzotriazoles of the present invention with other ethylenically unsaturated materials such as styrene, methylstyrene, acrylates, methacrylates, acrylamide, acrylonitrile, methacrylonitrile, vinylacetate, vinylidene chloride, vinyl chloride, vinyl fluoride, ethylene, propylene, and mixtures thereof.
- The homopolymers and copolymers of the benzotriazoles of the present invention find wide application in formulating UV absorbing plastics and other organic materials wherever such materials are exposed to UV radiation from either natural or artificial sources. In addition to the medical use in intraocular and contact lenses described above, the materials of the present invention are useful in many industrial applications such as in solar energy collectors, polymeric coatings, transparent plastic films, fluorescent light diffusers, packaging materials, vinyl window coverings, automobile paints and interior coverings, epoxys, fiberglass constructions and the like. Many other applications will be readily apparent to those familiar with this art as a result of proceeding specification.
Claims (12)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| AT84304700T ATE49604T1 (en) | 1983-07-11 | 1984-07-10 | ULTRAVIOLET ABSORBING POLYMERS CONTAINING 2-HYDROXY-5ACRYLYLOXYALKYLPHENYL-2H-BENZOTRIAZOLE. |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US06/512,860 US4528311A (en) | 1983-07-11 | 1983-07-11 | Ultraviolet absorbing polymers comprising 2-hydroxy-5-acrylyloxyphenyl-2H-benzotriazoles |
| US512860 | 1984-03-26 | ||
| US592764 | 1984-03-26 | ||
| US06/592,764 US4611061A (en) | 1984-03-26 | 1984-03-26 | 2'-hydroxy-5'-(hydroxyalkyl)phenyl-2H-benzotriazoles |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| EP0131468A2 EP0131468A2 (en) | 1985-01-16 |
| EP0131468A3 EP0131468A3 (en) | 1986-02-26 |
| EP0131468B1 true EP0131468B1 (en) | 1990-01-17 |
Family
ID=27057687
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP84304700A Expired EP0131468B1 (en) | 1983-07-11 | 1984-07-10 | Ultraviolet absorbing polymers comprising 2-hydroxy-5-acrylyloxalkylphenyl-2h-benzotriazoles |
Country Status (12)
| Country | Link |
|---|---|
| EP (1) | EP0131468B1 (en) |
| JP (5) | JPH0653733B2 (en) |
| KR (1) | KR930002413B1 (en) |
| AU (1) | AU565491B2 (en) |
| BR (1) | BR8403466A (en) |
| CA (1) | CA1232608A (en) |
| DE (1) | DE3481061D1 (en) |
| ES (1) | ES534176A0 (en) |
| HK (1) | HK34490A (en) |
| MX (2) | MX166955B (en) |
| NZ (1) | NZ208751A (en) |
| SG (1) | SG13390G (en) |
Cited By (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7052131B2 (en) | 2001-09-10 | 2006-05-30 | J&J Vision Care, Inc. | Biomedical devices containing internal wetting agents |
| US7461937B2 (en) | 2001-09-10 | 2008-12-09 | Johnson & Johnson Vision Care, Inc. | Soft contact lenses displaying superior on-eye comfort |
| US7666921B2 (en) | 2001-09-10 | 2010-02-23 | Johnson & Johnson Vision Care, Inc. | Biomedical devices containing internal wetting agents |
| US10526296B2 (en) | 2017-06-30 | 2020-01-07 | Johnson & Johnson Vision Care, Inc. | Hydroxyphenyl naphthotriazoles as polymerizable blockers of high energy light |
| US10723732B2 (en) | 2017-06-30 | 2020-07-28 | Johnson & Johnson Vision Care, Inc. | Hydroxyphenyl phenanthrolines as polymerizable blockers of high energy light |
| US10935695B2 (en) | 2018-03-02 | 2021-03-02 | Johnson & Johnson Vision Care, Inc. | Polymerizable absorbers of UV and high energy visible light |
| US11543683B2 (en) | 2019-08-30 | 2023-01-03 | Johnson & Johnson Vision Care, Inc. | Multifocal contact lens displaying improved vision attributes |
| US11958824B2 (en) | 2019-06-28 | 2024-04-16 | Johnson & Johnson Vision Care, Inc. | Photostable mimics of macular pigment |
| US11993037B1 (en) | 2018-03-02 | 2024-05-28 | Johnson & Johnson Vision Care, Inc. | Contact lens displaying improved vision attributes |
| US12486348B2 (en) | 2019-08-30 | 2025-12-02 | Johnson & Johnson Vision Care, Inc. | Contact lens displaying improved vision attributes |
| US12486403B2 (en) | 2018-03-02 | 2025-12-02 | Johnson & Johnson Vision Care, Inc. | Polymerizable absorbers of UV and high energy visible light |
| US12509428B2 (en) | 2020-05-26 | 2025-12-30 | Johnson & Johnson Vision Care, Inc. | Polymerizable fused tricyclic compounds as absorbers of UV and visible light |
Families Citing this family (85)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5996563A (en) * | 1982-11-25 | 1984-06-04 | Canon Inc | Recording or reproducing device |
| DE3333502A1 (en) * | 1983-09-16 | 1985-04-18 | Röhm GmbH, 6100 Darmstadt | THERMOPLASTIC PLASTIC MOLDS CONTAINING UV ABSORBER |
| US4740070A (en) * | 1984-06-05 | 1988-04-26 | Ppg Industries, Inc. | Optical filter |
| GB2171106B (en) * | 1984-12-18 | 1989-10-11 | Tr Dev Ltd | Hydrogel-forming polymers |
| GB8501563D0 (en) * | 1985-01-22 | 1985-02-20 | Kodak Ltd | Uv-absorbing polymers |
| SE8503522D0 (en) * | 1985-07-19 | 1985-07-19 | Pharmacia Ab | UV-ABSORBING LENS MATERIAL |
| US4719248A (en) * | 1985-08-08 | 1988-01-12 | Bausch & Lomb Incorporated | Ultraviolet blocking agents for contact lenses |
| EP0317561B1 (en) * | 1986-07-28 | 1991-01-30 | AlliedSignal Inc. | Sulfonate benzotriazoles and their use in polyamide |
| EP0259532A1 (en) * | 1986-09-10 | 1988-03-16 | Pharmacia Ab | UV absorbing lens material |
| US4716234A (en) * | 1986-12-01 | 1987-12-29 | Iolab Corporation | Ultraviolet absorbing polymers comprising 2-(2'-hydroxy-5'-acryloyloxyalkoxyphenyl)-2H-benzotriazole |
| WO1988004306A1 (en) * | 1986-12-09 | 1988-06-16 | Terumo Kabushiki Kaisha | Ultraviolet-absorptive polymer material |
| JP2683007B2 (en) * | 1987-03-03 | 1997-11-26 | アイオーラブ・コーポレーシヨン | Benzotriazole compound, copolymer thereof and ultraviolet absorbing composition |
| US4803254A (en) * | 1987-03-11 | 1989-02-07 | Iolab Corporation | Vinylsilylalkoxy arylbenzotriazole compounds and UV absorbing compositions made therefrom |
| DE3888952D1 (en) * | 1987-12-28 | 1994-05-11 | Ciba Geigy | New 2- (2-hydroxyphenyl) benzotriazole derivatives. |
| JP2724931B2 (en) * | 1990-11-07 | 1998-03-09 | ネッスル エス エー | Copolymer and intraocular lens using the copolymer |
| JP2685980B2 (en) * | 1990-11-26 | 1997-12-08 | 株式会社メニコン | UV absorbing intraocular lens |
| US5384235A (en) * | 1992-07-01 | 1995-01-24 | Eastman Kodak Company | Photographic elements incorporating polymeric ultraviolet absorbers |
| JP3251676B2 (en) * | 1992-12-28 | 2002-01-28 | 興和株式会社 | Hydrophilic UV absorber |
| US5470932A (en) * | 1993-10-18 | 1995-11-28 | Alcon Laboratories, Inc. | Polymerizable yellow dyes and their use in opthalmic lenses |
| JP3465031B2 (en) * | 1994-04-28 | 2003-11-10 | 綜研化学株式会社 | Coated pigments and cosmetics |
| JP3524600B2 (en) * | 1994-11-07 | 2004-05-10 | 和信化学工業株式会社 | Curable resin composition and method for producing cured resin |
| SG46198A1 (en) * | 1995-04-04 | 1998-02-20 | Gen Electric | U-V curable weather resistant coatings made on a cold-cast process |
| US5675015A (en) * | 1996-03-07 | 1997-10-07 | Eastman Kodak Company | Process for the preparation of benzotriazole derivatives |
| JP3714574B2 (en) * | 1997-03-26 | 2005-11-09 | ダイセル化学工業株式会社 | Ultraviolet absorber, method for producing the same and synthetic resin composition |
| JP2963945B2 (en) | 1997-05-08 | 1999-10-18 | 大塚化学株式会社 | 2,2'-bis (6-benzotriazolylphenol) compound |
| JP3722986B2 (en) * | 1997-08-29 | 2005-11-30 | 株式会社ニデック | UV-absorbing substrate |
| US6036891A (en) * | 1998-05-11 | 2000-03-14 | Pharmacia & Upjohn | Polymerizable hydrophilic ultraviolet light absorbing monomers |
| WO2000002964A1 (en) | 1998-07-10 | 2000-01-20 | Otsuka Chemical Co., Ltd. | Weather-resistant composition, coating materials and molded articles |
| US6183083B1 (en) * | 1998-09-08 | 2001-02-06 | Wesley-Jessen Corporation | Contact lens comprising a violet tint |
| EP0989124B1 (en) * | 1998-09-25 | 2002-08-14 | Daicel Chemical Industries, Ltd. | New polyester compounds having a benzotriazole group and a preparation method thereof |
| JP4149068B2 (en) * | 1999-03-02 | 2008-09-10 | 株式会社メニコン | Ophthalmic lens material |
| US6352764B1 (en) | 1999-08-09 | 2002-03-05 | 3M Innovative Properties Company | Multi-layer articles including UV-absorbing polymeric compositions |
| US6251521B1 (en) | 1999-08-09 | 2001-06-26 | 3M Innovative Properties Company | Polymeric compositions |
| US6312807B1 (en) | 1999-08-09 | 2001-11-06 | 3M Innovative Properties Company | UV-absorbing core/shell particles |
| JP4352524B2 (en) * | 1999-09-17 | 2009-10-28 | 住友化学株式会社 | Photosensitive resin composition |
| JP3676138B2 (en) * | 1999-09-20 | 2005-07-27 | Hoya株式会社 | Plastic spectacle lens excellent in ultraviolet absorption and manufacturing method thereof |
| JP2002031715A (en) * | 2000-07-14 | 2002-01-31 | Konica Corp | Optical film, method for manufacturing cellulose ester film, polarizing plate and display device |
| JP2011122170A (en) * | 2000-05-26 | 2011-06-23 | Konica Minolta Holdings Inc | Cellulose ester film containing ultraviolet absorbent polymer and ultraviolet absorbent polymer |
| JP2002047357A (en) * | 2000-05-26 | 2002-02-12 | Konica Corp | Cellulose ester film, optical film, polarizing plate, optical compensation film, and liquid crystal display |
| JP2002006268A (en) * | 2000-06-22 | 2002-01-09 | Seed Co Ltd | UV absorbing soft ophthalmic lens |
| EP1179436B1 (en) | 2000-08-11 | 2012-03-14 | Canon Kabushiki Kaisha | Laminating film and laminating method using it |
| US6802925B2 (en) | 2001-08-31 | 2004-10-12 | Canon Kabushiki Kaisha | Laminating film and lamination process using the same |
| US6776934B2 (en) | 2001-11-02 | 2004-08-17 | Bausch & Lomb Incorporated | Method for polymerizing lenses |
| CA2512586A1 (en) * | 2003-01-09 | 2004-07-29 | Alcon, Inc. | Dual function uv-absorbers for ophthalmic lens materials |
| US6974850B2 (en) | 2003-05-30 | 2005-12-13 | 3M Innovative Properties Company | Outdoor weatherable photopolymerizable coatings |
| US7153588B2 (en) | 2003-05-30 | 2006-12-26 | 3M Innovative Properties Company | UV resistant naphthalate polyester articles |
| EP1731542B1 (en) | 2004-03-31 | 2008-12-24 | Kaneka Corporation | Methacrylic resin composition |
| BRPI0509338B1 (en) * | 2004-04-30 | 2017-10-17 | Abbott Medical Optics Inc. | DETACHED DEVICES HAVING A HIGHLY SELECTIVE VIOLET LIGHT TRANSMITTER AND RELATED METHODS |
| JP4532243B2 (en) | 2004-11-10 | 2010-08-25 | 株式会社ニデック | Colorant for ophthalmic lens and colored ophthalmic lens material using the colorant |
| EP1908797B1 (en) | 2005-07-05 | 2012-06-06 | Kaneka Corporation | Methacrylic resin composition |
| CN1970640B (en) * | 2005-11-23 | 2011-08-31 | 尼德克株式会社 | Ocular colorant and colorful ocular material using same |
| KR101228650B1 (en) | 2006-07-21 | 2013-01-31 | 코니카 미놀타 어드밴스드 레이어즈 인코포레이티드 | Optical film, process for producing the same, polarizing plate and liquid crystal display device |
| TWI435915B (en) * | 2007-08-09 | 2014-05-01 | Alcon Inc | Ophthalmic lens materials containing chromophores that absorb both uv and short wavelength visible light |
| JP5428412B2 (en) | 2008-03-18 | 2014-02-26 | 株式会社リコー | Heat resistance improver and reversible thermosensitive recording medium |
| JP2011517418A (en) * | 2008-03-27 | 2011-06-09 | アルコン,インコーポレイテッド | Hydrogel intraocular lens and method for forming the same |
| NZ592656A (en) * | 2008-12-30 | 2012-11-30 | Novartis Ag | Ethylenically unsaturated, polymerisable UV-absorbing compounds and their use in the preparation of ophthalmic lenses |
| TWI464151B (en) * | 2009-07-06 | 2014-12-11 | Alcon Inc | Uv/visible light absorbers for ophthalmic lens materials |
| TWI487690B (en) * | 2009-07-06 | 2015-06-11 | Alcon Inc | Visible light absorbers for ophthalmic lens materials |
| EP2466341A1 (en) | 2009-08-13 | 2012-06-20 | FUJIFILM Corporation | Wafer-level lens, wafer-level lens production method, and imaging unit |
| JP5352392B2 (en) | 2009-09-14 | 2013-11-27 | 富士フイルム株式会社 | Wafer level lens array manufacturing method, wafer level lens array, lens module, and imaging unit |
| JP5401227B2 (en) | 2009-09-16 | 2014-01-29 | 富士フイルム株式会社 | Wafer level lens array manufacturing method, wafer level lens array, lens module, and imaging unit |
| JP2011084060A (en) | 2009-09-17 | 2011-04-28 | Fujifilm Corp | Master model of lens array and method of manufacturing the same |
| JP5572355B2 (en) | 2009-09-30 | 2014-08-13 | 富士フイルム株式会社 | Lens array and lens array laminate |
| JP2011098487A (en) | 2009-11-05 | 2011-05-19 | Fujifilm Corp | Element array mold and element array molded using the mold |
| JP2011161727A (en) | 2010-02-08 | 2011-08-25 | Fujifilm Corp | Molding die of optical molded product, method of molding optical molded product, and lens array |
| JP2011180292A (en) | 2010-02-26 | 2011-09-15 | Fujifilm Corp | Lens array |
| JP2011180293A (en) | 2010-02-26 | 2011-09-15 | Fujifilm Corp | Lens array |
| JP2011194751A (en) | 2010-03-19 | 2011-10-06 | Fujifilm Corp | Mold, molding method, and lens array |
| JP2011197480A (en) | 2010-03-19 | 2011-10-06 | Fujifilm Corp | Lens array, method for manufacturing the same,and lens and method for manufacturing the same |
| JP2011197479A (en) | 2010-03-19 | 2011-10-06 | Fujifilm Corp | Lens, lens array, and manufacturing method thereof |
| JP5647808B2 (en) | 2010-03-30 | 2015-01-07 | 富士フイルム株式会社 | Lens array master manufacturing method |
| CN104752813B (en) | 2010-07-28 | 2018-03-02 | 株式会社村田制作所 | Antenna assembly and communication terminal device |
| JP2012236797A (en) * | 2011-05-12 | 2012-12-06 | Adeka Corp | Complex and method for producing the same |
| JP6441367B2 (en) * | 2013-09-13 | 2018-12-19 | ジョンソン・アンド・ジョンソン・サージカル・ビジョン・インコーポレイテッド | Shape memory polymer intraocular lens |
| JP6533046B2 (en) * | 2013-09-24 | 2019-06-19 | ソマール株式会社 | Coating composition and hard coat film using the same |
| JP2015118122A (en) * | 2013-12-16 | 2015-06-25 | 東海光学株式会社 | Spectacle lens and spectacles |
| WO2017145024A1 (en) * | 2016-02-22 | 2017-08-31 | Novartis Ag | Uv-absorbing vinylic monomers and uses thereof |
| US10752720B2 (en) | 2017-06-26 | 2020-08-25 | Johnson & Johnson Vision Care, Inc. | Polymerizable blockers of high energy light |
| JP6955581B2 (en) | 2017-12-26 | 2021-10-27 | 富士フイルム株式会社 | Lens Adhesives, Bonded Lenses, and Imaging Modules |
| TWI776002B (en) * | 2017-12-28 | 2022-09-01 | 日商三菱瓦斯化學股份有限公司 | Optical resin material and optical element for chromatic aberration correction |
| JP6928765B2 (en) * | 2018-11-16 | 2021-09-01 | 東洋インキScホールディングス株式会社 | Resin composition for molding and molded product |
| KR20210132082A (en) * | 2019-02-20 | 2021-11-03 | 토요잉크Sc홀딩스주식회사 | UV-absorbing polymer, resin composition for molding, and molded article |
| JP7703924B2 (en) * | 2020-07-09 | 2025-07-08 | artience株式会社 | Molding resin composition and molded body |
| WO2025013882A1 (en) * | 2023-07-11 | 2025-01-16 | 三井化学株式会社 | Polymerizable composition, cured object, optical material, spectacle lens, compound, method for producing polymerizable composition, and resin |
| WO2025013881A1 (en) * | 2023-07-11 | 2025-01-16 | 三井化学株式会社 | Polymerizable composition, cured product, optical material, spectacle lens, compound, method for producing polymerizable composition, and resin |
Family Cites Families (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3813255A (en) * | 1970-06-09 | 1974-05-28 | Agfa Gevaert Nv | Ultraviolet-absorbing polymers compositions and filter |
| CA1043495A (en) * | 1976-07-29 | 1978-11-28 | Bernard Jacquet | Anti-solar polymers and cosmetic compounds containing same |
| JPS543129A (en) * | 1977-06-09 | 1979-01-11 | Mitsui Toatsu Chem Inc | Coating powder composition |
| EP0014673B1 (en) * | 1979-01-30 | 1982-12-22 | Ciba-Geigy Ag | Light curable polymers with side groups derived from indenon, their production and utilization |
| US4233441A (en) * | 1979-10-31 | 1980-11-11 | Gaf Corporation | Copolymerizable, ultraviolet light absorber 4-acryloxybenzal-3-alkyl-2 N-benzothiazoloazines |
| US4380643A (en) * | 1981-08-24 | 1983-04-19 | Asahi Glass Company, Ltd. | Benzotriazole compound and homopolymer or copolymers thereof |
-
1984
- 1984-07-02 NZ NZ208751A patent/NZ208751A/en unknown
- 1984-07-10 ES ES534176A patent/ES534176A0/en active Granted
- 1984-07-10 EP EP84304700A patent/EP0131468B1/en not_active Expired
- 1984-07-10 JP JP59141575A patent/JPH0653733B2/en not_active Expired - Lifetime
- 1984-07-10 AU AU30476/84A patent/AU565491B2/en not_active Expired
- 1984-07-10 DE DE8484304700T patent/DE3481061D1/en not_active Expired - Lifetime
- 1984-07-11 BR BR8403466A patent/BR8403466A/en not_active Application Discontinuation
- 1984-07-11 MX MX201978A patent/MX166955B/en unknown
- 1984-07-11 KR KR1019840004031A patent/KR930002413B1/en not_active Expired - Fee Related
- 1984-07-11 CA CA000458654A patent/CA1232608A/en not_active Expired
-
1990
- 1990-02-24 SG SG133/90A patent/SG13390G/en unknown
- 1990-05-03 HK HK344/90A patent/HK34490A/en not_active IP Right Cessation
-
1992
- 1992-10-01 MX MX9205645A patent/MX9205645A/en unknown
- 1992-12-16 JP JP4353933A patent/JPH05255447A/en active Pending
- 1992-12-16 JP JP4353930A patent/JP2701116B2/en not_active Expired - Fee Related
-
1994
- 1994-08-26 JP JP6223938A patent/JP2501778B2/en not_active Expired - Fee Related
-
1996
- 1996-04-03 JP JP8106208A patent/JPH09118720A/en active Pending
Cited By (30)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8450387B2 (en) | 2001-09-10 | 2013-05-28 | Johnson & Johnson Vision Care, Inc. | Biomedical devices containing internal wetting agents |
| US8796353B2 (en) | 2001-09-10 | 2014-08-05 | Johnson & Johnson Vision Care, Inc. | Biomedical devices containing internal wetting agents |
| US7649058B2 (en) | 2001-09-10 | 2010-01-19 | Johnson & Johnson Vision Care, Inc. | Biomedical devices containing internal wetting agents |
| US7666921B2 (en) | 2001-09-10 | 2010-02-23 | Johnson & Johnson Vision Care, Inc. | Biomedical devices containing internal wetting agents |
| KR100946948B1 (en) * | 2001-09-10 | 2010-03-15 | 존슨 앤드 존슨 비젼 케어, 인코포레이티드 | Biomedical devices containing internal wetting agents |
| US7691916B2 (en) | 2001-09-10 | 2010-04-06 | Johnson & Johnson Vision Care, Inc. | Biomedical devices containing internal wetting agents |
| US8168720B2 (en) | 2001-09-10 | 2012-05-01 | Johnson & Johnson Vision Care, Inc. | Biomedical devices containing internal wetting agents |
| US8431669B2 (en) | 2001-09-10 | 2013-04-30 | Johnson & Johnson Vision Care, Inc. | Biomedical devices containing internal wetting agents |
| US7461937B2 (en) | 2001-09-10 | 2008-12-09 | Johnson & Johnson Vision Care, Inc. | Soft contact lenses displaying superior on-eye comfort |
| US8895687B2 (en) | 2001-09-10 | 2014-11-25 | Johnson & Johnson Vision Care, Inc. | Biomedical devices containing internal wetting agents |
| US10935696B2 (en) | 2001-09-10 | 2021-03-02 | Johnson & Johnson Vision Care, Inc. | Biomedical devices containing internal wetting agents |
| US9097914B2 (en) | 2001-09-10 | 2015-08-04 | Johnson & Johnson Vision Care, Inc. | Biomedical devices containing internal wetting agents |
| US9958577B2 (en) | 2001-09-10 | 2018-05-01 | Johnson & Johnson Vision Care, Inc. | Biomedical devices containing internal wetting agents |
| US10254443B2 (en) | 2001-09-10 | 2019-04-09 | Johnson & Johnson Vision Care, Inc. | Biomedical devices containing internal wetting agents |
| US7052131B2 (en) | 2001-09-10 | 2006-05-30 | J&J Vision Care, Inc. | Biomedical devices containing internal wetting agents |
| US10641926B2 (en) | 2001-09-10 | 2020-05-05 | Johnson & Johnson Vision Care, Inc. | Biomedical devices containing internal wetting agents |
| US11360241B2 (en) | 2001-09-10 | 2022-06-14 | Johnson & Johnson Vision Care, Inc. | Biomedical devices containing internal wetting agents |
| US10526296B2 (en) | 2017-06-30 | 2020-01-07 | Johnson & Johnson Vision Care, Inc. | Hydroxyphenyl naphthotriazoles as polymerizable blockers of high energy light |
| US10975040B2 (en) | 2017-06-30 | 2021-04-13 | Johnson & Johnson Vision Care, Inc. | Hydroxyphenyl naphthotriazoles as polymerizable blockers of high energy light |
| US10723732B2 (en) | 2017-06-30 | 2020-07-28 | Johnson & Johnson Vision Care, Inc. | Hydroxyphenyl phenanthrolines as polymerizable blockers of high energy light |
| US10935695B2 (en) | 2018-03-02 | 2021-03-02 | Johnson & Johnson Vision Care, Inc. | Polymerizable absorbers of UV and high energy visible light |
| US11820899B2 (en) | 2018-03-02 | 2023-11-21 | Johnson & Johnson Vision Care, Inc. | Polymerizable absorbers of UV and high energy visible light |
| US11993037B1 (en) | 2018-03-02 | 2024-05-28 | Johnson & Johnson Vision Care, Inc. | Contact lens displaying improved vision attributes |
| US12486403B2 (en) | 2018-03-02 | 2025-12-02 | Johnson & Johnson Vision Care, Inc. | Polymerizable absorbers of UV and high energy visible light |
| US11958824B2 (en) | 2019-06-28 | 2024-04-16 | Johnson & Johnson Vision Care, Inc. | Photostable mimics of macular pigment |
| US12497379B2 (en) | 2019-06-28 | 2025-12-16 | Johnson & Johnson Vision Care, Inc. | Photostable mimics of macular pigment |
| US11543683B2 (en) | 2019-08-30 | 2023-01-03 | Johnson & Johnson Vision Care, Inc. | Multifocal contact lens displaying improved vision attributes |
| US12481173B2 (en) | 2019-08-30 | 2025-11-25 | Johnson & Johnson Vision Care, Inc. | Multifocal contact lens displaying improved vision attributes |
| US12486348B2 (en) | 2019-08-30 | 2025-12-02 | Johnson & Johnson Vision Care, Inc. | Contact lens displaying improved vision attributes |
| US12509428B2 (en) | 2020-05-26 | 2025-12-30 | Johnson & Johnson Vision Care, Inc. | Polymerizable fused tricyclic compounds as absorbers of UV and visible light |
Also Published As
| Publication number | Publication date |
|---|---|
| MX166955B (en) | 1993-02-15 |
| HK34490A (en) | 1990-05-11 |
| ES8601250A1 (en) | 1985-10-16 |
| MX9205645A (en) | 1994-04-29 |
| JPH0653733B2 (en) | 1994-07-20 |
| EP0131468A2 (en) | 1985-01-16 |
| BR8403466A (en) | 1985-06-25 |
| EP0131468A3 (en) | 1986-02-26 |
| DE3481061D1 (en) | 1990-02-22 |
| AU3047684A (en) | 1985-01-17 |
| KR930002413B1 (en) | 1993-03-30 |
| JPH0790117A (en) | 1995-04-04 |
| KR850001792A (en) | 1985-04-01 |
| ES534176A0 (en) | 1985-10-16 |
| JPH05271203A (en) | 1993-10-19 |
| SG13390G (en) | 1990-07-06 |
| CA1232608A (en) | 1988-02-09 |
| JPH09118720A (en) | 1997-05-06 |
| JPH05255447A (en) | 1993-10-05 |
| JP2701116B2 (en) | 1998-01-21 |
| NZ208751A (en) | 1987-04-30 |
| JPS6038411A (en) | 1985-02-28 |
| AU565491B2 (en) | 1987-09-17 |
| JP2501778B2 (en) | 1996-05-29 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP0131468B1 (en) | Ultraviolet absorbing polymers comprising 2-hydroxy-5-acrylyloxalkylphenyl-2h-benzotriazoles | |
| US4528311A (en) | Ultraviolet absorbing polymers comprising 2-hydroxy-5-acrylyloxyphenyl-2H-benzotriazoles | |
| US4716234A (en) | Ultraviolet absorbing polymers comprising 2-(2'-hydroxy-5'-acryloyloxyalkoxyphenyl)-2H-benzotriazole | |
| AU601024B2 (en) | 2-(2'-hydroxyphenyl)-5(6)-(acryloyloxyalkoxy)-benzotriazole and ultraviolet absorbing polymers therefrom | |
| US4611061A (en) | 2'-hydroxy-5'-(hydroxyalkyl)phenyl-2H-benzotriazoles | |
| EP2526153B1 (en) | Visible light absorbers for ophthalmic lens materials | |
| AU597797B2 (en) | Vinylsilylalkoxy arylbenzotriazole compounds and uv absorbing compositions made therefrom | |
| US4985559A (en) | UV Absorbing vinyl monomers | |
| US4380643A (en) | Benzotriazole compound and homopolymer or copolymers thereof | |
| US4508882A (en) | Benzotriazole compound and homopolymer or copolymers thereof | |
| US5194544A (en) | UV absorbing vinyl monomers and polymers and ocular implants prepared therefrom | |
| JP2726685B2 (en) | Benzotriazole compounds | |
| JP2983299B2 (en) | UV absorbers and molded articles containing them | |
| US4260809A (en) | Copolymerizable, ultraviolet light absorber 4-alkoxy-2'-acryloxy benzazines | |
| US4233441A (en) | Copolymerizable, ultraviolet light absorber 4-acryloxybenzal-3-alkyl-2 N-benzothiazoloazines | |
| GB2232667A (en) | Ultraviolet light absorbing benzotriazolyl-benzophenone compounds and their copolymerizable derivatives | |
| US4247477A (en) | Copolymerizable, ultraviolet light absorber 4-allyloxybenzal-1-phenylhydrazones | |
| US4233442A (en) | Copolymerizable, ultraviolet light absorber 4-allyloxybenzal-3'-alkyl-2'-benzothiazoloazines | |
| US4293714A (en) | Copolymerizable, ultraviolet light absorber 4-alkoxy-2'-allyloxybenzazines | |
| GB2237567A (en) | Naphthylbenzotriazoles | |
| EP0028406A1 (en) | Copolymerizable, ultraviolet light absorber N-benzothiazoloazines |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
| PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
| AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
| 17P | Request for examination filed |
Effective date: 19860805 |
|
| 17Q | First examination report despatched |
Effective date: 19880517 |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
| REF | Corresponds to: |
Ref document number: 49604 Country of ref document: AT Date of ref document: 19900215 Kind code of ref document: T |
|
| REF | Corresponds to: |
Ref document number: 3481061 Country of ref document: DE Date of ref document: 19900222 |
|
| ITF | It: translation for a ep patent filed | ||
| ET | Fr: translation filed | ||
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
| 26N | No opposition filed | ||
| ITTA | It: last paid annual fee | ||
| EPTA | Lu: last paid annual fee | ||
| EAL | Se: european patent in force in sweden |
Ref document number: 84304700.2 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19980623 Year of fee payment: 15 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19980714 Year of fee payment: 15 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 19980727 Year of fee payment: 15 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990710 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990710 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990731 |
|
| BERE | Be: lapsed |
Owner name: IOLAB CORP. Effective date: 19990731 |
|
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20030612 Year of fee payment: 20 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20030619 Year of fee payment: 20 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20030702 Year of fee payment: 20 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20030703 Year of fee payment: 20 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20030731 Year of fee payment: 20 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20031006 Year of fee payment: 20 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20040709 Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20040709 Ref country code: CH Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20040709 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20040710 |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 |
|
| EUG | Se: european patent has lapsed | ||
| NLV7 | Nl: ceased due to reaching the maximum lifetime of a patent |
Effective date: 20040710 |