EP0171420A4 - Circuits et composants electriques. - Google Patents
Circuits et composants electriques.Info
- Publication number
- EP0171420A4 EP0171420A4 EP19850900937 EP85900937A EP0171420A4 EP 0171420 A4 EP0171420 A4 EP 0171420A4 EP 19850900937 EP19850900937 EP 19850900937 EP 85900937 A EP85900937 A EP 85900937A EP 0171420 A4 EP0171420 A4 EP 0171420A4
- Authority
- EP
- European Patent Office
- Prior art keywords
- layer
- polymer
- particles
- layers
- pvdf
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002245 particle Substances 0.000 claims abstract description 79
- 239000002033 PVDF binder Substances 0.000 claims abstract description 76
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims abstract description 76
- 229920000642 polymer Polymers 0.000 claims abstract description 53
- 239000000758 substrate Substances 0.000 claims abstract description 40
- 238000000034 method Methods 0.000 claims abstract description 36
- 239000000654 additive Substances 0.000 claims abstract description 33
- 239000006185 dispersion Substances 0.000 claims abstract description 32
- 239000011248 coating agent Substances 0.000 claims abstract description 8
- 238000000576 coating method Methods 0.000 claims abstract description 8
- 239000007788 liquid Substances 0.000 claims abstract description 6
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 27
- 239000007791 liquid phase Substances 0.000 claims description 20
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 claims description 18
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 18
- 230000000996 additive effect Effects 0.000 claims description 15
- 238000001035 drying Methods 0.000 claims description 15
- 239000012530 fluid Substances 0.000 claims description 15
- HJOVHMDZYOCNQW-UHFFFAOYSA-N isophorone Chemical compound CC1=CC(=O)CC(C)(C)C1 HJOVHMDZYOCNQW-UHFFFAOYSA-N 0.000 claims description 14
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 12
- 239000000470 constituent Substances 0.000 claims description 12
- 239000007787 solid Substances 0.000 claims description 12
- 238000010438 heat treatment Methods 0.000 claims description 11
- 238000007650 screen-printing Methods 0.000 claims description 10
- 238000000151 deposition Methods 0.000 claims description 9
- 239000000725 suspension Substances 0.000 claims description 9
- 239000000126 substance Substances 0.000 claims description 7
- FPZWZCWUIYYYBU-UHFFFAOYSA-N 2-(2-ethoxyethoxy)ethyl acetate Chemical compound CCOCCOCCOC(C)=O FPZWZCWUIYYYBU-UHFFFAOYSA-N 0.000 claims description 6
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 claims description 6
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 6
- NIQCNGHVCWTJSM-UHFFFAOYSA-N Dimethyl phthalate Chemical compound COC(=O)C1=CC=CC=C1C(=O)OC NIQCNGHVCWTJSM-UHFFFAOYSA-N 0.000 claims description 6
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 claims description 6
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 claims description 6
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 claims description 6
- SWXVUIWOUIDPGS-UHFFFAOYSA-N diacetone alcohol Chemical compound CC(=O)CC(C)(C)O SWXVUIWOUIDPGS-UHFFFAOYSA-N 0.000 claims description 6
- 239000002904 solvent Substances 0.000 claims description 6
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 6
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 claims description 5
- 239000004020 conductor Substances 0.000 claims description 5
- 229940113088 dimethylacetamide Drugs 0.000 claims description 5
- 239000004065 semiconductor Substances 0.000 claims description 5
- 238000007606 doctor blade method Methods 0.000 claims description 4
- 229920001519 homopolymer Polymers 0.000 claims description 4
- UWHSPZZUAYSGTB-UHFFFAOYSA-N 1,1,3,3-tetraethylurea Chemical compound CCN(CC)C(=O)N(CC)CC UWHSPZZUAYSGTB-UHFFFAOYSA-N 0.000 claims description 3
- AVQQQNCBBIEMEU-UHFFFAOYSA-N 1,1,3,3-tetramethylurea Chemical compound CN(C)C(=O)N(C)C AVQQQNCBBIEMEU-UHFFFAOYSA-N 0.000 claims description 3
- PTTPXKJBFFKCEK-UHFFFAOYSA-N 2-Methyl-4-heptanone Chemical compound CC(C)CC(=O)CC(C)C PTTPXKJBFFKCEK-UHFFFAOYSA-N 0.000 claims description 3
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 claims description 3
- 229930188620 butyrolactone Natural products 0.000 claims description 3
- FBSAITBEAPNWJG-UHFFFAOYSA-N dimethyl phthalate Natural products CC(=O)OC1=CC=CC=C1OC(C)=O FBSAITBEAPNWJG-UHFFFAOYSA-N 0.000 claims description 3
- 229960001826 dimethylphthalate Drugs 0.000 claims description 3
- 230000005284 excitation Effects 0.000 claims description 3
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 claims description 3
- 239000006194 liquid suspension Substances 0.000 claims description 3
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 claims description 3
- DQWPFSLDHJDLRL-UHFFFAOYSA-N triethyl phosphate Chemical compound CCOP(=O)(OCC)OCC DQWPFSLDHJDLRL-UHFFFAOYSA-N 0.000 claims description 3
- WVLBCYQITXONBZ-UHFFFAOYSA-N trimethyl phosphate Chemical compound COP(=O)(OC)OC WVLBCYQITXONBZ-UHFFFAOYSA-N 0.000 claims description 3
- 238000010276 construction Methods 0.000 claims description 2
- 230000005855 radiation Effects 0.000 claims 2
- 239000000843 powder Substances 0.000 abstract description 8
- 230000004888 barrier function Effects 0.000 abstract description 4
- 238000007639 printing Methods 0.000 abstract description 4
- 239000010410 layer Substances 0.000 description 84
- 239000000203 mixture Substances 0.000 description 49
- 239000000463 material Substances 0.000 description 23
- 239000008199 coating composition Substances 0.000 description 8
- 239000013078 crystal Substances 0.000 description 8
- 230000000704 physical effect Effects 0.000 description 5
- 229920000728 polyester Polymers 0.000 description 5
- 239000011230 binding agent Substances 0.000 description 4
- 229910003437 indium oxide Inorganic materials 0.000 description 4
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000005299 abrasion Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 230000032798 delamination Effects 0.000 description 3
- 239000000976 ink Substances 0.000 description 3
- 239000012212 insulator Substances 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- 239000011241 protective layer Substances 0.000 description 3
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 239000005083 Zinc sulfide Substances 0.000 description 2
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 2
- 229910002113 barium titanate Inorganic materials 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 230000002028 premature Effects 0.000 description 2
- 238000007614 solvation Methods 0.000 description 2
- 230000009974 thixotropic effect Effects 0.000 description 2
- 229910052984 zinc sulfide Inorganic materials 0.000 description 2
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 2
- LZDKZFUFMNSQCJ-UHFFFAOYSA-N 1,2-diethoxyethane Chemical compound CCOCCOCC LZDKZFUFMNSQCJ-UHFFFAOYSA-N 0.000 description 1
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- 229920006370 Kynar Polymers 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000000254 damaging effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920003223 poly(pyromellitimide-1,4-diphenyl ether) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000013047 polymeric layer Substances 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000012453 solvate Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 239000003039 volatile agent Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/12—Light sources with substantially two-dimensional radiating surfaces
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/10—Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/12—Light sources with substantially two-dimensional radiating surfaces
- H05B33/20—Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the material in which the electroluminescent material is embedded
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/12—Light sources with substantially two-dimensional radiating surfaces
- H05B33/26—Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
- H05B33/28—Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode of translucent electrodes
Definitions
- This invention relates. to making electrical components by the deposit and drying of fluids that contain particles that have desired electrical and mechanical properties.
- the invention in another aspect, relates to electroluminescent lamps, which typically are formed of a phosphor-particle-containing layer disposed between corresponding electrodes adapted to apply an excitation potential to the phosphor particles, at least one of the electrode layers being semi-transparent to light emitted by the phosphors.
- the phosphor-containing layer is provided with a barrier against moisture penetration to prevent premature deterioration of the phosphors, and permanent adherence between adjacent layers is sought to avoid delamination, e.g. under constant flexing or changes in temperature, particularly where the layers are of materials having different physical properties as this can also lead to premature failure in prior art electroluminescent lamps.
- any practical fluid composition it is important for any practical fluid composition to have a high percentage of polymeric binder, generally of the order of 50% percent, by weight, in order to achieve a substantial dried coating thickness in each application. Thickness is usually needed to achieve the desired electrical properties as well as mechanical strength and abrasion resistance.
- compositions permit use of volatiles that have relatively low evaporation rates at ambient temperatures in order to achieve constant viscosity during an extended coating or printing run during which the ink is exposed to the atmosphere. Changes in viscosity and concentration can alter the characteristics of the deposit.
- any composition and its method of application be compatible with substrates to which it is applied and to material that may be subsequently applied to it so that no damage is done to the various components of.the circuit during manufacture or use.
- a liquid dispersion of powder particles comprised of polyvinylidene fluoride (PVDF) simultaneously: a) can suspend uniformly in desired concentrations any of a wi ⁇ le variety of electrical property additives, including crystalline, hard, dense particles that are generally spherical in shape, b) while containing a useful concentration of such particles, can be deposited by high shear transfer to a substrate " in accurately controllable thickness and contour, c) when so deposited can be fused into a continuous, uniform barrier film, the film itself having low absorptivity, e.g., of moisture.
- PVDF polyvinylidene fluoride
- d) where desired can, as one layer, be -fused with other such layers, containing other electrical property additives, to form a monolithic electrical component, and (e) in general, can meet all requirements for the making of many useful electrical circuit components, including electroluminescent lamps, especially those with additives harmed, e.g., by the presence of moisture, by printing and coating with a high degree of accuracy and controllability.
- the discovery can be employed to form products that are highly resistant to ambient heat and moisture and other conditions of use.
- the PVDF binding polymer is found to be capable of a controllable degree of interlayer penetration during fusing, which on the one hand is sufficient to provide monolithic properties, enabling, e.g. repeated bending without delamination, while on the other hand is sufficiently limited to avoid adverse mixing effects between different electrical additives in adjacent layers.
- PVDF can be employed as the binder with additive particles having widely different physical properties in adjacent layers, while the overall multilayer deposit exhibits the same coefficient of expansion, the same reaction to moisture, and a common processing temperature throughout. Thus each layer can be made under optimum conditions without harm to other layers and the entire system will respond uniformily to conditions of use.
- the invention accordingly features a method of forming an electrica_l circuit component, and the resulting product, especially electroluminescent lamps, by depositing on a substrate, and drying, one or a succession of superposed thin layers of a suspension of polymer solid dispersed in a liquid phase, the ⁇ predominant constituent of the polymer being polyvinylidene fluoride (PVDF) , the liquid suspension for at least one of the layers containing a uniform dispersion of particles selected from the group consisting of dielectric, resistive and conductive substances of characteristic electrical values substantially different from the respective values of PVDF, the method including heating to fuse the polymer continuously throughout the extent of the layer and between layers, to form a monolithic unit.
- PVDF polyvinylidene fluoride
- each layer, preceding the application of the next, is heated sufficiently to fuse the polymer particles to form a continuous film-like layer;
- the predominant constituent of the liquid phase has substantially no solubility for the polymer under the conditions of its deposit;
- the liquid phase is predominantly formed from one or more members selected from the group consisting of methyl isobutyl ketone (MIBK) , butyl acetate, cyclohexanone, diacetone alcohol, diisobutyl ketone, butyrolactone, tetraethyl urea, isophorone, triethyl phosphate, carbitol acetate, propylene carbonate, and dimethyl phthalate;
- the liquid phase includes a minor amount of active solvent selected to promote the stability of suspension of the polymer particles in the liquid phase without substantially dissolving the polymer;
- the liquid phase includes a minor amount of one or more members selected from the group consisting of acetone, tetrahydrofuran (THF) ,
- Fig. 1 is a perspective view in section of an electroluminescent lamp formed according to the invention
- Fig. 2 is a side section view of the lamp taken at the line 2-2 of Fig. 1;
- Fig. 3 is side section view of a portion of side the lamp indicated in of Fig. 1, enlarged as viewed through a microscope.
- Example A through D examples of selected electrical circuit components formed as thin layers and then describe, in Example E, a complete electrical circuit, in this case an electroluminescent lamp, formed of a superposed series of the layers as described in Examples A through D.
- PVDF polyvinylidene fluoride
- BT206 barium titanate particles supplied by Fuji Titanium, having a particle size of less than about 5 microns
- the composition was poured onto a 320 mesh polyester screen positioned 0.145 inch above the substrate. Due to its high apparent viscosity, the composition remained on the screen without-leaking through until the squeegee was passed over. " the screen ° exerting , shear stress on the fluid composition causing it to shear-thin due to its thixotropic character and pass through the screen to be printed, forming a thin layer on the substrate below.
- the deposited layer was subjected to drying for 2-1/2 minutes at 175 F to 5 drive off a portion of the liquid phase, ahd was then subjected to heating to 500 F (above the initial melting point of the PVDF) and was maintained at that temperature for 45 seconds. This heating drove off remaining liquid phase and also fused the PVDF into a u continuous smooth film on the substrate.
- the resulting thickness of the dried polymeric layer was 0.35 mil (3.5 X l ⁇ "4 inch).
- a second layer of the composition as described was screen-printed over the first layer on the 5 substrate.
- the substrate now coated with both layers was again subjected to heating as above. This second heating step caused the separately applied PVDF layers to fuse together.
- the final- product was a monolithic dielectric unit having a thickness of 0.7 mil with" no 0 apparent interface between the layers of polymer, nor with the substrate, as determined by examination of a cross-section under microscope. The particles of the additive were found to be uniformly distributed throughout the deposit.
- the monolithic unit was determined to have a dielectric constant of about 30.
- Example A To prepare the composition, 18.2 grams of a phosphor additive, zinc sulfide crystals (type #723 from GTE Sylvania, smoothly rounded crystals having particle size of about 15 to 35 microns) were introduced to 10 grams of the PVDF dispersion used in Example A. It was again observed after mixing that despite the smooth shape and relatively high density of the phosphor crystals, the additive particles remained uniformly suspended- in the dispersion during the remainder of the process without significant settling.
- zinc sulfide crystals type #723 from GTE Sylvania, smoothly rounded crystals having particle size of about 15 to 35 microns
- composition was screen printed onto a substrate, in this case a rigid sheet of polyepoxide, standard printed circuit board material, through a 280 mesh polyester screen positioned 0.145 inch above the substrate to form a thin layer.
- the deposited layer was subjected to the two stage drying and fusing procedure described in Example A to fuse the PVDF into a continuous smooth film on the substrate with the phosphor crystals uniformly distributed throughout.
- the deposited film was tested UV and found to be uniformly photoluminescent, without significant light or dark spots.
- Example A To prepare this conductive composition, 13.64 grams of indium oxide particles (from Indium Corporation of America, of 325 mesh particle size) were added to 10 grams of the PVDF dispersion used in Example A. An additional amount of carbitol acetate (4.72 grams) was added to lower the viscosity slightly to enhance the transfer properties. It was again observed after mixing that the additive particles remained uniformly suspended in the dispersion during the remainder of the process without significant settling.
- composition was screen printed onto a substrate, in this case a polyamide film, e.g., KAPTON supplied by E.I. duPont, through a 280 mesh polyester screen positioned 0.5 inch above the substrate to form a thin layer.
- a substrate in this case a polyamide film, e.g., KAPTON supplied by E.I. duPont, through a 280 mesh polyester screen positioned 0.5 inch above the substrate to form a thin layer.
- the deposited layer was subjected to the two stage drying and fusing procedure described in Example .A to fuse the PVDF into a continuous smooth film on the substrate with the particles of indium oxide uniformly distributed throughout.
- _3 layer was 0.5 mil (0.5 X 10 inch) .
- the deposited film was tested and found to have conductivity of 10 ohm-cm, and to be light transmissive to a substantial degree due to the light transmissivity of the semi-conductor indium oxide particles and of the matrix material.
- composition was screen printed onto a suitable substrate through a 320 mesh polyester screen positioned 0.15 inch above the substrate to.form a thin layer.
- the deposited layer was subjected to the two stage drying and fusing procedure described in Example A to fuse the PVDF into a continuous smooth film on the substrate with the silver flake uniformly distributed throughout. The resulting thickness of the dried polymeric
- _3 layer was 1.0 mil (1.0 X 10 inch) .
- the deposited film was tested and found to have -. 3 conductivity of 10 ohm-cm.
- the substrate 12 used in this lamp configuration was flexible aluminum foil (4.2 mils) cut in pieces of size suitable for handling, e.g. 2 inches by 3 inches.
- the foil was cleaned with xylene solvent.
- a coating composition for forming dielectric layer 14 upon the substrate 12, in this case to act as an insulator between the substrate/electrode 12 and the overlying light-emitting phosphor layer 16 (described below) was prepared as described in Example A and coated in two layers upon the substrate.
- a coating composition for forming the light emitting phosphor layer 16 was prepared as described in Example B. The composition was superposed by screen printing over the underlying insulator layer 14 and the substrate with its coatings- 14 and 16 was subjected to the heating conditions described.
- the coating composition for forming the semi-transparent top electrode 18 was prepared as described in Example C. The composition was superposed by screen printing upon the light-emitting phosphor layer 16. The substrate with the multiple layers coated
- - • - as a semiconductor serves as a conductor here, and its transparency enhances the light transmissivity of the deposited layer.
- the coating composition for forming the conductive buss 20 was prepared as described in Example
- Fig. 1 and a power source 38, forms a functional electroluminescent lamp 10. Electricity is applied to the lamp via the wires and is distributed by the buss layer 20 to the front electrode 18 to excite the phosphor crystals in the underlying layer 16, which causes them to emit light.
- This layer 22 is also formed according to the invention, as follows. ,.
- the PVDF dispersion employed in Example A, devoid of electrical-property additives, is screen printed over the exposed surfaces of the lamp 10 through a 180 mesh polyester screen. The lamp was dried for two minutes at 175°F and heated for 45 seconds at 500°F. The coating and heating procedure was performed twice to provide a total dried film thickness of protective-insulative layer 22 of 1.0 mils.
- each layer has the same processing requirements and restrictions.
- the upper layers, and the protective coating may be fully treated without damage to underlying layers, as might be the case if other different binder systems were employed.
- the final heating step results in an electroluminescent lamp 10 of cross-section as shown magnified in Fig, 3.
- the polymeric material that was superposed in layers upon flexible substrate 12 has fused within the"layers and ⁇ between the layers to form a monolithic unit about 3.4 mils thick that flexes with the substrate.
- all the layers are formed of the same polymeric material, all the layers of the monolithic unit have common thermal expansion characteristics, hence temperature changes during testing did not cause delamination.
- the lamp was highly resistant to moisture during high humidity testing, and the phosphor crystals did not appear to deteriorate prematurely, as would occur if moisture had penetrated to the crystals in the phosphor layer.
- compositions useful according to the invention prior to the addition of additives, were evaluated.
- Viscosity To determine the approximate range of viscosity prior to addition of additives over which the compositions of the invention are useful, two compositions were prepared using .isophorone as the liquid phase and polyvinylidene fluoride (PVDF) powder (461 powder, supplied by Pennwalt) , which is substantially insoluble in isophorone, i.e., it is estimated that substantially less than about 5 percent solvation occurs.
- PVDF polyvinylidene fluoride
- composition A had thickness or body at close to the lower end of the range useful for screen printing
- second composition had body at close to the high end of the useful range.
- composition A Composition B
- Viscosity 17,700 cps 200,000+ cps The viscosity of the compositions was measured using a Brookfield Viscosity Meter, Model LVF, at the #6 (low shear) setting.
- Composition A was tested using a #3 spindle at a multiplication factor of 200X and gave an average reading of 88.5.
- Composition B was tested using a #4 spindle at a multiplication factor of 2000X and gave an average reading that appeared well in excess of the maximum reading of 100.
- composition X The viscosity of the commercially available Kynar 202 PVDF dispersion (Composition X) was tested on the same equipment and registered a viscosity of approximately 40,000 cps. (It is noted that while the weight percentage of PVDF solids is lower in the commercial product than in either of the test compositions, a different solvent is employed in the commercial system, so strict interpolation is not possible.)
- a standard coating composition in this case a dielectric composition prepared as in Example A, was subjected to further testing.
- the viscosity of the coating composition was tested in a Brookfield Viscosity Meter, Model LVF, as described above, with a #4 spindle operated at four selected, different speed settings, the speed of the spindle of course being directly proportional to the shear between the spindle and the composition.
- TABLE B the viscosity of the composition decreased dramatically with increased shear.
- the weight percent solids of PVDF will vary depending, . upon the nature of the carrier fluids employed, and upon the physical properties of the additive, e.g * . upon particle surface area (particle shape, spherical or otherwise, as well as particle size) and particle density.
- the range of PVDF solids present in the overall coating composition can range between about 50 percent, by weight, down to about 15 percent, by weight. The preferred range is between about 25 and 45 percent, by weight.
- the protective layer 22 of the electroluminescent lamp may be applied as preformed film of polyvinylidene fluoride under pressure of 125 pounds per square inch, and the lamp heated at 350 F for one minute and then cooled whilerstill under pressure. Each separate layer applied may have a dry thickness of as much as .010 inch, although thickness in the range between about .003 inch to .0001 inch is typically preferred.
- The_ protective layer may be applied as preformed film of one or more other materials compatible with the lamp structure, which alone or in combination provide adequate protection against penetration of substances detrimental to performance of the underlying lamp.
- the composition may be applied by screen printing, or by various of the doctor blade coating techniques, e.g. knife over roll or knife over table.
- the shear-imparting conditions of screen printing may also be varied, e.g. the squeegee may be advanced along the screen at rates between about 2 and 200 inches per minute, and the size of the screen orifices may range between about 1.4 and 7 mils on a side.
- PVDF Materials which consist essentially of homopolymers of PVDF are preferred. However, other materials may be blended with PVDF, e.g. for improving surface printability, for improving processability during manufacturing, or for improving surface bonding.
- An example of one material miscible in a blend with PVDF is polymethyl methacrylate (PMMA) , e.g. employed at 1 to 15 percent by weight of PVDF, preferably 5 to 10 percent by weight.
- PMMA polymethyl methacrylate
- other materials may be employed in place of PVDF.
- the guiding criteria for selection are low moisture absorptivity, ability of particles to fuse at elevated temperature to form a continuous moisture barrier film, and, when applied to flexible substrate, flexibility and strength.
- the general physical and mechanical properties of PVDF (in homopolymer form) appear in Table C.
- PVDF Polyvinylidene Fluoride
- the liquid phase of the composition may be selected from the group of materials categorized in the literature as "latent solvents" for PVDF, i.e., those with enough affinity for PVDF to solvate the polymer at elevated temperature, but in which at room temperature PVDF is not substantially soluble, i.e., less than about 5 percent.
- PVDF substantially soluble
- These include: methyl isobutyl ketone (MIBK) , butyl acetate, cyclohexanone, diacetone alcohol, diisobutyl ketone, butyrolactone, tetraethyl urea, isophorone, triethyl phosphate, carbitol acetate, propylene carbonate, and dimethyl phthalate.
- a limited amount of "active" solvent which can, in greater concentrations, dissolve PVDF at room temperature, e.g., acetone, tetrahydrofuran (THF) , methyl ethyl ketone (MEK) , dimethyl formamide (DMF) , dimethyl acetamide (DMAC) , tetramethyl urea and trimethyl phosphate, may be added to the carrier.
- active solvent e.g., acetone, tetrahydrofuran (THF) , methyl ethyl ketone (MEK) , dimethyl formamide (DMF) , dimethyl acetamide (DMAC) , tetramethyl urea and trimethyl phosphate
- THF tetrahydrofuran
- MEK methyl ethyl ketone
- DMF dimethyl formamide
- DMAC dimethyl acetamide
- tetramethyl urea and trimethyl phosphate tetramethyl
- the viscosity and weight percent of PVDF solids in the coating composition may also be adjusted, e.g. to provide the desired viscosity, suspendability and transfer characteristic to allow the composition to be useful with additive particles of widely different physical and electrical characteristics.
- the additives mentioned above are employed merely by way of example, and it will be obvious to a person skilled in the art that other additives alone or in combination, or other proportions of the additives mentioned may be employed according to the invention.
- suitable additives may be selected on the basis of bulk resistivity or bulk density, or on the basis of other criteria such as cost.
- the bulk resistivities and bulk densities of examples of materials useful as additives are shown in TABLE D.
- additives useful as insulators or as capacitors may be selected on the basis of dielectric constant of the material as used in the composition, or, again, on the basis of density or other factors. For example, materials resulting in a composition having a dielectric constant above 15 are useful for forming capacitive dielectrics.
- Use of additives according to the invention provides a composite layer with electrical characteristics significantly different in degree from that of PVDF above. Examples of materials with sufficiently high dielectric constant are shown in TABLE E for comparison with PVDF.
- Additive particles suitable for use in formation of an electroluminescent lamp include zinc sulfide crystals with deliberately induced impurities ("dopants"), e.g., of copper or magnesium.
- dopants zinc sulfide crystals with deliberately induced impurities
- Representative materials are sold by GTE, Chemical and Metallurgical Division, Towanda, Pennsylvania, under the trade designations type 723 green, type 727 green, and type 813 blue-green.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Electroluminescent Light Sources (AREA)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US57714584A | 1984-02-06 | 1984-02-06 | |
| US577145 | 1984-02-06 |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| EP0171420A1 EP0171420A1 (fr) | 1986-02-19 |
| EP0171420A4 true EP0171420A4 (fr) | 1986-07-23 |
| EP0171420B1 EP0171420B1 (fr) | 1990-12-12 |
Family
ID=24307460
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP85900937A Expired EP0171420B1 (fr) | 1984-02-06 | 1985-02-04 | Circuits et composants electriques |
Country Status (6)
| Country | Link |
|---|---|
| EP (1) | EP0171420B1 (fr) |
| JP (1) | JPH0766855B2 (fr) |
| CA (1) | CA1227522A (fr) |
| DE (1) | DE3580877D1 (fr) |
| IT (1) | IT1182413B (fr) |
| WO (1) | WO1985003596A1 (fr) |
Families Citing this family (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4904901A (en) * | 1984-12-03 | 1990-02-27 | Lumel, Inc. | Electrolumescent panels |
| US4853594A (en) * | 1988-08-10 | 1989-08-01 | Rogers Corporation | Electroluminescent lamp |
| GB8820732D0 (en) * | 1988-09-02 | 1988-10-05 | Specialist Printers Ltd | Electroluminescent device & its manufacture |
| JPH03156888A (ja) * | 1989-08-28 | 1991-07-04 | Toshiba Corp | 分散型elパネル及びその製造方法 |
| JPH0935571A (ja) * | 1995-07-14 | 1997-02-07 | Matsushita Electric Ind Co Ltd | 照光式スイッチユニット |
| EP0996313A3 (fr) * | 1995-07-14 | 2000-08-02 | Matsushita Electric Industrial Co., Ltd. | Interrupteur éclairé |
| GB9715907D0 (en) * | 1997-07-29 | 1997-10-01 | Cambridge Consultants | Electroluminescent device production process |
| GB9803763D0 (en) | 1998-02-23 | 1998-04-15 | Cambridge Display Tech Ltd | Display devices |
| DE102009042795A1 (de) * | 2009-09-25 | 2011-04-07 | Schreiner Group Gmbh & Co. Kg | Verfahren zur Herstellung eines Elektrolumineszenzelements, Verwendung eines Drucklacks und Elektrolumineszenzelement |
| JP7416079B2 (ja) * | 2019-09-26 | 2024-01-17 | コニカミノルタ株式会社 | 有機エレクトロルミネッセンス素子の製造方法及び有機エレクトロルミネッセンス素子 |
Family Cites Families (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3010044A (en) * | 1959-06-17 | 1961-11-21 | Westinghouse Electric Corp | Electroluminescent cell, method and ceramic composition |
| US3421037A (en) * | 1966-07-11 | 1969-01-07 | Gen Telephone & Elect | Electroluminescent device and dielectric medium therefor |
| US3850631A (en) * | 1973-04-24 | 1974-11-26 | Rank Xerox Ltd | Photoconductive element with a polyvinylidene fluoride binder |
| CA1059678A (fr) * | 1974-09-27 | 1979-07-31 | Acheson Industries, Inc., | Enduits d'elastomeres fluores pour condensateurs |
| JPS5663795A (en) * | 1979-10-29 | 1981-05-30 | Nippon Telegraph & Telephone | Method of manufacturing el light emitting element |
| US4417174A (en) * | 1980-10-03 | 1983-11-22 | Alps Electric Co., Ltd. | Electroluminescent cell and method of producing the same |
| JPS57148798A (en) * | 1981-03-12 | 1982-09-14 | Roland Kk | Sequencer |
| JPS58111296A (ja) * | 1981-12-23 | 1983-07-02 | アルプス電気株式会社 | 電場発光素子の製造方法 |
| JPS593840A (ja) * | 1982-06-29 | 1984-01-10 | Matsushita Electric Works Ltd | けい光ランプの製造方法 |
| JPS593839A (ja) * | 1982-06-30 | 1984-01-10 | 富士通株式会社 | 電磁座標選択装置 |
-
1985
- 1985-02-04 DE DE8585900937T patent/DE3580877D1/de not_active Expired - Fee Related
- 1985-02-04 EP EP85900937A patent/EP0171420B1/fr not_active Expired
- 1985-02-04 WO PCT/US1985/000183 patent/WO1985003596A1/fr not_active Ceased
- 1985-02-04 JP JP60500738A patent/JPH0766855B2/ja not_active Expired - Lifetime
- 1985-02-04 CA CA000473478A patent/CA1227522A/fr not_active Expired
- 1985-02-05 IT IT67111/85A patent/IT1182413B/it active
Also Published As
| Publication number | Publication date |
|---|---|
| IT1182413B (it) | 1987-10-05 |
| WO1985003596A1 (fr) | 1985-08-15 |
| JPS61501177A (ja) | 1986-06-12 |
| EP0171420B1 (fr) | 1990-12-12 |
| IT8567111A0 (it) | 1985-02-05 |
| EP0171420A1 (fr) | 1986-02-19 |
| DE3580877D1 (de) | 1991-01-24 |
| JPH0766855B2 (ja) | 1995-07-19 |
| CA1227522A (fr) | 1987-09-29 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US4816717A (en) | Electroluminescent lamp having a polymer phosphor layer formed in substantially a non-crossed linked state | |
| CN100420356C (zh) | 嵌入厚膜组件的改进方法 | |
| EP0381737B1 (fr) | Lampe electroluminescente | |
| US6233817B1 (en) | Method of forming thick-film hybrid circuit on a metal circuit board | |
| EP0830807B1 (fr) | Lampe electroluminescente a liant terpolymere | |
| CA1227522A (fr) | Circuits et composants electriques | |
| JPH0443436B2 (fr) | ||
| JP2001223065A (ja) | 電気発熱体厚膜形成用抵抗ペースト | |
| EP1459601B1 (fr) | Couche dielectrique de film epais a basse temperature d'allumage pour affichage electroluminescent | |
| KR100244375B1 (ko) | 전도성 페이스트, 및 이를 함유하는 도체 및 세라믹 기판 | |
| JPH03158233A (ja) | 多層相互接続体 | |
| Inokuma et al. | The microstructure of RuO 2 thick film resistors and the influence of glass particle size on their electrical properties | |
| US4481261A (en) | Blister-resistant dielectric | |
| US5723073A (en) | Conductive paste containing 2-tetradecanol and ceramic circuit substrate using the same | |
| US4849673A (en) | Electroluminescent devices without particle conductive coating | |
| US3297505A (en) | Method of making electrical capacitors | |
| RU2024081C1 (ru) | Электропроводящая паста | |
| Kuzel et al. | Resistors screen printed on ceramic-coated steel substrates | |
| JP2545116B2 (ja) | 透明導電性積層体 | |
| KR960033172A (ko) | 습기에 강한 형광체 및 그 제조방법과, 이를 이용한 유기분산형 전계발광소자 및 그 제조방법 | |
| CN1143425A (zh) | 正特性热敏电阻及采用它的热敏电阻装置 | |
| JPH09260058A (ja) | 分散型エレクトロルミネッセンスパネル | |
| Jakubowska et al. | Influence of the contacts and firing process on the properties of thick film resistors on alumina and dielectrics | |
| JPH0149655B2 (fr) | ||
| JPS61161691A (ja) | 電場発光灯 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 19850925 |
|
| AK | Designated contracting states |
Designated state(s): DE FR GB SE |
|
| A4 | Supplementary search report drawn up and despatched |
Effective date: 19860723 |
|
| 17Q | First examination report despatched |
Effective date: 19870803 |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB SE |
|
| REF | Corresponds to: |
Ref document number: 3580877 Country of ref document: DE Date of ref document: 19910124 |
|
| ET | Fr: translation filed | ||
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
| 26N | No opposition filed | ||
| EAL | Se: european patent in force in sweden |
Ref document number: 85900937.5 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19980120 Year of fee payment: 14 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19980121 Year of fee payment: 14 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19980123 Year of fee payment: 14 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19980127 Year of fee payment: 14 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990204 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990205 |
|
| GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19990204 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19991029 |
|
| EUG | Se: european patent has lapsed |
Ref document number: 85900937.5 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19991201 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |