EP0169227A1 - Dispositif de chauffage par combustion pour la reformation a la vapeur - Google Patents
Dispositif de chauffage par combustion pour la reformation a la vapeurInfo
- Publication number
- EP0169227A1 EP0169227A1 EP19850900703 EP85900703A EP0169227A1 EP 0169227 A1 EP0169227 A1 EP 0169227A1 EP 19850900703 EP19850900703 EP 19850900703 EP 85900703 A EP85900703 A EP 85900703A EP 0169227 A1 EP0169227 A1 EP 0169227A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- combustion
- zone
- heated
- heating apparatus
- zones
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 71
- 238000010438 heat treatment Methods 0.000 title claims abstract description 33
- 238000000629 steam reforming Methods 0.000 title abstract description 12
- 239000000446 fuel Substances 0.000 claims abstract description 23
- 239000012530 fluid Substances 0.000 claims abstract description 11
- 238000006243 chemical reaction Methods 0.000 claims abstract description 10
- 238000009826 distribution Methods 0.000 claims abstract description 7
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 6
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 6
- 239000001257 hydrogen Substances 0.000 claims abstract description 5
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 4
- 239000011148 porous material Substances 0.000 claims abstract 2
- 230000009471 action Effects 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims 1
- 229910052799 carbon Inorganic materials 0.000 claims 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical class [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 abstract description 11
- 230000003197 catalytic effect Effects 0.000 abstract description 4
- 229910002090 carbon oxide Inorganic materials 0.000 abstract description 2
- 230000001737 promoting effect Effects 0.000 abstract 1
- 239000003054 catalyst Substances 0.000 description 29
- 239000007789 gas Substances 0.000 description 14
- 239000003546 flue gas Substances 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 239000000047 product Substances 0.000 description 9
- 239000000203 mixture Substances 0.000 description 6
- 230000008901 benefit Effects 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000000284 resting effect Effects 0.000 description 2
- 239000003570 air Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 238000007084 catalytic combustion reaction Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000005549 size reduction Methods 0.000 description 1
- 239000011949 solid catalyst Substances 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/02—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
- B01J8/06—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
- B01J8/062—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes being installed in a furnace
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/32—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
- C01B3/34—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
- C01B3/38—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
- C01B3/384—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/08—Methods of heating or cooling
- C01B2203/0805—Methods of heating the process for making hydrogen or synthesis gas
- C01B2203/0811—Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/08—Methods of heating or cooling
- C01B2203/0805—Methods of heating the process for making hydrogen or synthesis gas
- C01B2203/0838—Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel
- C01B2203/0844—Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel the non-combustive exothermic reaction being another reforming reaction as defined in groups C01B2203/02 - C01B2203/0294
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/08—Methods of heating or cooling
- C01B2203/0805—Methods of heating the process for making hydrogen or synthesis gas
- C01B2203/0866—Methods of heating the process for making hydrogen or synthesis gas by combination of different heating methods
Definitions
- This invention relates to combustion heating appar ⁇ atus for fluids, and has particularly advantageous applica ⁇ tion to the process of steam reforming of hydrocarbons.
- the steam reforming process consists of heating a mixture of a hydrocarbon feedstock with steam in the presence of a solid catalyst.
- the catalyst generally used is nickel, in finely divided form and dispersed on the surface of porous support bodies made of alumina.
- Dependent upon the application, the process may be carried out at any pressure up to 40 bar or even more with known apparatus.
- the •temperature of the process stream reaches its maximum as it leaves the catalyst bed, this temperature being limited in practice by the corresponding metal temperature at which adequate mechanical properties of the containing duct .can be relied upon. Typically, these temperatures are about 850°C and 900°C respectively.
- the product stream consists of a mixture of hydrogen, carbon oxides, steam, and methane, together with any inert components such as nitrogen which may be present.
- the product composition may approach quite closely the equilibrium composition for the conditions at exit from the catalyst bed.
- the steam reforming process is of great industrial importance. Among its applications are the production of hydrogen and reducing gases for metallurgical and fuel refining processes, and for fuel cells, and the manufacture of synthesis gases for conversion to ammonia, ethanol, and other chemicals and fuels.
- the catalyst is normally contained within a number of identical tubes, typically of 0.12 m outside diameter and more than 12 in length, suspended within a refractory lined furnace box which is heated by burners.
- the main deficiency of the conventional reformer furnace is that it is wasteful in its use of energy. Typically, less than half of the heat released by the burners goes to provide reaction heat. This part of the heat is directly useful, since it is potentially available as fuel value of the end products.
- the balance of the heat goes to heat up the exiting process and flue gas streams and the surroundings; and while a high proportion of this is usually recovered to process heat, and steam raising, large costs and large losses of work potential are involved in such recovery. In particular, only some 25% of heat transferred to a steam system is recovered as work. Work is also lost as a result of an undesirably high frictional pressure drop through the catalyst bed. This has to be accepted in conventional reformer practice, because the cost penalty of using more numerous or wider tubes to reduce the pressure drop is too high.
- recupera ⁇ tive reformer tubes have found very few applications so far, probably because of considerations of cost and of access to replace the catalyst. It may be however, that in the context of a radically new .reformer design the recuperative ' • •-5 reformer tube arrangement will have significant advantages.
- Pressurisation of the combustion space of a steam reformer is also known, for instance from USP 3,958,951. Advantages include size reduction, and the possibility of recovering work by expansion of combustion product gas. However, up to the present, pressurised combustion reformers have not been used in large scale applications, probably because the proposed designs have been considered to be too complicated.
- an object o ⁇ f the present invention is to provide an improved combustion heating apparatus for fluids e.g. for carrying out steam reforming, with a higher thermal efficiency and lower cost than is achieved by the known kinds of apparatus.
- combustion heating apparatus of the kind in which the fluid is passed through a heated zone, which zone is heated by a combustion zone to which air and fuel is fed, characterised in that said fluid is passed through said heated zone in multiple substantially parallel streams, in that there is a heated zone for each stream, in that there is an associated combustion zone for each heated zone and in that the associated heated and combustion zones are arranged one within another with a high degree of radial symmetry.
- each individual heated zone through which a fluid stream passes is provided with its own combustion zone or chamber and, where required for steam reforming, catalyst zone or ⁇ chamber, the combination being preferably concentric.
- further beneficial features of the invention may include: 0 a) ensuring a substantially equal heat release between parallel streams, and, b) ensuring a controlled distribution of heat release within each combustion chamber.
- Figure 1 is a fragmentary sectional view of one form of combustion chamber
- Figure 2. is a fragmentary sectional view of another form of combustion chamber.
- Figures 3 and 4 are enlarged, contour views of turbulence-promoting shapes
- Figures 5 and 6 are enlarged, contour views of catalyst bodies.
- flue gas may be recirculated axially by the jet action of incoming air (a) and fuel (f) at the burner nozzle 1. Circulation along the length of the chamber is promoted by a baffle 2 which divides the chamber into separate channels 3 and 4 for forward and reverse flow. 2.
- either the air (a), or the fuel (f) may be introduced gradually through the radiant surface of a porous wall 5 of the combustion chamber. The resulting extensive flame zone can be stablised close to the wall by turbulence-promoting shapes.
- Catalytic bodies can also be incorporated, so as to maintain the flame reaction at conditions unfavourable to stable non-catalytic combustion.
- Figures 3 and 4 illustrate examples of turbulence-promoting shapes
- Figures 5 and 6 show examples of catalyst bodies one comprising spaced catalytic metal gauze discs G and the other having an enclosing catalytic metal spiral S. These bodies may also be shaped to function as turbulence promoters.
- the basic geometry of the catalyst and combustion chambers may be any one of at least three possible configurations:
- the catalyst may be contained in tubes, with a combustion chamber around each tube.
- Combustion may take place within tubes, with the catialyst either in a surrounding annulus, or in a continuous space containing other combustion tubes. In the latter case, provided the flow through the catalyst bed is axial rather than transverse, the feature of substantial radial axial symmetry can be preserved.
- the catalyst may be in an annular space between inner and outer combustion tubes.
- the porous wall arrangement is generally preferred over the jet recircu- lation arrangement because: a) heat distribution is directly controlled b) less space is required c) reliability is potentially higher, since none of the components is required to operate at such high temperatures as occur in the throat of a conventional burner nozzle.
- Figures 7a and 7b are elevation and plan views respectively of the first embodiment of apparatus
- Figure 8 is an enlarged cross-sectional view of one tube/combustor unit of the apparatus shown in Figure 7, and
- Figures 9 and 10 are sectional elevations of the second and third embodiments of apparatus.
- the heating apparatus is a steam reformer intended to operate with near atmospheric combustion pressure.
- the apparatus comprises a group of some 40 identical tube/combusion units 6 arranged around central inlet and outlet process ducts 7 and 8. Fuel is distributed via a pipe manifold 9. Air and flue gas duct connections are respectively at 10 and 11. Referring to
- FIG. 8 one tube/combustor unit 6 is shown with a part of surrounding structure common to all units.
- Hydrocarbon and steam feed mixture enters at 12 and is heated against reformed gas in a recuperative exchanger 13. It then flows downward through a catalyst bed 14. Reformed gas returns upward through a thin-walled tube 15, giving up heat to the catalyst bed before leaving at 16.
- the tube 15 is formed to have fluted surfaces, and is fitted with an internal restricting cylinder 17.
- the catalyst tube has an outside diameter of 0.12m and it is packed with catalyst over a height of 10 m. In respect of throughput, outside surface, and weight, it is comparable with a conventional reformer tube, but average heat flux is lower because of the recuperated heat supplied from the central tube 15.
- Fuel entering at 18 is preheated against flue gas in a helical coil 19, and enters the combustion chamber 20, in this embodiment via a porous wall 5 as described herein, before flowing through a bed of ceramic pellets 21 to ensure an even flow distribution.
- Flue gas is partly cooled in a convection heating section 24 by exchange with the inlet portion 14 of a cata- lyst tube 14'.
- Catalyst bodies are located in the section
- Flue gas is then further cooled against incoming air in a recuperative exchanger- 25 before flowing at low velocity through a plenum chamber 26 to the edge of the cylindrical outer casing of the apparatus.
- a recuperative exchanger- 25 is further cooled in an outer recuperator 27 which is common to the group of tube/combustor units, before exiting at 28. These units are suspended from above and are free to expand without restraint.
- the second embodiment is in the form of a pressurised combustion heater for delivering product gas at a high temperature.
- the steam reforming reaction is carried out within a bed 30 of catalyst resting on a perforated grid 31 and filling a continuous space outside a number of identical heating tubes, such as 32, and within the pressure enclosure 33.
- process gas enters at a port 34, flows upwardly through a bed 30, where reaction takes place, and leaves at a port 35.
- Fuel gas supplied at 36 is segregated from product gas by a baffle 37 and is drawn into extensions 38 of the heating tubes 32. Gaps in the baffle 37 ensure that only a small pressure difference exists across the wall of the heating tubes 32.
- baffle 37 and tube extensions 38 are omitted.
- the third embodiment is a variant of the second embodiment, and is suited to the case where it is desired to recuperate heat from the product gas. Like parts have, therefore, been given the same reference numerals.
- the steam reforming reaction is carried out within a number of identical beds such as 46, each resting on a grid 47, and filling a space between a heating tube 32 and a catalyst container 48.
- process gas flows upwardly through the beds 30, then downwardly through the gaps between the catalyst containers 48, before leaving at a port 49.
- the catalyst containers may be circular or hexagonal in cross- section, and they may be corrugated or ribbed to provide rigidity and to improve recuperative heat transfer. Their cross-section is reduced at 50, so as to form a plenum chamber for the outlet gases.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Inorganic Chemistry (AREA)
- Hydrogen, Water And Hydrids (AREA)
Abstract
Dispositif de chauffage de fluides par combustion du type où le fluide traverse une zone chauffée (15) par une zone de combustion (20) alimentée en air et en combustible. L'invention se caractérise par le fait que ledit fluide traverse la zone chauffée (14') en formant de multiples courants sensiblement parallèles, qu'il existe une zone chauffée pour chaque courant, qu'il existe une zone de combustion associée (20) pour chaque zone chauffée, et que les zones chauffées et de combustion associées sont de préférence allongées et situées l'une dans l'autre avec un degré élevé de symétrie radiale, de préférence concentriquement. La chaleur peut être produite avec une distribution désirée dans les zones de combustion par l'introduction d'air ou de combustible, ou des deux, au travers de pores (5) ou de conduites dans une paroi de combustion délimitant ces zones, et la réaction de combustion peut être stabilisée à proximité de cette paroi par des éléments en saillie favorisant les turbulences. Le dispositif peut servir à la reformation par la vapeur; dans ce cas, une réaction chimique endothermique entre la vapeur et les hydrocarbures a lieu dans chaque zone chauffée pour former de l'hydrogène et des oxydes de carbone, cette réaction pouvant être favorisée par des surfaces à action catalytique disposées dans chaque zone.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| GB848401989A GB8401989D0 (en) | 1984-01-25 | 1984-01-25 | Heating apparatus |
| GB8401989 | 1984-01-25 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| EP0169227A1 true EP0169227A1 (fr) | 1986-01-29 |
Family
ID=10555538
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP19850900703 Withdrawn EP0169227A1 (fr) | 1984-01-25 | 1985-01-23 | Dispositif de chauffage par combustion pour la reformation a la vapeur |
Country Status (4)
| Country | Link |
|---|---|
| EP (1) | EP0169227A1 (fr) |
| AU (1) | AU3887085A (fr) |
| GB (1) | GB8401989D0 (fr) |
| WO (1) | WO1985003281A1 (fr) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4692306A (en) * | 1986-03-24 | 1987-09-08 | Kinetics Technology International Corporation | Catalytic reaction apparatus |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR1112998A (fr) * | 1953-10-31 | 1956-03-21 | Koppers Gmbh Heinrich | Procédé et dispositif pour la transformation catalytique de méthane |
| FR1549226A (fr) * | 1967-06-22 | 1968-12-13 | ||
| CA1107039A (fr) * | 1976-12-22 | 1981-08-18 | Ronald J. Masters | Appareil de reaction catalytique a circulation ascendante, avec dispositif antifluidisation |
-
1984
- 1984-01-25 GB GB848401989A patent/GB8401989D0/en active Pending
-
1985
- 1985-01-23 EP EP19850900703 patent/EP0169227A1/fr not_active Withdrawn
- 1985-01-23 AU AU38870/85A patent/AU3887085A/en not_active Abandoned
- 1985-01-23 WO PCT/GB1985/000032 patent/WO1985003281A1/fr not_active Ceased
Non-Patent Citations (1)
| Title |
|---|
| See references of WO8503281A1 * |
Also Published As
| Publication number | Publication date |
|---|---|
| AU3887085A (en) | 1985-08-09 |
| GB8401989D0 (en) | 1984-02-29 |
| WO1985003281A1 (fr) | 1985-08-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US4909808A (en) | Steam reformer with catalytic combustor | |
| CN101432065B (zh) | 固定床吸热反应内燃交换反应器 | |
| CA2165449C (fr) | Appareil de reaction endothermique et methode connexe | |
| US4315893A (en) | Reformer employing finned heat pipes | |
| JP6002249B2 (ja) | 水素生成のための触媒燃焼式熱統合型改質器 | |
| EP0241166B1 (fr) | Dispositif de réaction catalytique | |
| CA1078615A (fr) | Equipement de reformage | |
| US4909809A (en) | Apparatus for the production of gas | |
| US5375563A (en) | Gas-fired, porous matrix, surface combustor-fluid heater | |
| US7297169B2 (en) | Apparatus and method for hydrocarbon reforming process | |
| US3334971A (en) | Catalytically reforming hydrocarbon and steam mixtures | |
| EA003626B1 (ru) | Эндотермический реактор | |
| JPH04215837A (ja) | 熱交換を改質するプロセスと反応系 | |
| US6793700B2 (en) | Apparatus and method for production of synthesis gas using radiant and convective reforming | |
| US3119671A (en) | Upright fluid heating furnace with heat recovery system | |
| CN112585086A (zh) | 烃类的蒸汽重整或干重整 | |
| US8133445B2 (en) | Reaction chamber promoting heat exchange between the reagents and the gases that are produced | |
| GB2247414A (en) | Apparatus for catalytic reaction | |
| US3215502A (en) | Reformer furnace | |
| EP1209140B1 (fr) | Procédé pour la préparation de styrène par déshydrogénation d'éthylbenzène et dispositif pouvant être utilisé dans ce procédé | |
| EP1216955B1 (fr) | Procédé de réformage avec un système de brûleurs à flux thermique variable placé du côté latéral | |
| NO169114B (no) | Fremgangsmaate og apparat til fremstilling av en gass-stroem som inneholder raahydrogen | |
| JPS6211608B2 (fr) | ||
| JPS60225632A (ja) | 反応器 | |
| US5544624A (en) | Gas-fired, porous matrix, combustor-steam generator |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| AK | Designated contracting states |
Designated state(s): AT BE CH DE FR GB LI LU NL SE |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
| 18D | Application deemed to be withdrawn |
Effective date: 19851230 |