EP0146140A2 - Process for metal forming - Google Patents
Process for metal forming Download PDFInfo
- Publication number
- EP0146140A2 EP0146140A2 EP84115695A EP84115695A EP0146140A2 EP 0146140 A2 EP0146140 A2 EP 0146140A2 EP 84115695 A EP84115695 A EP 84115695A EP 84115695 A EP84115695 A EP 84115695A EP 0146140 A2 EP0146140 A2 EP 0146140A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- weight
- liquid lubricant
- parts
- phosphate
- forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 54
- 239000002184 metal Substances 0.000 title claims abstract description 54
- 238000000034 method Methods 0.000 title claims description 10
- 239000010687 lubricating oil Substances 0.000 claims abstract description 68
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims abstract description 42
- 230000001050 lubricating effect Effects 0.000 claims abstract description 35
- 235000014113 dietary fatty acids Nutrition 0.000 claims abstract description 32
- 229930195729 fatty acid Natural products 0.000 claims abstract description 32
- 239000000194 fatty acid Substances 0.000 claims abstract description 32
- 150000004665 fatty acids Chemical class 0.000 claims abstract description 32
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims abstract description 21
- 239000000344 soap Substances 0.000 claims abstract description 17
- 125000005741 alkyl alkenyl group Chemical group 0.000 claims abstract description 4
- 125000000217 alkyl group Chemical group 0.000 claims abstract description 4
- 125000003118 aryl group Chemical group 0.000 claims abstract description 4
- 239000000314 lubricant Substances 0.000 claims description 24
- 239000002480 mineral oil Substances 0.000 claims description 15
- 235000010446 mineral oil Nutrition 0.000 claims description 15
- 239000000203 mixture Substances 0.000 claims description 9
- 239000003995 emulsifying agent Substances 0.000 claims description 8
- 239000003921 oil Substances 0.000 claims description 8
- BNMJSBUIDQYHIN-UHFFFAOYSA-N butyl dihydrogen phosphate Chemical compound CCCCOP(O)(O)=O BNMJSBUIDQYHIN-UHFFFAOYSA-N 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 3
- OZFLRNPZLCUVFP-UHFFFAOYSA-N 8-methylnonyl dihydrogen phosphate Chemical compound CC(C)CCCCCCCOP(O)(O)=O OZFLRNPZLCUVFP-UHFFFAOYSA-N 0.000 claims description 2
- MEESPVWIOBCLJW-KTKRTIGZSA-N [(z)-octadec-9-enyl] dihydrogen phosphate Chemical compound CCCCCCCC\C=C/CCCCCCCCOP(O)(O)=O MEESPVWIOBCLJW-KTKRTIGZSA-N 0.000 claims description 2
- TVACALAUIQMRDF-UHFFFAOYSA-N dodecyl dihydrogen phosphate Chemical compound CCCCCCCCCCCCOP(O)(O)=O TVACALAUIQMRDF-UHFFFAOYSA-N 0.000 claims description 2
- QPPQHRDVPBTVEV-UHFFFAOYSA-N isopropyl dihydrogen phosphate Chemical compound CC(C)OP(O)(O)=O QPPQHRDVPBTVEV-UHFFFAOYSA-N 0.000 claims description 2
- CAAULPUQFIIOTL-UHFFFAOYSA-N methyl dihydrogen phosphate Chemical compound COP(O)(O)=O CAAULPUQFIIOTL-UHFFFAOYSA-N 0.000 claims description 2
- UHGIMQLJWRAPLT-UHFFFAOYSA-N octadecyl dihydrogen phosphate Chemical compound CCCCCCCCCCCCCCCCCCOP(O)(O)=O UHGIMQLJWRAPLT-UHFFFAOYSA-N 0.000 claims description 2
- CMPQUABWPXYYSH-UHFFFAOYSA-N phenyl phosphate Chemical compound OP(O)(=O)OC1=CC=CC=C1 CMPQUABWPXYYSH-UHFFFAOYSA-N 0.000 claims description 2
- GAJQCIFYLSXSEZ-UHFFFAOYSA-N tridecyl dihydrogen phosphate Chemical compound CCCCCCCCCCCCCOP(O)(O)=O GAJQCIFYLSXSEZ-UHFFFAOYSA-N 0.000 claims description 2
- WRKCIHRWQZQBOL-UHFFFAOYSA-N octyl dihydrogen phosphate Chemical compound CCCCCCCCOP(O)(O)=O WRKCIHRWQZQBOL-UHFFFAOYSA-N 0.000 claims 2
- 230000009467 reduction Effects 0.000 abstract description 14
- 238000000576 coating method Methods 0.000 abstract description 10
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 abstract description 9
- 229910019142 PO4 Inorganic materials 0.000 abstract description 8
- 239000011248 coating agent Substances 0.000 abstract description 8
- 239000010452 phosphate Substances 0.000 abstract description 8
- 238000009736 wetting Methods 0.000 abstract description 4
- 230000002265 prevention Effects 0.000 abstract 1
- 230000000052 comparative effect Effects 0.000 description 12
- 238000001125 extrusion Methods 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 239000002253 acid Substances 0.000 description 6
- 238000011282 treatment Methods 0.000 description 6
- WWZKQHOCKIZLMA-UHFFFAOYSA-N Caprylic acid Natural products CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 5
- 239000010696 ester oil Substances 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 4
- -1 alkylaryl alcohol Chemical compound 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 238000007598 dipping method Methods 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- AWQSAIIDOMEEOD-UHFFFAOYSA-N 5,5-Dimethyl-4-(3-oxobutyl)dihydro-2(3H)-furanone Chemical compound CC(=O)CCC1CC(=O)OC1(C)C AWQSAIIDOMEEOD-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 3
- 229910052783 alkali metal Inorganic materials 0.000 description 3
- 150000001340 alkali metals Chemical class 0.000 description 3
- 239000002199 base oil Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 238000005461 lubrication Methods 0.000 description 3
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 3
- 235000021313 oleic acid Nutrition 0.000 description 3
- 229920005862 polyol Polymers 0.000 description 3
- 150000003077 polyols Chemical class 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 2
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 2
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000005642 Oleic acid Substances 0.000 description 2
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- OBETXYAYXDNJHR-UHFFFAOYSA-N alpha-ethylcaproic acid Natural products CCCCC(CC)C(O)=O OBETXYAYXDNJHR-UHFFFAOYSA-N 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- VNTLIPZTSJSULJ-UHFFFAOYSA-N chromium molybdenum Chemical compound [Cr].[Mo] VNTLIPZTSJSULJ-UHFFFAOYSA-N 0.000 description 2
- KHAVLLBUVKBTBG-UHFFFAOYSA-N dec-9-enoic acid Chemical compound OC(=O)CCCCCCCC=C KHAVLLBUVKBTBG-UHFFFAOYSA-N 0.000 description 2
- ILRSCQWREDREME-UHFFFAOYSA-N dodecanamide Chemical compound CCCCCCCCCCCC(N)=O ILRSCQWREDREME-UHFFFAOYSA-N 0.000 description 2
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- MNWFXJYAOYHMED-UHFFFAOYSA-N heptanoic acid Chemical compound CCCCCCC(O)=O MNWFXJYAOYHMED-UHFFFAOYSA-N 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000006386 neutralization reaction Methods 0.000 description 2
- FBUKVWPVBMHYJY-UHFFFAOYSA-N nonanoic acid Chemical compound CCCCCCCCC(O)=O FBUKVWPVBMHYJY-UHFFFAOYSA-N 0.000 description 2
- LTHCSWBWNVGEFE-UHFFFAOYSA-N octanamide Chemical compound CCCCCCCC(N)=O LTHCSWBWNVGEFE-UHFFFAOYSA-N 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- ZDPHROOEEOARMN-UHFFFAOYSA-N undecanoic acid Chemical compound CCCCCCCCCCC(O)=O ZDPHROOEEOARMN-UHFFFAOYSA-N 0.000 description 2
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 2
- QGLWBTPVKHMVHM-KTKRTIGZSA-N (z)-octadec-9-en-1-amine Chemical compound CCCCCCCC\C=C/CCCCCCCCN QGLWBTPVKHMVHM-KTKRTIGZSA-N 0.000 description 1
- GYSCBCSGKXNZRH-UHFFFAOYSA-N 1-benzothiophene-2-carboxamide Chemical compound C1=CC=C2SC(C(=O)N)=CC2=C1 GYSCBCSGKXNZRH-UHFFFAOYSA-N 0.000 description 1
- OYHQOLUKZRVURQ-UHFFFAOYSA-N 9,12-Octadecadienoic Acid Chemical compound CCCCCC=CCC=CCCCCCCCC(O)=O OYHQOLUKZRVURQ-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- GHVNFZFCNZKVNT-UHFFFAOYSA-N Decanoic acid Natural products CCCCCCCCCC(O)=O GHVNFZFCNZKVNT-UHFFFAOYSA-N 0.000 description 1
- TUNFSRHWOTWDNC-UHFFFAOYSA-N Myristic acid Natural products CCCCCCCCCCCCCC(O)=O TUNFSRHWOTWDNC-UHFFFAOYSA-N 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- PLZVEHJLHYMBBY-UHFFFAOYSA-N Tetradecylamine Chemical compound CCCCCCCCCCCCCCN PLZVEHJLHYMBBY-UHFFFAOYSA-N 0.000 description 1
- RSSGSPAYFRXVKG-UHFFFAOYSA-N Tridecanamide Chemical compound CCCCCCCCCCCCC(N)=O RSSGSPAYFRXVKG-UHFFFAOYSA-N 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- 125000005233 alkylalcohol group Chemical group 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 235000015278 beef Nutrition 0.000 description 1
- GONOPSZTUGRENK-UHFFFAOYSA-N benzyl(trichloro)silane Chemical compound Cl[Si](Cl)(Cl)CC1=CC=CC=C1 GONOPSZTUGRENK-UHFFFAOYSA-N 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- DNSISZSEWVHGLH-UHFFFAOYSA-N butanamide Chemical compound CCCC(N)=O DNSISZSEWVHGLH-UHFFFAOYSA-N 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 150000008280 chlorinated hydrocarbons Chemical class 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- SECPZKHBENQXJG-UHFFFAOYSA-N cis-palmitoleic acid Natural products CCCCCCC=CCCCCCCCC(O)=O SECPZKHBENQXJG-UHFFFAOYSA-N 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000010685 fatty oil Substances 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- HSEMFIZWXHQJAE-UHFFFAOYSA-N hexadecanamide Chemical compound CCCCCCCCCCCCCCCC(N)=O HSEMFIZWXHQJAE-UHFFFAOYSA-N 0.000 description 1
- ALBYIUDWACNRRB-UHFFFAOYSA-N hexanamide Chemical compound CCCCCC(N)=O ALBYIUDWACNRRB-UHFFFAOYSA-N 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 208000037805 labour Diseases 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 1
- 229910052982 molybdenum disulfide Inorganic materials 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N n-hexanoic acid Natural products CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- GHLZUHZBBNDWHW-UHFFFAOYSA-N nonanamide Chemical compound CCCCCCCCC(N)=O GHLZUHZBBNDWHW-UHFFFAOYSA-N 0.000 description 1
- LYRFLYHAGKPMFH-UHFFFAOYSA-N octadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(N)=O LYRFLYHAGKPMFH-UHFFFAOYSA-N 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- FATBGEAMYMYZAF-KTKRTIGZSA-N oleamide Chemical compound CCCCCCCC\C=C/CCCCCCCC(N)=O FATBGEAMYMYZAF-KTKRTIGZSA-N 0.000 description 1
- 229940113162 oleylamide Drugs 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000000088 plastic resin Substances 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920000137 polyphosphoric acid Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 239000003760 tallow Substances 0.000 description 1
- FKVMWDZRDMCIAJ-UHFFFAOYSA-N undecanamide Chemical compound CCCCCCCCCCC(N)=O FKVMWDZRDMCIAJ-UHFFFAOYSA-N 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M141/00—Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
- C10M141/10—Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic phosphorus-containing compound
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M129/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
- C10M129/02—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
- C10M129/26—Carboxylic acids; Salts thereof
- C10M129/28—Carboxylic acids; Salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M133/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
- C10M133/02—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms
- C10M133/16—Amides; Imides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M137/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus
- C10M137/02—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus having no phosphorus-to-carbon bond
- C10M137/04—Phosphate esters
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/10—Carboxylix acids; Neutral salts thereof
- C10M2207/12—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/10—Carboxylix acids; Neutral salts thereof
- C10M2207/12—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
- C10M2207/121—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/10—Carboxylix acids; Neutral salts thereof
- C10M2207/12—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
- C10M2207/121—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms
- C10M2207/122—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms monocarboxylic
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/10—Carboxylix acids; Neutral salts thereof
- C10M2207/12—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
- C10M2207/125—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/10—Carboxylix acids; Neutral salts thereof
- C10M2207/12—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
- C10M2207/129—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of thirty or more carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/10—Carboxylix acids; Neutral salts thereof
- C10M2207/16—Naphthenic acids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/08—Amides [having hydrocarbon substituents containing less than thirty carbon atoms]
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/08—Amides [having hydrocarbon substituents containing less than thirty carbon atoms]
- C10M2215/082—Amides [having hydrocarbon substituents containing less than thirty carbon atoms] containing hydroxyl groups; Alkoxylated derivatives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/086—Imides [having hydrocarbon substituents containing less than thirty carbon atoms]
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/12—Partial amides of polycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/12—Partial amides of polycarboxylic acids
- C10M2215/122—Phtalamic acid
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/24—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions having hydrocarbon substituents containing thirty or more carbon atoms, e.g. nitrogen derivatives of substituted succinic acid
- C10M2215/28—Amides; Imides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
- C10M2223/041—Triaryl phosphates
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
- C10M2223/042—Metal salts thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/02—Groups 1 or 11
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/20—Metal working
- C10N2040/24—Metal working without essential removal of material, e.g. forming, gorging, drawing, pressing, stamping, rolling or extruding; Punching metal
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/20—Metal working
- C10N2040/241—Manufacturing joint-less pipes
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/20—Metal working
- C10N2040/242—Hot working
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/20—Metal working
- C10N2040/243—Cold working
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/20—Metal working
- C10N2040/244—Metal working of specific metals
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/20—Metal working
- C10N2040/244—Metal working of specific metals
- C10N2040/245—Soft metals, e.g. aluminum
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/20—Metal working
- C10N2040/244—Metal working of specific metals
- C10N2040/246—Iron or steel
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/20—Metal working
- C10N2040/244—Metal working of specific metals
- C10N2040/247—Stainless steel
Definitions
- This invention relates to a lubricant for metal forming, which can form a lubricating film on a metal surface by virtue of the heat generated by deformation or friction during the metal forming such as cold forming i.e. forming without heating of a metallic workpiece, etc., and also to a process for metal forming with said lubricant.
- a lubricant for metal forming must have a satisfactory lubricating ability up to an elevated temperature caused by deformation, friction, etc. and also to increasing new surface area of a workpiece created by the metal formation.
- the lubricants so far proposed for this purpose are water-soluble or water- insoluble liquid lubricants containing mineral oil or synthetic oil or their mixture as the major component and further containing a semi-solid libricant such as metal soap, beef tallow, etc., a sulfur-based, chlorine- based, or phosphorus-based extreme pressure agent, or a solid lubricant such as graphite, molybdenum disulfide, etc.
- lubricants can be used, without any problem, for the metal forming with low reduction of area, but in the case of high reduction of area which produces a higher temperature or a higher surface pressure, or in the case of forming products of complicated shapes, their load-carrying capacity, heat resistance, etc. are not satisfactory, resulting in galling.
- For the lubrication for larger plastic deformation, or forming products of complicated shapes it has been so far proposed to plate a workpiece surface with a soft metal, such as copper, etc., or to coat a workpiece surface with a plastic resin film.
- a phosphate coating process comprising a series of such steps as defatting-water washing-acid pickling-phosphating-water washing- neutralization treatment-metal soap lubrication treatment- heat drying of a workpiece is also well known.
- an acidic lubricant for cold forming which is prepared by reaction of a multivalent metal cation, orthophosphate, and alkyl alcohol or alkylaryl alcohol having 10 to 36 carbon atoms, and which has a water content of not more than 20% by weight has been proposed (Japanese Patent Publication Kokai (Laid-open) No.
- liquid or paste lubricants further containing mineral oil, carboxylic acid, and alkylamine besides the said lubricant components, lubricants for cold forming, which comprises 30 to 94% by weight of a lubricant such as mineral oil, oleic acid, or oleylamine, 5 to 60% by weight of a reaction product of a multivalent metal cationic salt, polyphosphoric acid and an alcohol having 10 to 36 carbon atoms in a ratio of the metal cation : P 2 0 5 : the alcohol 1 : 3-60 : 14-150 by weight, and 0.5 to 10% by weight of water have been proposed (U.S. Patent No. 3,932,287).
- These lubricants show good results in drawing processing of pipes, etc., but fail to meet the requirements for forming steel workpieces with high reduction of area.
- An object of the present invention is to provide a substantially water-free, liquid lubricant for metal forming, which can have an excellent lubricating ability even under high reductions of area which produces a higher temperature and a higher pressure at the sliding interface between a tool and a workpiece, and can give a distinguished formability during the cold forming.
- Another object of the present invention is to provide a process for metal forming in a very simple manner in forming a lubricating film, using a substantially water-free, liquid lubricant for metal forming, which can keep an excellent lubricating ability even under high reductions of area which produces a higher temperature and a higher pressure, and can give a distinguished formability during the cold forming.
- a lubricating film having a good heat resistance and a good lubricating ability is formed on the surface of a metallic workpiece by virtue of the heat generated by deformation, or friction during the metal forming only by wetting the surface of a metallic workpiece such as a steel workpiece, or the surface of a die with a substantially water-free, liquid lubricant for metal forming, which comprises a lubricating oil and at least one of phosphoric acid monoesters represented by the following general formula (1): wherein R is alkyl, alkylalkenyl or aryl.
- a lubricating film having a good heat resistance and a good lubricating ability is formed on the surface of a metallic workpiece by virtue of the heat generated by deformation or friction during the metal forming only by wetting the surface of a metallic workpiece or the surface of a die with a substantially water-free, liquid lubricant for metal forming, which comprises a lubricating oil, at least one of said phosphoric acid esters represented by said general formula (1), and at least one of fatty acid, fatty acid amide, and metal soap.
- the lubricating oil for use in the present invention is the ordinary, commercially available lubricating oil, including, for example, mineral oil, synthetic oil such as ester oil, ether oil, silicone oil and fluorinated oil, and their mixtures.
- the phosphoric acid monoesters for use in the present invention include, for example, monomethyl phosphate, monoisopropyl phosphate, monobutyl phosphate, monoactyl phosphate, monoisodecyl phosphate, monododecyl phosphate, monotridecyl phosphate, monooctadecyl phosphate, monooleyl phosphate, monophenyl phosphate, etc.
- the phosphoric acid monoesters can be used in the form of solution or suspension or dispersion in said lubricating oil. In the case of dispersion, it is preferable to add an emulsifying agent thereto.
- Preferable emulsifying agent includes polybutenylsuccinic acid imide obtained by reaction of polybutenylsuccinic acid anhydride with an amine or alcohol, copolymers of polybutenylsuccinic acid ester and polymethacrylate or polyolefin, etc.
- the fatty acid and fatty acid amide for use in the present invention are natural fatty acids, synthetic fatty acids and fatty acid amide prepared by condensation reaction of fatty acid and amine, and include, for example, butanoic acid, pentanoic acid, hexanoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, dodecanoic acid, tetradecanoic acid, hexadecanoic acid, octadecanoic acid, cis-9-cis-12-octadecadienoic acid, cis-9-cis-12-cis-15-octade- catrienoic acid, 9-decenoic acid, cis-9-octadecenoic acid, heptanoic acid, and their amides, for example, hexanamide, butanamide, octanamide, nonanamide, decane- triamide, undecanamide, dode
- the metal soap for use in the present invention includes, for example, soap obtained by reaction of fatty acid having not more than 22 carbon atoms with a metal such as an alkali metal or nickel.
- a liquid lubricant according to the first aspect of the present invention which comprises (a) a lubricating oil and (b) a phosphoric acid monoester represented by the general formula (1)
- Below 2 parts by weight of the phosphoric acid monoester formation of a lubricating film is deteriorated and a sufficient formability cannot be obtained, so that galling may sometimes occur, whereas above 30 parts by weight thereof, no better formability can be obtained and such excessive addition is not economical.
- liquid lubricant which comprises (a) a lubricating oil, (b) a phosphoric acid monoester represented by the general formula (1), and (c) at least one of fatty acid, fatty acid amide and metal soap
- a lubricating oil which comprises (a) a lubricating oil, (b) a phosphoric acid monoester represented by the general formula (1), and (c) at least one of fatty acid, fatty acid amide and metal soap
- an emmulsifying agent can be used, where it is desirable to use 0.1 to 5 parts by weight of the emulsifying agent per 100 parts by weight of the lubricating oil.
- a liquid lubricant comprises 100 parts by weight of a lubricating oil (viscosity: 50 - 200 mm 2 /sec at 40°C), 1 to 30 parts by weight of a phosphoric acid monoester such as monobutyl phosphate, 1 to 10 parts by weight of fatty acid such as-heptanoic acid, and 1 to 5 parts by weight of an emulsifying agent such as-polybutenylsuccinic acid ester.
- the lubricating film obtained from this liquid lubricant has a thickness of 3 pm or less, which is considerably smaller than the thickness of the conventional phosphate coating film, e.g. about 10 ⁇ m, though the formability of the present lubricating film is equivalent or superior to that of the conventional one, and particularly a more smooth forming surface can be obtained.
- the present liquid lubricant can be put into service only by wetting the surface of a metallic workpiece or a die for metal forming with the present liquid lubricant according to the well known method, for example, by spraying, brushing, dipping, etc., followed by metal forming, or can be also used by heating either the present liquid lubricant or the metallic workpiece and dipping the metallic workpiece into the lubricant, thereby forming a lubricating film on the surface of metallic workpiece.
- a metallic workpiece is dipped into the present liquid lubricant heated to at least 50°C for 0.5 - 10 minutes, for example, 100°C for 0.5 minutes, whereby a lubricating film having a lubricating effect equivalent or superior to that of the conventional phasphate coating film and a high rust-proof effect on the metallic workpiece can be very readily formed.
- the present invention can considerably shorten the lubricating film-forming process.
- An antioxidant for preventing deterioration of the present liquid lubricant, a rust proof agent for preventing a metallic workpiece from rust, etc. can be added to the present liquid lubricant, so far as they are not in ranges to deteriorate the desired lubricating effect of the present invention.
- the present liquid lubricants having compositions shown in Table 1, where mineral oil (FBK150, trademark of a product made by Nippon Oil Company, Ltd., Japan) was used as a base oil, were applied to the surfaces of workpiece 2, as shown in Fig. 1, chromium-molybdenum steel columns with a nose, 9.9 mm in diameter, 30 mm long and 90° at nose angle [SCM 415 as described in JIS (Japanese Industrial Standard G 4105: C: 0.03 - 0.18 wt.%, Si: 0.15 - 0.35 wt.%, Mn: 0.60 - 0.85 wt.%, P:under 0.030 wt.%, S: under 0.030 wt.% Cr: 0.90 - 1.20 wt.%, Mo: 0.15 - 0.30 wt.%, the balance being Fe)].
- JIS Japanese Industrial Standard G 4105: C: 0.03 - 0.18 wt.%, Si: 0.15 - 0.35 w
- the workpieces 2 were subjected to metal forming by forward extrusion with an hard metal die 5 with an extrusion angle of 120° and an extrusion diameter of 5 mm (reduction of area: 75%) and a punch 1, as shown in Fig. 2, to evaluate the formability.
- the results of evaluation are shown in Table 2.
- a band heater 4 was provided around the die 5 to elevate the die temperature from the room temperature stagewise, for example, by 5 to 20°C for each stage, and 20 - 30 workpieces 2 of each Example, to which the present liquid lubricants were applied, were subjected to metal forming, and maximum formable temperatures up to which no galling developed on the surfaces of workpieces after the metal forming were measured.
- a higher maximum formable temperature has a better formability of the lubricant.
- Forming load at the maximum formable temperature is obtained by recording an extrusion pressure at the forming by a strain gage.
- the conventional lubricants used for comparison with the present liquid lubricants are as follows:
- Comparative Example 1 Commercially available oil for metal forming similar to that of Comparative Example 1, which comprises a mixture of mineral oil and ester oil as a base oil, and fatty acid, oleic acid, and chlorinated hydrocarbon compound as additives was used.
- the present liquid lubricants for metal forming were prepared by mixing polyol ester oil having a viscosity of 56 mm2/sec at 40°C with octanoic acid, heptanoic acid, octanamide and phosphoric acid monoester as shown in Table 3 by means of a high speed mixer.
- the liquid lubricants were applied to workpieces of chromium-molybdenum steel and the formability and forming load of the lubricants were measured by means of the same die as used in Example 1. The results are shown in Table 4.
- the present liquid lubricants for metal forming were parepared from compositions of mineral oil having a viscosity of 150 mm2/sec at 40°C, fatty acid, fatty acid amide and metal soap shown in Table 5.
- the present lubricants having the same composition and the same mixing ratio as in Table 5 except that polyol ester oil having a viscosity of 56 mm 2 /sec at 40°C was used in place of the mineral oil was subjected to forming under the same conditions as in Example 1.
- the forming loads and formabilities are shown in Table 7.
- FBK-56 mineral oil having a viscosity of 56 mm2/sec at 40°C
- polyol ester oil having a viscosity of 56 mm2/sec at 40°C shown in Table 8
- the formabilities of the lubricating films according to the present liquid lubricants are equivalent to that of the conventional phosphate film, and the forming loads of the present lubricating films are lower and the lubricating effects are better than those of the phosphate coating film.
- Fig. 3 a diagram showing relationship between the reduction of area (%) or extrusion diameter (mm) on the abscissa and the forming limit temperature (°C) on the ordinate according to typical Examples of the present invention and Comparative Example is given, where the reduction of area (%) is given by the following formula:
- the present liquid lubricants have better formabilities than the conventional one.
- the formable limit temperatures were measured up to 280°C, but those which seem to have higher formable limit temperatures are indicated by the upward arrow mark t on the curve.
- Fig. 3 examples consisting only of mineral oil, of mineral oil and fatty acid and of mineral oil and metal soap are shown for comparison, which have considerably poor formabilities.
- the present liquid lubricants consisting of 100 parts by weight of mineral oil having a viscosity of 150 mm 2 /sec at 40°C, 1 - 30 parts by weight of monobutyl phosphate, 1 - 12 parts by weight of heptanoic acid, and 1 part by weight of polybutenylsuccinic acid ester as an emulsifying agent were prepared and their formabilities were evaluated in the same manner as in Example 1. The results are shown in Fig. 4. As is evident from Fig. 4, preferable ranges are 2 - 30 parts by weight of monobutyl phosphate and 1 - 10 parts by weight of heptanoic acid.
- the present liquid lubricant for metal forming can form a dense and heat-resistant lubricating film on the frictional surface of a workpiece or die by virtue of the heat generated during the forming owing to a synergistic effect of phosphoric acid monoester and fatty acid or aliphatic acid amide or metal soap as added to lubricating oil, and thus can be used in forming of parts with higher reduction of area or articles with more complicated shape than the conventional lubricant for the forming.
- the lubricating film formed by dipping a heated workpiece into the present liquid lubricant or by dipping a workpiece into the heated liquid lubricant of the present invention has a formability equivalent to that obtained by phosphate film treatment. Furthermore, only one run of film treatment is enough in the present invention, and thus the present invention can greatly contribute to simplification of the process and cost reduction.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Lubricants (AREA)
Abstract
Description
- This invention relates to a lubricant for metal forming, which can form a lubricating film on a metal surface by virtue of the heat generated by deformation or friction during the metal forming such as cold forming i.e. forming without heating of a metallic workpiece, etc., and also to a process for metal forming with said lubricant.
- A lubricant for metal forming must have a satisfactory lubricating ability up to an elevated temperature caused by deformation, friction, etc. and also to increasing new surface area of a workpiece created by the metal formation. The lubricants so far proposed for this purpose are water-soluble or water- insoluble liquid lubricants containing mineral oil or synthetic oil or their mixture as the major component and further containing a semi-solid libricant such as metal soap, beef tallow, etc., a sulfur-based, chlorine- based, or phosphorus-based extreme pressure agent, or a solid lubricant such as graphite, molybdenum disulfide, etc. These lubricants can be used, without any problem, for the metal forming with low reduction of area, but in the case of high reduction of area which produces a higher temperature or a higher surface pressure, or in the case of forming products of complicated shapes, their load-carrying capacity, heat resistance, etc. are not satisfactory, resulting in galling. For the lubrication for larger plastic deformation, or forming products of complicated shapes, it has been so far proposed to plate a workpiece surface with a soft metal, such as copper, etc., or to coat a workpiece surface with a plastic resin film. A phosphate coating process comprising a series of such steps as defatting-water washing-acid pickling-phosphating-water washing- neutralization treatment-metal soap lubrication treatment- heat drying of a workpiece is also well known.
- These lubricating coating treatments all require a sufficient pretreatment and complicated coating steps, and thus require so many labors and costs and also have further problems of removing the coatings after the forming or of environmental pollution by the waste liquor liquid from the coating treatments after the forming.
- Recently, lubricants containing phosphoric acid or its salts, boric acid or its salts, carbonates, nitrates, sulfates, or hydroxides of alkali metal, and laminar silicate, etc. have been proposed (Japanese Patent Application Kokai (Laid-open) No. 57-73089). However, since they consist of water-soluble glass powder of P205, B202 and M20 (where M represents an alkali metal), and the laminar silicate, or their mixture and water, they fail to show lubrication at a low temperature forming (below about 300°C) such as cold forming, and thus cannot be used in the cold forming.
- Furthermore, an acidic lubricant for cold forming, which is prepared by reaction of a multivalent metal cation, orthophosphate, and alkyl alcohol or alkylaryl alcohol having 10 to 36 carbon atoms, and which has a water content of not more than 20% by weight has been proposed (Japanese Patent Publication Kokai (Laid-open) No. 47-15569), and liquid or paste lubricants further containing mineral oil, carboxylic acid, and alkylamine besides the said lubricant components, lubricants for cold forming, which comprises 30 to 94% by weight of a lubricant such as mineral oil, oleic acid, or oleylamine, 5 to 60% by weight of a reaction product of a multivalent metal cationic salt, polyphosphoric acid and an alcohol having 10 to 36 carbon atoms in a ratio of the metal cation : P205 : the alcohol = 1 : 3-60 : 14-150 by weight, and 0.5 to 10% by weight of water have been proposed (U.S. Patent No. 3,932,287). These lubricants show good results in drawing processing of pipes, etc., but fail to meet the requirements for forming steel workpieces with high reduction of area.
- An object of the present invention is to provide a substantially water-free, liquid lubricant for metal forming, which can have an excellent lubricating ability even under high reductions of area which produces a higher temperature and a higher pressure at the sliding interface between a tool and a workpiece, and can give a distinguished formability during the cold forming.
- Another object of the present invention is to provide a process for metal forming in a very simple manner in forming a lubricating film, using a substantially water-free, liquid lubricant for metal forming, which can keep an excellent lubricating ability even under high reductions of area which produces a higher temperature and a higher pressure, and can give a distinguished formability during the cold forming.
- According to a first aspect of the present invention a lubricating film having a good heat resistance and a good lubricating ability is formed on the surface of a metallic workpiece by virtue of the heat generated by deformation, or friction during the metal forming only by wetting the surface of a metallic workpiece such as a steel workpiece, or the surface of a die with a substantially water-free, liquid lubricant for metal forming, which comprises a lubricating oil and at least one of phosphoric acid monoesters represented by the following general formula (1):
wherein R is alkyl, alkylalkenyl or aryl. - According to a second aspect of the present invention, a lubricating film having a good heat resistance and a good lubricating ability is formed on the surface of a metallic workpiece by virtue of the heat generated by deformation or friction during the metal forming only by wetting the surface of a metallic workpiece or the surface of a die with a substantially water-free, liquid lubricant for metal forming, which comprises a lubricating oil, at least one of said phosphoric acid esters represented by said general formula (1), and at least one of fatty acid, fatty acid amide, and metal soap.
- The lubricating oil for use in the present invention is the ordinary, commercially available lubricating oil, including, for example, mineral oil, synthetic oil such as ester oil, ether oil, silicone oil and fluorinated oil, and their mixtures.
- It is preferable to select the viscosity of the lubricating oil in view of desired reduction of area, method for supplying the lubricating oil to a lubricating surface, etc.
- The phosphoric acid monoesters for use in the present invention include, for example, monomethyl phosphate, monoisopropyl phosphate, monobutyl phosphate, monoactyl phosphate, monoisodecyl phosphate, monododecyl phosphate, monotridecyl phosphate, monooctadecyl phosphate, monooleyl phosphate, monophenyl phosphate, etc. The phosphoric acid monoesters can be used in the form of solution or suspension or dispersion in said lubricating oil. In the case of dispersion, it is preferable to add an emulsifying agent thereto. Preferable emulsifying agent includes polybutenylsuccinic acid imide obtained by reaction of polybutenylsuccinic acid anhydride with an amine or alcohol, copolymers of polybutenylsuccinic acid ester and polymethacrylate or polyolefin, etc.
- By adding at least one of fatty acid, fatty acid amide and metal soap to the lubricating oil containing the phosphoric acid monoester, formation of a film of the phosphoric acid monoester can be promoted and the lubricating ability can be much improved, so that higher forming performance can be obtained.
- The fatty acid and fatty acid amide for use in the present invention are natural fatty acids, synthetic fatty acids and fatty acid amide prepared by condensation reaction of fatty acid and amine, and include, for example, butanoic acid, pentanoic acid, hexanoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, dodecanoic acid, tetradecanoic acid, hexadecanoic acid, octadecanoic acid, cis-9-cis-12-octadecadienoic acid, cis-9-cis-12-cis-15-octade- catrienoic acid, 9-decenoic acid, cis-9-octadecenoic acid, heptanoic acid, and their amides, for example, hexanamide, butanamide, octanamide, nonanamide, decane- triamide, undecanamide, dodecanamide, tridecanamide, myristylamide, palmitylamide, stearylamide, oleylamide, linolamide, etc.
- The metal soap for use in the present invention includes, for example, soap obtained by reaction of fatty acid having not more than 22 carbon atoms with a metal such as an alkali metal or nickel.
- In the case of a liquid lubricant according to the first aspect of the present invention which comprises (a) a lubricating oil and (b) a phosphoric acid monoester represented by the general formula (1), it is desirable to use 2 to 30 parts by weight of the phosphoric acid monoester per 100 parts by weight of the lubricating oil. Below 2 parts by weight of the phosphoric acid monoester, formation of a lubricating film is deteriorated and a sufficient formability cannot be obtained, so that galling may sometimes occur, whereas above 30 parts by weight thereof, no better formability can be obtained and such excessive addition is not economical.
- In the case of a liquid lubricant according to the second aspect of the present invention, which comprises (a) a lubricating oil, (b) a phosphoric acid monoester represented by the general formula (1), and (c) at least one of fatty acid, fatty acid amide and metal soap, it is desirable to use 2 to 30 parts by weight of the phosphoric acid monoester and 1 to 20 parts by weight of at least one of fatty acid, fatty acid amide and metal soap per 100 parts by weight of the lubricating oil. Below 2 parts by weight of the phosphoric acid monoester and below 1 parts by weight of at least one of fatty acid, fatty acid amide and metal soap, a sufficient lubricating effect may not be sometimes obtained, whereas above 30 parts by weight of the former and above 20 parts by weight of the latter, no better formability can be obtained, and such excessive addition is not economically advantageous.
- In the case of the suspension and dispersion according to the present invention, an emmulsifying agent can be used, where it is desirable to use 0.1 to 5 parts by weight of the emulsifying agent per 100 parts by weight of the lubricating oil.
- According to the most preferable mode of the present invention, a liquid lubricant comprises 100 parts by weight of a lubricating oil (viscosity: 50 - 200 mm2/sec at 40°C), 1 to 30 parts by weight of a phosphoric acid monoester such as monobutyl phosphate, 1 to 10 parts by weight of fatty acid such as-heptanoic acid, and 1 to 5 parts by weight of an emulsifying agent such as-polybutenylsuccinic acid ester. The lubricating film obtained from this liquid lubricant has a thickness of 3 pm or less, which is considerably smaller than the thickness of the conventional phosphate coating film, e.g. about 10 µm, though the formability of the present lubricating film is equivalent or superior to that of the conventional one, and particularly a more smooth forming surface can be obtained.
- The present liquid lubricant can be put into service only by wetting the surface of a metallic workpiece or a die for metal forming with the present liquid lubricant according to the well known method, for example, by spraying, brushing, dipping, etc., followed by metal forming, or can be also used by heating either the present liquid lubricant or the metallic workpiece and dipping the metallic workpiece into the lubricant, thereby forming a lubricating film on the surface of metallic workpiece. For example, a metallic workpiece is dipped into the present liquid lubricant heated to at least 50°C for 0.5 - 10 minutes, for example, 100°C for 0.5 minutes, whereby a lubricating film having a lubricating effect equivalent or superior to that of the conventional phasphate coating film and a high rust-proof effect on the metallic workpiece can be very readily formed. Thus, the present invention can considerably shorten the lubricating film-forming process.
- An antioxidant for preventing deterioration of the present liquid lubricant, a rust proof agent for preventing a metallic workpiece from rust, etc. can be added to the present liquid lubricant, so far as they are not in ranges to deteriorate the desired lubricating effect of the present invention.
-
- Fig. 1 is a side view of a workpiece used for evaluation of the properties of lubricants.
- Fig. 2 is a vertical cross-sectional view of an extrusion die used for evaluation of the properties of lubricants.
- Fig. 3 is a diagram showing relationship between the reduction of area or extrusion diameter and forming limit temperature (°C) according to Examples and Comparative Examples.
- Fig. 4 is a diagram showing relationship between the content of fatty acid and the forming limit temperature (°C).
- The effects of the present liquid lubricant for metal forming will be described in detail below, referring to Examples, which will not be limitative to the present invevtion.
- The present liquid lubricants having compositions shown in Table 1, where mineral oil (FBK150, trademark of a product made by Nippon Oil Company, Ltd., Japan) was used as a base oil, were applied to the surfaces of
workpiece 2, as shown in Fig. 1, chromium-molybdenum steel columns with a nose, 9.9 mm in diameter, 30 mm long and 90° at nose angle [SCM 415 as described in JIS (Japanese Industrial Standard G 4105: C: 0.03 - 0.18 wt.%, Si: 0.15 - 0.35 wt.%, Mn: 0.60 - 0.85 wt.%, P:under 0.030 wt.%, S: under 0.030 wt.% Cr: 0.90 - 1.20 wt.%, Mo: 0.15 - 0.30 wt.%, the balance being Fe)]. - Then, the
workpieces 2 were subjected to metal forming by forward extrusion with anhard metal die 5 with an extrusion angle of 120° and an extrusion diameter of 5 mm (reduction of area: 75%) and a punch 1, as shown in Fig. 2, to evaluate the formability. The results of evaluation are shown in Table 2. - The formability was evaluated as follows. A
band heater 4 was provided around thedie 5 to elevate the die temperature from the room temperature stagewise, for example, by 5 to 20°C for each stage, and 20 - 30workpieces 2 of each Example, to which the present liquid lubricants were applied, were subjected to metal forming, and maximum formable temperatures up to which no galling developed on the surfaces of workpieces after the metal forming were measured. - A higher maximum formable temperature has a better formability of the lubricant.
- Forming load at the maximum formable temperature is obtained by recording an extrusion pressure at the forming by a strain gage.
- The conventional lubricants used for comparison with the present liquid lubricants are as follows:
- Commercially available oil for metal forming having the following composition was used:
- Additive: fatty oil content 116 parts by weight
- chlorine content 32 parts by weight
-
sulfur content 16 parts by weight - Base oil:
mineral oil 100 parts by weight - Commercially available oil for metal forming similar to that of Comparative Example 1, which comprises a mixture of mineral oil and ester oil as a base oil, and fatty acid, oleic acid, and chlorinated hydrocarbon compound as additives was used.
- The same workpieces used in Examples 1 to 20 were treated according to the well known phosphate coating consisting of the following steps: defatting → water washing + acid pickling → water washing → phosphating → water washing + neutralization → metal soap lubricating treatment → drying.
- Formabilities of the workpieces of Comparative Examples 1 to 3 were evaluated in the same manner as in Examples 1 to 20. The results of evaluation of Comparative Examples 1 and 2 are shown in Table 2.
- As is evident from the results of Table 2, all of the present liquid lubricants had considerably improved formabilities, as compared with Comparative Examples. Forming loads were also smaller than that of Comparative Examples, and thus the coefficient of friction is low with a good lubricating effect.
- The present liquid lubricants for metal forming were prepared by mixing polyol ester oil having a viscosity of 56 mm2/sec at 40°C with octanoic acid, heptanoic acid, octanamide and phosphoric acid monoester as shown in Table 3 by means of a high speed mixer.
- The liquid lubricants were applied to workpieces of chromium-molybdenum steel and the formability and forming load of the lubricants were measured by means of the same die as used in Example 1. The results are shown in Table 4.
- As is evident from the results of Table 4, the forming loads were smaller than those of Comparative Examples 1 and 2 shown in Table 2.
- The present liquid lubricants for metal forming were parepared from compositions of mineral oil having a viscosity of 150 mm2/sec at 40°C, fatty acid, fatty acid amide and metal soap shown in Table 5.
- The lubricants were subjected to measurement of forming loads and formabilities under the same conditions as in Example 1. Results are shown in Table 6.
- As is evident from Table 6, the forming loads were smaller and the formabilities were better than those of Comparative Examples shown in Table 2.
- The present lubricants having the same composition and the same mixing ratio as in Table 5 except that polyol ester oil having a viscosity of 56 mm2/sec at 40°C was used in place of the mineral oil was subjected to forming under the same conditions as in Example 1. The forming loads and formabilities are shown in Table 7.
- As is evident from the results of Table 7, substantially equal results to those of Examples 42 - 59 were obtained.
- The present liquid lubricants containing mineral oil having a viscosity of 56 mm2/sec at 40°C (FBK-56, a product made by Nippon Oil Co., Ltd., Japan) and/or polyol ester oil having a viscosity of 56 mm2/sec at 40°C, shown in Table 8, were used as a lubricating film- treating agent for a metallic workpiece. The same workpieces as used in Example 1 and heated to 100°C were dipped in the present liquid lubricants to make lubricating film treatment. Then, the forming loads and formabilities of the lubricating films were evaluated by means of the same die (or tool) as used in Example 1. The results of evaluation are shown in Table 9.
- As is evident from Table 9, the formabilities of the lubricating films according to the present liquid lubricants are equivalent to that of the conventional phosphate film, and the forming loads of the present lubricating films are lower and the lubricating effects are better than those of the phosphate coating film.
- In Fig. 3, a diagram showing relationship between the reduction of area (%) or extrusion diameter (mm) on the abscissa and the forming limit temperature (°C) on the ordinate according to typical Examples of the present invention and Comparative Example is given, where the reduction of area (%) is given by the following formula:
- D: diameter of workpiece before forming
- d: drawing (or extrusion) diameter, i.e. diameter of workpiece after forming (mm)
- As is evident from Fig. 3, the present liquid lubricants have better formabilities than the conventional one.
- The formable limit temperatures were measured up to 280°C, but those which seem to have higher formable limit temperatures are indicated by the upward arrow mark t on the curve. In Fig. 3, examples consisting only of mineral oil, of mineral oil and fatty acid and of mineral oil and metal soap are shown for comparison, which have considerably poor formabilities.
- The present liquid lubricants consisting of 100 parts by weight of mineral oil having a viscosity of 150 mm2/sec at 40°C, 1 - 30 parts by weight of monobutyl phosphate, 1 - 12 parts by weight of heptanoic acid, and 1 part by weight of polybutenylsuccinic acid ester as an emulsifying agent were prepared and their formabilities were evaluated in the same manner as in Example 1. The results are shown in Fig. 4. As is evident from Fig. 4, preferable ranges are 2 - 30 parts by weight of monobutyl phosphate and 1 - 10 parts by weight of heptanoic acid.
- As is obvious from the foregoing, the present liquid lubricant for metal forming can form a dense and heat-resistant lubricating film on the frictional surface of a workpiece or die by virtue of the heat generated during the forming owing to a synergistic effect of phosphoric acid monoester and fatty acid or aliphatic acid amide or metal soap as added to lubricating oil, and thus can be used in forming of parts with higher reduction of area or articles with more complicated shape than the conventional lubricant for the forming.
- The lubricating film formed by dipping a heated workpiece into the present liquid lubricant or by dipping a workpiece into the heated liquid lubricant of the present invention has a formability equivalent to that obtained by phosphate film treatment. Furthermore, only one run of film treatment is enough in the present invention, and thus the present invention can greatly contribute to simplification of the process and cost reduction.
Claims (12)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP58237828A JPS60130693A (en) | 1983-12-19 | 1983-12-19 | Lubricating oil for metal processing and its usage |
| JP237828/83 | 1983-12-19 |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| EP0146140A2 true EP0146140A2 (en) | 1985-06-26 |
| EP0146140A3 EP0146140A3 (en) | 1986-09-17 |
| EP0146140B1 EP0146140B1 (en) | 1991-04-03 |
Family
ID=17021003
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP84115695A Expired - Lifetime EP0146140B1 (en) | 1983-12-19 | 1984-12-18 | Process for metal forming |
Country Status (4)
| Country | Link |
|---|---|
| EP (1) | EP0146140B1 (en) |
| JP (1) | JPS60130693A (en) |
| KR (1) | KR880000067B1 (en) |
| DE (1) | DE3484387D1 (en) |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0227012A1 (en) * | 1985-12-23 | 1987-07-01 | Kao Corporation | Gel-like emulsion and O/W emulsions obtained from the gel-like emulsion |
| EP1176165A1 (en) * | 2000-07-28 | 2002-01-30 | Oiles Corporation | Resin composition for sliding member and sliding member using the same |
| WO2004050808A3 (en) * | 2002-12-03 | 2005-02-24 | Thyssenkrupp Stahl Ag | Lubricant coated sheet metal with improved deformation properties |
| EP1386982A4 (en) * | 2001-05-09 | 2007-12-26 | Citizen Holdings Co Ltd | Peak torque lowering composition, part with sliding part using the composition, and press-fitting method using the composition |
| EP3581635A1 (en) | 2018-06-16 | 2019-12-18 | INDIAN OIL CORPORATION Ltd. | Hydrocarbon soluble metal compositions and method of making them |
| CN116814324A (en) * | 2023-06-25 | 2023-09-29 | 洛斯石油(浙江)有限公司 | A kind of stretching lubricating oil for battery shell and preparation method thereof |
Families Citing this family (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0393897A (en) * | 1989-09-06 | 1991-04-18 | Nippon Oil Co Ltd | metalworking oil composition |
| DE19710160A1 (en) * | 1997-03-12 | 1998-09-17 | Clariant Gmbh | Phosphoric acid esters as high pressure additives |
| JP2010037500A (en) * | 2008-08-07 | 2010-02-18 | Idemitsu Kosan Co Ltd | Lubricating oil composition |
| CN109181835A (en) * | 2018-10-16 | 2019-01-11 | 广西大学 | A kind of nitrogen bearing duplex stainless steel plate hydrostatic extrusion processing technology lubricant oil composite |
| JP7731324B2 (en) * | 2021-08-27 | 2025-08-29 | 株式会社ネオス | Metalworking oil, metalworking fluid, metal corrosion inhibition method, and metalworking method |
Family Cites Families (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2285853A (en) * | 1934-02-23 | 1942-06-09 | Du Pont | Lubrication |
| US2391631A (en) * | 1943-03-05 | 1945-12-25 | Du Pont | Compositions and processes |
| NL131056C (en) * | 1959-12-31 | |||
| GB1365943A (en) * | 1970-09-16 | 1974-09-04 | Gaf Corp | Metalworking additive and composition and process for making the same |
| GB1520422A (en) * | 1974-10-31 | 1978-08-09 | Exxon Research Engineering Co | Industrial lubricant |
| DE3482123D1 (en) * | 1983-09-28 | 1990-06-07 | Hitachi Ltd | LUBRICANTS FOR METALLONING METAL AND METHOD FOR METALLONING. |
| DE3413941A1 (en) * | 1984-04-13 | 1985-10-24 | Hoechst Ag, 6230 Frankfurt | LUBRICANTS FOR METAL WORKING |
-
1983
- 1983-12-19 JP JP58237828A patent/JPS60130693A/en active Granted
-
1984
- 1984-12-14 KR KR1019840007970A patent/KR880000067B1/en not_active Expired
- 1984-12-18 EP EP84115695A patent/EP0146140B1/en not_active Expired - Lifetime
- 1984-12-18 DE DE8484115695T patent/DE3484387D1/en not_active Expired - Lifetime
Cited By (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0227012A1 (en) * | 1985-12-23 | 1987-07-01 | Kao Corporation | Gel-like emulsion and O/W emulsions obtained from the gel-like emulsion |
| EP1176165A1 (en) * | 2000-07-28 | 2002-01-30 | Oiles Corporation | Resin composition for sliding member and sliding member using the same |
| US6642292B2 (en) | 2000-07-28 | 2003-11-04 | Oiles Corporation | Resin composition for sliding member and sliding member using the same |
| KR100763490B1 (en) * | 2000-07-28 | 2007-10-04 | 오일레스고교 가부시키가이샤 | Resin composition for sliding member and sliding member using the same |
| EP1386982A4 (en) * | 2001-05-09 | 2007-12-26 | Citizen Holdings Co Ltd | Peak torque lowering composition, part with sliding part using the composition, and press-fitting method using the composition |
| WO2004050808A3 (en) * | 2002-12-03 | 2005-02-24 | Thyssenkrupp Stahl Ag | Lubricant coated sheet metal with improved deformation properties |
| US7727942B2 (en) | 2002-12-03 | 2010-06-01 | Tryssenkrupp Stahl Ag | Lubricant coated sheet metal with improved deformation properties |
| EP2311928A3 (en) * | 2002-12-03 | 2011-09-07 | ThyssenKrupp Steel Europe AG | Aqueous solution containing an organic phosphoric acid ester for producing a metal sheet coated with lubricant with improved reforming characteristics |
| EP3581635A1 (en) | 2018-06-16 | 2019-12-18 | INDIAN OIL CORPORATION Ltd. | Hydrocarbon soluble metal compositions and method of making them |
| US11453600B2 (en) | 2018-06-16 | 2022-09-27 | Indian Oil Corporation Limited | Method of making hydrocarbon soluble metal compositions |
| CN116814324A (en) * | 2023-06-25 | 2023-09-29 | 洛斯石油(浙江)有限公司 | A kind of stretching lubricating oil for battery shell and preparation method thereof |
Also Published As
| Publication number | Publication date |
|---|---|
| EP0146140A3 (en) | 1986-09-17 |
| JPH0439518B2 (en) | 1992-06-29 |
| KR850004262A (en) | 1985-07-11 |
| KR880000067B1 (en) | 1988-02-22 |
| JPS60130693A (en) | 1985-07-12 |
| EP0146140B1 (en) | 1991-04-03 |
| DE3484387D1 (en) | 1991-05-08 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP0917559B1 (en) | Waterborne lubricant for the cold plastic working of metals | |
| KR870001545B1 (en) | Lubricant for metal forming and process for metal forming | |
| EP0146140B1 (en) | Process for metal forming | |
| EP0206237B1 (en) | Lubricant for cold plastic working of aluminum alloys | |
| JPH02270975A (en) | Rust preventive oil composition for surface treated steel sheets | |
| EP0147760B1 (en) | Emulsion type liquid lubricant for metal forming, process for preparing the lubricant and process for metal forming with the lubricant | |
| JPS6160791A (en) | Lubricants for plastic working and plastic working methods using the same | |
| JP4467024B2 (en) | Highly lubricated rust preventive oil composition | |
| CN110923046A (en) | Stamping lubricating anti-rust oil and preparation method thereof | |
| BG99128A (en) | Method for the lubrication of metal-metal contact system by cyclohexyl esters in metalworking operations | |
| JP3639876B2 (en) | Rust preventive lubricant composition for plastic working | |
| US5308654A (en) | Method for lubricating steel tubing prior to cold drawing | |
| US5221490A (en) | Rust-preventive lubricant composition for zinc-plated steel material | |
| JPS61211398A (en) | Lubricants for plastic working and their usage | |
| JPS58152096A (en) | Lubrication oil composition for metal working and its use | |
| JP2580008B2 (en) | Lubricant | |
| JP2988887B2 (en) | Forming and rust-preventive oil composition for surface-treated steel sheets | |
| JPH059491A (en) | Plastic working oil composition | |
| KR930007892B1 (en) | Lubricant for plastic processing and manufacturing method thereof | |
| EP0442661A1 (en) | Method of warm forming and extrusion of metal and metal working compositions useful therein | |
| JP4627415B2 (en) | Lubricant for metal processing, method for forming solid lubricant film for metal processing | |
| WO1991018962A1 (en) | Method for lubrificating steel tubing prior to cold drawing | |
| JP4341768B2 (en) | Drawing lubricant and drawing method | |
| JPH01256595A (en) | Lubricating oil for cold drawing of steel material | |
| JP2001192687A (en) | Press oil composition excellent in lubricity and lubricated metal product using this composition |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 19841228 |
|
| AK | Designated contracting states |
Designated state(s): CH DE FR GB IT LI NL SE |
|
| PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
| AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): CH DE FR GB IT LI NL SE |
|
| 17Q | First examination report despatched |
Effective date: 19880121 |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE FR GB IT LI NL SE |
|
| REF | Corresponds to: |
Ref document number: 3484387 Country of ref document: DE Date of ref document: 19910508 |
|
| ITF | It: translation for a ep patent filed | ||
| ET | Fr: translation filed | ||
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
| 26N | No opposition filed | ||
| EAL | Se: european patent in force in sweden |
Ref document number: 84115695.3 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19960918 Year of fee payment: 13 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19960924 Year of fee payment: 13 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19960925 Year of fee payment: 13 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19960926 Year of fee payment: 13 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19961025 Year of fee payment: 13 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19961231 Year of fee payment: 13 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19971218 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19971219 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19971231 Ref country code: FR Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19971231 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19971231 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980701 |
|
| GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19971218 |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
| NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 19980701 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980901 |
|
| EUG | Se: european patent has lapsed |
Ref document number: 84115695.3 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |