EP0000547A1 - Aromatic polycarbonates containing sulphur, method for their preparation, and their glass-reinforced compositions - Google Patents
Aromatic polycarbonates containing sulphur, method for their preparation, and their glass-reinforced compositions Download PDFInfo
- Publication number
- EP0000547A1 EP0000547A1 EP78100447A EP78100447A EP0000547A1 EP 0000547 A1 EP0000547 A1 EP 0000547A1 EP 78100447 A EP78100447 A EP 78100447A EP 78100447 A EP78100447 A EP 78100447A EP 0000547 A1 EP0000547 A1 EP 0000547A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- aromatic
- diphenol
- copolycarbonate
- hydroxyphenyl
- bis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 125000003118 aryl group Chemical group 0.000 title claims abstract description 37
- 239000004417 polycarbonate Substances 0.000 title claims description 29
- 229920000515 polycarbonate Polymers 0.000 title claims description 29
- 238000000034 method Methods 0.000 title claims description 11
- 239000000203 mixture Substances 0.000 title description 6
- 238000002360 preparation method Methods 0.000 title description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 title 1
- 239000005864 Sulphur Substances 0.000 title 1
- 239000003365 glass fiber Substances 0.000 claims abstract description 17
- QUWAJPZDCZDTJS-UHFFFAOYSA-N 2-(2-hydroxyphenyl)sulfonylphenol Chemical compound OC1=CC=CC=C1S(=O)(=O)C1=CC=CC=C1O QUWAJPZDCZDTJS-UHFFFAOYSA-N 0.000 claims abstract description 11
- XKZQKPRCPNGNFR-UHFFFAOYSA-N 2-(3-hydroxyphenyl)phenol Chemical compound OC1=CC=CC(C=2C(=CC=CC=2)O)=C1 XKZQKPRCPNGNFR-UHFFFAOYSA-N 0.000 claims abstract description 11
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 claims description 25
- 229920005989 resin Polymers 0.000 claims description 19
- 239000011347 resin Substances 0.000 claims description 19
- -1 diaryl carbonates Chemical class 0.000 claims description 11
- YGYAWVDWMABLBF-UHFFFAOYSA-N Phosgene Chemical compound ClC(Cl)=O YGYAWVDWMABLBF-UHFFFAOYSA-N 0.000 claims description 6
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 claims description 5
- MOIPGXQKZSZOQX-UHFFFAOYSA-N carbonyl bromide Chemical compound BrC(Br)=O MOIPGXQKZSZOQX-UHFFFAOYSA-N 0.000 claims description 5
- 239000007795 chemical reaction product Substances 0.000 claims description 5
- 150000002148 esters Chemical class 0.000 claims description 4
- 150000004649 carbonic acid derivatives Chemical class 0.000 claims description 3
- 230000000704 physical effect Effects 0.000 abstract description 11
- 229920000642 polymer Polymers 0.000 abstract description 6
- 239000002131 composite material Substances 0.000 abstract description 5
- 238000012360 testing method Methods 0.000 description 13
- 150000001875 compounds Chemical class 0.000 description 11
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical class C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 9
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 239000000155 melt Substances 0.000 description 6
- 239000004431 polycarbonate resin Substances 0.000 description 5
- 229920005668 polycarbonate resin Polymers 0.000 description 5
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 4
- 229930185605 Bisphenol Natural products 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 239000001294 propane Substances 0.000 description 4
- 239000003381 stabilizer Substances 0.000 description 4
- 0 C*C1(*2(C)CCCCC2)/C=C/CCCCC1 Chemical compound C*C1(*2(C)CCCCC2)/C=C/CCCCC1 0.000 description 3
- 238000012696 Interfacial polycondensation Methods 0.000 description 3
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000007812 deficiency Effects 0.000 description 3
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N dimethylmethane Natural products CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- OJMIONKXNSYLSR-UHFFFAOYSA-N phosphorous acid Chemical compound OP(O)O OJMIONKXNSYLSR-UHFFFAOYSA-N 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- UIAFKZKHHVMJGS-UHFFFAOYSA-N 2,4-dihydroxybenzoic acid Chemical compound OC(=O)C1=CC=C(O)C=C1O UIAFKZKHHVMJGS-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- QMKYBPDZANOJGF-UHFFFAOYSA-N benzene-1,3,5-tricarboxylic acid Chemical compound OC(=O)C1=CC(C(O)=O)=CC(C(O)=O)=C1 QMKYBPDZANOJGF-UHFFFAOYSA-N 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- UAEPNZWRGJTJPN-UHFFFAOYSA-N methylcyclohexane Chemical compound CC1CCCCC1 UAEPNZWRGJTJPN-UHFFFAOYSA-N 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 150000003512 tertiary amines Chemical class 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- HJIAMFHSAAEUKR-UHFFFAOYSA-N (2-hydroxyphenyl)-phenylmethanone Chemical compound OC1=CC=CC=C1C(=O)C1=CC=CC=C1 HJIAMFHSAAEUKR-UHFFFAOYSA-N 0.000 description 1
- VCWMRQDBPZKXKG-UHFFFAOYSA-N (2S)-O1-alpha-D-Galactopyranosyl-myo-inosit Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(O)C1O VCWMRQDBPZKXKG-UHFFFAOYSA-N 0.000 description 1
- YIYBRXKMQFDHSM-UHFFFAOYSA-N 2,2'-Dihydroxybenzophenone Chemical class OC1=CC=CC=C1C(=O)C1=CC=CC=C1O YIYBRXKMQFDHSM-UHFFFAOYSA-N 0.000 description 1
- VXHYVVAUHMGCEX-UHFFFAOYSA-N 2-(2-hydroxyphenoxy)phenol Chemical class OC1=CC=CC=C1OC1=CC=CC=C1O VXHYVVAUHMGCEX-UHFFFAOYSA-N 0.000 description 1
- BLDLRWQLBOJPEB-UHFFFAOYSA-N 2-(2-hydroxyphenyl)sulfanylphenol Chemical class OC1=CC=CC=C1SC1=CC=CC=C1O BLDLRWQLBOJPEB-UHFFFAOYSA-N 0.000 description 1
- XSVZEASGNTZBRQ-UHFFFAOYSA-N 2-(2-hydroxyphenyl)sulfinylphenol Chemical class OC1=CC=CC=C1S(=O)C1=CC=CC=C1O XSVZEASGNTZBRQ-UHFFFAOYSA-N 0.000 description 1
- GJYCVCVHRSWLNY-UHFFFAOYSA-N 2-butylphenol Chemical class CCCCC1=CC=CC=C1O GJYCVCVHRSWLNY-UHFFFAOYSA-N 0.000 description 1
- XBQRPFBBTWXIFI-UHFFFAOYSA-N 2-chloro-4-[2-(3-chloro-4-hydroxyphenyl)propan-2-yl]phenol Chemical compound C=1C=C(O)C(Cl)=CC=1C(C)(C)C1=CC=C(O)C(Cl)=C1 XBQRPFBBTWXIFI-UHFFFAOYSA-N 0.000 description 1
- VEORPZCZECFIRK-UHFFFAOYSA-N 3,3',5,5'-tetrabromobisphenol A Chemical compound C=1C(Br)=C(O)C(Br)=CC=1C(C)(C)C1=CC(Br)=C(O)C(Br)=C1 VEORPZCZECFIRK-UHFFFAOYSA-N 0.000 description 1
- YMTYZTXUZLQUSF-UHFFFAOYSA-N 3,3'-Dimethylbisphenol A Chemical compound C1=C(O)C(C)=CC(C(C)(C)C=2C=C(C)C(O)=CC=2)=C1 YMTYZTXUZLQUSF-UHFFFAOYSA-N 0.000 description 1
- YNWRQXYZKFAPSH-UHFFFAOYSA-N 4-(4-hydroxy-3,5-dimethylphenyl)sulfinyl-2,6-dimethylphenol Chemical compound CC1=C(O)C(C)=CC(S(=O)C=2C=C(C)C(O)=C(C)C=2)=C1 YNWRQXYZKFAPSH-UHFFFAOYSA-N 0.000 description 1
- AZZWZMUXHALBCQ-UHFFFAOYSA-N 4-[(4-hydroxy-3,5-dimethylphenyl)methyl]-2,6-dimethylphenol Chemical compound CC1=C(O)C(C)=CC(CC=2C=C(C)C(O)=C(C)C=2)=C1 AZZWZMUXHALBCQ-UHFFFAOYSA-N 0.000 description 1
- BRPSWMCDEYMRPE-UHFFFAOYSA-N 4-[1,1-bis(4-hydroxyphenyl)ethyl]phenol Chemical compound C=1C=C(O)C=CC=1C(C=1C=CC(O)=CC=1)(C)C1=CC=C(O)C=C1 BRPSWMCDEYMRPE-UHFFFAOYSA-N 0.000 description 1
- BWCAVNWKMVHLFW-UHFFFAOYSA-N 4-[1-(4-hydroxy-3,5-dimethylphenyl)cyclohexyl]-2,6-dimethylphenol Chemical compound CC1=C(O)C(C)=CC(C2(CCCCC2)C=2C=C(C)C(O)=C(C)C=2)=C1 BWCAVNWKMVHLFW-UHFFFAOYSA-N 0.000 description 1
- ODJUOZPKKHIEOZ-UHFFFAOYSA-N 4-[2-(4-hydroxy-3,5-dimethylphenyl)propan-2-yl]-2,6-dimethylphenol Chemical compound CC1=C(O)C(C)=CC(C(C)(C)C=2C=C(C)C(O)=C(C)C=2)=C1 ODJUOZPKKHIEOZ-UHFFFAOYSA-N 0.000 description 1
- XJGTVJRTDRARGO-UHFFFAOYSA-N 4-[2-(4-hydroxyphenyl)propan-2-yl]benzene-1,3-diol Chemical compound C=1C=C(O)C=C(O)C=1C(C)(C)C1=CC=C(O)C=C1 XJGTVJRTDRARGO-UHFFFAOYSA-N 0.000 description 1
- XXOBZOBRMJZVDG-UHFFFAOYSA-N 4-[3,4-bis(4-hydroxyphenyl)phenyl]phenol Chemical compound C1=CC(O)=CC=C1C(C=C1C=2C=CC(O)=CC=2)=CC=C1C1=CC=C(O)C=C1 XXOBZOBRMJZVDG-UHFFFAOYSA-N 0.000 description 1
- OBZFGWBLZXIBII-UHFFFAOYSA-N 4-[3-(4-hydroxy-3,5-dimethylphenyl)-3-methylbutyl]-2,6-dimethylphenol Chemical compound CC1=C(O)C(C)=CC(CCC(C)(C)C=2C=C(C)C(O)=C(C)C=2)=C1 OBZFGWBLZXIBII-UHFFFAOYSA-N 0.000 description 1
- NIRYBKWMEWFDPM-UHFFFAOYSA-N 4-[3-(4-hydroxyphenyl)-3-methylbutyl]phenol Chemical compound C=1C=C(O)C=CC=1C(C)(C)CCC1=CC=C(O)C=C1 NIRYBKWMEWFDPM-UHFFFAOYSA-N 0.000 description 1
- CIEGINNQDIULCT-UHFFFAOYSA-N 4-[4,6-bis(4-hydroxyphenyl)-4,6-dimethylheptan-2-yl]phenol Chemical compound C=1C=C(O)C=CC=1C(C)CC(C)(C=1C=CC(O)=CC=1)CC(C)(C)C1=CC=C(O)C=C1 CIEGINNQDIULCT-UHFFFAOYSA-N 0.000 description 1
- IQNDEQHJTOJHAK-UHFFFAOYSA-N 4-[4-[2-[4,4-bis(4-hydroxyphenyl)cyclohexyl]propan-2-yl]-1-(4-hydroxyphenyl)cyclohexyl]phenol Chemical compound C1CC(C=2C=CC(O)=CC=2)(C=2C=CC(O)=CC=2)CCC1C(C)(C)C(CC1)CCC1(C=1C=CC(O)=CC=1)C1=CC=C(O)C=C1 IQNDEQHJTOJHAK-UHFFFAOYSA-N 0.000 description 1
- LIDWAYDGZUAJEG-UHFFFAOYSA-N 4-[bis(4-hydroxyphenyl)-phenylmethyl]phenol Chemical compound C1=CC(O)=CC=C1C(C=1C=CC(O)=CC=1)(C=1C=CC(O)=CC=1)C1=CC=CC=C1 LIDWAYDGZUAJEG-UHFFFAOYSA-N 0.000 description 1
- BOCLKUCIZOXUEY-UHFFFAOYSA-N 4-[tris(4-hydroxyphenyl)methyl]phenol Chemical compound C1=CC(O)=CC=C1C(C=1C=CC(O)=CC=1)(C=1C=CC(O)=CC=1)C1=CC=C(O)C=C1 BOCLKUCIZOXUEY-UHFFFAOYSA-N 0.000 description 1
- QHPQWRBYOIRBIT-UHFFFAOYSA-N 4-tert-butylphenol Chemical compound CC(C)(C)C1=CC=C(O)C=C1 QHPQWRBYOIRBIT-UHFFFAOYSA-N 0.000 description 1
- SDDLEVPIDBLVHC-UHFFFAOYSA-N Bisphenol Z Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)CCCCC1 SDDLEVPIDBLVHC-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- QXNVGIXVLWOKEQ-UHFFFAOYSA-N Disodium Chemical class [Na][Na] QXNVGIXVLWOKEQ-UHFFFAOYSA-N 0.000 description 1
- SVYKKECYCPFKGB-UHFFFAOYSA-N N,N-dimethylcyclohexylamine Chemical compound CN(C)C1CCCCC1 SVYKKECYCPFKGB-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- KYPYTERUKNKOLP-UHFFFAOYSA-N Tetrachlorobisphenol A Chemical compound C=1C(Cl)=C(O)C(Cl)=CC=1C(C)(C)C1=CC(Cl)=C(O)C(Cl)=C1 KYPYTERUKNKOLP-UHFFFAOYSA-N 0.000 description 1
- 239000012963 UV stabilizer Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 1
- 229910001860 alkaline earth metal hydroxide Inorganic materials 0.000 description 1
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- VUEDNLCYHKSELL-UHFFFAOYSA-N arsonium Chemical class [AsH4+] VUEDNLCYHKSELL-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- IEPIYXWWJPPIEM-UHFFFAOYSA-N benzene-1,3-diol;benzene-1,4-diol Chemical compound OC1=CC=C(O)C=C1.OC1=CC=CC(O)=C1 IEPIYXWWJPPIEM-UHFFFAOYSA-N 0.000 description 1
- 229940114055 beta-resorcylic acid Drugs 0.000 description 1
- VCCBEIPGXKNHFW-UHFFFAOYSA-N biphenyl-4,4'-diol Chemical group C1=CC(O)=CC=C1C1=CC=C(O)C=C1 VCCBEIPGXKNHFW-UHFFFAOYSA-N 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 239000007859 condensation product Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- MGNCLNQXLYJVJD-UHFFFAOYSA-N cyanuric chloride Chemical compound ClC1=NC(Cl)=NC(Cl)=N1 MGNCLNQXLYJVJD-UHFFFAOYSA-N 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 239000003733 fiber-reinforced composite Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 150000002440 hydroxy compounds Chemical class 0.000 description 1
- 125000004464 hydroxyphenyl group Chemical group 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000012442 inert solvent Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- GYNNXHKOJHMOHS-UHFFFAOYSA-N methyl-cycloheptane Natural products CC1CCCCCC1 GYNNXHKOJHMOHS-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000006082 mold release agent Substances 0.000 description 1
- SJDACOMXKWHBOW-UHFFFAOYSA-N oxyphenisatine Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)C2=CC=CC=C2NC1=O SJDACOMXKWHBOW-UHFFFAOYSA-N 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- XYFCBTPGUUZFHI-UHFFFAOYSA-O phosphonium Chemical compound [PH4+] XYFCBTPGUUZFHI-UHFFFAOYSA-O 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 239000011833 salt mixture Substances 0.000 description 1
- 229920001897 terpolymer Polymers 0.000 description 1
- 239000003017 thermal stabilizer Substances 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G64/00—Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
- C08G64/04—Aromatic polycarbonates
- C08G64/06—Aromatic polycarbonates not containing aliphatic unsaturation
- C08G64/08—Aromatic polycarbonates not containing aliphatic unsaturation containing atoms other than carbon, hydrogen or oxygen
Definitions
- a copolycarbonate is provided based on aromatic diphenol and an aromatic sulfonyl diphenol.
- an aromatic sulfonyl diphenol based on the total diphenol coatent, having a 4,4'-isomer purity of at least about 99 wt. % into the polymer, the heat deflection temperature cf the copolycarbonate is substantially improved.
- the copolycarbonate is reinforced with glass fibers to provide an advanced engineering composite having good physical properties, especially improyed heat deflection temperatures.
- This invention relates to polycarbonate polymers and more particularly to polycarbonate copolymers having improved heat deflection temperatures and good physical properties.
- thermoplastic polymers derived from reactions involving organic dihydroxy compounds and carbonic acid derivatives have found extensive commercial application because of their excellent mechanical and physical properties. These thermoplastic polymers are particularly suited for the manufacture of molded articles where impact strength, rigidity, toughness, thermal and dimensional stability as well as excellent electrical properties are required.
- the heat deflection temperature of the polycarbonate polymer defines the temperature at which a 0.25 mm deflection occurs when a specimen.127 mm in length, 13 mm in depth and 3 mm to 13 mm in width are subjected to a load applied at its center to give maximum fiber stresses of 66 psi (455 k Pa) or 264 psi (1820 k Pa).
- Typical polycarbonates known in the prior art exhibit heat deflection temperatures of from about 135 to 141°C at a 264 psi load.
- a copolycarbonate is provided with improved heat deflection temperature and good physical properties.
- a copolycarbonate having improved heat deflection temperatures along with good physical properties is provided which is comprised of the reaction product of an aromatic diphenol, an effective amount of an aromatic sulfonyl diphenol to improve the heat deflection temperature and a carbonic acid derivative such as phosgene or carbonyl bromide.
- copolycarbonate resin means the neat resin without additives
- copolycarbonate means the copolycarbonate resin with additives therein.
- the copolycarbonate resin of the invention may be prepared by conventional methods of preparation for polycarbonate resins and may have a weight average molecular weight of 10,000 to 200,000 and preferably have a melt flow rate of about 1 to 24 gm/10 min., most preferably about 2-6 gm/10 min., at 300°C according to ASTM D-1238,
- any suitable process, reactant, catalyst, solvent, reaction conditions and the like for the production of the copolycarbonate resins of the present invention which are customarily employed in polycarbonate resin synthesis may be used, such as disclosed in German Patent Nos. 962,274 and 1,046,311 and U.S. Patent N os. 2,964,794; 2,970,131; 2,991,273; 2,999,846; 3,028,365; 3,153,008; 3,187,065; 3,215,668; and 3,248,414, all incorporated herein by reference.
- the preferred process is the interfacial polycondensation process.
- copolycarbonate resins are obtained by reacting the aromatic dihydroxy compounds with an alkali metal hydroxide or alkaline earth metal oxide or hydroxide tc form the salt of the hydroxy compounds.
- the salt mixture is present in an aqueous solution or suspension and is reacted with phosgene, carbonyl bromide, or bischloroformic esters of the aromatic dihydroxy compounds.
- An.organic solvent is provided in the reaction admixture which is a solvent for the polymer but not for the aromatic dihydroxy salts.
- chlorinated and non-chlorinated aliphatic hydrocarbons are used as the organic solvent which dissolves the condensation product.
- Suitable solvents include cyclohexane, methylcyclohexane, benzene, toluene, xylene, methylene chloride, chloroform, carbon tetrachloride and chlorobenzene.
- reaction temperature should be about -20°C to + 150°C, preferably 0°C to about 100°C.
- the dissolved reaction components are polycondensed in an inert solvent in the presence of an equivalent amount of a tertiary amine base required for absorption of the generated HC1, such as e.g. N f N-dimethyl-aniline, N,N-dimethyl-cyclohexylamine or preferably pyridine and the like.
- a tertiary amine base required for absorption of the generated HC1, such as e.g. N f N-dimethyl-aniline, N,N-dimethyl-cyclohexylamine or preferably pyridine and the like.
- a diaryl carbonate can be transesterified with the aromatic dihydroxy compounds to form the polycarbonate resin.
- aromatic diphenols useful in the practice of the invention include the following compounds: hydroquinone resorcinol, dihydroxydiphenyl, bis-(hydroxyphenyl)-alkanes, bis-(hydroxyphenyl)-cycloalkanes, bis-(hydroxyphenyl)-sulphides, bis-(hydroxyphenyl)-ethers, bis-(hydroxyphenyl)-ketones, bis-(hydroxyphenyl)-sulphoxides and ⁇ - ⁇ -bis-(hydroxy-phenyl)-diisopropylbenzenes, as well as their nuclear-alkylated and nuclear-halogenated compounds.
- aromatic dihydroxy compounds are described, for example, in U.S. Patent Nos.
- Preferred bisphenols are those of the formula I in which
- bisphenols 4,4'-dihydroxydiphenyl, 2,2'-bis-(4-hydroxyphenyl)-propane (bisphenol A), 2,4-bis-(4-hydroxyphenyl)-2-methylbutane, 1,1-bis-(4-hydroxyphenyl)-cyclohexanexane, ⁇ , ⁇ -bis-(4-hydroxyphenyl)-p-diisopropylbenzene, 2,2-bis-(3-methyl-4-hydroxyphenyl)-propane, 2,2-bis-(3-chloro-4-hydroxyphenyl)-propane, bis-(3,5-dimethyl-4-hydroxyphenyl)-methane, 2,2-bis(3,5-dimethyl-4-hydroxyphenyl)-propane, bis-(3,5-dimethyl-4-hydroxyphenyl)-sulphoxide, hydroxy-benzophenone, 2,4-bis-(3,5-dimethyl-4-hydroxyphenyl)-2-methylbutane,
- Examples of particularly preferred bisphenols are: 2,2-bis-(4-hydroxyphenyl)-propane, 2,2-bis-(3,5-dimethyl-4- 'hydroxyphenyl)-propane, 2,2-bis-(3,5-dichloro-4-hydroxyphenyl)-propane, 2,2-bis-(3,5-dibromo-4-hydxoxyphenyl)-propane and 1,1-bis-(4-hydroxyphenyl)-cyclohexane.
- the most preferred bisphenol is 2,2,-bis-(4-hydroxyphenyl)-propane (bisphenol A).
- aromatic sulfonyl diphenols useful in the practice of the invention are those represented by the structural formula having a 4,4'-isomer purity of at least about 99.9 wt. % wherein
- the aromatic copolycarbonate resins can be branched due to the incorporation of small amounts, preferably of between about 0.05 and 2.0 mol % (relative to diphenols employed), of trifunctional or more than trifunctional com- poundsr especially compounds with three or more phenolic hydroxyl groups.
- Polycarbonate resins of this type are described, for example, in German Offenlegungsschriften (German Cosched Specifications) 1,570,533, 1,595,762, 2,116,974 and 2,113, 347, British Patent Specification 1,079,821 and U.S. Reissue Patent 27,682 (incorporated herein by reference).
- Some examples of compounds with three or more than three phenolic hydroxyl groups which can be used are phoro- glucinol, 4,6-dimethyl-2,4,6-tri-(4-hydroxyphenyl)-heptene-2, 4,6-dimethyl-2,4,6-tri-(4-hydroxyphenyl)-heptane, 1,4,5-tri-(4-hydroxyphenyl)-benzene, 1,1,1-tri-(4-hydroxyphenyl)-ethane,tri-(4-hydroxyphenyl)-phenylmethane,2,2- bis-(4,4-bis-(4-hydroxyphenyl)-cyclohexyl)-propane, 2,4- bis-(4-hydroxyphenyl-isopropyl)-phenol,2,6-bis-(2-hydroxy-5'-methyl-benzyl)-4-methylphenol, 2-(4-hydroxyphenyl) -2-(2,4-dihydroxyphenyl)-propane, hexa (4-(4-hydroxy
- the copolycarbonate may be reinforced with glass fibers, preferably present in from about 5 to 40% by weight, most preferably in from about 10 to 30% by weight, based on the weight of the total composition.
- Glass fibers which can be used in the present invention are, for example, fibers of low alkali, aluminum-borosilicate glass having a maximum alkali metal oxide content of about 0.2 % by weight (E-glass), of diameter between about 8-15 ⁇ and length between about 300 and 800 ⁇ (short glass fibers) or about 2000 to 12,000 ⁇ (chopped strands) as well as rovings.
- copolycarbonates of the present invention may also contain other conventional resin additives such as pigments, dyes, UV stabilizers, thermal stabilizers, mold release agents and fillers.
- any additives including glass fibers, may be blended with the copolycarbonate resin in known mixing devices such as kneaders, single-screw extruders, twin-screw extruders, mills and the like.
- the dopolycarbonate resins of the invention not only exhibit physical properties similar to standard bisphenol A-based polycarbonates, but also exhibit heat deflection temperatures which are about 5-8°C higher than those of standard bisphenol A-based polycarbonates. Although this improvement in heat deflection temperature may not at first glance appear to be significant, it is noted that this about 5-8°C increase is quite significant for it enlarges the high temperature applications in which aromatic polycarbonates are suitable. Based on past experience, this about 5-8°C increase is believed to equate to an about 10-20°C increase in continuous service temperature under normal part loading. It is noted that the 264 psi ASTM D-648/72 test loading is an extreme "torture test" condition and not one generally encountered in actual use.
- reinforcement of the copolycarbonate with glass fibers yields an advanced engineering composite which exhibits a similar improvement in heat deflection temperature and an improvement in adhesion properties of the copolycarbonate resin to the glass fibers as illustrated by the higher tensile strength, higher resistance to bending and somewhat lower ductility (drop dart). This particular combination of properties is desirable for applications such as power tool housings.
- glass fiber-reinforced copolycarbonates of the invention With respect to the glass fiber-reinforced copolycarbonates of the invention, it is noted that the heat deflection temperature and the tensile strength improvements, while apparently modest, are in actuality quite significant when taken in combination with the other properties, especially ductility. All glass fiber-reinforced thermoplastics, with the exception of polycarbonate, are brittle. Composites based on a polycarbonate matrix are ductile, but are excluded from use in certain applications because of relatively minor deficiencies in tensile strength, stiffness (as measured by E-modulus) and continuous use temperature (as measured by heat deflection temperature).
- the glass-fiber-reinforced composites of the instant invention based on aromatic diphenol/aromatic sulfonyl diphenol copolymers, correct the above-described deficiencies while retaining substantial ductility and all the other useful properties of conventional polycarbonate composites including moldability, excellent surface appearance, low moisture absorption, good dimensional stability, good electrical properties and the like. Since all previous attempts to raise the heat deflection temper rature have resulted in a significant loss of ductility and/or some other important property, the present results herein reported are suprising and unexpected.
- a copolycarbonate resin was prepared by reacting a mixture of the disodium salts of 2,2-bis-(4-hydroxyphenyl)-propane (bisphenol A) and 4,4'-sulfonyl diphenol (greater than 99.9% isomer purity) with phosgene in accordance with the interfacial polycondensation synthesis hereinbefore discussed. 5 wt. % of 4,4'-sulfonyl diphenol and 95 wt. % of bisphenol A, based on the weight of the diphenols, were used. The copolycarbonate resin was mixed with an amount of a phosphate-based stabilizer necessary to produce a concentration of about 0.01 wt.% in the final product.
- the mixture was then extruded in a 2" single screw Welding Engineers' Extruder.
- the extruder strands were then pelletized, and 1/8" thick standard samples were molded for evaluation of physical properties. The properties measured are reported in Table I. Additionally, the molded copolycarbonate samples were found to be highly transparent.
- Example 1 was repeated except 10 wt. % of 4,4'-sulfonyl diphenol and 90 wt. % of bisphenol A, based on the total weight of diphenols, were used. 1/8" thick molded samples were again prepared for evaluation of physical properties. The properties are reported in Table I. Again, the molded polycarbonate samples were found to be highly transparent.
- Example 1 was repeated except that.the polycarbonate produced was based on 100 wt. % bisphenol A. The physical properties measured are reported on Table I.
- Example 4 was repeated except that the reinforced copolycarbonate contained 17.8 % by weight of 3/16" glass fibers.
- the test results are reported in Table II.
- Example 4 was repeated except that the copolycarbonate resin used having a melt flow rate of 2.6 gms/10 min. (ASTM D-1238), was blended with 50 gms. of a phosphite-based stabilizer and was reinforced with 10 wt. % of 3/16" glass fibers. The test results are reported in Table II.
- Example 6 was repeated except that the copolycarbonate was reinforced with 18.4 wt. % of 3/16" glass fibers.
- the test results are reported in Table II.
- Example 4 was repeated except that the copolycarbonate resin contained 10 wt. % of 4,4'-sulfonyl diphenol and had a melt flow rate of 2.9 gms/10 min. (ASTM D-1238), was blended with 50 gms. of a phosphite-based stabilizer and was reinforced with 9.6 wt. % of 3/16" glass fibers. The test results are reported in Table II.
- Example 8 was repeated except that the copolycarbonate was reinforced with 19.8 wt. % of 3/16" glass fibers.
- the test results are reported in Table II.
- Example 4 was repeated except that no 4,4'-sulfonyl diphenol was used, the polycarbonate resin had a melt flow rate of 3.4 gms/10 min. (ASTM D-1238) and the polycarbonate was reinforced with 9.6 wt % of 3/16" glass fibers. The test minuss are reported in Table II.
- Example 10 was repeated except that the polycarbonate was reinforced with 20 wt % of 3/16" glass fibers. The test results are reported in Table II.
- Example 11 was repeated except that the polycarbonate had a melt flow rate of 12-14 gms/10 min. (ASTM D-1238). The test results are reported in Table II.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Polyesters Or Polycarbonates (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
A copolycarbonate is provided based on aromatic diphenol and an aromatic sulfonyl diphenol. By incorporating an effective amount of an aromatic sulfonyl diphenol, bassd on the total diphenol content, having a 4,4'-isomer purity of at least about 99,9 wt.-% into the polymer, the heat deflection temperature of the copolycarbonate is substantially improved. In a preferred embodiment, the copolycarbonate is reinforced with glass fibers to provide an advanced engineering composite having good physical properties, especially improved heat deflection temperatures.
Description
- A copolycarbonate is provided based on aromatic diphenol and an aromatic sulfonyl diphenol. By incorporating an effective amount of an aromatic sulfonyl diphenol, based on the total diphenol coatent, having a 4,4'-isomer purity of at least about 99 wt. % into the polymer, the heat deflection temperature cf the copolycarbonate is substantially improved. In a preferred emodiment, the copolycarbonate is reinforced with glass fibers to provide an advanced engineering composite having good physical properties, especially improyed heat deflection temperatures.
- This invention relates to polycarbonate polymers and more particularly to polycarbonate copolymers having improved heat deflection temperatures and good physical properties.
- Polycarbonates derived from reactions involving organic dihydroxy compounds and carbonic acid derivatives have found extensive commercial application because of their excellent mechanical and physical properties. These thermoplastic polymers are particularly suited for the manufacture of molded articles where impact strength, rigidity, toughness, thermal and dimensional stability as well as excellent electrical properties are required.
- However, one deficiency of polycarbonate when used in molded articles is the heat deflection temperature of the polycarbonate polymer. As determined by ASTM D-648/72, the heat deflection temperature defines the temperature at which a 0.25 mm deflection occurs when a specimen.127 mm in length, 13 mm in depth and 3 mm to 13 mm in width are subjected to a load applied at its center to give maximum fiber stresses of 66 psi (455 k Pa) or 264 psi (1820 k Pa). Typical polycarbonates known in the prior art exhibit heat deflection temperatures of from about 135 to 141°C at a 264 psi load.
- In accordance with the present invention, a copolycarbonate is provided with improved heat deflection temperature and good physical properties.
- A copolycarbonate having improved heat deflection temperatures along with good physical properties is provided which is comprised of the reaction product of an aromatic diphenol, an effective amount of an aromatic sulfonyl diphenol to improve the heat deflection temperature and a carbonic acid derivative such as phosgene or carbonyl bromide.
- When used herein, the term "copolycarbonate resin" means the neat resin without additives, and the term "copolycarbonate" means the copolycarbonate resin with additives therein.
- The copolycarbonate resin of the invention may be prepared by conventional methods of preparation for polycarbonate resins and may have a weight average molecular weight of 10,000 to 200,000 and preferably have a melt flow rate of about 1 to 24 gm/10 min., most preferably about 2-6 gm/10 min., at 300°C according to ASTM D-1238,
- Any suitable process, reactant, catalyst, solvent, reaction conditions and the like for the production of the copolycarbonate resins of the present invention which are customarily employed in polycarbonate resin synthesis may be used, such as disclosed in German Patent Nos. 962,274 and 1,046,311 and U.S. Patent Nos. 2,964,794; 2,970,131; 2,991,273; 2,999,846; 3,028,365; 3,153,008; 3,187,065; 3,215,668; and 3,248,414, all incorporated herein by reference. The preferred process is the interfacial polycondensation process.
- According to the interfacial polycondensation process copolycarbonate resins are obtained by reacting the aromatic dihydroxy compounds with an alkali metal hydroxide or alkaline earth metal oxide or hydroxide tc form the salt of the hydroxy compounds. The salt mixture is present in an aqueous solution or suspension and is reacted with phosgene, carbonyl bromide, or bischloroformic esters of the aromatic dihydroxy compounds. An.organic solvent is provided in the reaction admixture which is a solvent for the polymer but not for the aromatic dihydroxy salts. Thus, chlorinated and non-chlorinated aliphatic hydrocarbons are used as the organic solvent which dissolves the condensation product. Suitable solvents include cyclohexane, methylcyclohexane, benzene, toluene, xylene, methylene chloride, chloroform, carbon tetrachloride and chlorobenzene.
- In order to limit the molecular weight, one may use monofunctional reactants such as monophenols, for example, the propyl-, isopropyl- and butyl-phenols, especially p-tert-butyl-phenol and phenol itself. In order to accelerate the reaction, catalysts such as tertiary amines, quaternary ammonium, phosphonium or arsonium salts and the like may be used. The reaction temperature should be about -20°C to + 150°C, preferably 0°C to about 100°C.
- According to the polycondensation process in a homogeneous phase, the dissolved reaction components are polycondensed in an inert solvent in the presence of an equivalent amount of a tertiary amine base required for absorption of the generated HC1, such as e.g. NfN-dimethyl-aniline, N,N-dimethyl-cyclohexylamine or preferably pyridine and the like.
- In still another process, a diaryl carbonate can be transesterified with the aromatic dihydroxy compounds to form the polycarbonate resin.
- It is to be understood that it is possible to combine in a chemically meanigful way in the processes described above both the aromatic dihydroxy compounds and the mono-hydroxy compounds in the form if alkali metal salts and/or bis-haloformic acid esters, and the amount of phosgene or carbonyl bromide then still required in order to obtain high molecular weight products. Other methods of synthesis in forming the polycarbonates of the invention such as disclosed in U.S. Patent 3,912,688, incorporated herein by reference, may also be used.
- The aromatic diphenols useful in the practice of the invention include the following compounds: hydroquinone resorcinol, dihydroxydiphenyl, bis-(hydroxyphenyl)-alkanes, bis-(hydroxyphenyl)-cycloalkanes, bis-(hydroxyphenyl)-sulphides, bis-(hydroxyphenyl)-ethers, bis-(hydroxyphenyl)-ketones, bis-(hydroxyphenyl)-sulphoxides and α-α-bis-(hydroxy-phenyl)-diisopropylbenzenes, as well as their nuclear-alkylated and nuclear-halogenated compounds. These and further suitable aromatic dihydroxy compounds are described, for example, in U.S. Patent Nos. 3,028,365, 2,999,835, 3,148,172, 3,271,368, 2,991,273, 3,271,367, 3,280,078, 3,014,891 and 2,99.9,846 (all incorporated herein by reference), in German Offenlegungsschriften (German Published Specifications) 1,570,703, 2,063,050, 2,063,052, 2,211,956 and 2,211,957, in French Patent Specification 1,561,518 and in the monograph "H. Schnell, Chemistry and Physics of Polycarbonates, Interscience Publishers, New York, 1964",
-
- R is identical or different and denotes H, C1-C4- alkyl, Cl or Br, preferably H or C1-C4-alkyl, and in which
- X is a bond, C1-C8-alkylene, C2-C8-alkylidene, C5-C15-cycloalkylene, CS-C15-cycloalkylidene, -S-, -SO-, -CO- or
- Examples of these bisphenols are: 4,4'-dihydroxydiphenyl, 2,2'-bis-(4-hydroxyphenyl)-propane (bisphenol A), 2,4-bis-(4-hydroxyphenyl)-2-methylbutane, 1,1-bis-(4-hydroxyphenyl)-cyclohexanexane,α,α-bis-(4-hydroxyphenyl)-p-diisopropylbenzene, 2,2-bis-(3-methyl-4-hydroxyphenyl)-propane, 2,2-bis-(3-chloro-4-hydroxyphenyl)-propane, bis-(3,5-dimethyl-4-hydroxyphenyl)-methane, 2,2-bis(3,5-dimethyl-4-hydroxyphenyl)-propane, bis-(3,5-dimethyl-4-hydroxyphenyl)-sulphoxide, hydroxy-benzophenone, 2,4-bis-(3,5-dimethyl-4-hydroxyphenyl)-2-methylbutane, 1,1-bis-(3,5-dimethyl-4-hydroxyphenyl)-cyclohexane, α,α-bis-(3,5-dimethyl-4-hydroxyphenyl)-p-diisopropyl-benzene, 2,2,-bis(3,5-dichloro-4-hydroxyphenyl)- propane and -2,2-bis-(3,5-dibromo-4-hydroxyphenyl)-propane (tetrabromo bisphenol A) propane.
- Examples of particularly preferred bisphenols are: 2,2-bis-(4-hydroxyphenyl)-propane, 2,2-bis-(3,5-dimethyl-4- 'hydroxyphenyl)-propane, 2,2-bis-(3,5-dichloro-4-hydroxyphenyl)-propane, 2,2-bis-(3,5-dibromo-4-hydxoxyphenyl)-propane and 1,1-bis-(4-hydroxyphenyl)-cyclohexane.
- The most preferred bisphenol is 2,2,-bis-(4-hydroxyphenyl)-propane (bisphenol A).
-
- n= O to 2, and
- R1 and R2 may be the same or different and are H, C1-C4-alkyl, Cl or Br,
- The aromatic copolycarbonate resins can be branched due to the incorporation of small amounts, preferably of between about 0.05 and 2.0 mol % (relative to diphenols employed), of trifunctional or more than trifunctional com- poundsr especially compounds with three or more phenolic hydroxyl groups.
- Polycarbonate resins of this type are described, for example, in German Offenlegungsschriften (German Publisched Specifications) 1,570,533, 1,595,762, 2,116,974 and 2,113, 347, British Patent Specification 1,079,821 and U.S. Reissue Patent 27,682 (incorporated herein by reference).
- Some examples of compounds with three or more than three phenolic hydroxyl groups which can be used are phoro- glucinol, 4,6-dimethyl-2,4,6-tri-(4-hydroxyphenyl)-heptene-2, 4,6-dimethyl-2,4,6-tri-(4-hydroxyphenyl)-heptane, 1,4,5-tri-(4-hydroxyphenyl)-benzene, 1,1,1-tri-(4-hydroxyphenyl)-ethane,tri-(4-hydroxyphenyl)-phenylmethane,2,2- bis-(4,4-bis-(4-hydroxyphenyl)-cyclohexyl)-propane, 2,4- bis-(4-hydroxyphenyl-isopropyl)-phenol,2,6-bis-(2-hydroxy-5'-methyl-benzyl)-4-methylphenol, 2-(4-hydroxyphenyl) -2-(2,4-dihydroxyphenyl)-propane, hexa (4-(4-hydroxyphenyl- isopropyl)phenyl) ortho-terephthalic acid ester, tetra-(4-hydroxyphenyl)-methane, tetra- (4-(4-hydroxyphenyliso- propyl)-phenoxy)-methane and 1,4-bis-((4'4,"-dihydroxy- triphenyl)-methyl)-benzene. Some of the other trifunctional compounds are 2,4-dihydroxybenzoic acid, trimesic acid, cyanuric chloride and 3,3-bis-(4-hydroxyphenyl)-2-oxo-2,3-dihydroindole.
- In a preferred embodiment of the present invention, the copolycarbonate may be reinforced with glass fibers, preferably present in from about 5 to 40% by weight, most preferably in from about 10 to 30% by weight, based on the weight of the total composition. Glass fibers which can be used in the present invention are, for example, fibers of low alkali, aluminum-borosilicate glass having a maximum alkali metal oxide content of about 0.2 % by weight (E-glass), of diameter between about 8-15 µ and length between about 300 and 800 µ (short glass fibers) or about 2000 to 12,000 µ (chopped strands) as well as rovings.
- The copolycarbonates of the present invention may also contain other conventional resin additives such as pigments, dyes, UV stabilizers, thermal stabilizers, mold release agents and fillers.
- Any additives, including glass fibers, may be blended with the copolycarbonate resin in known mixing devices such as kneaders, single-screw extruders, twin-screw extruders, mills and the like.
- Surprisingly, the dopolycarbonate resins of the invention not only exhibit physical properties similar to standard bisphenol A-based polycarbonates, but also exhibit heat deflection temperatures which are about 5-8°C higher than those of standard bisphenol A-based polycarbonates. Although this improvement in heat deflection temperature may not at first glance appear to be significant, it is noted that this about 5-8°C increase is quite significant for it enlarges the high temperature applications in which aromatic polycarbonates are suitable. Based on past experience, this about 5-8°C increase is believed to equate to an about 10-20°C increase in continuous service temperature under normal part loading. It is noted that the 264 psi ASTM D-648/72 test loading is an extreme "torture test" condition and not one generally encountered in actual use.
- Furthermore, reinforcement of the copolycarbonate with glass fibers yields an advanced engineering composite which exhibits a similar improvement in heat deflection temperature and an improvement in adhesion properties of the copolycarbonate resin to the glass fibers as illustrated by the higher tensile strength, higher resistance to bending and somewhat lower ductility (drop dart). This particular combination of properties is desirable for applications such as power tool housings.
- With respect to the glass fiber-reinforced copolycarbonates of the invention, it is noted that the heat deflection temperature and the tensile strength improvements, while apparently modest, are in actuality quite significant when taken in combination with the other properties, especially ductility. All glass fiber-reinforced thermoplastics, with the exception of polycarbonate, are brittle. Composites based on a polycarbonate matrix are ductile, but are excluded from use in certain applications because of relatively minor deficiencies in tensile strength, stiffness (as measured by E-modulus) and continuous use temperature (as measured by heat deflection temperature). The glass-fiber-reinforced composites of the instant invention, based on aromatic diphenol/aromatic sulfonyl diphenol copolymers, correct the above-described deficiencies while retaining substantial ductility and all the other useful properties of conventional polycarbonate composites including moldability, excellent surface appearance, low moisture absorption, good dimensional stability, good electrical properties and the like. Since all previous attempts to raise the heat deflection temper rature have resulted in a significant loss of ductility and/or some other important property, the present results herein reported are suprising and unexpected.
- Although copolycarbonates and terpolycarbonates based on aromatic sulfonyl diphenols are known in the prior art (see U.S. Patent Nos. 3,023,101, 3,271,367 and 3,912,688), the aromatic sulfonyl diphenols used in those polymers have a 4,4'-isomer purity of less than about 90 wt. %. In order to improve the heat deflection temperature, it is essential that aromatic sulfonyl diphenols have a 4,4'-isomer purity of at least about 99.9 wt. %. The prior art copolymers and terpolymers will not, therefore, exhibit the improved heat deflection temperatures exhibited by the copolycarbonates of the present invention.
- The invention will be further illustrated, but is not intended to be limited, by the following examples.
- A copolycarbonate resin was prepared by reacting a mixture of the disodium salts of 2,2-bis-(4-hydroxyphenyl)-propane (bisphenol A) and 4,4'-sulfonyl diphenol (greater than 99.9% isomer purity) with phosgene in accordance with the interfacial polycondensation synthesis hereinbefore discussed. 5 wt. % of 4,4'-sulfonyl diphenol and 95 wt. % of bisphenol A, based on the weight of the diphenols, were used. The copolycarbonate resin was mixed with an amount of a phosphate-based stabilizer necessary to produce a concentration of about 0.01 wt.% in the final product. The mixture was then extruded in a 2" single screw Welding Engineers' Extruder. The extruder strands were then pelletized, and 1/8" thick standard samples were molded for evaluation of physical properties. The properties measured are reported in Table I. Additionally, the molded copolycarbonate samples were found to be highly transparent.
- Example 1 was repeated except 10 wt. % of 4,4'-sulfonyl diphenol and 90 wt. % of bisphenol A, based on the total weight of diphenols, were used. 1/8" thick molded samples were again prepared for evaluation of physical properties. The properties are reported in Table I. Again, the molded polycarbonate samples were found to be highly transparent.
- Example 1 was repeated except that.the polycarbonate produced was based on 100 wt. % bisphenol A. The physical properties measured are reported on Table I.
- 112.5 lbs of a 95 wt. % BPA/5 wt. % SDP copolycarbonate resin having a melt flow rate of 6.5 gms/10 min. (ASTM D-1238) was dried overnight in a circulating air oven at 110°C. The copolycarbonate resin in the form of hot pellets was mixed with 34 gms. of a phosphite-based stabilizer in a ribbon-type continuous blender. This blend was then fed to a Werner-Pfleiderer ZSK-53 V twin screw extruder with 12.5 lbs. (11% by weight) of 3/16" long glass fibers being added to the twin screw extruder. The temperature profile of the
The extruder strands were pelletized and 1/8" thick standard.samples were molded for evaluation of physical properties including heat deflection temperature. The test results are reported in Table II. - Example 4 was repeated except that the reinforced copolycarbonate contained 17.8 % by weight of 3/16" glass fibers. The test results are reported in Table II.
- Example 4 was repeated except that the copolycarbonate resin used having a melt flow rate of 2.6 gms/10 min. (ASTM D-1238), was blended with 50 gms. of a phosphite-based stabilizer and was reinforced with 10 wt. % of 3/16" glass fibers. The test results are reported in Table II.
- Example 6 was repeated except that the copolycarbonate was reinforced with 18.4 wt. % of 3/16" glass fibers. The test results are reported in Table II.
- Example 4 was repeated except that the copolycarbonate resin contained 10 wt. % of 4,4'-sulfonyl diphenol and had a melt flow rate of 2.9 gms/10 min. (ASTM D-1238), was blended with 50 gms. of a phosphite-based stabilizer and was reinforced with 9.6 wt. % of 3/16" glass fibers. The test results are reported in Table II.
- Example 8 was repeated except that the copolycarbonate was reinforced with 19.8 wt. % of 3/16" glass fibers. The test results are reported in Table II.
- Example 4 was repeated except that no 4,4'-sulfonyl diphenol was used, the polycarbonate resin had a melt flow rate of 3.4 gms/10 min. (ASTM D-1238) and the polycarbonate was reinforced with 9.6 wt % of 3/16" glass fibers. The test restuls are reported in Table II.
- Example 10 was repeated except that the polycarbonate was reinforced with 20 wt % of 3/16" glass fibers. The test results are reported in Table II.
-
- 1BPA is bisphenol A.
- 2SDP is 4,4'-sulfonyl diphenol. (4,4'isomer purity of at least about 99 wt. %).
- 3 ASTM D-256.
- 4Drop dart was measured by dropping a 10.4 lb. weight with a contact surface of a 1" diameter hemisphere upon a 1/E" thick, 4" diameter, securely clamped, molded specimen. The drop height corresponding to a 50 % breakage of the specimen was proportional to the drop dart impact strength of the test specimen. The limit of the testing equipment used was 107.43 ft. lbs.
- 5Critical thickness is defined as the thickness at which a discontinuity in Izod impact values occurs; i.e., it is the thickness at which a transition from a brittle to a ductile break occurs or vice versa.
- 60.5 g resin/100 ml methylene chloride at 25°C.
- 7ASTM D-1238 at 300°C.
- Although the invention has been described in detail in the foregoing for the purpose of illustration, it is to be understood that such detail is solely for that purpose and that variations can be made therein by those skilled in the art without departing from the spirit and scope of the invention except as it may be limited by the claims.
and are present in the copolycarbonate in an effective amount, based on the total diphenol content, to improve the heat deflection temperature and mechanical properties of the polycarbonate. Preferably, the aromatic sulfonyl diphenols are present in about 1 to 50 wt. %, based on the total weight of diphenols, and most preferably from about 1 to 20 wt. %.
Claims (8)
1. In an aromatic polycarbonate based on the reaction product of an aromatic diphenol and a carbonic acid derivative, the improvement comprising incorporating into said reaction product an effective amount of an aromatic sulfonyl diphenol of the structural formula
having a 4,4'-isomer purity of at least about 99.9 wt. % wherein R1 and R2 may be the same or different and are H, C1-C4-alkyl, Cl or Br, and n equal 0 to 2 "
whereby the heat deflection temperature of said aromatic polycarbonate is improved.
3. The aromatic polycarbonate of Claim 1 wherein said sulfonyl diphenol is incorporated into said reaction product at a level of about 1 to 50 wt. % based on the total weight of diphenols.
4. The aromatic polycarbonate of Claim 3 wherein said sulfonyl diphenol is incorporated into said reaction product at a level of about 1 to 20 wt. % based on the total weight of diphenols.
5. The aromatic polycarbonate of Claim 1 reinforced with about 5 to 40 % by weight of glass fibers, based on the total weight of the aromatic polycarbonate.
6. An aromatic copolycarbonate comprising a copolycarbonate resin which is prepared by a process comprising reacting
(a) an aromatic diphenol,
(b) about 1 to 50 wt. %, based on the total weight of diphenols, of an aromatic sulfonyl diphenol of the structural formula
having a 4,4'-isomer purity of at least about 99.9 wt. % wherein R1 and R2 are the same or different and are H, C1-C4-alkyl, Cl or Br, and n equals O to 2, and
(c) a member selected from the group consisting of carbonyl bromide, phosgene, bischloroformic esters of (a) or (b) and diaryl carbonates.
7. The aromatic copolycarbonate of Claim 6 wherein the aromatic diphenol is bisphenol A.
8. A method of preparing an aromatic copolycarbonate have improved heat deflection temperatures comprising reacting
(a) an aromatic diphenol of the structural formula
wherein R is identical or different.and denotes H, C1-C4- alkyl, Cl or Br, and X is a bond, C1-C8-alkylene, C2-C8-alkylidene, C5-C15-cycloalkylidene, -S-, -SO-, -CO- or
(b) about 1 to 50 wt. %, based on the total weight of diphenols, of an aromatic sulfonyl diphenol of the structural formula
having a 4,4'-isomer purity of at least about 99,9 wt. % wherein R1 and R2 are the same or different and are'H, C1-C4-alkyl, Cl or Br and n equals O to 2, and
(c) a member selected from the group consisting of carbonyl bromide, phosgene, bischloroformic esters of (a) or (b) and diaryl carbonates.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US82066477A | 1977-08-01 | 1977-08-01 | |
| US820664 | 1986-01-21 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| EP0000547A1 true EP0000547A1 (en) | 1979-02-07 |
Family
ID=25231417
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP78100447A Withdrawn EP0000547A1 (en) | 1977-08-01 | 1978-07-20 | Aromatic polycarbonates containing sulphur, method for their preparation, and their glass-reinforced compositions |
Country Status (2)
| Country | Link |
|---|---|
| EP (1) | EP0000547A1 (en) |
| JP (1) | JPS5426896A (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0075772A1 (en) * | 1981-09-25 | 1983-04-06 | Bayer Ag | Process for the isolation of polycarbonates based on 4,4'-dihydroxydiphenyl sulphones |
| US4665122A (en) * | 1983-08-31 | 1987-05-12 | Amoco Corporation | Polycarbonate blends |
| US4698390A (en) * | 1984-03-20 | 1987-10-06 | Amoco Corporation | Miscible blends of polycarbonate with vinyl chloride derived polymers |
| KR100620767B1 (en) * | 1998-05-13 | 2006-09-06 | 스미또모 가가꾸 가부시키가이샤 | Thermo-resistance tray for thermoplastic resin composition and IC |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3023101A (en) * | 1955-04-14 | 1962-02-27 | Agfa Ag | Photographic film |
| DE1175691B (en) * | 1960-12-12 | 1964-08-13 | Bayer Ag | Process for the purification of crude or pre-purified 4,4'-dihydroxydiphenyl compounds |
| US3271367A (en) * | 1955-03-26 | 1966-09-06 | Bayer Ag | Thermoplastic polycarbonates of dihydroxydiarylene sulfones and their preparation |
| FR1561518A (en) * | 1967-03-10 | 1969-03-28 | ||
| US3737409A (en) * | 1971-03-08 | 1973-06-05 | Gen Electric | Copolycarbonate of bis-3,5-dimethyl-4-hydroxyphenyl)sulfone with bisphenol-a |
| US3912688A (en) * | 1971-06-12 | 1975-10-14 | Bayer Ag | Flameproof polycarbonates |
-
1978
- 1978-07-20 EP EP78100447A patent/EP0000547A1/en not_active Withdrawn
- 1978-07-31 JP JP9269078A patent/JPS5426896A/en active Pending
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3271367A (en) * | 1955-03-26 | 1966-09-06 | Bayer Ag | Thermoplastic polycarbonates of dihydroxydiarylene sulfones and their preparation |
| US3023101A (en) * | 1955-04-14 | 1962-02-27 | Agfa Ag | Photographic film |
| DE1175691B (en) * | 1960-12-12 | 1964-08-13 | Bayer Ag | Process for the purification of crude or pre-purified 4,4'-dihydroxydiphenyl compounds |
| FR1561518A (en) * | 1967-03-10 | 1969-03-28 | ||
| US3737409A (en) * | 1971-03-08 | 1973-06-05 | Gen Electric | Copolycarbonate of bis-3,5-dimethyl-4-hydroxyphenyl)sulfone with bisphenol-a |
| US3912688A (en) * | 1971-06-12 | 1975-10-14 | Bayer Ag | Flameproof polycarbonates |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0075772A1 (en) * | 1981-09-25 | 1983-04-06 | Bayer Ag | Process for the isolation of polycarbonates based on 4,4'-dihydroxydiphenyl sulphones |
| US4665122A (en) * | 1983-08-31 | 1987-05-12 | Amoco Corporation | Polycarbonate blends |
| US4698390A (en) * | 1984-03-20 | 1987-10-06 | Amoco Corporation | Miscible blends of polycarbonate with vinyl chloride derived polymers |
| KR100620767B1 (en) * | 1998-05-13 | 2006-09-06 | 스미또모 가가꾸 가부시키가이샤 | Thermo-resistance tray for thermoplastic resin composition and IC |
Also Published As
| Publication number | Publication date |
|---|---|
| JPS5426896A (en) | 1979-02-28 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US4046836A (en) | Polycarbonate molding materials | |
| EP0434998B1 (en) | Polycarbonate or polyestercarbonate resin compositions and preparing methods thereof | |
| US5010162A (en) | Polycarbonate of alkyl cyclohexylidene bisphenol | |
| US4174359A (en) | Flame retardant polycarbonate polyblends | |
| KR100420881B1 (en) | A carbonate polymer resin containing a low-volatile aromatic phosphate ester compound | |
| US4420584A (en) | Glass-filled polycarbonate of improved impact strength | |
| EP0683208A2 (en) | Transparent polycarbonate polyester blends | |
| US4352907A (en) | Polyethyleneterephthalate ternary blends | |
| EP0114290B1 (en) | Copolyester-carbonate blends | |
| US4477637A (en) | Flame retardant alkylated polycarbonate compositions | |
| US4081495A (en) | Thermoplastic moulding compositions and mouldings of polycarbonates, with improved ease of mould release when injection-moulded | |
| US4129612A (en) | 1,1,3,4,6-Pentamethyl-3-(3,5-dimethyl-4-hydroxyphenyl)-indan-5-ol polycarbonates | |
| US5807912A (en) | Ortho esters as BPA scavenger in polycarbonate product | |
| US4098754A (en) | Process for the preparation of high molecular thermoplastic polycarbonates of low flammability | |
| US5849845A (en) | Blends of aromatic polycarbonates and epoxy-functional terpolymers | |
| US5202374A (en) | Ternary mixtures | |
| EP0000547A1 (en) | Aromatic polycarbonates containing sulphur, method for their preparation, and their glass-reinforced compositions | |
| US4306055A (en) | Polycarbonates having sulfur-containing phenolic diols incorporated therein | |
| US5128437A (en) | Polycarbonate from bi(tetrahydrofuran)di phenol | |
| US5021542A (en) | Polycarbonate of polysubstituted cyclohexylidene bisphenols | |
| US5162459A (en) | Solvent resistant polycarbonate compositions | |
| US4100130A (en) | Flame-resistant polycarbonates | |
| EP0113870B1 (en) | Copolyester-carbonate blends exhibiting improved processability | |
| US4426514A (en) | Copolycarbonate from thiodiphenol having high melt flow rates | |
| CA1094738A (en) | Polycarbonate having improved critical thickness |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed | ||
| AK | Designated contracting states |
Designated state(s): DE FR GB NL |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
| 18W | Application withdrawn | ||
| RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: SIVARAMAKRISHNAN, PARAMESVAR Inventor name: BARON, ARTHUR L. |