[go: up one dir, main page]

EP0094144A2 - Sulfurized olefin-containing compositions - Google Patents

Sulfurized olefin-containing compositions Download PDF

Info

Publication number
EP0094144A2
EP0094144A2 EP83301521A EP83301521A EP0094144A2 EP 0094144 A2 EP0094144 A2 EP 0094144A2 EP 83301521 A EP83301521 A EP 83301521A EP 83301521 A EP83301521 A EP 83301521A EP 0094144 A2 EP0094144 A2 EP 0094144A2
Authority
EP
European Patent Office
Prior art keywords
composition according
component
sulfur
acid
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP83301521A
Other languages
German (de)
French (fr)
Other versions
EP0094144B1 (en
EP0094144A3 (en
Inventor
Kirk Emerson C/O The Lubrizol Corporation Davis
James Noel C/O The Lubrizol Corporation Vinci
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lubrizol Corp
Original Assignee
Lubrizol Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lubrizol Corp filed Critical Lubrizol Corp
Publication of EP0094144A2 publication Critical patent/EP0094144A2/en
Publication of EP0094144A3 publication Critical patent/EP0094144A3/en
Application granted granted Critical
Publication of EP0094144B1 publication Critical patent/EP0094144B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M141/00Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
    • C10M141/08Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic sulfur-, selenium- or tellurium-containing compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M127/00Lubricating compositions characterised by the additive being a non- macromolecular hydrocarbon
    • C10M127/02Lubricating compositions characterised by the additive being a non- macromolecular hydrocarbon well-defined aliphatic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/26Carboxylic acids; Salts thereof
    • C10M129/28Carboxylic acids; Salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M129/38Carboxylic acids; Salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having 8 or more carbon atoms
    • C10M129/40Carboxylic acids; Salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having 8 or more carbon atoms monocarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/26Carboxylic acids; Salts thereof
    • C10M129/28Carboxylic acids; Salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M129/38Carboxylic acids; Salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having 8 or more carbon atoms
    • C10M129/44Carboxylic acids; Salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having 8 or more carbon atoms containing hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/68Esters
    • C10M129/70Esters of monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/68Esters
    • C10M129/74Esters of polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M135/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing sulfur, selenium or tellurium
    • C10M135/02Sulfurised compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M135/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing sulfur, selenium or tellurium
    • C10M135/02Sulfurised compounds
    • C10M135/04Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M135/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing sulfur, selenium or tellurium
    • C10M135/02Sulfurised compounds
    • C10M135/06Esters, e.g. fats
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/02Well-defined aliphatic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/02Well-defined aliphatic compounds
    • C10M2203/022Well-defined aliphatic compounds saturated
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/02Well-defined aliphatic compounds
    • C10M2203/024Well-defined aliphatic compounds unsaturated
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/04Well-defined cycloaliphatic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • C10M2207/126Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids monocarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • C10M2207/128Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids containing hydroxy groups; Ethers thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/129Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of thirty or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/281Esters of (cyclo)aliphatic monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/282Esters of (cyclo)aliphatic oolycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/283Esters of polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/284Esters of aromatic monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/286Esters of polymerised unsaturated acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/40Fatty vegetable or animal oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/40Fatty vegetable or animal oils
    • C10M2207/404Fatty vegetable or animal oils obtained from genetically modified species
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/02Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/02Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds
    • C10M2219/022Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds of hydrocarbons, e.g. olefines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/02Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds
    • C10M2219/024Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds of esters, e.g. fats
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/02Bearings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • C10N2040/042Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for automatic transmissions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • C10N2040/044Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for manual transmissions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • C10N2040/046Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for traction drives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/08Hydraulic fluids, e.g. brake-fluids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/135Steam engines or turbines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/251Alcohol-fuelled engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/255Gasoline engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/255Gasoline engines
    • C10N2040/26Two-strokes or two-cycle engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/255Gasoline engines
    • C10N2040/28Rotary engines

Definitions

  • This invention relates to compositions useful as additives for lubricants, and, more particularly, for additives useful in multipurpose industrial oils for use in gear, hydraulic and other specialty applications.
  • the invention relates to sulfurized olefin- containing compositions and lubricants and concentrates containing such compositions.
  • a composition which comprises (A) at least one aliphatic olefinic compound and (B) the sulfurization product of at least one aliphatic, arylaliphatic or alicyclic olefinic hydrocarbon containing about 3-30 carbon atoms wherein the weight ratio of A to B is no greater than 1:1.
  • Such compositions are useful as lubricant additive compositions, and more particularly, as additive compositions in industrial and gear lubricants.
  • the compositions when added to lubricants provide longer lasting extreme pressure properties and anti-wear capability and reduce staining of copper parts.
  • Component A in the compositions of the invention is at least one aliphatic olefinic compound which generally will contain at least about 8 carbon atoms and preferably between about 8 and 30 carbon atoms.
  • the aliphatic olefinic compound useful as component A in the compositions of the invention may be an olefinic hydrocarbon such as 1-octene, l-decene, 1-tetradecene, 1-octadecene, 1-eicosene, etc.
  • Aliphatic olefinic compounds containing internal double bonds also are useful as component A, and examples of such olefins include 2-decene, 5-decene, 9-octadecene, etc.
  • the a-olefins are preferred, especially those containing from 12 to 20 carbon atoms. Mixtures of these olefins are available commercially, and such mixtures are contemplated for use in this invention.
  • Component A also may be a fatty acid, a fatty acid ester, or mixtures thereof.
  • fatty acid refers to acids which may be obtained by hydrolysis of naturally occurring vegetable or animal fats or oils. These fatty acids usually contain from 16 to 20 carbon atoms and are mixtures of saturated and unsaturated fatty acids.
  • the unsaturated fatty acids generally contained in the naturally occurring vegetable or animal fats and oils may contain one or more double bonds and such acids include palmi- toleic acid, oleic acid, linoleic acid, linolenic acid, petroselenic acid, erucic acid, gadoleic acid, vaccenic acid, ricinoleic acid and minor amounts of compounds containing more than 20 carbon atoms such as behenic acid.
  • the unsaturated fatty acids useful as component A may comprise mixtures of acids such as those obtained from tall oil or by the hydrolysis of peanut oil, soybean oil, cottonseed oil, sunflower seed oil, or wheat germ oil.
  • Tall oil is a mixture of rosin acids, mainly abietic acid, and unsaturated fatty acids, mainly oleic and linoleic acids.
  • Tall oil is a by-product of the sulfate process for the manufacture of wood pulp.
  • the most preferred aliphatic olefinic compounds useful as component A in the compositions of the invention are fatty acid esters which contain olefinic unsaturation in the fatty acid moiety.
  • the most particularly preferred are the fatty oils, that is, naturally occurring esters of glycerol with the fatty acids described above, and synthetic esters of similar structure.
  • naturally occurring fats and oils containing unsaturation include animal fats such as neat's-foot oil, lard oil, depot fat, beef tallow, etc.
  • Naturally occurring vegetable oils useful as component A include cottonseed oil, corn oil, poppy-seed oil, safflower oil, sesame oil, soybean oil, sunflower seed oil and wheat germ oil.
  • the fatty acid esters which are useful as component A in the invention also may be prepared from aliphatic olefinic acids of the type described above such as oleic acid, linoleic acid, linolenic acid, and behenic acid by reaction with alcohols and polyols.
  • aliphatic alcohols which may be reacted with the above-identified acids include monohydric alcohols such as methanol, ethanol, n-propanol, isopropanol, the butanols, etc.; and polyhydric alcohols including ethylene glycol, propylene glycol, trimethylene glycol, neopentyl glycol, glycerol, etc.
  • Component B in the compositions of this invention is a sulfurization product of at least one aliphatic, arylaliphatic, or alicyclic olefinic compound containing about 3-30 carbon atoms.
  • R values in the above formula which are not hydrogen may be satisfied by such groups as -R 5, -C(R 5 ) 3 , I-COOR5, -CON(R') 2 , -COON(R 5 ) 4 , -COOM, -CN, -X or -YR 5 , wherein:
  • R l , R 2 , R 3 , and R 4 may also together form an alkylene or substituted alkylene group; i.e., the olefinic compound may be alicyclic.
  • substituents in the substituted moieties described above is not normally a critical aspect of the invention and any such substituent is useful so long as it is or can be made compatible with lubricating environments and does not interfere under the contemplated reaction conditions.
  • substituted compounds which are so unstable as to deleteriously decompose under the reaction conditions employed are not contemplated.
  • certain substituents such as keto or aldehydo can desirably undergo sulfurization.
  • the selection of suitable substituents is within the skill of the art or may be established through routine testing.
  • substituents include any of the above-listed moieties as well as hydroxy, carboxy, carbalkoxy, amidine, amino, sulfonyl, sulfinyl, sulfonate, nitro, phosphate, phosphite, alkali metal mercapto and the like.
  • the olefinic compound is usually one in which each R group which is not hydrogen is independently alkyl or alkenyl, or (less often) a corresponding substituted radical.
  • Monoolefinic and diolefinic compounds, particularly the former, are preferred, and especially terminal monoolefinic hydrocarbons; that is, those compounds in which R 3 and R 4 are hydrogen and R 1 and R 2 are alkyl (that is, the olefin is aliphatic).
  • Olefinic compounds having about 3-30 and especially about 3-20 carbon atoms are particularly desirable.
  • the olefinic compound also can be an arylaliphatic compound, particularly wherein the aryl group is a phenyl or substituted phenyl group.
  • aryl group is a phenyl or substituted phenyl group.
  • Specific examples include styrene, a-methyl styrene, vinyl toluene, 4-ethyl vinyl benzene, etc.
  • Propylene, isobutene and their dimers, trimers and tetramers, and mixtures thereof are especially preferred olefinic compounds.
  • isobutene and diisobutene are particularly desirable because of their availability and the particularly high sulfur-containing compositions which can be prepared therefrom.
  • the sulfurizing reagent used for the preparation of component B may be, for example, sulfur, a sulfur halide such as sulfur monochloride or sulfur dichloride, a mixture of hydrogen sulfide and sulfur or sulfur dioxide, or the like.
  • sulfur-hydrogen sulfide mixtures are often preferred and are frequently referred to hereinafter; however, it will be understood that other sulfurization agents may, when appropriate, be substituted therefor.
  • the amounts of sulfur and hydrogen sulfide per mole of olefinic compound are, respectively, usually about 0.3-3.0 gram-atoms and about 0.1-1.5 moles.
  • the preferred ranges are about 0.5-2.0 gram-atoms and about 0.4-1.25 moles respectively, and the most desirable ranges are about 0.8-1.8 gram-atoms and about 0.4-0.8 mole respectively.
  • the temperature range in which the sulfurization reaction is carried out is generally about 50-350°C.
  • the preferred range is about l00-200°C., with about 125-180°C. being especially suitable.
  • the reaction is often preferably conducted under superatmospheric pressure; this may be and usually is autogenous pressure (i.e., the pressure which naturally develops during the course of the reaction) but may also be externally applied pressure.
  • autogenous pressure i.e., the pressure which naturally develops during the course of the reaction
  • the exact pressure developed during the reaction is dependent upon such factors as the design and operation of the system, the reaction temperature, and the vapor pressure of the reactants and products and it may vary during the course of the reaction.
  • materials useful as sulfurization catalysts may be acidic, basic or neutral, but are preferably basic materials, especially nitrogen bases including ammonia and amines.
  • the amount of catalyst used is generally about 0.05-2.0% of the weight of the olefinic compound. In the case of the preferred ammonia and amine catalysts, about 0.0005-0.5 mole per mole of olefin is preferred, and about 0.001-0.1 mole is especially desirable.
  • a further optional step in the preparation of component B is the treatment of the sulfurized product, obtained as described hereinabove, to reduce active sulfur.
  • An illustrative method is treatment with an alkali metal sulfide as described in U.S. Patent 3,498,915.
  • Other optional treatments may be employed to remove insoluble by-products and improve such qualities as the odor, color and staining characteristics of the sulfurized compositions.
  • Sulfur (629 parts, 19.6 moles) is charged to a jacketed high-pressure reactor which is fitted with an agitator and internal cooling coils. Refrigerated brine is circulated through the coils to cool the reactor prior to the introduction of the gaseous reactants. After sealing the reactor, evacuating to about 6 torr and cooling, 1100 parts (19.6 moles) of isobutene, 334 parts (9.8 moles) of hydrogen sulfide and 7 parts of n-butylamine are charged to the reactor. The reactor is heated using steam in the external jacket, to a temperature of about 171°C, over about 1.5 hours. A maximum pressure of 720 psig. is reached at about 138°C. during this heat-up.
  • the pressure Prior to reaching the peak reaction temperature, the pressure starts to decrease and continues to decrease steadily as the gaseous reactants are consumed. After about 4.75 hours at about 171°C., the unreacted hydrogen sulfide and isobutene are vented to a recovery system. After the pressure in the reactor has decreased to atmospheric, the sulfurized mixture is recovered as a liquid.
  • the sulfurizing agent may be sulfur, and the reaction is effected by heating the olefinic compound with sulfur at a temperature of from 100-250°C., usually about 150-210°C. with efficient agitation and in an inert atmosphere (e.g., nitrogen).
  • the weight ratio of olefin to sulfur may be as high as 15:1 and is generally between about 5:1 and 10:1.
  • reaction mixture consist entirely of the olefin and sulfur
  • reaction may be effected in the presence of an inert solvent such as alcohol, ether, ester, aliphatic hydrocarbon or halogenated aromatic hydrocarbon which is a liquid at the reaction temperatures employed.
  • insoluble by-products may be removed by filtration, usually at an elevated temperature (about 80-120°C.a.
  • the filtrate is the desired sulfurized product.
  • compositions of this invention typically contain components A and B in a weight ratio no greater than 1:1.
  • the weight ratio of component A to component B is from about 0.2:1 to about 1:1, and more preferably, from about 0.2:1 to about 0.5:1.
  • the compositions of the invention may be prepared merely by blending the ingredients, either undiluted or in substantially inert diluents.
  • the diluent if any, may be the oil used as a lubricant base and may include other additives such as those described hereinafter.
  • compositions of this invention are illustrative of the compositions of this invention:
  • compositions of this invention are useful as additives for lubricants, in which they function primarily as extreme pressure and anti-wear agents; the addition of the compositions of the invention also results in a reduction in staining of copper parts.
  • lubricants based on diverse oils of lubricating viscosity, including natural and synthetic lubricating oils and mixtures thereof.
  • These lubricants include crankcase lubricating oils for spark- ignited and compression-ignited internal combustion engines, including automobile and truck engines, two-cycle engines, aviation piston engines, marine and railroad diesel engines, and the like. They can also be used in gas engines, stationary power engines and turbines and the like.
  • compositions of the present invention can also benefit from the incorporation therein of the compositions of the present invention.
  • the compositions are particularly useful in gear lubricants and especially industrial gear lubricants.
  • Natural oils include liquid petroleum oils and solvent-treated or acid-treated mineral lubricating oils of the paraffinic, naphthenic and mixed paraffinic-naphthenic types. Oils of lubricating viscosity derived from coal or shale are also useful base oils.
  • Synthetic lubricating oils include hydrocarbon oils and halo-substituted hydrocarbon oils such as polymerized and interpolymerized olefins [e.g., polybutylenes, polypropylenes, propylene-isobutylene copolymers, chlorinated polybutylenes, poly(l-hexenes), poly-(l-octenes), poly(l-decenes), etc.
  • alkylbenzenes e.g., dodecylbenzenes, tetradecylbenzenes, dinonylbenzenes, di(2-ethylhexyl)benzenes, etc.
  • polyphenyls e.g., biphenyls, terphenyls, alkylated polyphenyls, etc.
  • Alkylene oxide polymers and interpolymers and derivatives thereof where the terminal hydroxyl groups have been modified by esterification, etherification, etc. constitute another class of known synthetic lubricating oils. These are exemplified by the oils prepared through polymerization of ethylene oxide or propylene oxide, the alkyl and aryl ethers of these polyoxyalkylene polymers (e.g., methyl-polyisopropylene glycol ether having an average molecular weight of 1000, diphenyl ether of polyethylene glycol having a molecular weight of 500-1000, diethyl ether of polypropylene glycol having a molecular weight of 1000-1500, etc.) or mono- and polycarboxylic esters thereof, for example, the acetic acid esters, mixed C 3 -C 8 fatty acid esters, or the C 13 Oxo acid diester of tetraethylene glycol.
  • the oils prepared through polymerization of ethylene oxide or propylene oxide the alkyl and ary
  • Another suitable class of synthetic lubricating oils comprises the esters of dicarboxylic acids (e.g., phthalic acid, succinic acid, alkyl succinic acids and alkenyl succinic acids, maleic acid, azelaic acid, suberic acid, sebacic acid, fumaric acid, adipic acid, linoleic acid dimer, malonic acid, alkyl malonic acids, alkenyl malonic acids, etc.) with a variety of alcohols (e.g., butyl alcohol, hexyl alcohol, dodecyl alcohol, 2-ethylhexyl alcohol, ethylene glycol, diethylene glycol monoether, propylene glycol, etc.).
  • dicarboxylic acids e.g., phthalic acid, succinic acid, alkyl succinic acids and alkenyl succinic acids, maleic acid, azelaic acid, suberic acid, sebacic acid, fumaric acid, adipic acid
  • esters include dibutyl adipate, di(2-ethylhexyl) sebacate, di-n-hexyl fumarate, dioctyl sebacate, diisooctyl azelate, diisodecyl azelate, dioctyl phthalate, didecyl phthalate, dieicosyl sebacate, the 2-ethylhexyl diester of linoleic acid dimer, the complex ester formed by reacting one mole of sebacic acid with two moles of tetraethylene glycol and two moles of 2-ethylhexanoic acid, and the like.
  • Esters useful as synthetic oils also include those made from C 5 to C 12 monocarboxylic acids and polyols and polyol ethers such neopentyl glycol, trimethylolpropane, pentaerythritol, dipentaerythritol, tripentaerythritol, etc.
  • Silicon-based oils such as the polyalkyl-, polyaryl-, polyalkoxy-, or polyaryloxy-siloxane oils and silicate oils comprise another useful class of synthetic lubricants [e.g., tetraethyl silicate, tetraisopropyl silicate, tetra-(2-ethylhexyl) silicate, tetra-(4-methyl-2-ethylhexyl) silicate, tetra-(p-tert-butylphenyl) silicate, hexa-(4-methyl-2-pentoxy)-disiloxane, poly(methyl)-siloxanes, poly(methylphenyl)siloxanes, etc.].
  • synthetic lubricants e.g., tetraethyl silicate, tetraisopropyl silicate, tetra-(2-ethylhexyl) silicate, tetra-(4
  • Other synthetic lubricating oils include liquid esters of phosphorus-containing acids (e.g., tricresyl phosphate, trioctyl phosphate, diethyl ester of decylphosphonic acid, etc.), polymeric tetrahydrofurans and the like.
  • Unrefined, refined and rerefined oils (and mixtures of each with each other) of the type disclosed hereinabove can be used in the lubricant compositions of the present invention.
  • Unrefined oils are those obtained directly from a natural or synthetic source without further purification treatment.
  • a shale oil obtained directly from retorting operations a petroleum oil obtained directly from distillation or ester oil obtained directly from an esterification process and used without further treatment would be an unrefined oil.
  • Refined oils are similar to the unrefined oils except they have been further treated in one or more purification steps to improve one or more properties. Many such purification techniques are known to those of skill in the art such as solvent extraction, acid or base extraction, filtration, percolation, etc.
  • Rerefined oils are obtained by processes similar to those used to obtain refined oils applied to refined oils which have been already used in service. Such rerefined oils are also known as reclaimed or reprocessed oils and often are additionally processed by techniques directed to removal of spent additives and oil breakdown products.
  • the lubricants of the present invention contain an amount of the composition of this invention sufficient to provide it with extreme pressure and anti-wear properties. Normally this amount will be about 0.01 to about 10%, preferably about 0.01 to about 5% of the total weight of the lubricant. In lubricating oils operated under extremely adverse conditions, the reaction products of this invention may be present in amounts of up to about 20% by weight.
  • additives include, for example, detergents and dispersants of the ash-producing or ashless type, corrosion- and oxidation-inhibiting agents, pour point depressing agents, auxiliary extreme pressure agents, color stabilizers and anti-foam agents.
  • the ash-producing detergents are exemplified by oil-soluble neutral and basic salts of alkali or alkaline earth metals with sulfonic acids, carboxylic acids, or organic phosphorus acids characterized by at least one direct carbon-to-phosphorus linkage such as those prepared by the treatment of an olefin polymer (e.g., polyisobutene having a molecular weight of 1000) with a phosphorizing agent such as phosphorus trichloride, phosphorus hepta- sulfide, phosphorus pentasulfide, phosphorus trichloride and sulfur, white phosphorus and a sulfur halide, or phosphoro- thioic chloride.
  • olefin polymer e.g., polyisobutene having a molecular weight of 1000
  • a phosphorizing agent such as phosphorus trichloride, phosphorus hepta- sulfide, phosphorus pent
  • basic salt is used to designate metal salts wherein the metal is present in stoichiometrically larger amounts than the organic acid radical.
  • the commonly employed methods for preparing the basic salts involve heating a mineral oil solution of an acid with a stoichiometric excess of a metal neutralizing agent such as the metal oxide, hydroxide, carbonate, bicarbonate, or sulfide at a temperature above 50°C. and filtering the resulting mass.
  • a “promoter” in the neutralization step to aid the incorporation of a large excess of metal likewise is known.
  • Examples of compounds useful as the promoter include phenolic substances such as phenol, naphthol, alkylphenol, thiophenol, sulfurized alkylphenol, and condensation products of formaldehyde with a phenolic substance; alcohols such as methanol, 2-propanol, octyl alcohol, cellosolve, carbitol, ethylene glycol, stearyl alcohol, and cyclohexyl alcohol; and amines such as aniline, phenylenediamine, phenothiazine, phenyl-S-naphthylamine, and dodecylamine.
  • a particularly effective method for preparing the basic salts comprises mixing an acid with an excess of a basic alkaline earth metal neutralizing agent and at least one alcohol promoter, and carbonating the mixture at an elevated temperature such as 60-200°C.
  • Ashless detergents and dispersants are so called despite the fact that, depending on its constitution, the dispersant may upon combustion yield a non-volatile material such as boric oxide or phosphorus pentoxide; however, it does not ordinarily contain metal and therefore does not yield a metal-containing ash on combustion.
  • a non-volatile material such as boric oxide or phosphorus pentoxide
  • Many types are known in the art, and any of them are suitable for use in the lubricants of this invention. The following are illustrative:
  • chlorinated aliphatic hydrocarbons such as chlorinated wax
  • aromatic sulfides and polysulfides such as benzyl disulfide, bis(chlorobenzyl) disulfide, and sulfurized alkylphenol
  • phosphosulfurized hydrocarbons such as the reaction product of a phosphorus sulfide with turpentine or methyl oleate
  • phosphorus esters including principally dihydrocarbon and trihydrocarbon phosphites such as dibutyl phosphite, di- heptyl phosphite, dicyclohexyl phosphite, pentylphenyl phosphite, dipentylphenyl phosphite, tridecyl phosphite, distearyl phosphite, dimethyl naphthyl phosphite,
  • compositions of this invention can be added directly to the lubricant.
  • they are diluted with a substantially inert, normally liquid organic diluent such as mineral oil, naphtha, benzene, toluene or xylene, to form an additive concentrate.
  • a substantially inert, normally liquid organic diluent such as mineral oil, naphtha, benzene, toluene or xylene
  • These concentrates usually contain about 20-90% by weight of the composition of this invention such as the compositions of Examples 1-6 and may contain, in addition, one or more other additives known in the art or described hereinabove.
  • Illustrative lubricants of this invention comprise principally mineral oil (e.g., SAE IOW-40 for an internal - combustion engine lubricant and SAE 75W-90 for a gear lubricant) in combination with about 0.5-5.0% by weight or more of the composition of the invention such as Examples 1-6 and with other known lubricant additives.
  • principally mineral oil e.g., SAE IOW-40 for an internal - combustion engine lubricant and SAE 75W-90 for a gear lubricant
  • Table II illustrate lubricating compositions according to the invention. Unless otherwise indicated, all amounts listed, except those for mineral oil, are exclusive of oil present as diluent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Lubricants (AREA)

Abstract

New compositions are described which are useful as additives for lubricants, especially for multipurpose industrial oils. The compositions of the invention comprise (A) at least one aliphatic olefinic compound and (B) the sulfurization product of at least one aliphatic, arylaliphatic or alicyclic olefinic hydrocarbon containing from about 3-30 carbon atoms wherein the weight ratio of A to B is no greater than 1:1.

Description

    BACKGROUND OF THE INVENTION
  • This invention relates to compositions useful as additives for lubricants, and, more particularly, for additives useful in multipurpose industrial oils for use in gear, hydraulic and other specialty applications. In its broadest sense, the invention relates to sulfurized olefin- containing compositions and lubricants and concentrates containing such compositions.
  • It is well known that the high pressure which occurs in certain types of gears and bearings may cause rupture of lubricant films with consequent damage to the machinery. Because of the severe conditions under which they are used, industrial and gear lubricants ordinarily must contain additives which maximize their capability of functioning under extreme pressure conditions. It has been suggested that certain compounds of metal-reactive elements, such as compounds of chlorine, sulfur, phosphorus and lead impart extreme pressure properties to various lubricants. Among the various compositions known to serve this purpose are various phosphorus- and sulfur-containing compositions, chiefly salts and esters of dialkylphosphorodithioic acids, and sulfurization products of various aliphatic olefinic compounds. These two types of compositions have been used in combination in lubricants of this type, and they serve to increase the effectiveness of the lubricant under conditions of extreme pressure.
  • Many of the known sulfurization products of olefinic compounds contain substantial amounts of active sulfur. The presence of active sulfur in a lubricant often has deleterious side effects such as staining of copper parts, increased wear on the metal components being lubricated, and a decrease in extreme pressure properties with the passage of time.
  • Various compositions prepared by the sulfurization of olefins have been described in the prior art as being useful in lubricant compositions. For example, U.S. Patent 4,191,659 describes the preparation of sulfurized olefinic compositions by the catalytic reaction of sulfur and hydrogen sulfide with olefinic compounds containing from 3 to 30 carbon atoms. Such compounds are reported to be useful in lubricating compositions, particularly those prepared for use as industrial gear lubricants.
  • - SUMMARY OF THE INVENTION
  • A composition is described which comprises (A) at least one aliphatic olefinic compound and (B) the sulfurization product of at least one aliphatic, arylaliphatic or alicyclic olefinic hydrocarbon containing about 3-30 carbon atoms wherein the weight ratio of A to B is no greater than 1:1. Such compositions are useful as lubricant additive compositions, and more particularly, as additive compositions in industrial and gear lubricants. The compositions when added to lubricants provide longer lasting extreme pressure properties and anti-wear capability and reduce staining of copper parts.
  • DESCRIPTION OF PREFERRED EMBODIMENTS
  • Component A in the compositions of the invention is at least one aliphatic olefinic compound which generally will contain at least about 8 carbon atoms and preferably between about 8 and 30 carbon atoms. The aliphatic olefinic compound useful as component A in the compositions of the invention may be an olefinic hydrocarbon such as 1-octene, l-decene, 1-tetradecene, 1-octadecene, 1-eicosene, etc.
  • Aliphatic olefinic compounds containing internal double bonds also are useful as component A, and examples of such olefins include 2-decene, 5-decene, 9-octadecene, etc. The a-olefins are preferred, especially those containing from 12 to 20 carbon atoms. Mixtures of these olefins are available commercially, and such mixtures are contemplated for use in this invention.
  • Component A also may be a fatty acid, a fatty acid ester, or mixtures thereof. The term "fatty acid" as used herein refers to acids which may be obtained by hydrolysis of naturally occurring vegetable or animal fats or oils. These fatty acids usually contain from 16 to 20 carbon atoms and are mixtures of saturated and unsaturated fatty acids. The unsaturated fatty acids generally contained in the naturally occurring vegetable or animal fats and oils may contain one or more double bonds and such acids include palmi- toleic acid, oleic acid, linoleic acid, linolenic acid, petroselenic acid, erucic acid, gadoleic acid, vaccenic acid, ricinoleic acid and minor amounts of compounds containing more than 20 carbon atoms such as behenic acid.
  • The unsaturated fatty acids useful as component A may comprise mixtures of acids such as those obtained from tall oil or by the hydrolysis of peanut oil, soybean oil, cottonseed oil, sunflower seed oil, or wheat germ oil. Tall oil is a mixture of rosin acids, mainly abietic acid, and unsaturated fatty acids, mainly oleic and linoleic acids. Tall oil is a by-product of the sulfate process for the manufacture of wood pulp.
  • The most preferred aliphatic olefinic compounds useful as component A in the compositions of the invention are fatty acid esters which contain olefinic unsaturation in the fatty acid moiety. Of these types, the most particularly preferred are the fatty oils, that is, naturally occurring esters of glycerol with the fatty acids described above, and synthetic esters of similar structure. Examples of naturally occurring fats and oils containing unsaturation include animal fats such as neat's-foot oil, lard oil, depot fat, beef tallow, etc. Examples of naturally occurring vegetable oils useful as component A include cottonseed oil, corn oil, poppy-seed oil, safflower oil, sesame oil, soybean oil, sunflower seed oil and wheat germ oil.
  • The fatty acid esters which are useful as component A in the invention also may be prepared from aliphatic olefinic acids of the type described above such as oleic acid, linoleic acid, linolenic acid, and behenic acid by reaction with alcohols and polyols. Examples of aliphatic alcohols which may be reacted with the above-identified acids include monohydric alcohols such as methanol, ethanol, n-propanol, isopropanol, the butanols, etc.; and polyhydric alcohols including ethylene glycol, propylene glycol, trimethylene glycol, neopentyl glycol, glycerol, etc.
  • Component B in the compositions of this invention is a sulfurization product of at least one aliphatic, arylaliphatic, or alicyclic olefinic compound containing about 3-30 carbon atoms. The olefinic compounds which may be sulfurized to form component B are diverse in nature. They contain at least one olefinic double bond, which is defined as a non-aromatic double bond; that is, one connecting two aliphatic carbon atoms. In its broadest sense, the olefin may be defined by the formula R1R2C=CR3R4, wherein each of R1, R 2, R3 and R4 is hydrogen or an organic radical. In general, the R values in the above formula which are not hydrogen may be satisfied by such groups as -R5, -C(R5)3, I-COOR5, -CON(R')2, -COON(R5)4, -COOM, -CN,
    Figure imgb0001
    -X or -YR5, wherein:
    • Each R5 is independently hydrogen, alkyl, alkenyl, aryl, alkylaryl, substituted alkyl or substituted alkenyl, with the proviso that any two R5 groups can be alkylene or substituted alkylene whereby a ring of up to about 12 carbon atoms is formed;
    • M is one equivalent of a metal cation (preferably Group I or II, e.g., sodium, potassium, barium, calcium);
    • X is halogen (e.g., chloro, bromo, or iodo);
    • Y is oxygen or divalent sulfur.
  • Any two of Rl, R2, R3, and R4 may also together form an alkylene or substituted alkylene group; i.e., the olefinic compound may be alicyclic.
  • The nature of the substituents in the substituted moieties described above is not normally a critical aspect of the invention and any such substituent is useful so long as it is or can be made compatible with lubricating environments and does not interfere under the contemplated reaction conditions. Thus, substituted compounds which are so unstable as to deleteriously decompose under the reaction conditions employed are not contemplated. However, certain substituents such as keto or aldehydo can desirably undergo sulfurization. The selection of suitable substituents is within the skill of the art or may be established through routine testing. Typical of such substituents include any of the above-listed moieties as well as hydroxy, carboxy, carbalkoxy, amidine, amino, sulfonyl, sulfinyl, sulfonate, nitro, phosphate, phosphite, alkali metal mercapto and the like.
  • The olefinic compound is usually one in which each R group which is not hydrogen is independently alkyl or alkenyl, or (less often) a corresponding substituted radical. Monoolefinic and diolefinic compounds, particularly the former, are preferred, and especially terminal monoolefinic hydrocarbons; that is, those compounds in which R 3 and R 4 are hydrogen and R1 and R2 are alkyl (that is, the olefin is aliphatic). Olefinic compounds having about 3-30 and especially about 3-20 carbon atoms are particularly desirable.
  • The olefinic compound also can be an arylaliphatic compound, particularly wherein the aryl group is a phenyl or substituted phenyl group. Specific examples include styrene, a-methyl styrene, vinyl toluene, 4-ethyl vinyl benzene, etc.
  • Propylene, isobutene and their dimers, trimers and tetramers, and mixtures thereof are especially preferred olefinic compounds. Of these compounds, isobutene and diisobutene are particularly desirable because of their availability and the particularly high sulfur-containing compositions which can be prepared therefrom.
  • The sulfurizing reagent used for the preparation of component B may be, for example, sulfur, a sulfur halide such as sulfur monochloride or sulfur dichloride, a mixture of hydrogen sulfide and sulfur or sulfur dioxide, or the like. Sulfur-hydrogen sulfide mixtures are often preferred and are frequently referred to hereinafter; however, it will be understood that other sulfurization agents may, when appropriate, be substituted therefor.
  • The amounts of sulfur and hydrogen sulfide per mole of olefinic compound are, respectively, usually about 0.3-3.0 gram-atoms and about 0.1-1.5 moles. The preferred ranges are about 0.5-2.0 gram-atoms and about 0.4-1.25 moles respectively, and the most desirable ranges are about 0.8-1.8 gram-atoms and about 0.4-0.8 mole respectively.
  • The temperature range in which the sulfurization reaction is carried out is generally about 50-350°C. The preferred range is about l00-200°C., with about 125-180°C. being especially suitable. The reaction is often preferably conducted under superatmospheric pressure; this may be and usually is autogenous pressure (i.e., the pressure which naturally develops during the course of the reaction) but may also be externally applied pressure. The exact pressure developed during the reaction is dependent upon such factors as the design and operation of the system, the reaction temperature, and the vapor pressure of the reactants and products and it may vary during the course of the reaction.
  • It is frequently advantageous to incorporate materials useful as sulfurization catalysts in the reaction mixture. These materials may be acidic, basic or neutral, but are preferably basic materials, especially nitrogen bases including ammonia and amines. The amount of catalyst used is generally about 0.05-2.0% of the weight of the olefinic compound. In the case of the preferred ammonia and amine catalysts, about 0.0005-0.5 mole per mole of olefin is preferred, and about 0.001-0.1 mole is especially desirable.
  • Following the preparation of the sulfurized mixture, it is preferred to remove substantially all low boiling materials, typically by venting the reaction vessel or by distillation at atmospheric pressure, vacuum distillation or stripping, or passage of an inert gas such as nitrogen through the mixture at a suitable temperature and pressure.
  • A further optional step in the preparation of component B is the treatment of the sulfurized product, obtained as described hereinabove, to reduce active sulfur. An illustrative method is treatment with an alkali metal sulfide as described in U.S. Patent 3,498,915. Other optional treatments may be employed to remove insoluble by-products and improve such qualities as the odor, color and staining characteristics of the sulfurized compositions.
  • U.S. Patent 4,119,549 is incorporated by reference herein for its disclosure of suitable sulfurization products useful as component B. Several specific sulfurized compositions are described in the working examples thereof. The following example illustrates the preparation of one such composition.
  • Example A
  • Sulfur (629 parts, 19.6 moles) is charged to a jacketed high-pressure reactor which is fitted with an agitator and internal cooling coils. Refrigerated brine is circulated through the coils to cool the reactor prior to the introduction of the gaseous reactants. After sealing the reactor, evacuating to about 6 torr and cooling, 1100 parts (19.6 moles) of isobutene, 334 parts (9.8 moles) of hydrogen sulfide and 7 parts of n-butylamine are charged to the reactor. The reactor is heated using steam in the external jacket, to a temperature of about 171°C, over about 1.5 hours. A maximum pressure of 720 psig. is reached at about 138°C. during this heat-up. Prior to reaching the peak reaction temperature, the pressure starts to decrease and continues to decrease steadily as the gaseous reactants are consumed. After about 4.75 hours at about 171°C., the unreacted hydrogen sulfide and isobutene are vented to a recovery system. After the pressure in the reactor has decreased to atmospheric, the sulfurized mixture is recovered as a liquid.
  • As mentioned above, the sulfurizing agent may be sulfur, and the reaction is effected by heating the olefinic compound with sulfur at a temperature of from 100-250°C., usually about 150-210°C. with efficient agitation and in an inert atmosphere (e.g., nitrogen). The weight ratio of olefin to sulfur may be as high as 15:1 and is generally between about 5:1 and 10:1.
  • It is frequently advantageous to add the sulfur portionwise to the olefin. While it is usually preferred that the reaction mixture consist entirely of the olefin and sulfur, the reaction may be effected in the presence of an inert solvent such as alcohol, ether, ester, aliphatic hydrocarbon or halogenated aromatic hydrocarbon which is a liquid at the reaction temperatures employed.
  • Following the reaction, insoluble by-products may be removed by filtration, usually at an elevated temperature (about 80-120°C.a. The filtrate is the desired sulfurized product.
  • The compositions of this invention typically contain components A and B in a weight ratio no greater than 1:1. Generally, the weight ratio of component A to component B is from about 0.2:1 to about 1:1, and more preferably, from about 0.2:1 to about 0.5:1. The compositions of the invention may be prepared merely by blending the ingredients, either undiluted or in substantially inert diluents. The diluent, if any, may be the oil used as a lubricant base and may include other additives such as those described hereinafter.
  • The following examples are illustrative of the compositions of this invention:
    Figure imgb0002
  • As previously indicated, the compositions of this invention are useful as additives for lubricants, in which they function primarily as extreme pressure and anti-wear agents; the addition of the compositions of the invention also results in a reduction in staining of copper parts. They can be employed in a variety of lubricants based on diverse oils of lubricating viscosity, including natural and synthetic lubricating oils and mixtures thereof. These lubricants include crankcase lubricating oils for spark- ignited and compression-ignited internal combustion engines, including automobile and truck engines, two-cycle engines, aviation piston engines, marine and railroad diesel engines, and the like. They can also be used in gas engines, stationary power engines and turbines and the like. Automatic transmission fluids, transaxle lubricants, metal-working lubricants, hydraulic fluids and other lubricating oil and grease compositions can also benefit from the incorporation therein of the compositions of the present invention. However, the compositions are particularly useful in gear lubricants and especially industrial gear lubricants.
  • Natural oils include liquid petroleum oils and solvent-treated or acid-treated mineral lubricating oils of the paraffinic, naphthenic and mixed paraffinic-naphthenic types. Oils of lubricating viscosity derived from coal or shale are also useful base oils. Synthetic lubricating oils include hydrocarbon oils and halo-substituted hydrocarbon oils such as polymerized and interpolymerized olefins [e.g., polybutylenes, polypropylenes, propylene-isobutylene copolymers, chlorinated polybutylenes, poly(l-hexenes), poly-(l-octenes), poly(l-decenes), etc. and mixtures thereof]; alkylbenzenes [e.g., dodecylbenzenes, tetradecylbenzenes, dinonylbenzenes, di(2-ethylhexyl)benzenes, etc.]; polyphenyls (e.g., biphenyls, terphenyls, alkylated polyphenyls, etc.), alkylated diphenyl ethers and alkylated diphenyl sulfides and the derivatives, analogs and homologs thereof and the like.
  • Alkylene oxide polymers and interpolymers and derivatives thereof where the terminal hydroxyl groups have been modified by esterification, etherification, etc. constitute another class of known synthetic lubricating oils. These are exemplified by the oils prepared through polymerization of ethylene oxide or propylene oxide, the alkyl and aryl ethers of these polyoxyalkylene polymers (e.g., methyl-polyisopropylene glycol ether having an average molecular weight of 1000, diphenyl ether of polyethylene glycol having a molecular weight of 500-1000, diethyl ether of polypropylene glycol having a molecular weight of 1000-1500, etc.) or mono- and polycarboxylic esters thereof, for example, the acetic acid esters, mixed C3-C8 fatty acid esters, or the C13 Oxo acid diester of tetraethylene glycol.
  • Another suitable class of synthetic lubricating oils comprises the esters of dicarboxylic acids (e.g., phthalic acid, succinic acid, alkyl succinic acids and alkenyl succinic acids, maleic acid, azelaic acid, suberic acid, sebacic acid, fumaric acid, adipic acid, linoleic acid dimer, malonic acid, alkyl malonic acids, alkenyl malonic acids, etc.) with a variety of alcohols (e.g., butyl alcohol, hexyl alcohol, dodecyl alcohol, 2-ethylhexyl alcohol, ethylene glycol, diethylene glycol monoether, propylene glycol, etc.). Specific examples of these esters include dibutyl adipate, di(2-ethylhexyl) sebacate, di-n-hexyl fumarate, dioctyl sebacate, diisooctyl azelate, diisodecyl azelate, dioctyl phthalate, didecyl phthalate, dieicosyl sebacate, the 2-ethylhexyl diester of linoleic acid dimer, the complex ester formed by reacting one mole of sebacic acid with two moles of tetraethylene glycol and two moles of 2-ethylhexanoic acid, and the like.
  • Esters useful as synthetic oils also include those made from C5 to C12 monocarboxylic acids and polyols and polyol ethers such neopentyl glycol, trimethylolpropane, pentaerythritol, dipentaerythritol, tripentaerythritol, etc.
  • Silicon-based oils such as the polyalkyl-, polyaryl-, polyalkoxy-, or polyaryloxy-siloxane oils and silicate oils comprise another useful class of synthetic lubricants [e.g., tetraethyl silicate, tetraisopropyl silicate, tetra-(2-ethylhexyl) silicate, tetra-(4-methyl-2-ethylhexyl) silicate, tetra-(p-tert-butylphenyl) silicate, hexa-(4-methyl-2-pentoxy)-disiloxane, poly(methyl)-siloxanes, poly(methylphenyl)siloxanes, etc.]. Other synthetic lubricating oils include liquid esters of phosphorus-containing acids (e.g., tricresyl phosphate, trioctyl phosphate, diethyl ester of decylphosphonic acid, etc.), polymeric tetrahydrofurans and the like.
  • Unrefined, refined and rerefined oils (and mixtures of each with each other) of the type disclosed hereinabove can be used in the lubricant compositions of the present invention. Unrefined oils are those obtained directly from a natural or synthetic source without further purification treatment. For example, a shale oil obtained directly from retorting operations, a petroleum oil obtained directly from distillation or ester oil obtained directly from an esterification process and used without further treatment would be an unrefined oil. Refined oils are similar to the unrefined oils except they have been further treated in one or more purification steps to improve one or more properties. Many such purification techniques are known to those of skill in the art such as solvent extraction, acid or base extraction, filtration, percolation, etc. Rerefined oils are obtained by processes similar to those used to obtain refined oils applied to refined oils which have been already used in service. Such rerefined oils are also known as reclaimed or reprocessed oils and often are additionally processed by techniques directed to removal of spent additives and oil breakdown products.
  • Generally, the lubricants of the present invention contain an amount of the composition of this invention sufficient to provide it with extreme pressure and anti-wear properties. Normally this amount will be about 0.01 to about 10%, preferably about 0.01 to about 5% of the total weight of the lubricant. In lubricating oils operated under extremely adverse conditions, the reaction products of this invention may be present in amounts of up to about 20% by weight.
  • The invention also contemplates the use of other additives in combination with the compositions of this invention. Such additives include, for example, detergents and dispersants of the ash-producing or ashless type, corrosion- and oxidation-inhibiting agents, pour point depressing agents, auxiliary extreme pressure agents, color stabilizers and anti-foam agents.
  • The ash-producing detergents are exemplified by oil-soluble neutral and basic salts of alkali or alkaline earth metals with sulfonic acids, carboxylic acids, or organic phosphorus acids characterized by at least one direct carbon-to-phosphorus linkage such as those prepared by the treatment of an olefin polymer (e.g., polyisobutene having a molecular weight of 1000) with a phosphorizing agent such as phosphorus trichloride, phosphorus hepta- sulfide, phosphorus pentasulfide, phosphorus trichloride and sulfur, white phosphorus and a sulfur halide, or phosphoro- thioic chloride. The most commonly used salts of such acids are those of sodium, potassium, lithium, calcium, magnesium, strontium and barium.
  • The term "basic salt" is used to designate metal salts wherein the metal is present in stoichiometrically larger amounts than the organic acid radical. The commonly employed methods for preparing the basic salts involve heating a mineral oil solution of an acid with a stoichiometric excess of a metal neutralizing agent such as the metal oxide, hydroxide, carbonate, bicarbonate, or sulfide at a temperature above 50°C. and filtering the resulting mass. The use of a "promoter" in the neutralization step to aid the incorporation of a large excess of metal likewise is known. Examples of compounds useful as the promoter include phenolic substances such as phenol, naphthol, alkylphenol, thiophenol, sulfurized alkylphenol, and condensation products of formaldehyde with a phenolic substance; alcohols such as methanol, 2-propanol, octyl alcohol, cellosolve, carbitol, ethylene glycol, stearyl alcohol, and cyclohexyl alcohol; and amines such as aniline, phenylenediamine, phenothiazine, phenyl-S-naphthylamine, and dodecylamine. A particularly effective method for preparing the basic salts comprises mixing an acid with an excess of a basic alkaline earth metal neutralizing agent and at least one alcohol promoter, and carbonating the mixture at an elevated temperature such as 60-200°C.
  • Ashless detergents and dispersants are so called despite the fact that, depending on its constitution, the dispersant may upon combustion yield a non-volatile material such as boric oxide or phosphorus pentoxide; however, it does not ordinarily contain metal and therefore does not yield a metal-containing ash on combustion. Many types are known in the art, and any of them are suitable for use in the lubricants of this invention. The following are illustrative:
    • (1) Reaction products of carboxylic acids (or derivatives thereof) containing at least about 34 and preferably at least about 54 carbon atoms with nitrogen-containing compounds such as amine, organic hydroxy compounds such as phenols and alcohols, and/or basic inorganic materials. Examples of these "carboxylic dispersants" are described in British Patent 1,306,529 and in many U.S. patents including the following:
      Figure imgb0003
      Figure imgb0004
    • (2) Reaction products of relatively high molecular weight aliphatic or alicyclic halides with amines, preferably polyalkylene polyamines. These may be characterized as "amine dispersants" and examples thereof are described for example, in the following U.S. patents:
      Figure imgb0005
    • (3) Reaction products of alkyl phenols in which the alkyl group contains at least about 30 carbon atoms with aldehydes (especially formaldehyde) and amines (especially polyalkylene polyamines), which may be characterized as "Mannich dispersants". The materials described in the following U.S. patents are illustrative:
      Figure imgb0006
    • (4) Products obtained by post-treating the carboxylic, amine or Mannich dispersants with such reagents as urea, thiourea, carbon disulfide, aldehydes, ketones, carboxylic acids, hydrocarbon-substituted succinic anhydrides, nitriles, epoxides, boron compounds, phosphorus compounds or the like. Exemplary materials of this kind are described in the following U.S. patents:
      Figure imgb0007
    • (5) Interpolymers of oil-solubilizing monomers such as decyl methacrylate, vinyl decyl ether and high molecular weight olefins with monomers containing polar substituents, e.g., aminoalkyl acrylates or acrylamides and poly-(oxyethylene)-substituted acrylates. These may be characterized as "polymeric dispersants" and examples thereof are disclosed in the following U.S. patents:
      Figure imgb0008
  • The above-noted patents are incorporated by reference herein for their disclosures of ashless dispersants.
  • Auxiliary extreme pressure agents and corrosion-and oxidation-inhibiting agents are exemplified by chlorinated aliphatic hydrocarbons such as chlorinated wax; aromatic sulfides and polysulfides such as benzyl disulfide, bis(chlorobenzyl) disulfide, and sulfurized alkylphenol; phosphosulfurized hydrocarbons such as the reaction product of a phosphorus sulfide with turpentine or methyl oleate; phosphorus esters including principally dihydrocarbon and trihydrocarbon phosphites such as dibutyl phosphite, di- heptyl phosphite, dicyclohexyl phosphite, pentylphenyl phosphite, dipentylphenyl phosphite, tridecyl phosphite, distearyl phosphite, dimethyl naphthyl phosphite, oleyl 4-pentylphenyl phosphite, polypropylene (molecular weight 500)-substituted phenyl phosphite, diisobutyl-substituted phenyl phosphite; metal thiocarbamates, such as zinc di- octyldithiocarbamate, and barium heptylphenyl dithiocarbamate; Group II metal phosphorodithioates such as zinc dicyclohexylphosphorodithioate, zinc dioctylphosphorodi- thioate, barium di(heptylphenyl)phosphorodithioate, cadmium dinonylphosphorodithioate, and the zinc salt of a phosphorodithioic acid produced by the reaction of phosphorus pentasulfide with an equimolar mixture of isopropyl alcohol and n-hexyl alcohol.
  • The compositions of this invention can be added directly to the lubricant. Preferably, however, they are diluted with a substantially inert, normally liquid organic diluent such as mineral oil, naphtha, benzene, toluene or xylene, to form an additive concentrate. These concentrates usually contain about 20-90% by weight of the composition of this invention such as the compositions of Examples 1-6 and may contain, in addition, one or more other additives known in the art or described hereinabove.
  • Illustrative lubricants of this invention comprise principally mineral oil (e.g., SAE IOW-40 for an internal - combustion engine lubricant and SAE 75W-90 for a gear lubricant) in combination with about 0.5-5.0% by weight or more of the composition of the invention such as Examples 1-6 and with other known lubricant additives. The following specific examples in Table II illustrate lubricating compositions according to the invention. Unless otherwise indicated, all amounts listed, except those for mineral oil, are exclusive of oil present as diluent.
    Figure imgb0009

Claims (18)

1. A composition comprising (A) at least one aliphatic olefinic compound and (B) the sulfurization product of at least one aliphatic, arylaliphatic or alicyclic olefinic hydrocarbon containing about 3-30 carbon atoms wherein the weight ratio of A to B is no greater than 1:1.
2. A composition according to claim 1 wherein component A contains at least about 8 carbon atoms.
3. A composition according to claim 2 wherein component A is at least one a-olefin.
4. A composition according to claim 3 wherein component A is at least one a-olefin containing from about 12 to 20 carbon atoms.
5. A composition according to claim 2 wherein component A is at least one fatty acid ester containing olefinic unsaturation in the acid moiety.
6. A composition according to claim 5 wherein component A is at least one fatty oil.
7. A composition according to claim 6 wherein component A is soybean oil.
8. A composition according to claim 2 wherein component A is at least one fatty acid.
9. A composition according to.claim 8 wherein the fatty acid is tall oil acid.
10. A composition according to any preceding claim wherein component B is a sulfurization product of at least one aliphatic olefinic compound containing from about 3 to 20 carbon atoms.
11. A composition according to any preceding claim wherein component B is a sulfurization product of at least one of propylene, isobutene and dimers, trimers and tetramers thereof.
12. A composition according to claim 10 wherein component B is prepared by reacting the olefinic compound with a sulfur halide or a mixture of sulfur and hydrogen sulfide.
13. A composition according to claim 11 wherein component B is prepared by reacting isobutene with a mixture of sulfur and hydrogen sulfide.
14. A composition according to claim 11 wherein component B is prepared by reacting isobutene with a sulfur halide.
15. A composition according to claim 14 wherein the sulfur halide is sulfur monochloride.
16. A composition according to any preceding claim wherein the weight ratio of component A to component B is from about 0.2:1 to 0.5:1.
17. An additive concentrate comprising a substantially inert, normally liquid organic diluent and from about 20 to 90 percent by weight of a composition according to any one of claims 1-16.
18. A lubricating composition comprising a major amount of a lubricating oil and a minor amount of a composition according to any one of claims 1-16.
EP83301521A 1982-05-07 1983-03-18 Sulfurized olefin-containing compositions Expired - Lifetime EP0094144B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US37594882A 1982-05-07 1982-05-07
US375948 1982-05-07

Publications (3)

Publication Number Publication Date
EP0094144A2 true EP0094144A2 (en) 1983-11-16
EP0094144A3 EP0094144A3 (en) 1985-08-14
EP0094144B1 EP0094144B1 (en) 1990-12-12

Family

ID=23483029

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83301521A Expired - Lifetime EP0094144B1 (en) 1982-05-07 1983-03-18 Sulfurized olefin-containing compositions

Country Status (9)

Country Link
EP (1) EP0094144B1 (en)
JP (1) JPS5915490A (en)
AU (1) AU563804B2 (en)
BR (1) BR8301779A (en)
CA (1) CA1208208A (en)
DE (1) DE3382057D1 (en)
HK (1) HK44391A (en)
MX (2) MX167094B (en)
SG (1) SG37191G (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0391653A3 (en) * 1989-04-03 1990-12-27 Ethyl Petroleum Additives Ltd. Lubricant compositions
EP0632125A1 (en) * 1993-07-02 1995-01-04 Idemitsu Kosan Company Limited Metal working oil composition
EP0918083A1 (en) * 1997-11-19 1999-05-26 Chevron Chemical Company LLC Use of dithioethylene derivatives as fluorocarbon elastomer comptability improving agents
WO2006110220A1 (en) 2005-04-08 2006-10-19 Exxonmobil Chemical Patents Inc. A Corporation Of The State Of Delaware Additive system for lubricants

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA862362B (en) * 1985-04-08 1987-11-25 Mobil Oil Corp Sulfurized olefins
JP2008094891A (en) * 2006-10-06 2008-04-24 Idemitsu Kosan Co Ltd Lubricating additive
US8841243B2 (en) * 2010-03-31 2014-09-23 Chevron Oronite Company Llc Natural gas engine lubricating oil compositions

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2203507A (en) * 1937-12-11 1940-06-04 Socony Vacuum Oil Co Inc Lubricant and method of lubrication
US2851422A (en) * 1952-11-07 1958-09-09 Pure Oil Co Automatic transmission fluid
US2830956A (en) * 1954-02-12 1958-04-15 Exxon Research Engineering Co Hydraulic power transmission fluids
US3267033A (en) * 1963-04-15 1966-08-16 Lubrizol Corp Lubricating composition having desirable frictional characteristics
US3574101A (en) * 1968-04-29 1971-04-06 Lubrizol Corp Acylating agents,their salts,and lubricants and fuels containing the same
JPS4945769A (en) * 1972-09-04 1974-05-01 Seiko Instr & Electronics Udedokeikeesu no kozo
CA1064463A (en) * 1975-03-21 1979-10-16 Kirk E. Davis Sulfurized compositions
US3966623A (en) * 1975-06-05 1976-06-29 Texaco Inc. Corrosion inhibited lube oil compositions
US4326972A (en) * 1978-06-14 1982-04-27 The Lubrizol Corporation Concentrates, lubricant compositions and methods for improving fuel economy of internal combustion engine
US4240958A (en) * 1978-12-20 1980-12-23 Mobil Oil Corporation Process of preparing sulfurized olefins
JPS5767693A (en) * 1980-10-15 1982-04-24 Mitsubishi Oil Co Ltd Lubricant composition
US4416788A (en) * 1981-10-13 1983-11-22 Atlantic Richfield Company Metal cutting oil and method for using same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0391653A3 (en) * 1989-04-03 1990-12-27 Ethyl Petroleum Additives Ltd. Lubricant compositions
US5599780A (en) * 1992-07-02 1997-02-04 Idemitsu Kosan Co., Ltd. Metal working oil composition
EP0632125A1 (en) * 1993-07-02 1995-01-04 Idemitsu Kosan Company Limited Metal working oil composition
EP0918083A1 (en) * 1997-11-19 1999-05-26 Chevron Chemical Company LLC Use of dithioethylene derivatives as fluorocarbon elastomer comptability improving agents
WO2006110220A1 (en) 2005-04-08 2006-10-19 Exxonmobil Chemical Patents Inc. A Corporation Of The State Of Delaware Additive system for lubricants
EP1871861B1 (en) 2005-04-08 2020-01-15 The Lubrizol Corporation Additive system for lubricants

Also Published As

Publication number Publication date
EP0094144B1 (en) 1990-12-12
MX9100403A (en) 1992-11-01
EP0094144A3 (en) 1985-08-14
AU563804B2 (en) 1987-07-23
HK44391A (en) 1991-06-14
BR8301779A (en) 1983-12-20
JPS5915490A (en) 1984-01-26
DE3382057D1 (en) 1991-01-24
SG37191G (en) 1991-06-21
MX167094B (en) 1993-03-03
CA1208208A (en) 1986-07-22
AU1263383A (en) 1983-11-10

Similar Documents

Publication Publication Date Title
EP0199782B1 (en) Sulfurized compositions and lubricants
US4263150A (en) Phosphite treatment of phosphorus acid salts and compositions produced thereby
US4119550A (en) Sulfurized compositions
US4344854A (en) Sulfurized compositions
US4119549A (en) Sulfurized compositions
US4191659A (en) Sulfurized compositions
US4308154A (en) Mixed metal salts and lubricants and functional fluids containing them
US4289635A (en) Process for preparing molybdenum-containing compositions useful for improved fuel economy of internal combustion engines
EP0299996B1 (en) Gear lubricant composition
US4417990A (en) Mixed metal salts/sulfurized phenate compositions and lubricants and functional fluids containing them
EP0141839B2 (en) Phosphorus-containing metal salts/sulfurized phenate compositions/aromatic substituted triazoles, concentrates, and functional fluids containing same
EP0107282B1 (en) Sulfur containing lubricating compositions
CA1294611C (en) Sulfur-containing compositions, and additive concentrates, lubricating oils and metal working lubricants containing same
US4246126A (en) 2,5-Dimercapto-1,3,4-thiadiazole derivatives and lubricants containing them
US4664825A (en) Sulfurized compositions and lubricants containing them
CA1168222A (en) Benzotriazole-sulfurized olefin compositions and lubricants and concentrates containing them
EP0151581B2 (en) Phosphorus-containing metal salt/olefin compositions and reaction products of same with active sulfur
EP0094144B1 (en) Sulfurized olefin-containing compositions
CA1135041A (en) Mixed metal salts and lubricants and functional fluids containing them
GB2030994A (en) Novel Foam Inhibiting Polymers and Lubricants Containing Them
GB2068380A (en) Process for Preparing Molybdenum-Containing Compositions Useful for Improved Fuel Economy of Internal Combustion Engines
HK15391A (en) Sulfurized compositions and lubricants
HK83990A (en) Sulfur-containing compositions, and additive concentrates, lubricating oils, and metal working lubricants containing same

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE FR GB IT NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): BE DE FR GB IT NL

17P Request for examination filed

Effective date: 19860210

17Q First examination report despatched

Effective date: 19860912

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT NL

ITF It: translation for a ep patent filed
REF Corresponds to:

Ref document number: 3382057

Country of ref document: DE

Date of ref document: 19910124

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19960223

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19960226

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19970331

BERE Be: lapsed

Owner name: THE LUBRIZOL CORP.

Effective date: 19970331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19971001

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19971001

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010302

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010306

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010307

Year of fee payment: 19

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021129

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST