DK3100675T3 - Fremgangsmåde og system til genkendelse af fysiologiske lyde - Google Patents
Fremgangsmåde og system til genkendelse af fysiologiske lyde Download PDFInfo
- Publication number
- DK3100675T3 DK3100675T3 DK16166727.4T DK16166727T DK3100675T3 DK 3100675 T3 DK3100675 T3 DK 3100675T3 DK 16166727 T DK16166727 T DK 16166727T DK 3100675 T3 DK3100675 T3 DK 3100675T3
- Authority
- DK
- Denmark
- Prior art keywords
- module
- heart
- sounds
- lung
- sound
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 27
- 208000037656 Respiratory Sounds Diseases 0.000 claims description 41
- 239000013598 vector Substances 0.000 claims description 18
- 238000012706 support-vector machine Methods 0.000 claims description 15
- 238000004422 calculation algorithm Methods 0.000 claims description 14
- 238000000605 extraction Methods 0.000 claims description 14
- 239000000203 mixture Substances 0.000 claims description 9
- 238000013528 artificial neural network Methods 0.000 claims description 8
- 230000000694 effects Effects 0.000 claims description 5
- 230000000747 cardiac effect Effects 0.000 claims description 3
- 210000002569 neuron Anatomy 0.000 claims description 3
- 238000002680 cardiopulmonary resuscitation Methods 0.000 claims 1
- 230000002685 pulmonary effect Effects 0.000 claims 1
- 230000006870 function Effects 0.000 description 17
- 238000012549 training Methods 0.000 description 17
- 238000004364 calculation method Methods 0.000 description 12
- 238000001514 detection method Methods 0.000 description 12
- 230000001788 irregular Effects 0.000 description 10
- 238000009826 distribution Methods 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- 238000002555 auscultation Methods 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 206010003119 arrhythmia Diseases 0.000 description 5
- 230000006793 arrhythmia Effects 0.000 description 5
- 238000011160 research Methods 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 206010047924 Wheezing Diseases 0.000 description 4
- 201000010099 disease Diseases 0.000 description 4
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 210000004072 lung Anatomy 0.000 description 4
- 238000005070 sampling Methods 0.000 description 4
- 230000002861 ventricular Effects 0.000 description 4
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 230000008602 contraction Effects 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 206010011376 Crepitations Diseases 0.000 description 2
- 206010019280 Heart failures Diseases 0.000 description 2
- 210000001765 aortic valve Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 208000019622 heart disease Diseases 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000003062 neural network model Methods 0.000 description 2
- 239000011295 pitch Substances 0.000 description 2
- 210000003102 pulmonary valve Anatomy 0.000 description 2
- 238000009394 selective breeding Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 230000005236 sound signal Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 241000282412 Homo Species 0.000 description 1
- 206010035664 Pneumonia Diseases 0.000 description 1
- 206010037423 Pulmonary oedema Diseases 0.000 description 1
- 206010058151 Pulseless electrical activity Diseases 0.000 description 1
- 206010039109 Rhonchi Diseases 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- 208000006673 asthma Diseases 0.000 description 1
- 230000001746 atrial effect Effects 0.000 description 1
- 210000003926 auditory cortex Anatomy 0.000 description 1
- 238000010009 beating Methods 0.000 description 1
- 238000013529 biological neural network Methods 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 210000001638 cerebellum Anatomy 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000013144 data compression Methods 0.000 description 1
- 230000002498 deadly effect Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000004064 dysfunction Effects 0.000 description 1
- 238000013399 early diagnosis Methods 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 210000000416 exudates and transudate Anatomy 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 210000002837 heart atrium Anatomy 0.000 description 1
- 210000003709 heart valve Anatomy 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003601 intercostal effect Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 210000004115 mitral valve Anatomy 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 230000002107 myocardial effect Effects 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 208000005333 pulmonary edema Diseases 0.000 description 1
- 238000000611 regression analysis Methods 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 230000033764 rhythmic process Effects 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 210000000591 tricuspid valve Anatomy 0.000 description 1
- 208000019553 vascular disease Diseases 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 230000001755 vocal effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L25/00—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
- G10L25/48—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use
- G10L25/51—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use for comparison or discrimination
- G10L25/63—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use for comparison or discrimination for estimating an emotional state
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B7/00—Instruments for auscultation
- A61B7/02—Stethoscopes
- A61B7/04—Electric stethoscopes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
- A61B5/02028—Determining haemodynamic parameters not otherwise provided for, e.g. cardiac contractility or left ventricular ejection fraction
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/08—Measuring devices for evaluating the respiratory organs
- A61B5/0803—Recording apparatus specially adapted therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb
- A61B5/1107—Measuring contraction of parts of the body, e.g. organ or muscle
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/42—Detecting, measuring or recording for evaluating the gastrointestinal, the endocrine or the exocrine systems
- A61B5/4222—Evaluating particular parts, e.g. particular organs
- A61B5/4255—Intestines, colon or appendix
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/7246—Details of waveform analysis using correlation, e.g. template matching or determination of similarity
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/7253—Details of waveform analysis characterised by using transforms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/7264—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/7264—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
- A61B5/7267—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems involving training the classification device
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7271—Specific aspects of physiological measurement analysis
- A61B5/7275—Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7271—Specific aspects of physiological measurement analysis
- A61B5/7282—Event detection, e.g. detecting unique waveforms indicative of a medical condition
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B7/00—Instruments for auscultation
- A61B7/003—Detecting lung or respiration noise
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B7/00—Instruments for auscultation
- A61B7/008—Detecting noise of gastric tract, e.g. caused by voiding
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/08—Clinical applications
- A61B8/0883—Clinical applications for diagnosis of the heart
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/08—Clinical applications
- A61B8/0891—Clinical applications for diagnosis of blood vessels
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/52—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/5215—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
- A61B8/5223—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for extracting a diagnostic or physiological parameter from medical diagnostic data
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L15/00—Speech recognition
- G10L15/02—Feature extraction for speech recognition; Selection of recognition unit
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L15/00—Speech recognition
- G10L15/08—Speech classification or search
- G10L15/16—Speech classification or search using artificial neural networks
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L25/00—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
- G10L25/03—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters
- G10L25/18—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters the extracted parameters being spectral information of each sub-band
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L25/00—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
- G10L25/03—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters
- G10L25/24—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters the extracted parameters being the cepstrum
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L25/00—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
- G10L25/27—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the analysis technique
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L25/00—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
- G10L25/48—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use
- G10L25/51—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use for comparison or discrimination
- G10L25/66—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use for comparison or discrimination for extracting parameters related to health condition
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L25/00—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
- G10L25/78—Detection of presence or absence of voice signals
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H40/00—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
- G16H40/60—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
- G16H40/63—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/20—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/30—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2562/00—Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
- A61B2562/02—Details of sensors specially adapted for in-vivo measurements
- A61B2562/0204—Acoustic sensors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
- A61B5/0205—Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb
- A61B5/113—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb occurring during breathing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/30—Input circuits therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/362—Heart stimulators
- A61N1/365—Heart stimulators controlled by a physiological parameter, e.g. heart potential
- A61N1/36514—Heart stimulators controlled by a physiological parameter, e.g. heart potential controlled by a physiological quantity other than heart potential, e.g. blood pressure
- A61N1/36578—Heart stimulators controlled by a physiological parameter, e.g. heart potential controlled by a physiological quantity other than heart potential, e.g. blood pressure controlled by mechanical motion of the heart wall, e.g. measured by an accelerometer or microphone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/38—Applying electric currents by contact electrodes alternating or intermittent currents for producing shock effects
- A61N1/39—Heart defibrillators
- A61N1/3904—External heart defibrillators [EHD]
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Public Health (AREA)
- Biomedical Technology (AREA)
- Medical Informatics (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Surgery (AREA)
- Molecular Biology (AREA)
- Veterinary Medicine (AREA)
- Heart & Thoracic Surgery (AREA)
- Pathology (AREA)
- Biophysics (AREA)
- Physiology (AREA)
- Artificial Intelligence (AREA)
- Signal Processing (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Acoustics & Sound (AREA)
- Psychiatry (AREA)
- Computational Linguistics (AREA)
- Human Computer Interaction (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Multimedia (AREA)
- Epidemiology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Cardiology (AREA)
- Radiology & Medical Imaging (AREA)
- Primary Health Care (AREA)
- Pulmonology (AREA)
- Evolutionary Computation (AREA)
- Mathematical Physics (AREA)
- Fuzzy Systems (AREA)
- Databases & Information Systems (AREA)
- Data Mining & Analysis (AREA)
- Gastroenterology & Hepatology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Dentistry (AREA)
- Endocrinology (AREA)
Claims (15)
1. System til genkendelse af hjertelyde eller lungelyde, omfattende: et modtagelsesmodul (110) konfigureret til at modtage hjertelydene eller lungelydene; et kendetegnekstraheringsmodul (120) konfigureret til at ekstrahere mindst ét kendetegn fra hjertelydene eller lungelydene; og en klassifikator (130) konfigureret til at klassificere mindst ét kendetegn for at identificere mindst én kategori; hvor kendetegnekstraheringsmodulet (120) omfatter et stemmeaktivitetsdetektor-(VAD)-modul (121), et Mel-frekvenscepstrumkoefficient-(MFCC)-modul (122), og et K-means-algoritmemodul (123), hvor VAD-modulet (121) er konfigureret til at detektere mindst ét segment fra hjertelydene eller lungelydene, MFCC-modulet (122) er konfigureret til overføre det mindst ene segment til mindst én MFCC-kendetegnsvektor, og K-means-algoritmemodulet (123) er konfigureret til at finde mindst ét repræsentativt datapunkt fra den mindst ene MFCC-kendetegnsvektor for at identificere støj og hjertelydene eller lungelydene.
2. Systemet til genkendelse af hjertelyde eller lungelyde ifølge krav 1, hvor modtagelsesmodulet (110) er en fysiologisk optageindretning der konverterer et analogt signal af hjertelydene eller lungelydene til et digitalt signal af hjertelydene eller lungelydene.
3. Systemet til genkendelse af hjertelyde eller lungelyde ifølge krav 2, hvor den fysiologiske optageindretning er et elektronisk stetoskop.
4. Systemet til genkendelse af hjertelyde eller lungelyde ifølge krav 1, hvor klassifikatoren (130) omfatter et dybt neuralt netværks-(DNN)-modul (134).
5. Systemet til genkendelse af hjertelyde eller lungelyde ifølge krav 4, hvor DNN-modulet (134) omfatter tre skjulte lag, og hvert af de tre skjulte lag omfatter 100 neuroner.
6. Systemet til genkendelse af hjertelyde eller lungelyde ifølge krav 1, hvor VAD-modulet (121) er konfigureret til at detektere det mindst ene segment fra hjertelydene eller lungelydene baseret på lydenergiforskelle.
7. Systemet til genkendelse af hjertelyde eller lungelyde ifølge krav 1, hvor klassifikatoren (130) inkludereret K-nærmeste-nabo-(KNN)-modul (131), et Gaussisk blandingsmodel-(GMM)-modul (132), eller et støttevektormaskine-(SVM)-modul (133).
8. Systemet til genkendelse af hjertelyde eller lungelyde ifølge krav 1, hvor hjertelydene omfatter første hjertelyd (SI), anden hjertelyd (S2) eller en kombination deraf.
9. Systemet til genkendelse af hjertelyde eller lungelyde ifølge krav 1, hvor systemet yderligere omfatter en automatiseret ekstern defibrillator, en Holter-monitor, en kardio-pulmonal genoplivnings-(CPR)-maskine, en pacemaker, en implanterbar kardioverter-defibrillator (ICD), et elektrokardiogram (EKG), eller en ultralydsbølgeindretning.
10. Fremgangsmåde til genkendelse af hjertelyde eller lungelyde med systemet ifølge krav 1, omfattende: at modtage hjertelydene eller lungelydene med modtagelsesmodulet (110); at ekstrahere mindst ét kendetegn fra hjertelydene eller lungelydene med kendetegnekstraheringsmodulet (120); og at klassificere det mindst ene kendetegn for at identificere mindst én kategori med klassifikatoren (130); hvor ekstrahering af mindst ét kendetegn fra hjertelydene eller lungelydene med kendetegnekstraheringsmodulet (120) omfatter: at detektere mindst ét segment fra hjertelydene eller lungelydene med VAD-modulet (121); at overføre det mindst ene segment til mindst én MFCC-kendetegnsvektor med MFCC-modulet (122); at finde mindst ét repræsentativt datapunkt fra den mindst ene MFCC-kendetegnsvektor med K-means-algoritmemodulet (123) for at identificere støj og hjertelydene eller lungelydene.
11. Fremgangsmåden til genkendelse af hjertelyde eller lungelyde ifølge krav 10, hvor klassifikatoren (130) omfatter et dybt neuralt netværks-(DNN)-modul (134).
12. Fremgangsmåden til genkendelse af hjertelyde eller lungelyde ifølge krav 11, hvor DNN-modulet (134) omfatter tre skjulte lag, og hvert af de tre skjulte lag omfatter 100 neuroner.
13. Fremgangsmåden til genkendelse af hjertelyde eller lungelyde ifølge krav 10, hvor VAD-modulet (121) er konfigureret til at detektere det mindst ene segment fra hjertelydene eller lungelydene baseret på lydenergiforskelle.
14. Fremgangsmåden til genkendelse af hjertelyde eller lungelyde ifølge krav 10, hvor klassifikatoren (130) inkluderer et KNN-modul (131), et GMM-modul (132), eller et SVM-modul (133).
15. Fremgangsmåden til genkendelse af hjertelyde eller lungelyde ifølge krav 10, hvor hjertelydene omfatter første hjertelyd (SI), anden hjertelyd (S2) eller en kombination deraf.
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14/729,423 US9687208B2 (en) | 2015-06-03 | 2015-06-03 | Method and system for recognizing physiological sound |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| DK3100675T3 true DK3100675T3 (da) | 2018-11-19 |
Family
ID=56080227
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| DK16166727.4T DK3100675T3 (da) | 2015-06-03 | 2016-04-22 | Fremgangsmåde og system til genkendelse af fysiologiske lyde |
Country Status (7)
| Country | Link |
|---|---|
| US (1) | US9687208B2 (da) |
| EP (1) | EP3100675B1 (da) |
| CN (1) | CN106251880B (da) |
| DK (1) | DK3100675T3 (da) |
| ES (1) | ES2693386T3 (da) |
| HU (1) | HUE040549T2 (da) |
| TW (1) | TWI596600B (da) |
Families Citing this family (52)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TW201700063A (zh) * | 2015-06-22 | 2017-01-01 | Jon-Chao Hong | 心肺音異常處理方法及系統 |
| WO2018052446A1 (en) * | 2016-09-19 | 2018-03-22 | Siemens Aktiengesellschaft | Critical infrastructure forensics |
| US10159459B2 (en) * | 2016-11-11 | 2018-12-25 | iMEDI PLUS Inc. | Multi-mic sound collector and system and method for sound localization |
| CN108652658A (zh) * | 2017-03-31 | 2018-10-16 | 京东方科技集团股份有限公司 | 爆裂音识别方法及系统 |
| CN107280674A (zh) * | 2017-06-02 | 2017-10-24 | 南京理工大学 | 基于音频录取设备的呼吸模式判决方法 |
| CN107292286B (zh) * | 2017-07-14 | 2021-10-22 | 中国科学院苏州生物医学工程技术研究所 | 基于机器学习的呼吸音鉴别方法及系统 |
| WO2019023879A1 (zh) * | 2017-07-31 | 2019-02-07 | 深圳和而泰智能家居科技有限公司 | 咳嗽声音识别方法、设备和存储介质 |
| TWI622980B (zh) * | 2017-09-05 | 2018-05-01 | 醫療財團法人徐元智先生醫藥基金會亞東紀念醫院 | 嗓音疾病偵測分類系統 |
| CN110021435A (zh) * | 2017-09-07 | 2019-07-16 | 医疗财团法人徐元智先生医药基金会亚东纪念医院 | 嗓音侦测分类系统 |
| CN108053841A (zh) * | 2017-10-23 | 2018-05-18 | 平安科技(深圳)有限公司 | 利用语音进行疾病预测的方法及应用服务器 |
| WO2019079972A1 (zh) * | 2017-10-24 | 2019-05-02 | 深圳和而泰智能控制股份有限公司 | 特定声音识别方法、设备和存储介质 |
| CN108175426B (zh) * | 2017-12-11 | 2020-06-02 | 东南大学 | 一种基于深度递归型条件受限玻尔兹曼机的测谎方法 |
| CN107811649B (zh) * | 2017-12-13 | 2020-12-22 | 四川大学 | 一种基于深度卷积神经网络的心音多分类方法 |
| CA3083639C (en) * | 2017-12-14 | 2023-04-04 | Salcit Technologies Private Limited | Method and system for analyzing risk associated with respiratory sounds |
| US10828009B2 (en) * | 2017-12-20 | 2020-11-10 | International Business Machines Corporation | Monitoring body sounds and detecting health conditions |
| CN108143407A (zh) * | 2017-12-25 | 2018-06-12 | 四川大学 | 一种自动提取心音包络特征的心音分段方法 |
| CN108417225A (zh) * | 2018-02-11 | 2018-08-17 | 广州市碳码科技有限责任公司 | 一种呼吸音监测方法、装置、终端及计算机可读存储介质 |
| CN108420454B (zh) * | 2018-02-26 | 2021-11-26 | 河南善仁医疗科技有限公司 | 基于多路心音的心音分裂识别方法 |
| CN108550394A (zh) * | 2018-03-12 | 2018-09-18 | 广州势必可赢网络科技有限公司 | 一种基于声纹识别的诊病方法及装置 |
| CN108831486B (zh) * | 2018-05-25 | 2023-06-02 | 南京邮电大学 | 基于dnn与gmm模型的说话人识别方法 |
| CN108962389A (zh) * | 2018-06-21 | 2018-12-07 | 上海掌门科技有限公司 | 用于风险提示的方法及系统 |
| CN108937866B (zh) * | 2018-06-29 | 2020-03-20 | 出门问问信息科技有限公司 | 睡眠状态的监测方法及装置 |
| CN112399819B (zh) | 2018-07-02 | 2024-08-23 | 3M创新有限公司 | 用于监测时间相关过程的传感系统和方法 |
| CN108935188A (zh) * | 2018-07-05 | 2018-12-07 | 平安科技(深圳)有限公司 | 猪只疾病识别方法、装置及电子设备 |
| EP3608918B1 (en) * | 2018-08-08 | 2024-05-22 | Tata Consultancy Services Limited | Parallel implementation of deep neural networks for classifying heart sound signals |
| CN109357749B (zh) * | 2018-09-04 | 2020-12-04 | 南京理工大学 | 一种基于dnn算法的电力设备音频信号分析方法 |
| WO2020077413A1 (en) * | 2018-10-17 | 2020-04-23 | The University Of Queensland | A method and apparatus for diagnosis of maladies from patient sounds |
| CN109431517A (zh) * | 2018-11-13 | 2019-03-08 | 四川长虹电器股份有限公司 | 一种基于心音的身份识别方法 |
| TWI687206B (zh) * | 2018-12-06 | 2020-03-11 | 財團法人工業技術研究院 | 異常肺音標記的方法及裝置 |
| CN109893161A (zh) * | 2019-03-12 | 2019-06-18 | 南京大学 | 一种基于改进梅尔非线性频段划分的心音信号特征提取方法 |
| CN110179492B (zh) * | 2019-05-08 | 2021-12-14 | 四川新源生物电子科技有限公司 | 基于自适应双阈值的肠鸣音智能识别算法 |
| CN110432924B (zh) * | 2019-08-06 | 2021-10-22 | 杭州智团信息技术有限公司 | 肠鸣音检测装置、方法和电子设备 |
| CN110517783B (zh) * | 2019-09-18 | 2023-02-03 | 东软集团股份有限公司 | 模型训练方法、装置以及心脏疾病诊断装置、设备、介质 |
| CN111712874B (zh) * | 2019-10-31 | 2023-07-14 | 支付宝(杭州)信息技术有限公司 | 用于确定声音特性的方法、系统、装置和存储介质 |
| CN110970042B (zh) * | 2019-12-13 | 2023-04-18 | 苏州美糯爱医疗科技有限公司 | 一种电子听诊器的肺部啰音人工智能实时分类方法、系统、装置及可读存储介质 |
| CN112017695A (zh) * | 2020-03-04 | 2020-12-01 | 上海交通大学医学院附属上海儿童医学中心 | 一种自动识别生理声音的系统及方法 |
| BR112022024759A2 (pt) * | 2020-06-04 | 2022-12-27 | Entac Medical Inc | Dispositivos e métodos para previsão in vivo de comprometimentos e eventos funcionais |
| US20220031256A1 (en) * | 2020-07-31 | 2022-02-03 | 3M Innovative Properties Company | Composite phonocardiogram visualization on an electronic stethoscope display |
| CN111956259B (zh) * | 2020-08-13 | 2021-07-06 | 厦门大学 | 基于深度神经网络架构的肺音识别方法、装置和设备 |
| CN112370072B (zh) * | 2020-11-13 | 2022-09-16 | 深圳市凯沃尔电子有限公司 | 一种听诊信号处理系统 |
| TWI749880B (zh) * | 2020-11-19 | 2021-12-11 | 緯創資通股份有限公司 | 生理病徵識別方法及生理病徵感測系統 |
| CN114680867A (zh) * | 2020-12-30 | 2022-07-01 | 陈之硕 | 呼吸功能检测方法及装置 |
| TWI848197B (zh) * | 2020-12-30 | 2024-07-11 | 國立清華大學 | 呼吸功能檢測方法及裝置 |
| KR102287081B1 (ko) * | 2021-01-06 | 2021-08-06 | 김도형 | 휴대용 디지털 청진기를 활용한 의료 서비스 관리 및 제공 장치 |
| RU2766751C1 (ru) * | 2021-03-05 | 2022-03-15 | Федеральное государственное бюджетное образовательное учреждение высшего образования «Юго-Западный государственный университет» (ЮЗГУ) (RU) | Способ диагностики астматического бронхита в процессе аускультации легких взрослых людей |
| US12482560B2 (en) | 2021-04-23 | 2025-11-25 | Lasarrus Clinic And Research Center | Energy-efficient collection of wearable sensor data |
| CN113449636B (zh) * | 2021-06-28 | 2024-03-12 | 苏州美糯爱医疗科技有限公司 | 一种基于人工智能的主动脉瓣狭窄严重程度自动分类方法 |
| US12476006B2 (en) | 2021-07-10 | 2025-11-18 | Lassarrus Clinic And Research Center Inc. | Smart multi-modal telehealth-IoT system for respiratory analysis |
| US12148525B2 (en) | 2021-09-04 | 2024-11-19 | Lasarrus Clinic And Research Center Inc. | Wearable multi-modal system for remote monitoring of patients with chronic obstructive pulmonary disease |
| CN113948108B (zh) * | 2021-10-09 | 2023-03-21 | 广州蓝仕威克软件开发有限公司 | 一种自动识别生理声音的方法及系统 |
| CN114391807B (zh) * | 2021-12-17 | 2023-12-19 | 珠海脉动时代健康科技有限公司 | 睡眠呼吸障碍分析方法、装置、设备及可读介质 |
| CN116807404A (zh) * | 2023-06-16 | 2023-09-29 | 清春智富(苏州)高新科技有限公司 | 基于巡诊机器人的听诊信号智能识别方法及设备 |
Family Cites Families (20)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5218969A (en) * | 1988-02-04 | 1993-06-15 | Blood Line Technology, Inc. | Intelligent stethoscope |
| US6056703A (en) * | 1996-04-03 | 2000-05-02 | Rush Presbyterian-St Luke's Medical Center | Method and apparatus for characterizing gastrointestinal sounds |
| EP1667579A4 (en) * | 2003-09-12 | 2008-06-11 | Bodymedia Inc | METHOD AND DEVICE FOR MEASURING CARDIAC PARAMETERS |
| US20060167385A1 (en) * | 2005-01-24 | 2006-07-27 | 3M Innovative Properties Company | Analysis of auscultatory sounds using voice recognition |
| US8323189B2 (en) * | 2006-05-12 | 2012-12-04 | Bao Tran | Health monitoring appliance |
| CN100418480C (zh) * | 2006-05-16 | 2008-09-17 | 清华大学深圳研究生院 | 基于心音分析的心脏病自动分类系统及其心音分段方法 |
| US7479115B2 (en) * | 2006-08-25 | 2009-01-20 | Savic Research, Llc | Computer aided diagnosis of lung disease |
| US20100094152A1 (en) * | 2006-09-22 | 2010-04-15 | John Semmlow | System and method for acoustic detection of coronary artery disease |
| WO2011062071A1 (ja) * | 2009-11-19 | 2011-05-26 | 日本電気株式会社 | 音響画像区間分類装置および方法 |
| KR101191667B1 (ko) * | 2010-05-20 | 2012-10-17 | 충북대학교 산학협력단 | 시간 영역 특징을 이용한 심장 질환 진단 장치 |
| CN101930734B (zh) * | 2010-07-29 | 2012-05-23 | 重庆大学 | 一种心音信号分类识别方法及装置 |
| EP2636369A4 (en) * | 2010-11-04 | 2014-09-24 | Panasonic Corp | BIOMETRIC SOUND MEASURING DEVICE AND BIOMETRIC MEASUREMENT METHOD |
| EP2651291A2 (en) * | 2010-12-15 | 2013-10-23 | Cardiac Pacemakers, Inc. | Cardiac decompensation detection using multiple sensors |
| US20120209131A1 (en) * | 2011-02-11 | 2012-08-16 | AventuSoft, LLC | Method and System of a Cardio-acoustic Classification system for Screening, Diagnosis and Monitoring of Cardiovascular Conditions |
| US20130237872A1 (en) * | 2012-03-12 | 2013-09-12 | Xusheng Zhang | Heart sound sensing to reduce inappropriate tachyarrhythmia therapy |
| US10098569B2 (en) * | 2012-03-29 | 2018-10-16 | The University Of Queensland | Method and apparatus for processing patient sounds |
| CN102697520B (zh) * | 2012-05-08 | 2014-10-29 | 天津沃康科技有限公司 | 基于智能识别功能的电子听诊器 |
| CN102934989A (zh) * | 2012-12-05 | 2013-02-20 | 隋聪 | 基于神经网络的心音识别装置及方法 |
| CN105393252B (zh) * | 2013-04-18 | 2019-04-19 | 数字标记公司 | 生理数据采集和分析 |
| US10013652B2 (en) * | 2015-04-29 | 2018-07-03 | Nuance Communications, Inc. | Fast deep neural network feature transformation via optimized memory bandwidth utilization |
-
2015
- 2015-06-03 US US14/729,423 patent/US9687208B2/en not_active Expired - Fee Related
-
2016
- 2016-04-18 CN CN201610239958.5A patent/CN106251880B/zh not_active Expired - Fee Related
- 2016-04-22 ES ES16166727.4T patent/ES2693386T3/es active Active
- 2016-04-22 DK DK16166727.4T patent/DK3100675T3/da active
- 2016-04-22 EP EP16166727.4A patent/EP3100675B1/en not_active Not-in-force
- 2016-04-22 HU HUE16166727A patent/HUE040549T2/hu unknown
- 2016-04-25 TW TW105112919A patent/TWI596600B/zh not_active IP Right Cessation
Also Published As
| Publication number | Publication date |
|---|---|
| US20160354053A1 (en) | 2016-12-08 |
| HUE040549T2 (hu) | 2019-03-28 |
| ES2693386T3 (es) | 2018-12-11 |
| EP3100675B1 (en) | 2018-10-10 |
| US9687208B2 (en) | 2017-06-27 |
| TWI596600B (zh) | 2017-08-21 |
| CN106251880A (zh) | 2016-12-21 |
| TW201643865A (zh) | 2016-12-16 |
| CN106251880B (zh) | 2020-03-31 |
| EP3100675A1 (en) | 2016-12-07 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| DK3100675T3 (da) | Fremgangsmåde og system til genkendelse af fysiologiske lyde | |
| Ma et al. | Lungbrn: A smart digital stethoscope for detecting respiratory disease using bi-resnet deep learning algorithm | |
| Chen et al. | S1 and S2 heart sound recognition using deep neural networks | |
| Zheng et al. | A novel hybrid energy fraction and entropy-based approach for systolic heart murmurs identification | |
| Ortiz et al. | Heart sound classification based on temporal alignment techniques | |
| Grzegorczyk et al. | PCG classification using a neural network approach | |
| Nassralla et al. | Classification of normal and abnormal heart sounds | |
| WO2018011801A1 (en) | Estimation of sleep quality parameters from whole night audio analysis | |
| Singh et al. | Short unsegmented PCG classification based on ensemble classifier | |
| Abduh et al. | Classification of heart sounds using fractional Fourier transform based mel-frequency spectral coefficients and stacked autoencoder deep neural network | |
| Boussaa et al. | ECG signals classification using MFCC coefficients and ANN classifier | |
| Ge et al. | Detection of pulmonary hypertension associated with congenital heart disease based on time-frequency domain and deep learning features | |
| Mayorga et al. | Modified classification of normal lung sounds applying quantile vectors | |
| Banerjee et al. | Multi-class heart sounds classification using 2D-convolutional neural network | |
| Khan et al. | Classification of multi-class cardiovascular disorders using ensemble classifier and impulsive domain analysis | |
| Liu et al. | Respiratory sounds feature learning with deep convolutional neural networks | |
| Wu et al. | Inspiration of Prototype Knowledge: Introducing a Meta-Learning Approach to Heart Sound Classification | |
| Ge et al. | Detection of pulmonary arterial hypertension associated with congenital heart disease based on time–frequency domain and deep learning features | |
| El Badlaoui et al. | Discrimination between normal and heart murmurs sound, based on statistical parameters extraction and classification | |
| Maity et al. | Time-frequency fragment selection for disease detection from imbalanced phonocardiogram data | |
| El Badlaoui et al. | Phonocardiogram classification based on MFCC extraction | |
| Bourouhou et al. | Classification of cardiovascular diseases using dysphonia measurement in speech | |
| Pravin et al. | Automatic identification of heart abnormalities using PCG signals | |
| Arora et al. | A fusion framework based on cepstral domain features from phonocardiogram to predict heart health status | |
| Vieira | Multimodal deep learning for heart sound and electrocardiogram classification |