[go: up one dir, main page]

CN201753600U - Optical fiber monitoring device for mine shaft deformation - Google Patents

Optical fiber monitoring device for mine shaft deformation Download PDF

Info

Publication number
CN201753600U
CN201753600U CN2010202314975U CN201020231497U CN201753600U CN 201753600 U CN201753600 U CN 201753600U CN 2010202314975 U CN2010202314975 U CN 2010202314975U CN 201020231497 U CN201020231497 U CN 201020231497U CN 201753600 U CN201753600 U CN 201753600U
Authority
CN
China
Prior art keywords
optical fiber
monitoring device
deformation
mine
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2010202314975U
Other languages
Chinese (zh)
Inventor
南世卿
高谦
张永坤
宋爱东
郭献章
翟淑华
胡文剑
刘增辉
韩瑞亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei Iron and Steel Group Mining Co Ltd
HBIS Co Ltd
Hebei Iron and Steel Group Co Ltd
Original Assignee
HBIS Co Ltd
Hebei Iron and Steel Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HBIS Co Ltd, Hebei Iron and Steel Group Co Ltd filed Critical HBIS Co Ltd
Priority to CN2010202314975U priority Critical patent/CN201753600U/en
Application granted granted Critical
Publication of CN201753600U publication Critical patent/CN201753600U/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

An optical fiber monitoring device for mine shaft deformation belongs to the technical field of detection equipment and is used for automatic real-time high-precision remote monitoring of deformation of mine shafts. The technical scheme includes that the optical fiber monitoring device consists of a sensor portion, transmission optical fibers and a fiber bragg grating demodulator, the sensor portion is mounted in a plurality of drilled holes of a mine shaft when in ground drilling, grouting and reinforcing, and two ends of the transmission optical fibers are respectively connected with the sensor portion and the fiber bragg grating demodulator. The optical fiber monitoring device has the advantages that when in projection of deformed shafts, deformation and failure mechanisms and stress environments of different shafts are different greatly; and when the best opportunity for mounting sensors on shaft walls is missed particularly after shaft construction is finished and hanging scaffolds are removed already, BOTDR distributed optical fiber sensors can be embedded in drilled holes by aid of anchor cable drilling engineering, so that the optical fiber monitoring device can monitor deformation of shaft wall rocks and realize safety monitoring and risk predication.

Description

A kind of vertical shaft for mine distortion fiber-optic monitoring device
Technical field
The utility model relates to a kind of device of monitoring the vertical shaft for mine distortion, belongs to the detecting instrument equipment technical field.
Background technology
Work shaft is the vertical mine structure from the downward deepening in the face of land, carries out tunneling construction and surrounding rock supporting in construction period by hanging scaffold.In case vertical shaft comes into operation, personnel are difficult to direct close contact and implement deformation monitoring.Monitoring technology such as not only traditional convergent deformation monitoring, laser range finder are difficult to carry out measurement, and the shaft structure environment is abominable, and traditional sensor also is difficult to adapt to condition of work.In case destroyed being difficult to of sensor recovers.This shows.The work shaft deformation monitoring is a very difficult and arduous research work.
Summary of the invention
Problem to be solved in the utility model provides a kind of can the distortion vertical shaft for mine carry out vertical shaft for mine distortion fiber-optic monitoring device real-time, remote, the automatic, high precision monitoring.
The technical scheme that solves the problems of the technologies described above is:
A kind of vertical shaft for mine distortion fiber-optic monitoring device, it is made up of transducing part, Transmission Fibers and fiber Bragg grating (FBG) demodulator, in a plurality of borings when transducing part is installed in vertical shaft for mine from ground punching consolidation by grouting, the Transmission Fibers two ends are connected with fiber Bragg grating (FBG) demodulator with transducing part respectively.
Above-mentioned vertical shaft for mine distortion fiber-optic monitoring device, transducing part is to arrange two single mode strain optical fiber and a triumphant pull-type optical fiber respectively in each boring.
Usefulness of the present utility model is: in the work shaft of disaster that deforms, not only monitoring of environmental is abominable, execution conditions difficulty, the deformation failure mechanism of each vertical shaft and be subjected to force environment to have very big-difference.Particularly working as vertical shaft completes, hanging scaffold is removed, when having lost the best opportunity of borehole wall sensor installation, the utility model can be by means of the anchor cable borehole engineering, in boring, bury the BOTDR distributed fiberoptic sensor underground, monitor the distortion of vertical shaft country rock thus, realize safety monitoring and risk profile vertical shaft.
Description of drawings
Fig. 1 is a block diagram of the present utility model.
Mark is as follows among the figure: fiber Bragg grating (FBG) demodulator 1, Transmission Fibers 2, transducing part 3.
The specific embodiment
The utility model is applicable to that under the situation that being out of shape has appearred in vertical shaft when pit shaft being reinforced maintenance, the optical fiber that can take well country rock anchor cable to reinforce boring is buried underground and deformation monitoring, to improve the stability of vertical shaft.At this moment general employing is laid from the face of land to boring slip casting and anchor cable at the vertical shaft country rock and is carried out the surrounding rock consolidation processing, by means of the anchor cable borehole engineering, in boring, buried the BOTDR distributed fiberoptic sensor underground, monitored the distortion of ventilating shaft country rock thus, realized safety monitoring and risk profile vertical shaft.
Distribution type fiber-optic and point type grating technology are advanced light sensing technology, and main difference is the end-probing device.Distributed employing continous way optical fiber, and Fiber Bragg Grating technology adopts point sensor.Detection optical fiber and grating sensor are installed tested structure surface, just can make monitoring system perception and process information, and execution result, automated response is made in stimulation to environment, make off-line, static state, passive detection become online, dynamic, real-time, early warning, active monitoring and control, realize strengthening structural safety, alleviate quality, cut down the consumption of energy, improve target such as structural performance.Because the optical fiber footpath is thin, pliable and tough, light weight, has good compliance, superhigh precision and sensitivity in conjunction with grating sensor, can integrate information transmission and sensing, be convenient to realize the repeated use of distributed sensing or multi-point sensing device, broadband and high data transmission rate, even at high wind, deep-etching, high-intensity magnetic field, have under the adverse circumstances such as damp, also can carry out pinpoint accuracy, high-speed and safe good characteristics such as remote detection, become the information transmission and sensing carrier---optical fiber intelligent structure of intelligence structure first-selection.
Adopt optical fiber sensing technology to carry out the malformation monitoring and have following advantage:
(1) be not subjected to the interference of electromagnetic field, electrical insulating property is good, adverse circumstances such as humidity resistance to chemical attack;
(2) light weight, volume is little, and is little to structure influence, is easy to arrange;
(3) realize distributed measurement, monitoring surface is comprehensive;
(4) Jian Ce amount is a wavelength information, therefore is not subjected to the influence of splicing loss, optical path loss factor, and is insensitive to environmental disturbances;
(5) signal attenuation is little on the unit length, can realize long apart from Centralized Monitoring;
(6) highly sensitive, the precision height;
(7) long service life.
According to the situation of stabilization works, the distribution type fiber-optic monitoring scheme is as follows:
1, according to the drilled grout hole design, in boring distribution type fiber-optic has been installed respectively, hole inner fiber length is decided according to the slip casting hole depth, arranges two single mode strain optical fiber and a triumphant pull-type optical fiber in each hole respectively.
2, because the job site circumstance complication has been installed optical fiber respectively in each boring.Install to finish in boring, in surface deployment main cable Transmission Fibers 2 has been introduced the control room, be connected with fiber Bragg grating (FBG) demodulator 1, finally formed the vertical shaft surrouding rock deformation monitoring system of being out of shape.
3, test after monitoring network forms, the result shows the duty of the longest and monitoring system of the effective length of the inner fiber of holing.
4, from the distortion situation of test data display analysis vertical shaft.
The built-in superradiance wideband light source of fiber Bragg grating (FBG) demodulator is coupled to the field optical fibers grating sensor by bare engine module with light source.Each centre wavelength that the field optical fibers grating sensor is reflected is reflected back ray machine module once more, bare engine module is sent reflected signal into the wavelength detecting unit, by the centre wavelength value of each sensor reflection of FP scanning technique perception, relatively each center sensor wavelength change amount is calculated measurand in the wavelength detecting unit.Fiber Bragg grating (FBG) demodulator is at last with output of measurand numerical value and demonstration.
What an embodiment of the present utility model adopted is fiber grating FBG sensor and AQ8603 fibre strain analyzer.

Claims (2)

1. a vertical shaft for mine is out of shape the fiber-optic monitoring device, it is characterized in that: it is made up of transducing part [3], Transmission Fibers [] and fiber Bragg grating (FBG) demodulator [1], in a plurality of borings when transducing part [3] is installed in vertical shaft for mine from ground punching consolidation by grouting, Transmission Fibers [2] two ends are connected with fiber Bragg grating (FBG) demodulator [1] with transducing part [3] respectively.
2. vertical shaft for mine distortion fiber-optic monitoring device according to claim 1, it is characterized in that: described transducing part [3] is to arrange two single mode strain optical fiber and a triumphant pull-type optical fiber respectively in each boring.
CN2010202314975U 2010-06-22 2010-06-22 Optical fiber monitoring device for mine shaft deformation Expired - Fee Related CN201753600U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010202314975U CN201753600U (en) 2010-06-22 2010-06-22 Optical fiber monitoring device for mine shaft deformation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010202314975U CN201753600U (en) 2010-06-22 2010-06-22 Optical fiber monitoring device for mine shaft deformation

Publications (1)

Publication Number Publication Date
CN201753600U true CN201753600U (en) 2011-03-02

Family

ID=43621332

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010202314975U Expired - Fee Related CN201753600U (en) 2010-06-22 2010-06-22 Optical fiber monitoring device for mine shaft deformation

Country Status (1)

Country Link
CN (1) CN201753600U (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103438820A (en) * 2013-09-05 2013-12-11 南京大学 Borehole profile rock and soil mass layered deformation optical fiber measuring method
CN103670386A (en) * 2013-12-11 2014-03-26 同济大学 Rock stratum multi-point displacement laser measuring method and device
CN103696977A (en) * 2013-12-26 2014-04-02 中国矿业大学 Mining axial fan vibration test system based on optical fiber sensor
CN103821507A (en) * 2014-03-18 2014-05-28 中国矿业大学 Method for detecting deformation of shaft wall of vertical shaft through distributed optical fibers
CN104020179A (en) * 2014-06-05 2014-09-03 河海大学常州校区 Corrugated pipe grouting compactness detecting device and method based on fiber bragg grating sensing technology
CN106017541A (en) * 2016-07-29 2016-10-12 中铁第四勘察设计院集团有限公司 Online monitoring device and method of subway contact net support looseness
CN106595837A (en) * 2015-10-20 2017-04-26 中兴通讯股份有限公司 Processing method and device for coherent phase sensitive optical time domain reflectometer
CN110455645A (en) * 2019-08-23 2019-11-15 上海应用技术大学 A kind of shear test device and test method of railway stone-filled embankment

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103438820A (en) * 2013-09-05 2013-12-11 南京大学 Borehole profile rock and soil mass layered deformation optical fiber measuring method
CN103670386A (en) * 2013-12-11 2014-03-26 同济大学 Rock stratum multi-point displacement laser measuring method and device
CN103696977A (en) * 2013-12-26 2014-04-02 中国矿业大学 Mining axial fan vibration test system based on optical fiber sensor
CN103821507A (en) * 2014-03-18 2014-05-28 中国矿业大学 Method for detecting deformation of shaft wall of vertical shaft through distributed optical fibers
CN103821507B (en) * 2014-03-18 2016-04-13 中国矿业大学 Shaft wall distortion distribution type fiber-optic detection method
CN104020179A (en) * 2014-06-05 2014-09-03 河海大学常州校区 Corrugated pipe grouting compactness detecting device and method based on fiber bragg grating sensing technology
CN106595837A (en) * 2015-10-20 2017-04-26 中兴通讯股份有限公司 Processing method and device for coherent phase sensitive optical time domain reflectometer
CN106017541A (en) * 2016-07-29 2016-10-12 中铁第四勘察设计院集团有限公司 Online monitoring device and method of subway contact net support looseness
CN110455645A (en) * 2019-08-23 2019-11-15 上海应用技术大学 A kind of shear test device and test method of railway stone-filled embankment

Similar Documents

Publication Publication Date Title
CN201753600U (en) Optical fiber monitoring device for mine shaft deformation
CN103510986B (en) Tunnel roof separation dynamic monitoring system based on fiber bragg grating and early-warning method thereof
CN104343466B (en) All-fiber coal mine safety monitoring system
CN207095615U (en) Tunnel monitoring system based on fiber grating
CN102748005B (en) System for monitoring temperature, stress and deformation of frozen wall of shaft in real time and laying method thereof
Mita Emerging needs in Japan for health monitoring technologies in civil and building structures
CN113218364B (en) A building safety monitoring system based on optical fiber sensing technology
CN102829728A (en) Comprehensive monitoring system for side slope and landslip
CN101021432A (en) Multi-parameter detector based on composite optical fiber device
CN207395935U (en) A kind of bump on-line monitoring system based on fiber grating sensing technology
CN109556524A (en) Crack width monitoring system and method based on fiber grating technology
CN115479711B (en) A hard shell inclusion stress gauge and monitoring system for three-dimensional stress in underground engineering
CN109186826A (en) A kind of board bottom flexural tensile stress monitoring system and method for existing road face structure
CN202869442U (en) Side slope and landslide integrated monitoring system
CN201028977Y (en) Multi-parameter detector based on composite optical fiber device
CN102278948B (en) Compound optical fiber sensing monitoring system and method based on optical fiber compound sensing module
CN117669155A (en) An optimization method for mine blasting design based on digital twin technology
Tang et al. Application of a FBG‐Based Instrumented Rock Bolt in a TBM‐Excavated Coal Mine Roadway
CN109520471B (en) Optical fiber single hole layered settlement monitoring device and monitoring method
CN213422250U (en) Gypsum ore deposit monitoring system that sinks
CN201561828U (en) Fiber grating geological disaster monitor
CN112197815A (en) Gypsum ore collapse monitoring system and construction method
CN202661693U (en) Arrangement structure of distributed optical fibers in freezing wall of shaft
CN202731906U (en) System for monitoring temperature, stress and deformation of shaft freezing wall in real time
CN213748552U (en) Landslide area pipeline deformation monitoring system

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110302

Termination date: 20150622

EXPY Termination of patent right or utility model