Improve the method for the titanium containing microwave medium ceramic insulation resistivity of burning altogether with copper
Technical field
The present invention relates to a kind of method that improves the titanium containing microwave medium ceramic insulation resistivity of burning altogether with copper, provide a kind of high insulation resistivity (room temperature~150 ℃) that has or rather, the preparation method of the Ba-Ti-O that can under reducing atmosphere, burn altogether base media ceramic with Cu.Belong to LTCC (LTCC) field.
Background technology
LTCC technology (LTCC Technology) is one of integrated mainstream technology of current electronic devices and components.Development LTCC product, most important gordian technique is to be suitable for low sintering preparation technology of ceramic materials.The thickness of LTCC product medium layer usually<10 μ m, if the medium insulation resistivity is lower, cause component failure easily.Therefore, the insulation resistivity of dielectric material should maintain 10 usually
12More than Ω/cm.Considering from the angle of product cost and the resistance of electrode side, is the most suitable with Cu as interior electrode, also is the direction of such production development.But have medium above specific inductivity, be applicable to that the low-temperature sintering dielectric material (ε=20~60) of microwave frequency band contains Ti usually
4+Ion is when adopting Cu as interior electrode, owing to the reducing atmosphere sintering that will adopt under the utmost point low oxygen partial pressure, the Ti in the material
4+The ion existence is reduced into Ti
3+The ionic possibility, and can produce a large amount of oxonium ion omissions inevitably, cause the insulation resistivity of material to diminish.Usually when envrionment temperature surpassed 100 ℃, oxygen ion vacancy was activated in a large number, participated in electricity and led, and the insulation resistivity of material descends fast with the rising of temperature at this moment.For the LTCC product that adopts electrode in the Cu, improving also, stable ceramic thick film material insulation resistivity of (25~125 ℃) in the use temperature scope is to guarantee the stable keys of product performance.
Suppress Ti
4+Ion adopts the method for adding anti-reductive agent usually, the oxide compound that anti-reductive agent is generally transition metal Mn, the Fe etc. of variable valence forms acceptor doping, be subjected to major defects at room temperature to become the constraint center of electronics, to improve the insulation resistivity of material, or adopt oxide compounds such as high price donor element such as Nb, W and the composite mixed formation of recipient element oxide compound to execute to be subjected to main association right, reduce the rate of migration in oxygen room, also can improve the insulation resistivity and the ageing resistance of material.These methods are applicable to high temperature co-firing porcelain (sintering temperature is greater than 1200 ℃) [the 1.Seok-Hyun Yoon of nickel electrode usually, Je-Hun Lee, and Doh-Yeon Kim, Effect of the Liquid-phase Characteristic on theMicrostructures and Dielectric Properties of Donor-(Niodium) andAcceptor-(Magnesium) Doped Barium Titanate, J.Am.Ceram.Soc., 86[1] 88-92 (2003) 2.Detlev F.K.Hennings, Dielectric Materials for Sintering in ReducingAtmosphere.Journal of the European Ceramic Society, 21,1637-1642 (2001) 3.Shigekazu Sumita, Massaki Ikeda, Yukie Nakano, Kousuke Nishiyyama, andTakeshi Nomura, Degradation of Multilayer Ceramic Capacitors with NickelElectrodes, J.Am.Ceram.Soc.74[11] 2739-2746 (1991)], Shang Weijian improves the report of material high-temperature resistivity.
Summary of the invention
The objective of the invention is to provide a kind of method that contains Ti microwave-medium ceramics insulation resistivity (25 ℃~125 ℃ of use temperature scopes) of burning altogether that improves with Cu, the Cu that employing a process for preparing burns the use temperature that contains the Ti microwave-medium ceramics below 125 ℃ the time altogether, and the insulation resistivity of material can reach 10
13More than Ω/cm, when envrionment temperature reached 150 ℃, insulated with material resistivity was greater than 10
12Ω/cm.
Basic design of the present invention is at the low temperature co-fired porcelain of copper electrode (sintering temperature is less than 920 ℃), adopts acceptor ion to mix and less ionic radius ion exchange Ti
4+The ionic method forming electronics constraint center, and reduces oxygen room rate of migration, thereby improves material at the insulation resistivity of envrionment temperature during less than 125 ℃.
The method that the present invention adopts is: adopt industrial BaCO
3(purity 99.00%, median size 0.65 μ m), TiO2 (purity 99.70%, median size 0.63 μ m) are raw material, prepare Ba with solid-phase synthesis
2Ti
9O
20Powder, 1200 ℃ of synthesis temperatures, soaking time 2 hours.Use chemical pure H
2BO
3, ZnO, SiO
2, CuO, CaCO
3Be the feedstock production low melting glass, wherein, B
2O
3(30~40wt%), and ZnO (30~40wt%), SiO
2(7~10wt%), (5~12wt%), ((5~10wt%), glass melting temperature is 1000 ℃ to CaO to CuO.Glass is through being ground into glass powder, and the median size of glass powder is that 0.5 μ m. is with Ba
2Ti
9O
20Powder mixes by 4: 1 weight percents with glass powder, and adds the GeO of 0.05~0.60wt% in compound
2The MnO of (purity 99.9%) and 0.05~0.30wt%
2(purity 99.5%).The preferential GeO that recommends
2Addition is 0.15-0.60wt%, MnO
2Addition be 0.12-0.30wt%.With ball milling method powder is mixed, it is the ZrO of 3~5mm that abrading-ball adopts diameter
2Ball, material: ball: the water ratio is 1: 3: 0.9,24 hours ball milling time.Promptly apply the Cu electrode after the powder moulding, place the omnidistance logical high pure nitrogen sintering of tubular oven.Sintering temperature is 850 ℃~900 ℃, soaking time 2~4 hours.The resistivity that Cu burns sample altogether records with HP4329A high resistant instrument, and the sample test envrionment temperature is 25 ℃~150 ℃.The microwave dielectric property of material adopts the resonator method to record with the E8363A network analyzer.It is very little to adopt resistivity that the Cu co-fired microwave dielectric material of the present invention's preparation records to change during less than 100 ℃ in envrionment temperature, and when envrionment temperature was 100 ℃ ~ 125 ℃, resistivity slightly descended but still greater than 10
13Ω/cm, when envrionment temperature reached 150 ℃, the insulation resistivity of material was greater than 10
12Ω/cm.DIELECTRIC CONSTANT is 28, and quality factor q f reaches 5000GHz, temperature coefficient of resonance frequency<10ppm/ ℃.
For the low-temperature sintering microwave medium pottery, because the diversity of its phase composite, the factor that causes influencing its insulation resistivity is very complicated, but it participates in electric current carrier of leading still is that weak beam is tied up electronics and oxygen ion vacancy, and agglomerating titaniferous pottery under the low-temperature reduction atmosphere, the oxygen ion vacancy migration is to cause the resistivity of material main reasons for decrease.Ge
4+Ionic radius be about 0.44 , Ti
4+Ionic radius is 0.64 , when adding an amount of Ge
4+After, Ge
4+May enter lattice and replace Ti
4+Because Ge
4+Radius ratio Ti
4+Little, cause lattice to shrink, the oxygen room migration in the lattice is obstructed, thereby makes the particularly high-temperature resistivity raising of resistivity of material.On the contrary, if adopt the bigger Zr of ionic radius
4+(0.82 ) replaces Ti
4+, lattice dilatation, the intensity of activation in oxygen room may reduce, cause resistivity of material envrionment temperature during greater than 100 ℃ fall increase.GeO
2Addition surpass 0.60wt%, MnO
2Addition surpass 0.30wt%, the resistivity when then the room temperature resistivity of coated copper electrode firing sample and envrionment temperature are 125 ℃ all descends.(seeing embodiment 3 for details)
In sum, the invention provides a kind of method that contains Ti microwave-medium ceramics insulation resistivity of burning altogether with Cu that improves, when material temperature below 125 ℃, the insulation resistivity of material can reach 10
13More than Ω/cm.
Description of drawings
Fig. 1 adds GeO
2And MnO
2, ZrO
2And MnO
2And do not add the resistivity of the Cu co-fired microwave dielectric material that the powder preparing of examples of such additives goes out and the relation of envrionment temperature.Among the figure-and ■-do not mix ,-●-doped with Ge O
2And MnO
2,-▲-doping ZrO
2And MnO
2,--doped with Mn O
2
Embodiment
Further specify substantive distinguishing features of the present invention and marked improvement and effect of the present invention by the following example.
Embodiment 1
Adopt BaCO
3, TiO
2Be feedstock production Ba
2Ti
9O
20Powder, the synthesis temperature of powder are 1200 ℃.Adopt ZnO
2, H
3BO
3, SiO
2, CaCO
3Reaching CuO is that raw material is founded low melting glass, 1000 ℃ of glass melting temperatures, and glass is through being ground into glass powder.With Ba
2Ti
9O
20Powder and glass powder are pressed Ba
2Ti
9O
20The mixed of 80wt%, glass powder 20wt% adds the high purity GeO of 0.30wt% simultaneously
2And 0.15wt%MnO
2Ball milling mixes, and the time is 24 hours, and abrading-ball is the ZrO of φ 3mm
2Ball.Above-mentioned compound drying, moulding, surface are placed in the atmosphere furnace omnidistance logical high pure nitrogen at 4 hours sintering of 900 ℃ of insulations by the copper slurry.The room temperature resistivity of sintered sample is 8 * 10
13(Ω/cm), the resistivity when envrionment temperature is 125 ℃ is 2.7 * 10
13(Ω/cm).(sample number into spectrum 2)
Embodiment 2
Method with embodiment 1 prepares Ba
2Ti
9O
20Powder and glass powder with low melting point, Ba
2Ti
9O
20Powder is identical with embodiment 1 with the proportioning of glass powder, adds the GeO of 0.15wt% during batch mixing
2And 0.12wt%MnO, compound drying, moulding, be placed in the atmosphere furnace omnidistance logical high pure nitrogen at 4 hours sintering of 900 insulations by copper.The room temperature resistivity of sintered sample is 5.6 * 10
13, the resistivity when envrionment temperature is 125 ℃ is 1.0 * 10
13(seeing Table 1, sample number into spectrum 5)
Embodiment 3
Method with embodiment 1 prepares Ba
2Ti
9O
20Powder and glass powder with low melting point, Ba
2Ti
9O
20Powder is identical with embodiment 1 with the proportioning of glass powder, adds the GeO of 0.8wt% during batch mixing
2And 0.5wt%MnO
2, compound drying, moulding, be placed in the atmosphere furnace omnidistance logical high pure nitrogen at 4 hours sintering of 900 insulations by copper.The room temperature resistivity of sintered sample is 1 * 10
13, the resistivity when envrionment temperature is 125 ℃ is 5 * 10
11
Embodiment 4
Method with embodiment 1 prepares Ba
2Ti
9O
20Powder and glass powder with low melting point, Ba
2Ti
9O
20Powder is identical with embodiment 1 with the proportioning of glass powder, adds the ZrO of 0.35wt% during batch mixing
2And 0.15wt%MnO
2, compound drying, moulding, be placed in the atmosphere furnace omnidistance logical high pure nitrogen at 4 hours sintering of 900 ℃ of insulations by copper.The room temperature resistivity of sintered sample is 3.2 * 10
13, the resistivity when envrionment temperature is 125 ℃ is 5.2 * 10
11(table 1, sample number into spectrum 9)
Embodiment 5
Adopt the identical Ba of embodiment 1
2Ti
9O
20The proportioning of powder and glass powder is not added any additive during batch mixing, only be 5.8 * 10 through the room temperature resistivity of 880 ℃ of 4 hours sintered samples
12, resistivity was 4.5 * 10 when envrionment temperature was 125 ℃
11Ω/cm.
Embodiment 6
Only add the MnO of 0.15wt% during batch mixing
2(all the other are with embodiment 1), then resistivity is 5.0 * 10 under the room temperature
13Ω/cm, then to descend more only be 2.6 * 10 to resistivity in the time of 150 ℃
11Ω/cm.(seeing Table 1, sample number into spectrum 12)
Embodiment 7-13
Add GeO simultaneously
2And MnO
2, sintering condition and add-on be respectively as sample number into spectrum in the table 13,4,6,7,8,10 and 11, then its room temperature resistivity scope (4.5-7.5) * 10
13Ω/cm, still near (4.0-5.6) * 10 of resistivity in the time of 150 ℃
12Ω/cm scope (seeing table 1 for details).
For ease of contrast, the spy will all list in table 1 except that embodiment 3.
Table 1 has been listed the influence of the variation of additive, sintering temperature to resistivity of material.
Table 1
| Sample number into spectrum | GeO
2 wt%
| MnO wt% | ZrO
2 wt%
| ρ25 (Ω/cm) | ρ125 (Ω/cm) | ρ150 (Ω/cm) | Sintering condition ℃/h |
| 1 | 0 | 0 | 0 | 5.8E12 | 4.5E11 | 3.0E10 | 880/4 |
| 2 | 0.30 | 0.15 | 0 | 8.0E13 | 2.7E13 | 7.5E12 | 900/4 |
| 3 | 0.30 | 0.15 | 0 | 6.0E13 | 1.5E13 | 5.8E12 | 880/4 |
| 4 | 0.30 | 0.15 | 0 | 5.0E13 | 1.3E13 | 4.6E12 | 850/4 |
| 5 | 0.15 | 0.12 | 0 | 5.6E13 | 1.0E13 | 4.0E12 | 900/4 |
| 6 | 0.05 | 0.08 | 0 | 4.5E13 | 8.0E12 | 3.2E12 | 900/4 |
| 7 | 0.60 | 0.30 | 0 | 7.5E13 | 2.2E13 | 6.5E12 | 900/4 |
| 8 | 0.08 | 0.05 | 0 | 5.2E13 | 1.0E13 | 3.5E12 | 900/4 |
| 9 | 0 | 0.15 | 0.35 | 3.2E13 | 5.2E11 | 2.0E10 | 900/4 |
| 10 | 0.30 | 0.15 | 0 | 6.2E13 | 1.2E13 | 5.6E12 | 900/4 |
| 11 | 0.30 | 0.15 | 0 | 6.5E13 | 1.3E13 | 5.6E12 | 900/2 |
| 12 | 0 | 0.15 | 0 | 5.0E13 | 3.5E12 | 2.6E11 | 900/4 |