CN1575614A - Method and system for optimising the performance of a network - Google Patents
Method and system for optimising the performance of a network Download PDFInfo
- Publication number
- CN1575614A CN1575614A CNA028211200A CN02821120A CN1575614A CN 1575614 A CN1575614 A CN 1575614A CN A028211200 A CNA028211200 A CN A028211200A CN 02821120 A CN02821120 A CN 02821120A CN 1575614 A CN1575614 A CN 1575614A
- Authority
- CN
- China
- Prior art keywords
- cost function
- parameter
- value
- network
- performance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/02—Arrangements for optimising operational condition
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/50—Network service management, e.g. ensuring proper service fulfilment according to agreements
- H04L41/5003—Managing SLA; Interaction between SLA and QoS
- H04L41/5019—Ensuring fulfilment of SLA
- H04L41/5025—Ensuring fulfilment of SLA by proactively reacting to service quality change, e.g. by reconfiguration after service quality degradation or upgrade
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q3/00—Selecting arrangements
- H04Q3/0016—Arrangements providing connection between exchanges
- H04Q3/0062—Provisions for network management
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Quality & Reliability (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种用于优化网络性能的方法和系统。The present invention relates to a method and system for optimizing network performance.
背景技术Background technique
关于如何管理服务提供商的商务,电信管理网络(TMN)模型提供了一种被广泛接受的方法。TMN模型包括通常以三角方式或锥形方式管理的4层,其中最上层是商务管理、第二层是服务管理、第三层是网络管理、底层是单元管理。每层的管理决策互相不同,但是互相有关。在工作从上到下进行时,每层均对下层推出要求。在工作从下向上进行时,每层将重要数据资源送到上层。电信管理论坛(TeleManagement Forum’s(TMF))TMN确定了优化功能性和进程的指南。第三代协力项目((3rd Generation Partnership Project)3GPP)采用同样的模型。TMF的工作范围是寻找用于确定服务质量、根据服务质量(QoS)测量值设置网络要求以及使得可以在提供商与实现该服务的系统之间具有QoS报告的标准化方式。The Telecommunications Managed Network (TMN) model provides a widely accepted approach to how a service provider's business is managed. The TMN model includes 4 layers that are usually managed in a triangular or pyramidal manner, in which the top layer is business management, the second layer is service management, the third layer is network management, and the bottom layer is unit management. The management decisions at each level are different from each other, but related to each other. As work progresses from top to bottom, each layer pushes out requirements for the layer below. As the work proceeds from the bottom up, each layer sends important data resources to the upper layer. The TeleManagement Forum's (TMF) TMN defines guidelines for optimizing functionality and processes. The 3rd Generation Partnership Project (( 3rd Generation Partnership Project) 3GPP) adopts the same model. The TMF's scope of work is to find a standardized way to determine quality of service, set network requirements from quality of service (QoS) measurements, and make it possible to have QoS reporting between the provider and the system implementing the service.
根据TMN模型,上层系统的信息向下流动,以确保网络无缝运行和优化可能性。图3示出TMN模型。信息一直从商务管理层向下流向服务管理,而网络管理最重要,因为在优化和网络开发过程中,必须仔细研究商务方面。TMN模型演示操作员日常工作中的抽象程度的变化。利用资本以及运行经费(CAPEX,OPEX)和收入,可以衡量商务规划的效率。然后,将希望的商务情况转换为提供的服务、服务优先权以及服务QoS要求。在TMN模型的最下层(网络单元),将与商务有关的问题变换为配置参数设置。According to the TMN model, the information of the upper system flows downward to ensure the seamless operation of the network and the possibility of optimization. Figure 3 shows the TMN model. Information flows all the way down from business management to service management, with network management being the most important because the business side has to be carefully studied during optimization and network development. The TMN model demonstrates the varying levels of abstraction in the daily work of operators. The efficiency of business planning can be measured using capital as well as operating expenses (CAPEX, OPEX) and revenue. Then, translate the desired business situation into the services offered, service priorities, and service QoS requirements. At the lowest level (network element) of the TMN model, business-related issues are transformed into configuration parameter settings.
例如,TMN商务管理系统支持的功能是:建立投资规划;对建议的网络及其服务确定主要QoS判据;建立技术开发途径(扩展途径)以确保用户数量预期增长。For example, the functions supported by the TMN business management system are: establishment of investment planning; determination of main QoS criteria for the proposed network and its services; establishment of technology development paths (expansion paths) to ensure the expected growth of the number of users.
例如,服务管理系统支持的功能是:管理用户数据、提供的服务以及用户;采集并核定提供帐单服务;建立、提升以及监测服务。For example, the functions supported by the service management system are: management of user data, services provided, and users; collection and approval of billing services; establishment, promotion, and monitoring of services.
例如,网络管理系统(NMS)支持的功能是:规划网络;从下层网络采集信息并预处理/后处理原始数据;分析并分布信息;优化网络容量和质量。For example, the functions supported by the network management system (NMS) are: planning the network; collecting information from the underlying network and preprocessing/postprocessing raw data; analyzing and distributing information; optimizing network capacity and quality.
可以将单元管理系统看作网络单元功能性的一部分,负责:监测设备的运转;采集原始数据(性能标志)、为现场工程师提供本机图形用户界面(GUI);以及作为到NMS系统的媒介。The element management system can be considered as part of the network element functionality responsible for: monitoring the operation of equipment; collecting raw data (performance indicators), providing a native graphical user interface (GUI) for field engineers; and acting as an intermediary to the NMS system.
除了TMN之外,TMF还定义了电信运行图(Telecom OperationMap(TOM))。电信和数据服务提供商必须应用采用商务进程管理方法学的面向客户的服务管理方法,以对其商务进行有效成本管理并提供客户要求的服务和质量。TOM识别许多运行管理进程,包括客户服务、服务管理以及网络管理。电信运行图将TMN的各层用作核心商务进程,但是将服务管理层分割为2个部分:客户服务和服务开发与运行。单独描述客户交接管理,因为可以在各客户服务子进程中,管理客户交接管理,或者组合访问一个或者多个客户服务子进程。In addition to TMN, TMF also defines the Telecom Operation Map (TOM). Telecommunications and data service providers must apply a customer-oriented service management approach using a business process management methodology to effectively cost-manage their business and provide the service and quality customers demand. TOM identifies many operational management processes, including customer service, service management, and network management. The Telecom Operations Diagram uses the layers of TMN as core business processes, but splits the service management layer into 2 parts: customer service and service development and operation. The customer handover management is described separately, because the customer handover management can be managed in each customer service sub-process, or one or more customer service sub-processes can be accessed in combination.
图4示出网络管理进程和支持函数集组(Function Set Group)的高层结构。根据TOM提供的框架,可以将每个高层进程映像到一系列成员函数(component function)(排列在函数集组中)。假设:Figure 4 shows the high-level structure of the network management process and the supporting function set group (Function Set Group). According to the framework provided by TOM, each high-level process can be mapped to a series of member functions (component function) (arranged in a function set group). Assumptions:
●网络性能管理(PM)提供足够测量值;● Network performance management (PM) provides sufficient measurement values;
●网络配置管理支持整个TMF框架;●Network configuration management supports the entire TMF framework;
●网络管理系统(NMS)具有智能,以将这两种信息组合在一起。- The Network Management System (NMS) has the intelligence to combine these two kinds of information.
然后,识别它们之间的关系以及它们之间流动的信息。在图4中,示出TOM及其成员。为了说明各相应管理层,各层的功能性与图3所示的功能性相同。Then, identify the relationships between them and the information flowing between them. In Figure 4, the TOM and its members are shown. To illustrate the respective management layers, the functionality of the layers is the same as that shown in FIG. 3 .
在TMF的主页(请参考http//www.tmforum.org)上可以找到关于TMN模型和TOM的详细说明。A detailed description of the TMN model and TOM can be found on the home page of TMF (please refer to http//www.tmforum.org).
在当前的蜂窝式系统中,利用大量参数处理无线电资源,其中即使在变化的条件下,参数值设置仍是固定的。操作员的任务是根据服务质量手动调节参数设置以达到正确工作点。通常,进行优化时的对象目标是“开始使它工作(just to get it working)”。在纯语音服务的简单GSM网络中,这种调节是直通的。对于WCDMA,这些参数设置的复杂性是多方面的:多服务、服务类别、甚至多无线电环境。基于WCDMA的蜂窝式系统提供易变的分组交换服务和电路交换服务,因此比当今的网络更难以规划和控制。各小区之前的强连接增加了复杂性。对于操作员,实际上是利用所有可能的资源来提高无线电网络的容量和服务质量(QoS)。In current cellular systems, radio resources are processed with a large number of parameters, where the parameter value settings are fixed even under changing conditions. The operator's task is to manually adjust the parameter settings to achieve the correct operating point according to the quality of service. Typically, the objective goal when optimizing is "just to get it working". In simple GSM networks with voice-only services, this regulation is straight-through. For WCDMA, the complexity of these parameter settings is manifold: multi-service, class of service, and even multi-radio environments. WCDMA-based cellular systems provide variable packet-switched and circuit-switched services and are therefore more difficult to plan and control than today's networks. Strong connections between cells add to the complexity. For the operator, virtually all possible resources are utilized to increase the capacity and quality of service (QoS) of the radio network.
网络优化进程用于提高移动用户感受的整体网络质量,并用于确保有效使用网络资源。优化进程包括分析网络,并改善网络配置和性能。将运行网络的关键性能指示符(KPI)的统计数字送到用于分析网络状态的工具,为了具有更好的性能,手动调整无线电资源管理(RPM)参数。在优化进程的初始阶段定义关键性能指示符(KPI)。例如,它们包括可以用于确定网络的服务质量(QoS)的网络管理系统(NMS)的测量值以及场测量数据或任何其他信息。对于第二代系统,服务质量(QoS)包括例如:掉话统计数字、掉话原因分析、切换统计数字以及成功呼叫尝试的测量值,而对于具有更多服务的第三代系统,必须产生用于进行质量分析的新服务质量QoS定义。Network optimization processes are used to improve the overall network quality perceived by mobile users and to ensure efficient use of network resources. The optimization process involves analyzing the network and improving network configuration and performance. Feed statistics of key performance indicators (KPIs) of the running network to tools for analyzing network status, manually tune radio resource management (RPM) parameters for better performance. Define key performance indicators (KPIs) during the initial stages of the optimization process. For example, they include network management system (NMS) measurements as well as field measurement data or any other information that can be used to determine the quality of service (QoS) of the network. For second-generation systems, Quality of Service (QoS) includes, for example: dropped call statistics, call drop cause analysis, handover statistics, and measurements of successful call attempts, while for third-generation systems with more New Quality of Service (QoS) definition for quality analysis.
为了优化网络运营商或服务提供商的总收入,降低网络系统的运行成本和维护成本就需要在所述网络系统内实现过程自动化。In order to optimize the total revenue of a network operator or service provider, reducing the operating and maintenance costs of a network system requires process automation within the network system.
发明内容Contents of the invention
因此,本发明的目的是改善优化网络资源的过程。It is therefore an object of the present invention to improve the process of optimizing network resources.
利用根据权利要求1所述的用于优化网络性能的方法、根据权利要求14所述的相应系统,可以实现该目的。This object is achieved with a method for optimizing network performance according to claim 1 , a corresponding system according to claim 14 .
本发明基于利用一个集中成本函数优化网络资源,而不是通过分别优化网络资源来优化网络资源的想法。The present invention is based on the idea of optimizing network resources using one lumped cost function, rather than optimizing network resources individually.
当前,分别参数化无线电资源管理算法:独立设置切换控制参数值、接入控制参数值、功率控制参数值等,并且可以识别其中例如因为错误的功率控制(CPICH)设置而产生切换问题的情况。接入控制发生变化可能导致信息包数据的质量发生变化。Currently, the radio resource management algorithms are parameterized separately: handover control parameter values, access control parameter values, power control parameter values etc. are set independently and situations where handover problems arise eg due to wrong power control (CPICH) settings can be identified. Changes in access control may result in changes in the quality of packet data.
因此,在优化网络的性能时,首先确定网络内特定实体的有关关键性能指示符以及影响关键性能指示符的第一参数。选择与所述特定实体类似的大量实体,其中有关关键性能指示符与每个实体有关。关键性能指示符以及选择的实体数量用作第一成本函数的元素,即,根据KPI和实体数量计算所述第一成本函数。计算所述第一成本函数以评估网络性能。因此,由于所述第一参数直接与关键性能指示符有关,所以网络性能取决于所述第一参数的第一值。此后,调整所述第一参数的值,以便获得所述第一参数的第二组值。再一次确定关键性能指示符,但是这次是根据所述第一参数的第二值确定的,然后,根据这些关键性能指示符重新计算所述第一成本函数。将根据所述第一参数的所述第一值计算的所述第一成本函数的结果与根据所述第一参数的所述第二值重新计算的所述第一成本函数的结果进行比较。进行该比较以确定网络性能是否得到改善。当网络性能因为调整所述第一参数得到改善时,将所述第一参数的所述第二值用作永久参数。Therefore, when optimizing the performance of the network, the key performance indicators related to the specific entities in the network and the first parameters affecting the key performance indicators are firstly determined. A number of entities similar to said particular entity is selected, wherein a relevant key performance indicator is associated with each entity. The key performance indicators as well as the selected number of entities are used as elements of a first cost function, ie said first cost function is calculated from the KPI and the number of entities. The first cost function is calculated to evaluate network performance. Hence, network performance depends on the first value of the first parameter since the first parameter is directly related to key performance indicators. Thereafter, the value of said first parameter is adjusted in order to obtain a second set of values of said first parameter. Key performance indicators are again determined, but this time based on a second value of said first parameter, and said first cost function is then recalculated based on these key performance indicators. A result of the first cost function calculated from the first value of the first parameter is compared with a result of the first cost function recalculated from the second value of the first parameter. This comparison is done to determine if network performance has improved. When network performance is improved by adjusting the first parameter, the second value of the first parameter is used as a permanent parameter.
不利用集中控制函数优化参数组,而是根据许多算法设置各参数可以使参数值摆动,因为如果为了优化KPI而改变一个参数可能对其他KPI产生不利影响。因此,为了协调改变各参数,不利用单独函数,而是利用集中成本函数整体监测无线电资源管理过程,具有优势。Rather than optimizing the set of parameters with a centralized control function, setting each parameter according to many algorithms can swing parameter values because changing one parameter in order to optimize a KPI may adversely affect other KPIs. Therefore, it is advantageous to monitor the radio resource management process as a whole not with a single function but with a lumped cost function in order to coordinate changing of the parameters.
根据本发明的改进结构,在所述第一成本函数中利用不同加权系数对各关键性能指示符进行加权。利用不同加权系数可以使一个或者多个关键性能指示符对第一成本函数具有更大影响。According to an improved structure of the present invention, the key performance indicators are weighted with different weighting coefficients in the first cost function. The one or more key performance indicators may have a greater influence on the first cost function using different weighting factors.
根据本发明的进一步改进结构,设置关键性能指示符的基准值,并且利用当前关键性能指示符与相应基准值之间的差值代替第一成本函数中的关键性能指示符(以确定“成本”,请参考等式(1))。因此,根据当前关键性能指示符与相应基准值之间的差值计算第一成本函数。这样可以根据系统上的KPI的成本,设置服务质量目标。According to a further improved structure of the present invention, the benchmark value of the key performance indicator is set, and the difference between the current key performance indicator and the corresponding benchmark value is used to replace the key performance indicator in the first cost function (to determine the "cost" , please refer to equation (1)). Accordingly, a first cost function is calculated based on the difference between the current key performance indicator and the corresponding baseline value. This allows setting quality of service targets based on the cost of KPIs on the system.
根据本发明的优选改进结构,所述第一成本函数包括第二成本函数和第三成本函数,其中所述第二成本函数表示网络内的质量要求,而第三成本函数表示网络内的容量要求。利用第二加权系数加权所述第二成本函数,而利用第三加权系数加权所述第三成本函数。提供第二成本函数和第三成本函数及其相应加权系数,可以在第一成本函数的容量与质量之间实现平衡。According to a preferred improved structure of the present invention, the first cost function includes a second cost function and a third cost function, wherein the second cost function represents the quality requirement within the network, and the third cost function represents the capacity requirement within the network . The second cost function is weighted with a second weighting factor, and the third cost function is weighted with a third weighting factor. By providing the second cost function and the third cost function and their corresponding weighting coefficients, a balance between capacity and quality of the first cost function can be achieved.
根据本发明的进一步优选改进结构,第二成本函数和第三成本函数包括选择的实体,其中确定的关键性能指示符与每个实体有关。这样可以在网络上广泛分布关键性能指示符。According to a further preferred development of the invention, the second cost function and the third cost function comprise selected entities, wherein the determined key performance indicators are associated with each entity. This allows key performance indicators to be widely distributed across the network.
根据本发明的进一步优选改进结构,利用所述网络内的小区或用户组表示所述实体。因此,可以根据例如小区或小区集群计算成本函数。According to a further preferred improved structure of the present invention, the entity is represented by a cell or a user group in the network. Thus, the cost function may be calculated eg on the basis of cells or clusters of cells.
根据本发明的进一步优选改进结构,重复进行用于优化网络性能的各步骤,以便自动执行优化过程。According to a further preferred improved structure of the present invention, the steps for optimizing network performance are repeated so as to automatically perform the optimization process.
根据本发明的又一个进一步优选改进结构,为了建立历史数据库,将KPI的值与相应第一参数和第一成本函数的相应结果存储在一起。将所述第一成本函数的当前结果与其存储在历史数据库内的先前结果进行比较,以确定在预定时间间隔内,网络性能是否得到改善。如果在所述预定时间间隔内,网络性能未得到改善,则发出相应通知。当在预定时间间隔内未检测到改善时发出通知,可以避免在自动处理过程中出现死锁,并指出可能的问题。According to yet another preferred improved structure of the present invention, in order to establish the historical database, the KPI value is stored together with the corresponding first parameter and the corresponding result of the first cost function. A current result of the first cost function is compared with previous results stored in a historical database to determine whether network performance has improved within a predetermined time interval. If the network performance has not improved within the predetermined time interval, a corresponding notification is issued. Notification when no improvement is detected within a predetermined interval avoids deadlocks during automated processing and indicates possible problems.
附图说明Description of drawings
下面将参考附图,根据优选实施例更详细说明本发明。附图包括:Hereinafter, the present invention will be described in more detail according to preferred embodiments with reference to the accompanying drawings. The attached drawings include:
图1示出用于优化网络性能的自动过程的流程图;Figure 1 shows a flowchart of an automated process for optimizing network performance;
图2示出KPI成本函数的例子;Figure 2 shows an example of a KPI cost function;
图3示出电信管理网络(TMN)模型的示意图;Figure 3 shows a schematic diagram of a Telecommunications Management Network (TMN) model;
图4示出电信运行图(TOM)的示意图;以及Figure 4 shows a schematic diagram of a Telecom Operations Map (TOM); and
图5示出用于不同管理层的监测与优化函数的组合的示意图。Fig. 5 shows a schematic diagram of a combination of monitoring and optimization functions for different management layers.
具体实施方式Detailed ways
在图1中,示出根据本发明第一实施例优化网络性能的自动过程的流程图。首先,在步骤S1,选择用于描述网络的感兴趣部分的性能的关键性能指示符。然后,在步骤S2,确定KPI基于其的配置参数。在步骤S3,选择要包括在优化过程中的小区的数量,即,选择小区集群。在步骤S4,根据各配置参数,确定KPI的当前值。此后,在步骤S5,根据KPI的当前值和小区的数量确定KPI的当前值,计算成本函数。在步骤S6,将成本函数的结果、KPI的值以及配置参数存储到历史数据库中。In Fig. 1, a flow chart of an automatic process for optimizing network performance according to a first embodiment of the invention is shown. First, at step S1 , key performance indicators are selected for describing the performance of the part of the network of interest. Then, in step S2, the configuration parameters on which the KPIs are based are determined. In step S3, the number of cells to be included in the optimization process is selected, ie clusters of cells are selected. In step S4, the current value of the KPI is determined according to each configuration parameter. Thereafter, in step S5, the current value of KPI is determined according to the current value of KPI and the number of cells, and the cost function is calculated. In step S6, the result of the cost function, the value of the KPI and the configuration parameters are stored in the historical database.
在步骤S7,至少对各配置参数中的一个值进行调整,获得一组新配置参数。根据该组新配置参数,在步骤S4确定新KPI值,然后,在步骤S5,根据新KPI值和在步骤S3选择的小区数量(未改变),重新计算成本函数。在步骤S6,还将成本函数的新结果、新KPI以及配置参数值存储到临时存储器内。随后,在步骤S8,将基于新/调整的配置参数组的成本函数的该新结果与存储在历史数据库内的成本函数的先前结果进行比较,以确定调整配置参数之后,感兴趣的网络性能是否得到改善。In step S7, at least one value of each configuration parameter is adjusted to obtain a set of new configuration parameters. Based on the new set of configuration parameters, a new KPI value is determined in step S4, and then, in step S5, the cost function is recalculated based on the new KPI value and the number of cells selected in step S3 (unchanged). In step S6, the new result of the cost function, the new KPI and the configuration parameter values are also stored in the temporary memory. Subsequently, at step S8, this new result of the cost function based on the new/adjusted set of configuration parameters is compared with the previous results of the cost function stored in the historical database to determine whether the network performance of interest after adjusting the configuration parameters Improved.
如果在调整配置参数之后,网络性能得到改善,则在步骤S9,将调整的配置参数组用作永久参数。然而,如果在步骤S8确定在调整配置参数之后,网络性能未得到改善,则在步骤S9,将在步骤S6存储到历史数据库内的第一组配置参数用作永久参数。If the network performance is improved after the configuration parameters are adjusted, then in step S9, the adjusted configuration parameter set is used as a permanent parameter. However, if it is determined at step S8 that the network performance has not improved after adjusting the configuration parameters, then at step S9 the first set of configuration parameters stored in the history database at step S6 are used as permanent parameters.
在步骤S10,检验在预定时间间隔内网络性能是否得到改善。当在预定时间间隔内网络性能未得到改善时,即,即使进行自动调节,KPI历史仍未得到改善,在步骤S12通知网络操作员在优化网络性能的自动过程出现问题。由于显然不能自动调节许多参数值,并且自动调节不能始终优化网络,所以操作员可以检验该问题是否是因为硬件问题,或者在当前网络条件下,是不是不可以自动优化网络性能。在网络处于这种情况下,网络操作员必须手动优化网络性能。In step S10, it is checked whether the network performance has improved within a predetermined time interval. When the network performance has not improved within a predetermined time interval, ie, the KPI history has not improved even with automatic adjustments, the network operator is notified at step S12 that there is a problem in the automatic process of optimizing network performance. Since many parameter values obviously cannot be automatically tuned, and autotuning does not always optimize the network, the operator can check whether the problem is due to a hardware problem, or whether it is not possible to automatically optimize network performance under current network conditions. With the network in this situation, network operators must manually optimize network performance.
另一方面,当在预定时间间隔内网络性能得到改善时,流程跳转到步骤S7,在步骤S7,再一次调整配置参数,以便进一步优化网络性能。接着,该流程将继续以上描述的流程。On the other hand, when the network performance is improved within the predetermined time interval, the process jumps to step S7, and in step S7, the configuration parameters are adjusted again so as to further optimize the network performance. Then, the process will continue the process described above.
在第二实施例中,不仅在步骤S1选择有关KPI,并且确定一组QoS目标,利用一组基准KPI表示该组QoS。根据第二实施例优化网络性能的自动过程与根据第一实施例的优化过程基本一致。唯一差别是,当在步骤S5计算成本函数时,利用KPI与基准KPI的差值代替KPI值。In the second embodiment, not only relevant KPIs are selected in step S1, but also a set of QoS targets is determined, and a set of reference KPIs is used to represent the set of QoS. The automatic process of optimizing network performance according to the second embodiment is basically the same as the optimization process according to the first embodiment. The only difference is that when calculating the cost function in step S5, the difference between the KPI and the reference KPI is used instead of the KPI value.
因此,操作员对利用子索引内的“ref”表示为KPI_C的特定容量KPI设置容量要求。相应地,操作员对特定KPI_Q设置质量要求。然后,利用等式(1)计算质量成本和容量成本。Thus, the operator sets capacity requirements for a specific capacity KPI denoted as KPI_C with "ref" within the sub-index. Accordingly, the operator sets quality requirements for a specific KPI_Q. Then, mass cost and capacity cost are calculated using equation (1).
利用不同加权系数α和β,将不同成本函数组合或相加在一起。通过控制或者改变加权系数α和β,可以强调特定类型的成本以及总体情况。Using different weighting coefficients α and β, different cost functions are combined or added together. By manipulating or varying the weighting coefficients α and β, specific types of costs as well as the overall situation can be emphasized.
可以认为其任务是用于优化网络性能的数学公式用于根据哪个KPI尽可能接近要求的区域确定空中接口配置参数的组合。Its task can be considered that the mathematical formula for optimizing network performance is used to determine the combination of air interface configuration parameters according to which KPI is as close as possible to the required area.
图2示出KPI成本函数f的例子。在该例子中,高于KPI_ref的KPI成本值线性增加。Figure 2 shows an example of a KPI cost function f. In this example, KPI cost values above KPI_ref increase linearly.
等式(3)示出要优化的,即要降低到最小的总成本函数。利用参数W,可以在容量与质量要求之间实现平衡。通过调整配置参数(2),可以降低到最小。KPI值还取决于服务分配,例如,根据服务分配获得不同的成本设置和参数设置。Equation (3) shows the total cost function to be optimized, ie minimized. Using the parameter W, a balance can be achieved between capacity and quality requirements. By adjusting the configuration parameter (2), it can be reduced to a minimum. KPI values also depend on service allocation, for example, different cost settings and parameter settings are obtained depending on service allocation.
KPI_Ci=f(配置参数,服务分布)KPI_C i = f (configuration parameters, service distribution)
KPI_Qj=f(配置参数,服务分布) (2)KPI_Q j = f (configuration parameters, service distribution) (2)
总成本=W*质量成本+(1-W)*容量成本 (3)Total cost = W*quality cost+(1-W)*capacity cost (3)
例如,可以影响优化过程的因数是:业务分布(服务混合)、业务密度、每种服务的定价等。将总成本降低到最小时的最终目标包括:优化操作员的收入、将CAPEX和OPEX降低到最小以及维护操作员的良好形象。For example, factors that can influence the optimization process are: traffic distribution (service mix), traffic density, pricing of each service, etc. The ultimate goals when minimizing total cost include: optimizing operator revenue, minimizing CAPEX and OPEX, and maintaining the operator's good image.
根据下面的等式(4)至(8),可以计算成本函数TOTAL COST的特定例子:A specific example of the cost function TOTAL COST can be calculated according to equations (4) to (8) below:
(4)总成本=C(排队比)+C(糟糕质量比)+C(掉话比)+C(阻塞比)(4) Total cost = C (queuing ratio) + C (bad quality ratio) + C (dropped call ratio) + C (blocking ratio)
其中in
(5)C(排队比)=0.05*Dev(排队比-容许的排队比)(5) C (queuing ratio) = 0.05*Dev (queuing ratio - allowable queuing ratio)
(6)C(糟糕质量比)=0.2*Dev(糟糕质量比-容许的糟糕质量比)(6) C (bad quality ratio) = 0.2*Dev (bad quality ratio - allowable bad quality ratio)
(7)C(掉话比)=1*Dev(掉话比-容许的掉话比)(7) C (Call Drop Ratio) = 1*Dev (Call Drop Ratio - Allowable Call Drop Ratio)
(8)C(阻塞比)=0.10*Dev(阻塞比-容许的阻塞比)(8) C (blocking ratio) = 0.10*Dev (blocking ratio - allowable blocking ratio)
优化任务就是将所有不同的TOM管理层组合在一起,其中应该考虑到不同层的测量值(质量标记和成本标记)使用不同语言这个事实。The optimization task is to combine all the different TOM management layers, taking into account the fact that the measured values of the different layers (quality marking and cost marking) are in different languages.
当在网络的NMS内执行优化过程时,支持操作员判定客户服务和各服务管理层。为了能够实现此过程,将包括配置和在下层执行的(PM)测量的成本函数的偏差转换为上层的“语言”。这可以通过执行以下内容实现:When performing the optimization process within the NMS of the network, the support operator determines the customer service and each service management layer. To enable this process, the biases of the cost function comprising configuration and (PM) measurements performed at lower layers are translated into the "language" of the upper layers. This can be achieved by doing the following:
执行从无线电接入网参数(设置)转换为(映像到)与服务有关的质量预期/目标。实际上,这意味着,使配置管理与性能管理相关。即,利用一组特定测量值,监测具有特定配置的功能实体。利用采用确定的测量值的成本函数计算该实体的性能。Perform translation from radio access network parameters (settings) to (mapping to) service-related quality expectations/targets. In practice, this means making configuration management relevant to performance management. That is, a functional entity with a specific configuration is monitored with a specific set of measurements. The performance of the entity is calculated using a cost function using the determined measurements.
实际上,下面意味着对送到从统计学上说可以决定各用户的质量的用户级实体的、大实体的测量值(即,小区、业务类别等)进行转换。还利用(各)加权成本函数,执行该步骤。此外,可以将这些转换与成本函数组合在一起,以实现要求的最终用户质量指示。In practice, what follows means the transformation of the large-body measurements (ie cells, traffic classes, etc.) sent to user-level entities that statistically determine the quality of each user. This step is also performed using weighted cost function(s). Furthermore, these transformations can be combined with cost functions to achieve desired end-user quality indications.
1)从无线电接入网测量值(网络性能)到服务的最终用户流程级别(感受质量)的技术转换(映像)。1) Technology translation (mapping) from radio access network measurements (network performance) to end-user process level of service (perceived quality).
2)从聚集级(UMTS业务类别)参数设置到服务的最终用户流程级别(感受质量)的技术转换(映像)。2) Technology translation (mapping) from aggregation level (UMTS service category) parameter setting to end user process level of service (perceived quality).
3)从设置的每个业务类别的测量值到服务的最终用户流程级别(感受质量)的技术转换(映像)。3) Technical translation (mapping) from the measured value of each business category set to the end-user process level (perceived quality) of the service.
和/或业务类别和流程级信息(参数和设置)与成本函数的组合函数,以支持参数化和监测最终用户的GOS。and/or a combined function of business category and process level information (parameters and settings) with a cost function to support parameterization and monitoring of end-user GOS.
图5示出用于利用映像将网络内的不同管理层组合在一起的网络监测函数与优化函数的组合的示意图。Fig. 5 shows a schematic diagram of a combination of network monitoring functions and optimization functions for combining different management layers within a network using mapping.
通过将网络测量值、性能标记PI和/或KPI与成本函数组合在一起,可以实现从一层到下一层的映像。Mapping from one layer to the next is achieved by combining network measurements, performance markers PI and/or KPIs with cost functions.
可以计算用户感受的服务等级GOS的成本函数,如等式(9)表示的那样:The cost function of the grade of service GOS perceived by the user can be calculated as expressed by equation (9):
(9)GOS=C(服务可用性)+C(延迟和颤动)+C(质量)+C(掉话)+C(服务可访问性)+C(等效位速率或用户吞吐量)(9) GOS = C (service availability) + C (delay and jitter) + C (quality) + C (dropped calls) + C (service accessibility) + C (equivalent bit rate or user throughput)
其中延迟包括服务访问延迟和排队传输延迟。非实时质量受信息包丢失、无线电链路控制RLC、信息包数据收敛协议PDCP的影响,即,受误码率BER和块差错率BLER的影响。关于实时质量,如果上行链路UL块差错率BLER显著高于目标BLER,则该质量糟糕。实时质量受下行链路DL连接停电的影响。上述成本函数的收入包括容量要求和业务分布。以kbp/小区/MHz为单位测量总吞吐量。The delay includes service access delay and queuing transmission delay. The non-real-time quality is affected by packet loss, radio link control RLC, packet data convergence protocol PDCP, ie by bit error rate BER and block error rate BLER. Regarding real-time quality, if the uplink UL block error rate BLER is significantly higher than the target BLER, the quality is bad. Real-time quality is affected by downlink DL connection outages. The revenue of the above cost function includes capacity requirements and traffic distribution. Total throughput is measured in kbps/cell/MHz.
在98%的用户满意时,成本函数的频谱效率等于以kbp/小区/MHz为单位的吞吐量。这意味着,业务可访问性和阻塞概率为2%。等效位速率高于荷载服务数据速率的10%,而98%的用户不被掉话。采用该方法的原因是,在度量上,有利于根据GOS进行优化。When 98% of users are satisfied, the spectral efficiency of the cost function is equal to the throughput in kbp/cell/MHz. This means that the traffic accessibility and blocking probability is 2%. The equivalent bit rate is 10% higher than the data rate of the load service, and 98% of the users are not dropped. The reason for adopting this method is that, in terms of metrics, it is beneficial to optimize according to the GOS.
必须对所提供的所有服务,即,利用不同参数设置或其他属性控制的服务进行这种映像。This mapping must be done for all services offered, ie services controlled with different parameter settings or other properties.
尽管每次转换均使精度降低,但是从统计学上说,映像是正确的。因为统计级可以进行操作,所以映像函数的最佳位置在NMS。此外,NMS实现过程还可以处理无线电网络控制器RNC-RNC(或其他网络单元)边界区域。在每次进行这种转换时,应用建议的成本函数。在某些情况下,服务QoS目标可以导致参数设置发生冲突,因此需要成本函数解决冲突问题。这可以通过在成本函数中对不同单元设置不同的加权系数实现。在不同的客户类别(银、铜、金等)进入网络系统时,这种理论非常重要。Although each transformation reduces precision, the image is statistically correct. Since the statistical level can be manipulated, the best place for the mapping function is in the NMS. Furthermore, NMS implementations can also handle Radio Network Controller RNC-RNC (or other network element) border areas. At each such transformation, the proposed cost function is applied. In some cases, service QoS goals can lead to conflicts in parameter settings, so a cost function is needed to resolve conflicts. This can be achieved by setting different weight coefficients for different units in the cost function. This theory is very important when different customer classes (silver, copper, gold, etc.) enter the network system.
此外,在变更到TOM模型的最后一个管理层时,下一个主要步骤是对网络优化、服务次序以及用欧元、美元或英磅表示的客户区分运算进行计算。在该阶段,需要TOM的客户服务层内的清单/收款子系统提供的帐单和收费信息。在利用客户基本情况/分布以及这些分布的特性的知识时,可以根据成本函数将操作员的商务情况优化到最有益的方向。值得注意的是,改变客户优先权和因为商务原因提供的QoS,将导致客户行为发生变化,并因此而重复进行商务管理层优化。Furthermore, when changing to the last management level of the TOM model, the next major step is the calculation of network optimization, order of service and customer differentiation expressed in Euros, Dollars or British Pounds. At this stage, billing and charging information provided by the billing/collection subsystem within TOM's customer service layer is required. When utilizing knowledge of customer profiles/distributions and the properties of these distributions, the operator's business situation can be optimized in the most beneficial direction according to a cost function. It is worth noting that changing customer priorities and QoS provided for business reasons will lead to changes in customer behavior and thus repeated business management optimization.
为了确保蜂窝式网络具有最佳性能,操作员优先使柔性装置根据系统KPI(关键性能指示符)和/或由此获得的成本函数设置QoS目标。可以对小区集群,或者对每个小区设置QoS目标。可以根据因为硬件资源的阻塞呼叫、“软”阻塞呼叫(干扰受限网络)、掉话呼叫、质量糟糕呼叫、对于压缩数据的重发次数和延迟、分集切换概率、硬切换成功率、加载情况(上行链路UL或下行链路DL)、到电路交换服务的压缩数据等,可以计算QoS。In order to ensure optimal performance of the cellular network, the operator prioritizes flexible devices to set QoS targets according to system KPIs (Key Performance Indicators) and/or cost functions derived therefrom. QoS targets can be set for cell clusters, or for each cell. Can be based on blocked calls due to hardware resources, "soft" blocked calls (interfering with limited networks), dropped calls, poor quality calls, retransmission times and delays for compressed data, diversity handover probability, hard handover success rate, loading conditions (uplink UL or downlink DL), compressed data to circuit switched services, etc., QoS can be calculated.
在多无线电环境下(GSM-WCDMA全球移动通信系统-宽带码分多址),重要的是,为了优化容量、收敛以及质量,可以对这两个网络创建资源池。这要求对更高(KPI)层具有所有控制功能性(质量管理器),即,利用质量管理器可以实现根据本发明的优化过程。In a multi-radio environment (GSM-WCDMA Global System for Mobile Communications - Wideband Code Division Multiple Access), it is important that resource pools can be created for both networks in order to optimize capacity, convergence and quality. This requires all control functionality (quality manager) for higher (KPI) layers, ie the optimization process according to the invention can be implemented with the quality manager.
质量管理器QM,即,优化过程提供中心监测函数,并监测参数值的状态,通过将存储在历史数据库内的参数值的历史信息进行比较,自动识别问题情况。例如,可以尽可能小、尽可能独立地将GERAN和UMTS地上无线电接入网UTRAN分割为自动调节子系统。通过对其各子系统的KPI设置加权系数,在质量管理器的上层考虑子系统之间的相互依赖。The Quality Manager QM, ie, the optimization process provides central monitoring functions and monitors the status of parameter values, automatically identifying problematic situations by comparing the historical information of parameter values stored in the historical database. For example, GERAN and UMTS terrestrial radio access network UTRAN can be divided into self-regulating subsystems as small and as independent as possible. By setting weighting coefficients for the KPIs of each subsystem, the interdependence between subsystems is considered in the upper layer of the quality manager.
在另一个实施例中,根据用户组(如商务用户、空闲时间使用等),执行优化过程。In another embodiment, an optimization process is performed based on user groups (eg, business users, free time usage, etc.).
可以概括地说,建议当前所有参数值的缺省值。到目前为止逐个小区用户网络仍是操作员的任务(试图考虑到多小区环境)。然而,采用根据本发明优化网络性能的方法和/或系统,使得初始参数设置不重要了。例如,在网络开始运行时,可以在非常“松”的限制下,进行接入控制和切换控制,从而根据当前QoS情况(位于操作服务系统OSS的KPI)和可以自动调节有关参数的、设置的QoS目标,使所有用户接入网络。在参数改变新情况,即新KPI值后,将它与KPI的历史数据进行比较,并且如果QoS性能(或者QoS要求的成本函数)的改变得到改善,则接受“测试”参数。历史数据的长度取决于网络上的业务量(采样总数应该足够高)。重要的是,QoS成本函数含有整个RRM和多无线电区域的各项目。In a nutshell, default values for all current parameter values are suggested. Cell-by-cell user networking has so far been the task of the operator (trying to take into account the multi-cell environment). However, with the method and/or system for optimizing network performance according to the present invention, the initial parameter setting is not important. For example, when the network starts to operate, access control and handover control can be performed under very "loose" restrictions, so that according to the current QoS situation (KPI located in the operating service system OSS) and related parameters can be automatically adjusted and set. The QoS target enables all users to access the network. After the parameter changes to a new situation, ie a new KPI value, it is compared with the historical data of the KPI, and if the change in QoS performance (or cost function of QoS requirements) is improved, the "test" parameter is accepted. The length of historical data depends on the traffic volume on the network (the total number of samples should be high enough). Importantly, the QoS cost function contains terms for the entire RRM and multiradio regions.
当前首先将关键参数(根据最佳容量和质量)设置为“缺省”值,在大多数情况下,该“缺省”值可以确保网络运行,但是不是最佳性能。根据本发明的优化过程根据总体QoS将基本参数的设置自动变更为最佳工作点。Currently key parameters (in terms of optimal capacity and quality) are first set to "default" values which in most cases ensure network operation, but not optimal performance. The optimization process according to the invention automatically changes the settings of the basic parameters to the optimal operating point according to the overall QoS.
配置参数的调节量可以固定增量或减量。作为一种选择,增量或减量可以是变量。The adjustment amount of the configuration parameter can be fixed increment or decrement. As an option, the increment or decrement can be variable.
根据本发明的第三实施例,利用成本函数集中优化网络资源,并提供要求等级的服务质量(QoS)。成本C是网络的各不同KPI的函数,例如:According to the third embodiment of the present invention, network resources are intensively optimized using a cost function and a required level of quality of service (QoS) is provided. The cost C is a function of various KPIs of the network, for example:
其中KPIi是第i个关键性能指示符,而Fi是可以用于变换、加权和/或缩放第i个KPI的某个正函数。通过将该成本函数C降低到最小,优化网络性能。通过正确选择被看作参数的最佳值的各不同网络参数W=(w1;w2;…,wN),可以实现最低成本。成本函数方法隐含地假定KPI的值是网络参数的函数,即:where KPI i is the ith key performance indicator and Fi is some positive function that can be used to transform, weight and/or scale the ith KPI. By minimizing this cost function C, network performance is optimized. The lowest cost can be achieved by a correct choice of the various network parameters W = (w 1 ; w 2 ; . . . , w N ) considered as optimal values of the parameters. The cost function approach implicitly assumes that the value of the KPI is a function of the network parameters, i.e.:
KPlj=KPlj(w1;w2;…,wN)j (12)KPl j = KPl j (w 1 ; w 2 ; . . . , w N )j (12)
因此,成本函数C还是网络参数的函数,并且可以将它重写为参数的直接函数:Therefore, the cost function C is also a function of the network parameters, and it can be rewritten as a direct function of the parameters:
其中gi是可以随时间t变化的某种函数。where gi is some function that can vary over time t.
第三实施例尤其涉及一种用于将上述成本函数降低到最小的简单、有效算法。然而,在实际情况下,优化这种成本函数不是直通的。下面列出其主要问题:The third embodiment relates in particular to a simple, efficient algorithm for minimizing the cost function described above. However, in practical situations, optimizing such a cost function is not straightforward. The main problems are listed below:
1.在实际网络中,存在许多种业务类型、用户分布和负载。网络不能控制这些因素,并且可以将这些因素看作随机外部噪声源。任何优化算法均不应该对这种外部随机影响敏感。1. In the actual network, there are many kinds of business types, user distribution and load. The network has no control over these factors and can treat them as sources of random external noise. Any optimization algorithm should not be sensitive to such external random influences.
2.因为不同时间的负载等不同,所以可以随时改进任何给定网络的最佳参数选择(即,等式(13)的函数g1随时间变化)。任何优化算法均应该能够适应网络最佳工作点的这种变化,并且能够跟踪这些变化。2. The optimal parameter selection for any given network can be improved over time because the load etc. varies from time to time (ie, the function g 1 of equation (13) varies over time). Any optimization algorithm should be able to adapt to such changes in the optimal operating point of the network and be able to track these changes.
3.可能不能产生可以在各种不同情况下进行优化的网络模型。这意味着,不知道等式(13)的函数gi。第三实施例采用的替换方法和该方法不假定网络的任何模型,而是使优化过程仅根据网络测量值。3. May not produce a network model that can be optimized in a variety of different situations. This means that the function gi of equation (13) is not known. The alternative approach adopted by the third embodiment and this approach does not assume any model of the network, but bases the optimization process on network measurements only.
对在将成本函数降低到最小的过程中使用的优化算法进行了描述,并且可以根据第一原理实现该优化算法。对根据被表示为w的参数将成本函数C降低到最小的一般情况进行研究。设w0是用于将C降低到最小的w的值。利用关于w的任何值的泰勒级数展开式计算C(w0)得出,An optimization algorithm used in minimizing the cost function is described and can be implemented from first principles. The general case of minimizing a cost function C according to a parameter denoted w is studied. Let w 0 be the value of w used to reduce C to a minimum. Computing C(w 0 ) using the Taylor series expansion for any value of w gives,
其中C’(w)是C对W的一阶微分,而C”(w)是二阶微分。由于C(w0)是C的最小点,关于w0,求等式(14)的微分,并设结果等于0,则得出,where C'(w) is the first-order differential of C with respect to W, and C"(w) is the second-order differential. Since C(w 0 ) is the minimum point of C, with respect to w 0 , the differential of equation (14) , and setting the result equal to 0, we get,
它是快速收敛的经典高斯-牛顿(Gauss-Newton)算法优化算法。如果C是w的二次函数,则一步收敛到最佳点w0。如果C不是二次函数,则只要C”(w)始终是正的,就可以确保收敛。如果它不是,则可以使它为正,并且等式(15)分解为标准梯度算法。然而,由于接近C的最小点,所以二次近似更准确,并且收敛速度更快。It is a fast-converging classic Gauss-Newton (Gauss-Newton) algorithm optimization algorithm. If C is a quadratic function of w, it converges to the optimal point w 0 in one step. If C is not a quadratic function, convergence is guaranteed as long as C"(w) is always positive. If it is not, it can be made positive and equation (15) breaks down to the standard gradient algorithm. However, since close to The minimum point of C, so the quadratic approximation is more accurate and converges faster.
现在,根据WCDMA成本函数,研究该问题。如上所述,由于没有网络的模型,所以难以确定C’(w)和C”(w)的值,因此难以使用等式(15)。然而,根据第三实施例,利用网络测量值计算C’(W)和C”(W)的值,以便使用等式(15)。Now, this problem is studied according to the WCDMA cost function. As mentioned above, since there is no model of the network, it is difficult to determine the values of C'(w) and C"(w), and therefore difficult to use equation (15). However, according to the third embodiment, the calculation of C using network measurements '(W) and C"(W) in order to use equation (15).
对参数w的值的微小变化δw>0进行研究,以得出新参数值w+δw,于是成本函数的值可被近似为A small change in the value of the parameter w δw > 0 is studied to obtain a new parameter value w+δw, so the value of the cost function can be approximated as
同样,可以求得表达式C(w-δw):Similarly, the expression C(w-δw) can be obtained:
将这两个表达式加在一起,并重新排列各项,获得C”(wadd),然后减去这两项并重新排列该表达式,产生C”(wadd)的表达式。Adding the two expressions together and rearranging the terms yields C"(wadd), then subtracting the two terms and rearranging the expression yields the expression for C"(wadd).
因此,通过获知C(w+δw)和C(w-δw),可以利用等式(18)和(19)求得C’(w)和C”(w)的值,或者它们的近似值。下一个问题是如何在任何特定时间计算这些值。这是根据下面的步骤执行的:Therefore, by knowing C(w+δw) and C(w−δw), the values of C'(w) and C"(w), or their approximate values, can be obtained using equations (18) and (19). The next question is how to calculate these values at any particular time. This is performed according to the following steps:
1.在时间t1,参数值是w,而根据时间t1的正确KPI的网络测量值,利用等式(11)计算成本函数C(w;t1)。1. At time t1, the parameter value is w, and from the network measurement of the correct KPI at time t1, the cost function C(w; t1) is calculated using equation (11).
2.在时间t1,将w值变更为w+δw。2. At time t1, change the value of w to w+δw.
3.在时间t2=t1+δt;δt>0,根据正确KPI的网络测量值,利用等式(11)计算成本函数的值,以得出C(w+δw;t2)。3. At time t2=t1+δt; δt>0, according to the network measurement value of the correct KPI, the value of the cost function is calculated using equation (11) to obtain C(w+δw; t2).
4.在时间t2,将参数w变更为w-δw。4. At time t2, change the parameter w to w-δw.
5.在时间t3=t2+δt,根据正确KPI的网络测量值,利用等式(11)计算成本函数,以得出C(w-δw;t3)。5. At time t3 = t2 + δt, from the network measurement of the correct KPI, calculate the cost function using equation (11) to obtain C(w - δw; t3).
6.在时间t3,在分别利用等式(18)、(19)得出C’(w)和C”(w),并分别利用测量值C(t1)、C(t2)、C(t3)得出C(w)、C(w+δw)和C(w-δw)的情况下,利用等式(15)计算w的新值。6. At time t3, use equations (18), (19) to obtain C'(w) and C"(w) respectively, and use the measured values C(t1), C(t2), C(t3 ) to obtain C(w), C(w+δw) and C(w-δw), use equation (15) to calculate the new value of w.
这些步骤构成一个周期的算法,并且可以重复该周期。现在将对以上讨论的关于不同网络测量值中出现的噪声波动问题进行研究。尽管是在没有噪声项的情况下,得出成本函数的该算法,但是也可以将该算法应用于噪声成本函数。These steps constitute a cycle of the algorithm, and the cycle can be repeated. The problem discussed above with regard to noise fluctuations occurring in different network measurements will now be investigated. Although this algorithm derives the cost function without the noise term, it is also possible to apply the algorithm to a noise cost function.
重复上述算法的作用是,使噪声作用和参数收敛达到平均值。例如,Kushner,H.J.and Clark,D.S.(1978),Stochastic ApproximationMethods for Constrained and Unconstrained System,volume 26 ofApplied Mathematical Sciences,Springer-Verlag,New York,Heidelberg,Berlin的随机优化方面对这种算法进行了仔细研究。通过使w随时增加和降低,也有助于使噪声作用达到平均值。此外,在实际网络中,由于通常在δt时间周期内积分测量值,所以降低噪声作用。对于正被优化的参数,可以选择正确的δt,并且在优化过程中,可以改变δt的值。The effect of repeating the above algorithm is that the noise contribution and parameters converge to an average. For example, Kushner, H.J. and Clark, D.S. (1978), Stochastic Approximation Methods for Constrained and Unconstrained System, volume 26 of Applied Mathematical Sciences, Springer-Verlag, New York, Heidelberg, Berlin, have carefully studied this algorithm. It also helps to average out the noise effect by having w increase and decrease over time. Furthermore, in practical networks, noise effects are reduced since measurements are usually integrated over a time period of δt. The correct δt can be chosen for the parameter being optimized, and the value of δt can be changed during the optimization process.
此外,该算法如何跟踪网络的最佳点的变化是显而易见。即使在参数已经达到最佳点时,该算法仍导致该点稍许波动。只要该最佳点不发生变化,则在该最佳点附近,可以使该波动的平均值为0。如果该最佳值发生变化,则该算法仍可以跟踪该变化。Also, it is obvious how the algorithm tracks the network's sweet spot as it changes. Even when the parameters have reached the optimal point, the algorithm still causes the point to fluctuate slightly. As long as the optimum point does not change, the average value of the fluctuation can be zero near the optimum point. If that optimal value changes, the algorithm can still track that change.
在第一实施例中,调整KPI的配置参数值,重新计算成本函数,将该成本函数与基于配置参数的先前值的成本函数进行比较,将新调整的值用作新配置参数,而根据第二实施例,分两步调整配置参数的值。首先,增加配置参数的值,根据新值重新计算成本函数,将该结果与成本函数的先前结果进行比较。然后,减小配置参数的值,根据新值重新计算成本函数,将结果与成本函数的先前结果进行比较。然而,即使两次先前改变的成本函数的结果未得到改善,仍可以使配置参数的变化微小或者为0。In the first embodiment, the configuration parameter value of the KPI is adjusted, the cost function is recalculated, the cost function is compared with the cost function based on the previous value of the configuration parameter, the newly adjusted value is used as the new configuration parameter, and according to the In the second embodiment, the value of the configuration parameter is adjusted in two steps. First, increase the value of the configuration parameter, recalculate the cost function based on the new value, and compare this result with the previous result of the cost function. Then, decrease the value of the configuration parameter, recalculate the cost function based on the new value, and compare the result with the previous result of the cost function. However, even if the results of two previous changes to the cost function do not improve, it is still possible to make small or zero changes to the configuration parameters.
作为一种选择,在根据第三实施例的第四实施例中,根据一个特定网络参数描述成本函数及其优化,即,现在讨论根据关键性能指示符(KPI)、阻塞呼叫比(BKCR)获得并优化成本函数的特定问题。As an option, in a fourth embodiment according to the third embodiment, the cost function and its optimization are described according to one specific network parameter, i.e., now discussing obtaining And optimize the specific problem of the cost function.
第三代移动网络的WCDMA无线电接口可以承载具有各种数据速率、业务要求以及服务质量目标的语音服务和数据服务。此外,从室内小区到大的宏小区,工作环境发生非常大的变化。在各种条件下,有效使用有限频带要求仔细设置各种重要的网络和小区参数。将参数设置称为无线电网络规划和优化。一旦建立并创办了WCDMA网络,其运行和维护主要是监测性能特性和质量特性并为了改善性能而改变参数值。自动参数控制装置简单,但是它需要指标确定的性能标记,或者在这种情况下,需要明确告知性能是在改善还是在恶化的成本函数。The WCDMA radio interface of third generation mobile networks can carry voice services and data services with various data rates, traffic requirements and quality of service objectives. In addition, the working environment has changed greatly from indoor cells to large macro cells. Effective use of limited frequency bands requires careful setting of various important network and cell parameters under various conditions. The parameter setting is called radio network planning and optimization. Once a WCDMA network is established and launched, its operation and maintenance is mainly about monitoring performance characteristics and quality characteristics and changing parameter values in order to improve performance. Automatic parameter control is simple, but it requires metric-determined performance signatures, or in this case, cost functions that explicitly tell whether performance is improving or deteriorating.
优化的目标是将网络上阻塞呼叫的总量降低到最小。要优化的特定参数是软切换参数窗口加(add)(wadd)。“Soft handover gains ina fast power controlled WCDMA uplink”Sipila,K.;Jasberg,M.;Laiho-Steffens,J.;Wacker,A.Vehicular Technology Conference,1999 IEEE 49th,Volume:2,1999 Page(s):1594-1598,vol.2.对根据软切换提高性能进行了讨论。已经发现,在确定要降低到最小的成本函数时,要非常仔细。以错误方式组合各项可能产生对选择的任何参数均保持固定的成本函数。The goal of optimization is to minimize the total number of blocking calls on the network. The particular parameter to be optimized is the soft handover parameter window plus (add) (wadd). "Soft handover gains in fast power controlled WCDMA uplink" Sipila, K.; Jasberg, M.; Laiho-Steffens, J.; Wacker, A. Vehicular Technology Conference, 1999 IEEE 49th , Volume: 2, 1999 Page(s) : 1594-1598, vol.2. There is a discussion on improving performance based on soft handover. It has been found that great care must be taken in determining the cost function to minimize. Combining terms in the wrong way can produce a cost function that remains fixed for whatever parameter is chosen.
通过调整网络参数,可以直接控制影响网络性能的一些因素。例如,用户数量、用户分布以及业务类型。这些外部参数的变化导致成本函数变动。这意味着,用于将成本函数降低到最小的任何优化算法均应该鲁棒的,并且即使在存在随机波动时,仍可以实现收敛。Kushner and Clark,“Stochastic Approximation Methods forConstrained and Unconstrained System”,Springer-Verlag,New York,Heidelberg,1978的随机近似方面对这种算法进行了仔细研究。在此,关于成本函数优化问题的这些研究得出的有关结果是,即使在噪声环境下,在重复使系统内的噪声波动达到平均值时,可以将优化问题看作无噪声优化。在此,采用该方法,并获得优化算法,以优化确定的成本函数,实际上,利用该优化算法将噪声成本函数降低到最小。By adjusting network parameters, some factors that affect network performance can be directly controlled. For example, number of users, distribution of users, and type of business. Variations in these external parameters result in variations in the cost function. This means that any optimization algorithm used to minimize the cost function should be robust and achieve convergence even in the presence of random fluctuations. Kushner and Clark, "Stochastic Approximation Methods for Constrained and Unconstrained System", Springer-Verlag, New York, Heidelberg, 1978 provide a careful study of this algorithm. Here, a relevant result of these studies on cost function optimization problems is that, even in noisy environments, an optimization problem can be viewed as a noiseless optimization when repeatedly averaging noise fluctuations within the system. Here, the method is adopted and an optimization algorithm is obtained to optimize a certain cost function, in fact, the noise cost function is reduced to a minimum with this optimization algorithm.
选择成本函数的优化算法的第二个考虑是,可以改变成本函数的最佳工作点。因此,优化算法应该能够跟踪成本函数状态的任何变化。通过分析可以看出,与标准梯度算法的线性收敛相比,建议的算法具有将成本函数降低到最小的二次收敛。A second consideration in choosing an optimization algorithm for a cost function is that the optimal operating point of the cost function can be changed. Therefore, the optimization algorithm should be able to track any changes in the state of the cost function. It can be seen from the analysis that the proposed algorithm has a quadratic convergence that reduces the cost function to a minimum, compared to the linear convergence of the standard gradient algorithm.
质量管理器是无线电网络控制器中用于采集各种性能标记的统计数字的逻辑单元。在特定时间间隔内,质量管理器计算这些统计数字,将该特定时间间隔称为qminterval。质量管理器可以使用的一些统计数字包括:The Quality Manager is a logical unit in the Radio Network Controller for collecting statistics of various performance markers. Quality Manager calculates these statistics during a specific time interval, called qminterval. Some statistics available to Quality Manager include:
● 在每个qminterval间隔,质量管理器仔细检查该扇区的所有连接并检查呼叫质量。在控制周期内,在两个计数器内累计糟糕质量呼叫的数量和呼叫总数。利用计数器值的比值获得质量。● At each qminterval, the quality manager goes through all connections in the sector and checks the call quality. During the control period, the number of bad quality calls and the total number of calls are accumulated in two counters. The mass is obtained using the ratio of the counter values.
● 先前qminterval期间内的阻塞呼叫与总接入请求的比值。• The ratio of blocked calls to total access requests during the previous qminterval.
● 在先前qminterval期间内,掉话结束的呼叫与结束呼叫总数的比值。● Ratio of dropped calls to total number of terminated calls during the previous qminterval.
在此,仅使用阻塞比,然而,可以可以扩展该方法和模拟过程以包括质量管理器返回的其他统计数字。Here, only blocking ratios are used, however, the method and simulation process can be extended to include other statistics returned by the quality manager.
根据切换参数、被表示为wadd的窗口加,研究要降低到最小的成本函数C(参考等式11)的一般情况。设wadd0是将C降低到最小的窗口加的值。利用关于wadd的泰勒级数展开式,计算C(wadd0),得出:The general case of the cost function C (cf. Equation 11) to be reduced to a minimum is studied in terms of the switching parameter, the window sum denoted as wadd. Let wadd 0 be the value of window addition that reduces C to its minimum. Using the Taylor series expansion about wadd to calculate C(wadd 0 ), we get:
其中C’是C对wadd的一阶微分,而C”是二阶微分。由于C(wadd0)是最小,关于wadd0,求等式(1)的微分,并设结果等于0,则得出,Among them, C' is the first-order differential of C to wadd, and C" is the second-order differential. Since C(wadd 0 ) is the minimum, with respect to wadd 0 , find the differential of equation (1), and set the result equal to 0, then we get out,
它是快速收敛的经典高斯-牛顿(Gauss-Newton)算法。在wadd,必须知道C’和C”的值。现在说明如何由网络估计这些值。请注意,等式(20)和(21)对应于等式(14)和(15),等式(14)和(15)与所述等式的更一般形式有关。It is a fast-converging classic Gauss-Newton (Gauss-Newton) algorithm. In wadd, the values of C' and C" must be known. It is now shown how these values are estimated by the network. Note that equations (20) and (21) correspond to equations (14) and (15), and equation (14 ) and (15) are related to a more general form of the equation.
研究窗口加从δwadd到wadd+δwadd的变化以及成本函数C(wadd+δwadd)的相应值。同样,研究窗口加到wadd-δwadd的变化以及成本函数的相应值C(wadd-δwadd),然后,利用代数操作可以将C’(wadd)和C”(wadd)表示为:The study window plus the change from δwadd to wadd+δwadd and the corresponding value of the cost function C(wadd+δwadd). Similarly, the study window is added to the change of wadd-δwadd and the corresponding value C(wadd-δwadd) of the cost function. Then, using algebraic operations, C’(wadd) and C”(wadd) can be expressed as:
如果C是二次的,则因此而存在一步收敛。如果C不是二次的,则等式(22)的表达式是近似的,但是仍存在比标准梯度算法快的快速收敛。越接近wadd0,到二次的近似就越精确。在实际情况下,利用以下过程实现该算法:If C is quadratic, there is therefore one-step convergence. If C is not quadratic, the expression of equation (22) is approximate, but there is still fast convergence faster than the standard gradient algorithm. The closer to wadd 0 , the more accurate the approximation to the quadratic. In practice, the algorithm is implemented using the following procedure:
1)在时间t1,窗口加的值是wadd,而根据网络测量值,计算成本函数C(t1)的值。在时间t1,将wadd的值变更为wadd+δwadd。1) At time t1, the value added to the window is wadd, and the value of the cost function C(t1) is calculated according to the network measurement value. At time t1, the value of wadd is changed to wadd+δwadd.
2)在时间t2(>t1),窗口加的值为wadd+δwadd,直接根据网络测量值,计算成本函数值C(t2)。在时间t2,将窗口加的值变更为wadd-δwadd。2) At time t2 (>t1), the value added to the window is wadd+δwadd, and the cost function value C(t2) is calculated directly according to the network measurement value. At time t2, the value of window addition is changed to wadd-δwadd.
3)在时间t3,窗口加的值为wadd-δwadd,直接根据网络测量值,计算成本函数值C(t3)。在时间t3,利用等式(20)以及等式(21)和(22)更新wadd的值,其中3) At time t3, the added value of the window is wadd-δwadd, and the cost function value C(t3) is calculated directly according to the network measurement value. At time t3, the value of wadd is updated using equation (20) and equations (21) and (22), where
C(wadd)=c(t1)C(wadd)=c(t1)
C(wadd+δwadd)=C(t2)C(wadd+δwadd)=C(t2)
C(wadd-δwadd)=C(t3) (23)C(wadd-δwadd)=C(t3) (23)
重复该过程,从而将成本函数降低到最小。值得注意的是,通过交替增加或者减少窗口加的值,可以实现两个目标。如上所述,第一个目标是估计C’和C”。第二个目标更没有问题了。对其中算法收敛到成本函数的最小值的情况进行研究。此时,函数的梯度是0,并且已经完成优化。然而,网络的最佳点始终发生变化,因此成本函数也始终发生变化。如上所述,通过交替wadd的值,利用该算法可以检测并跟踪任何这种改变。This process is repeated, thereby reducing the cost function to a minimum. It is worth noting that by alternately increasing or decreasing the value of the window plus, two goals can be achieved. As mentioned above, the first objective is to estimate C' and C". The second objective is less problematic. The case is studied where the algorithm converges to the minimum of the cost function. At this point, the gradient of the function is 0, and The optimization has been done. However, the optimal point of the network is always changing, and therefore the cost function is also always changing. By alternating the value of wadd, as mentioned above, any such changes can be detected and tracked by the algorithm.
该第四实施例的下一个阶段是开发可以利用上述优化算法将其降低到最小的成本函数。在第一种最一般情况下,可以利用等式(11)描述成本函数,其中KPIi是网络的第i个KPI,而Fi是要定义的某种函数。成本函数的每项应该始终是正的,因此成本函数始终是正。此外,函数Fi应该以在正常运算中该项不主导成本函数的方式缩放KPIi。例如,对于在要求范围内工作的、可以确保正确的服务质量的KPIi的值,Fi(KPIi)应该在[0,1]范围内。The next stage of this fourth embodiment is to develop a cost function that can be reduced to a minimum using the optimization algorithm described above. In the first, most general case, the cost function can be described by equation (11), where KPI i is the ith KPI of the network and F i is some function to be defined. Each term of the cost function should always be positive, so the cost function is always positive. Furthermore, the function F i should scale the KPI i in such a way that in normal operation this term does not dominate the cost function. For example, F i (KPI i ) should be in the range [0, 1] for the value of KPI i that can ensure correct quality of service to work within the required range.
在第四实施例中,仅对阻塞率感兴趣。目的是将作为窗口加的函数的阻塞呼叫比(BKCR)降低到最小。在这种情况下,用于降低到最小的最明显成本函数是阻塞比的简单和。然而,因为几个原因,在这种情况下,成本函数的更好选择是In a fourth embodiment, only the blocking rate is of interest. The goal is to minimize the blocking call ratio (BKCR) as a function of window addition. In this case, the most obvious cost function to minimize is a simple sum of blocking ratios. However, for several reasons, a better choice of cost function in this case is
C=ulBKCR2+dlBKCR2 (24)C=ulBKCR 2 +dlBKCR 2 (24)
其中ulBKCR是是上行链路阻塞呼叫比,而dlBKCR是下行链路阻塞呼叫比。然而,在任何实际网络中,对于可接受的服务等级,阻塞呼叫比必须低于特定值,例如,5%。可以进一步调整该成本函数,以使阻塞值显著高于该值。例如,where ulBKCR is the uplink blocked call ratio and dlBKCR is the downlink blocked call ratio. However, in any practical network, for an acceptable level of service, the blocked calls ratio must be below a certain value, eg 5%. This cost function can be tuned further so that the blocking value is significantly higher than this value. For example,
C=f(ulBKCR)2+f(dlBKCR)2 (25)C=f(ulBKCR) 2 +f(dlBKCR) 2 (25)
其中in
f(x)=exp(x*12)-1 (26)f(x)=exp(x*12)-1 (26)
选择该函数意味着,对于5%的上行链路阻塞,f(ulBKCR)的值=1.0。对于低于5%的值,该函数几乎是线性的。然而,对于大于5%的值,该函数以指数增加。当在成本函数中具有许多项时,函数f的用途更明显。函数f的另一个重要特性是,它是可连续微分函数,因此在求用于优化算法的成本函数的导数时,不存在问题。Choosing this function means that for 5% uplink blocking, the value of f(ulBKCR) = 1.0. For values below 5%, the function is almost linear. However, for values greater than 5%, the function increases exponentially. The usefulness of the function f is more obvious when there are many terms in the cost function. Another important property of the function f is that it is continuously differentiable, so there is no problem in taking the derivative of the cost function used in the optimization algorithm.
在第五实施例中,可以扩展第三实施例的算法,以在要优化几个网络参数时将成本函数降低到最小。通过将多个参数简化为第三实施例的一个参数的问题,实现多个参数的情况。对要优化的N个参数wi的矢量W进行研究,In the fifth embodiment, the algorithm of the third embodiment can be extended to minimize the cost function when several network parameters are to be optimized. The multi-parameter case is realized by simplifying the multi-parameter problem to one parameter of the third embodiment. The vector W of the N parameters wi to be optimized is studied,
W=(w1;w2,…;wN) (27)W=(w 1 ; w 2 , . . . ; w N ) (27)
对从其开始进行优化的这些参数的初始值进行研究。可以随机选择该初始值,Initial values of these parameters from which to optimize are investigated. This initial value can be chosen randomly,
W0=(w0;1;w0;2;…;w0;N) (28)W 0 =(w 0; 1 ; w 0; 2 ; . . . ; w 0; N ) (28)
将含有初始值W0的N维参数空间内的一行定义为:Define a row in the N-dimensional parameter space containing the initial value W 0 as:
L0=W0+λ n0 (29)L 0 =W 0 +λ n 0 (29)
N维矢量 n0是单位矢量,该单位矢量又首先具有任意方向,而因数λ是标量变量。该理论是沿行L0将成本函数降低到最小。这相当于确定λ的最佳值,λ是标量值,因此可以采用先前小节描述的算法。假定最佳值是λ0,则利用下面的等式获得W的新值:The N-dimensional vector n0 is a unit vector which in turn has an arbitrary direction first, and the factor λ is a scalar variable. The theory is to minimize the cost function along the line L0 . This amounts to determining the optimal value for λ, which is a scalar value, so the algorithm described in the previous subsection can be employed. Assuming the optimum value is λ 0 , the new value of W is obtained using the following equation:
W1=W0+λ0 n0 (30)W 1 =W 0 +λ 0 n 0 (30)
将另一行L1定义为:Define another line L1 as:
L1=W1+λ n1 (31)L 1 =W 1 +λ n 1 (31)
其中 n1是 n0的共轭方向。再一次,利用第三实施例的算法,沿新定义的行,重复优化成本函数。从理论上说,在无噪声系统中,必须沿N个共轭方向( n0, n1,…, nN-1),重复进行N次沿行的优化。对于有噪声的成本函数,为了去除噪声作用,必须重复更多个周期。有许多众所周知的方法可以在优化过程的每个步骤产生共轭方向。与单独优化网络参数相比,同时优化几个网络参数,可以更好地将成本函数降低到最小。where n 1 is the conjugate direction of n 0 . Again, the optimization of the cost function is repeated along the newly defined lines using the algorithm of the third embodiment. Theoretically speaking, in a noise-free system, the optimization along the N times must be repeated along the N conjugate directions (n 0 , n 1 ,..., n N-1 ). For noisy cost functions, more cycles must be repeated in order to remove the noise effect. There are many well-known methods to generate conjugate orientations at each step of the optimization process. Optimizing several network parameters simultaneously leads to better minimization of the cost function than optimizing network parameters individually.
特别是在将该算法扩展到更高维时,采用这种算法的进一步优点在于,通过使各参数的波动微小,可以脱离成本函数的本地最小值。A further advantage of using this algorithm, especially when extending the algorithm to higher dimensions, is that, by making the fluctuations of the parameters small, it is possible to escape from local minima of the cost function.
根据第一、第二、第三或第四实施例的优化方法不仅基于成本函数的最后两个结果,并且基于成本函数测量值的先前历史。因此,在时间t,影响参数的变化可以是成本函数和不同时间t、t-1、t-2、t-3、…t-n的各参数值的函数。因此,可以更新各参数,或者将各参数表示为先前测量值的函数。The optimization method according to the first, second, third or fourth embodiment is not only based on the last two results of the cost function, but also on the previous history of the measured values of the cost function. Thus, at time t, the variation of the influencing parameter may be a function of the cost function and the value of each parameter at different times t, t-1, t-2, t-3, . . . t-n. Thus, each parameter can be updated, or expressed as a function of previous measurements.
Claims (15)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/EP2001/012374 WO2003037018A1 (en) | 2001-10-25 | 2001-10-25 | Method and system for optimising the performance of a network |
| EPPCT/EP01/12374 | 2001-10-25 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN1575614A true CN1575614A (en) | 2005-02-02 |
| CN100348071C CN100348071C (en) | 2007-11-07 |
Family
ID=8164652
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CNB028211200A Expired - Fee Related CN100348071C (en) | 2001-10-25 | 2002-05-31 | Method and system for optimising the performance of a network |
Country Status (2)
| Country | Link |
|---|---|
| CN (1) | CN100348071C (en) |
| WO (2) | WO2003037018A1 (en) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101420714B (en) * | 2007-10-26 | 2012-05-30 | 摩托罗拉移动公司 | Method for scheduling indicator for collecting key performance from communication network |
| CN102801586A (en) * | 2012-08-28 | 2012-11-28 | 盛科网络(苏州)有限公司 | Method and device for automatically testing quality of service (QoS) granularity and precision |
| CN102801556A (en) * | 2012-07-23 | 2012-11-28 | 中国联合网络通信集团有限公司 | Network performance optimization method and device |
| CN107465526A (en) * | 2016-06-03 | 2017-12-12 | 德科仕通信(上海)有限公司 | Internet video CDN server mass monitoring system and method |
| CN108876078A (en) * | 2017-05-10 | 2018-11-23 | 株式会社日立制作所 | Calculate the method and dissipative system monitoring device of the improvement alternative of dissipative system performance |
Families Citing this family (34)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7694307B2 (en) * | 2003-05-15 | 2010-04-06 | Sap Ag | Analytical task invocation |
| US7360215B2 (en) | 2003-05-15 | 2008-04-15 | Sap Ag | Application interface for analytical tasks |
| US7373633B2 (en) | 2003-06-03 | 2008-05-13 | Sap Ag | Analytical application framework |
| US7370316B2 (en) | 2003-06-03 | 2008-05-06 | Sap Ag | Mining model versioning |
| US7818745B2 (en) * | 2003-09-29 | 2010-10-19 | International Business Machines Corporation | Dynamic transaction control within a host transaction processing system |
| EP1671506B1 (en) * | 2003-09-30 | 2008-11-05 | Telefonaktiebolaget LM Ericsson (publ) | Performance management of cellular mobile packet data networks |
| EP1530389A1 (en) * | 2003-11-05 | 2005-05-11 | Mitsubishi Electric Information Technology Centre Europe B.V. | Method for optimization of a parameter or a set of parameters of a telecommunication network |
| CN1301624C (en) * | 2004-01-15 | 2007-02-21 | 中兴通讯股份有限公司 | Method of cellular mobile communication network performance data processing |
| CN100440796C (en) * | 2004-12-04 | 2008-12-03 | 华为技术有限公司 | A method for obtaining network key performance indicators and key performance indicator components |
| US7769850B2 (en) | 2004-12-23 | 2010-08-03 | International Business Machines Corporation | System and method for analysis of communications networks |
| FR2880505B1 (en) * | 2004-12-31 | 2007-05-11 | Evolium Sas Soc Par Actions Si | METHOD AND SYSTEM FOR OPERATING A MOBILE COMMUNICATIONS NETWORK |
| FR2880506B1 (en) * | 2005-01-06 | 2007-05-04 | Evolium Sas Soc Par Actions Si | METHOD AND SYSTEM FOR OPERATING A MOBILE COMMUNICATION CELLULAR NETWORK |
| FR2883446B1 (en) * | 2005-03-17 | 2007-05-04 | Evolium Sas Soc Par Actions Si | WORKING STATION FOR ANALYZING AND OPTIMIZING A CELLULAR MOBILE TELECOMMUNICATION NETWORK |
| GB2430330B (en) * | 2005-09-19 | 2010-03-10 | Agilent Technologies Inc | Allocation of a performance indicator among cells in a cellular communication system |
| FR2893476B1 (en) * | 2005-11-14 | 2008-01-25 | Radiotelephone Sfr | METHOD AND SYSTEM FOR SIMULATION AND RESOURCE MANAGEMENT OF A MOBILE TELEPHONY NETWORK. |
| US7840896B2 (en) | 2006-03-30 | 2010-11-23 | Microsoft Corporation | Definition and instantiation of metric based business logic reports |
| US8261181B2 (en) | 2006-03-30 | 2012-09-04 | Microsoft Corporation | Multidimensional metrics-based annotation |
| US7716592B2 (en) | 2006-03-30 | 2010-05-11 | Microsoft Corporation | Automated generation of dashboards for scorecard metrics and subordinate reporting |
| US8190992B2 (en) | 2006-04-21 | 2012-05-29 | Microsoft Corporation | Grouping and display of logically defined reports |
| US7716571B2 (en) | 2006-04-27 | 2010-05-11 | Microsoft Corporation | Multidimensional scorecard header definition |
| US9058307B2 (en) | 2007-01-26 | 2015-06-16 | Microsoft Technology Licensing, Llc | Presentation generation using scorecard elements |
| US8321805B2 (en) | 2007-01-30 | 2012-11-27 | Microsoft Corporation | Service architecture based metric views |
| US8495663B2 (en) | 2007-02-02 | 2013-07-23 | Microsoft Corporation | Real time collaboration using embedded data visualizations |
| EP2130326B1 (en) * | 2007-03-29 | 2011-09-14 | Telefonaktiebolaget LM Ericsson (publ) | Method and apparatus for evaluating services in communication networks |
| EP2165461A4 (en) * | 2007-06-19 | 2012-01-18 | Aito Technologies Oy | An arrangement and a related method for providing business assurance in communication networks |
| WO2009008783A1 (en) * | 2007-07-11 | 2009-01-15 | Telefonaktiebolaget Lm Ericsson (Publ) | Method and apparatus for determining service performance. |
| US8600384B1 (en) | 2007-08-29 | 2013-12-03 | Optimi Corporation | Optimization of interlayer handovers in multilayer wireless communication networks |
| DE102009054883A1 (en) * | 2009-12-17 | 2011-06-22 | Endress + Hauser Process Solutions Ag | Method for optimization of connection parameter of transmission path between periphery-field access units and remotely arranged management system in process and fabrication system, involves providing parameter set to field access units |
| JP5077835B2 (en) * | 2010-01-06 | 2012-11-21 | 横河電機株式会社 | Plant analysis system |
| EP2638723B1 (en) | 2010-11-11 | 2020-08-26 | Nokia Solutions and Networks Oy | Network management |
| EP2832150B1 (en) | 2012-03-25 | 2017-11-22 | Intucell Ltd. | Communication apparatus and method for optimizing performance of a communication network |
| EP2763349A1 (en) * | 2013-02-05 | 2014-08-06 | Telefonaktiebolaget L M Ericsson AB (Publ) | Methods and Apparatus for Determining Improved Mobile Network Key Performance Indicators |
| WO2014202676A1 (en) * | 2013-06-21 | 2014-12-24 | Abb Technology Ag | Commissioning system and method |
| US10462688B2 (en) * | 2015-06-29 | 2019-10-29 | Cisco Technology, Inc. | Association rule analysis and data visualization for mobile networks |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5598532A (en) * | 1993-10-21 | 1997-01-28 | Optimal Networks | Method and apparatus for optimizing computer networks |
| US5809282A (en) * | 1995-06-07 | 1998-09-15 | Grc International, Inc. | Automated network simulation and optimization system |
| US5970064A (en) * | 1997-06-12 | 1999-10-19 | Northern Telecom Limited | Real time control architecture for admission control in communications network |
| US6631267B1 (en) * | 1999-11-04 | 2003-10-07 | Lucent Technologies Inc. | Road-based evaluation and interpolation of wireless network parameters |
| US6611500B1 (en) * | 1999-11-04 | 2003-08-26 | Lucent Technologies, Inc. | Methods and apparatus for derivative-based optimization of wireless network performance |
-
2001
- 2001-10-25 WO PCT/EP2001/012374 patent/WO2003037018A1/en not_active Ceased
-
2002
- 2002-05-31 CN CNB028211200A patent/CN100348071C/en not_active Expired - Fee Related
- 2002-05-31 WO PCT/IB2002/001962 patent/WO2003037019A1/en not_active Ceased
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101420714B (en) * | 2007-10-26 | 2012-05-30 | 摩托罗拉移动公司 | Method for scheduling indicator for collecting key performance from communication network |
| CN102801556A (en) * | 2012-07-23 | 2012-11-28 | 中国联合网络通信集团有限公司 | Network performance optimization method and device |
| CN102801556B (en) * | 2012-07-23 | 2015-02-18 | 中国联合网络通信集团有限公司 | Network performance optimization method and device |
| CN102801586A (en) * | 2012-08-28 | 2012-11-28 | 盛科网络(苏州)有限公司 | Method and device for automatically testing quality of service (QoS) granularity and precision |
| CN102801586B (en) * | 2012-08-28 | 2014-11-05 | 盛科网络(苏州)有限公司 | Method and device for automatically testing quality of service (QoS) granularity and precision |
| CN107465526A (en) * | 2016-06-03 | 2017-12-12 | 德科仕通信(上海)有限公司 | Internet video CDN server mass monitoring system and method |
| CN107465526B (en) * | 2016-06-03 | 2020-05-15 | 德科仕通信(上海)有限公司 | Internet video CDN server quality monitoring system and method |
| CN108876078A (en) * | 2017-05-10 | 2018-11-23 | 株式会社日立制作所 | Calculate the method and dissipative system monitoring device of the improvement alternative of dissipative system performance |
| CN108876078B (en) * | 2017-05-10 | 2023-06-20 | 株式会社日立制作所 | Method for calculating energy consumption system performance improvement strategy and energy consumption system monitoring device |
Also Published As
| Publication number | Publication date |
|---|---|
| CN100348071C (en) | 2007-11-07 |
| WO2003037018A1 (en) | 2003-05-01 |
| WO2003037019A1 (en) | 2003-05-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN100348071C (en) | Method and system for optimising the performance of a network | |
| US20040266442A1 (en) | Method and system for optimising the performance of a network | |
| CN101904189B (en) | System and method for sizing a cellular telecommunications network | |
| CN109983798B (en) | Prediction of performance indicators in cellular networks | |
| CN1146279C (en) | Determining subscriber demands on communiations system | |
| CN1207937C (en) | Radio resource management | |
| JP5749349B2 (en) | Network management | |
| CN1498000A (en) | Method, apparatus and program for base station coverage area design in mobile communication system | |
| CN101502056B (en) | Prioritizing Bearer Channels in Wireless Communication Networks | |
| CN1723662A (en) | Method for Differentiating Quality of Service in Packet Mode Mobile Communication Network | |
| CN1478361A (en) | System and method for planning mobile terminal telecommunication network | |
| CN1853437A (en) | soft handover | |
| CN1295417A (en) | Method and apparatus for wireless network performance based on derivative optimization | |
| CN1246771A (en) | Pulse cascade resource allocation in honeycomb system | |
| CN1929424A (en) | Method of evaluating channel bandwidth utilization ratio, wireless communication system | |
| CN1926805A (en) | System and method for quality condition analysis of access network supporting broad band telecommunication service | |
| US20100074238A1 (en) | Virtual network image system for wireless local area network services | |
| CN1610337A (en) | Method and apparatus for packet transmission control | |
| CN101064952A (en) | Distributed wireless resource management system and method for heterogeneous wireless network | |
| CN113728673A (en) | Method and apparatus for estimating data traffic suppressed by radio problems | |
| CN1890921A (en) | Method for service management in communications system | |
| CN1215724C (en) | Traffic measurement device and traffic measurement method | |
| CN1905748A (en) | Method of identifying a radio link | |
| CN1262005A (en) | Method and system for coding digital data | |
| Badia et al. | On utility-based radio resource management with and without service guarantees |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| ASS | Succession or assignment of patent right |
Owner name: NOKIA AND SIEMENS NETWORKS CO., LTD. Free format text: FORMER OWNER: NOKIA NETWORKS OY Effective date: 20080718 |
|
| C41 | Transfer of patent application or patent right or utility model | ||
| TR01 | Transfer of patent right |
Effective date of registration: 20080718 Address after: Espoo, Finland Patentee after: Nokia Siemens Network Co., Ltd. Address before: Espoo, Finland Patentee before: Nokia Oyj |
|
| EE01 | Entry into force of recordation of patent licensing contract |
Assignee: Siemens Communication Networks Ltd., Beijing Assignor: Nokia Siemens Network Co., Ltd. Contract record no.: 2010990000772 Denomination of invention: Method and system for optimising the performance of a network Granted publication date: 20071107 License type: Exclusive License Open date: 20050202 Record date: 20100920 |
|
| C56 | Change in the name or address of the patentee |
Owner name: NOKIA SIEMENS NETWORKS OY Free format text: FORMER NAME: NOKIA SIEMENS NETWORK CO., LTD. |
|
| CP01 | Change in the name or title of a patent holder |
Address after: Espoo, Finland Patentee after: Nokia Siemens Networks OY Address before: Espoo, Finland Patentee before: Nokia Siemens Network Co., Ltd. |
|
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20071107 Termination date: 20150531 |
|
| EXPY | Termination of patent right or utility model |