Disclosure of Invention
The invention provides a projection light field stereoscopic display device, aiming at solving the problem that when a viewer moves away from a screen in the traditional projection light field stereoscopic display device, the light field density is lower and lower, so that the stereoscopic display effect is gradually weakened.
The projection light field stereo display device is composed of a projector array and a one-dimensional retro-reflection sheet array. Each projector in the projector array projects a parallax image on the one-dimensional retroreflective sheet array to form an image plane.
The one-dimensional retroreflective sheet array is formed of a plurality of one-dimensional retroreflective sheets. The one-dimensional retroreflection sheet as a light splitting element can form one-dimensional retroreflection in a certain direction, that is, light rays emitted by the projector at different positions in the direction can be retroreflected by the one-dimensional retroreflection sheet and then respectively converged at respective positions in the direction again. The normal direction of the one-dimensional retroreflective sheet is consistent with the normal direction of the image plane and is not parallel to the normal direction of the image plane. The normal direction of the one-dimensional retroreflection sheet is perpendicular to the direction of realizing one-dimensional retroreflection.
The projectors in the projector array are densely arranged in any form, and each projector respectively projects a parallax image.
Preferably, the one-dimensional retroreflective sheet is formed by combining a plane mirror array and one-dimensional scattering optical elements, the one-dimensional scattering optical elements forming an uneven surface in one direction and having a flat surface in a direction orthogonal thereto. For example, the one-dimensional retroreflective sheet is formed by combining a cubic reflective array and a one-dimensional scattering optical element; or the reflecting prism array and the one-dimensional scattering optical element are combined, and the sum of the external angles of the working surfaces of the reflecting prisms is 90 degrees. The one-dimensional retroreflection sheet forms a retroreflection light path by using the principle of plane mirror formation perfect symmetrical image.
Alternatively, the one-dimensional retroreflective sheeting is formed of a composite structure of a lens array or cylindrical lenses and a conventional one-dimensional retroreflective layer. For example, a one-dimensional retroreflective sheeting may be formed by additionally providing a lenticular sheet or lens array over a conventional one-dimensional retroreflective layer formed by a lenticular sheet and a diffusive reflective layer. Because retro-reflection light rays of the traditional one-dimensional retro-reflection layer formed by the cylindrical lens grating and the diffuse reflection layer are diverged to a certain degree, the one-dimensional retro-reflection sheet restrains divergent light beams by utilizing an additionally arranged cylindrical lens grating or lens array, and thus a one-dimensional retro-reflection light path with smaller divergence is formed.
The technical principle of the invention for realizing the three-dimensional display is as follows:
the projectors in the projector array are densely arranged in any pattern. Each projector projects an image onto the one-dimensional array of retroreflective sheeting to form an image plane. The light rays respectively reach each one-dimensional retroreflective sheet on the one-dimensional retroreflective sheet array and are retroreflected by the one-dimensional retroreflective sheets. After light rays generated by any one projector are reflected reversely, the light rays are converged on a straight line, and the straight line direction is perpendicular to the normal direction of the one-dimensional reverse reflection sheet and the one-dimensional reverse reflection direction of the one-dimensional reverse reflection sheet. It will be appreciated that the information viewed on the line is from the same projector and therefore the line should have consistent information. The projector has the above-mentioned property that an image projected by the projector has an information-invariant characteristic in the above-mentioned straight line direction. Due to the one-dimensional retro-reflection effect, straight lines to which light rays projected by different projectors are converged form parallel arrangement, and therefore a stereoscopic vision light field is constructed. When human eyes are in the stereoscopic visual light field, stereoscopic vision can be generated. When the human eyes are at any position in the light field, the image information seen by the human eyes is a linear combination of the projection information of each projector, and each projector has an information invariant characteristic in a straight line direction perpendicular to the normal direction of the one-dimensional retroreflection sheet and the one-dimensional retroreflection direction of the one-dimensional retroreflection sheet. Therefore, when human eyes at any position in the light field move along the direction parallel to the straight line to which the light rays projected by any projector converge, the seen images are not changed.
In the invention, because the straight line to which the light rays projected by the projector converge is perpendicular to the normal direction of the one-dimensional retro-reflection sheet, and the normal direction of the one-dimensional retro-reflection sheet is consistent and is not parallel to the normal of the image plane, the straight line to which the light rays projected by the projector converge is not perpendicular to the normal direction of the image plane. Therefore, when the observer is far away from the screen along the straight line where the light rays projected by the projector converge, the light field observed by the observer does not change any more, and different observers in front and at the back can see consistent three-dimensional images.
Detailed Description
Example 1
Fig. 1 is a schematic structural diagram of a stereoscopic display device for projecting a light field according to this embodiment. The projection light field stereo display device is composed of a projector array and a one-dimensional retro-reflection sheet array 200. Each projector 300 in the projector array projects a parallax image onto the one-dimensional retroreflective sheeting array to form an image plane 100.
The one-dimensional retroreflective sheet array 200 is formed of a plurality of one-dimensional retroreflective sheets. As shown in FIG. 1, a one-dimensional retroreflective sheeting can be used as a light-splitting element inxOne-dimensional retroreflection is formed in the direction. Namely atxProjector with different positions in direction300, the emitted light can be reflected by the one-dimensional retroreflection sheetxThe directions converge at respective positions again.
Referring to FIG. 1, the normal direction of the one-dimensional retroreflective sheeting iszThe directions are consistent.
The normal direction of the image plane 100 isk。
Normal direction of retroreflective sheetzNot in the direction normal to the image planekParallel.
And the normal direction of the one-dimensional retroreflection sheetszDirection of one-dimensional retroreflectionxAnd is vertical.
The projectors 300 in the projector array are arranged densely in an arbitrary form, and each projector 300 projects a parallax image.
The one-dimensional retroreflective sheeting is composed of a combination of a plane mirror array and a one-dimensional scattering optical element, the one-dimensional scattering optical element forming an uneven surface in one direction and having a flat surface in a direction orthogonal thereto. Specifically, referring to fig. 2, the plane mirror array is formed by combining a cubic reflection array 401 and a one-dimensional scattering optical element 402. One-dimensional scattering optics 402 edgeyIs directionally formed into an uneven surface to realizeyDirectional light scattering; and its edge andyorthogonalxOriented to form a flat surface, which is not inxLight scattering is formed in the direction. Referring to fig. 3, a cubic reflective array 401 is formed by 3 square reflective surfaces that are perpendicular to each other and are periodically arranged in space. The light irradiated on the light source will return along the original direction after 3 times of reflection. Meanwhile, due to the 3-time reflection, a magnitude of the incident light 510 and the reflected light 520 is generateddDisplacement of (2). Referring to FIG. 2, the displacement between the incident light ray 510 and the reflected light ray 520dSuch that the one-dimensional scattering optical element 402 can refract the reflected light 520 to a different direction from the original incident light 510yScattering in the direction due to the one-dimensional scattering optical element 402xOriented with a flat surface, incident ray 510 and reflected ray 520xThe upward direction is unchanged, thereby forming one-dimensional retroreflection.
The technical principle of the invention for realizing the three-dimensional display is as follows:
referring to fig. 1, the projectors 300 in the projector array are arranged densely in an arbitrary pattern. Each projector 300 projects an image onto the one-dimensional retroreflective sheet array 200 to form an image plane 100. These light rays reach each of the one-dimensional retroreflective sheets on the one-dimensional retroreflective sheet array 200 and are retroreflected by the one-dimensional retroreflective sheets. After the light generated by any one of the projectors 300 is reflected, the light converges on a straight line parallel to the lightyDirection of, andyperpendicular tozDirection andxand (4) direction. It will be appreciated that the information viewed on the line is from the same projector 300 and therefore the line should have consistent information. The above-mentioned property is provided for any projector 300, that is, the image projected by any projector 300 isyThe direction has an information invariant characteristic. Due to the one-dimensional retro-reflection effect, the straight lines to which the light rays projected by the different projectors 300 are converged are arranged in parallel and parallel toyDirection, thereby constructing a stereoscopic light field. When human eyes are in the stereoscopic visual light field, stereoscopic vision can be generated. When the human eye is at any position in the light field, it is especially not atx-yWhen in a flat plane, the image information it sees should be a linear combination of the information projected by each projector 300, with each projector 300 inyThe direction has an information invariant characteristic. Thus, the human eye at any position in the light field is parallel toyWhen the direction of the image is moved, the image seen by the image is not changed.
In the present invention, the light projected by the projector 300 converges in the direction ofyIs perpendicular to the normal direction of the one-dimensional retroreflective sheetzAnd the normal direction of the one-dimensional retroreflective sheetzCoincident with and not normal to the image planekIn parallel, thenyNot in the direction normal to the image planekAnd is vertical. Thus, the viewer is thereby made to be parallel toyWhen the direction of the three-dimensional stereo image is far away from the screen, the light field observed by the three-dimensional stereo image is not changed any more, and different observers in front and at the back can see consistent stereo images.
Example 2
Fig. 1 is a schematic structural diagram of a stereoscopic display device for projecting a light field according to this embodiment. The projection light field stereo display device is composed of a projector array and a one-dimensional retro-reflection sheet array 200. Each projector 300 in the projector array projects a parallax image onto the one-dimensional retroreflective sheeting array to form an image plane 100.
The one-dimensional retroreflective sheet array 200 is formed of a plurality of one-dimensional retroreflective sheets. As shown in FIG. 1, a one-dimensional retroreflective sheeting can be used as a light-splitting element inxOne-dimensional retroreflection is formed in the direction. Namely atxThe light emitted by the projector 300 at different positions in the direction can be reflected by the one-dimensional retroreflection sheetxThe directions converge at respective positions again.
Referring to FIG. 1, the normal direction of the one-dimensional retroreflective sheeting iszThe directions are consistent.
The normal direction of the image plane 100 isk。
Normal direction of retroreflective sheetzNot in the direction normal to the image planekParallel.
And the normal direction of the one-dimensional retroreflection sheetszDirection of one-dimensional retroreflectionxAnd is vertical.
The projectors 300 in the projector array are arranged densely in an arbitrary form, and each projector 300 projects a parallax image.
The one-dimensional retroreflection sheet is formed by a composite structure formed by a lens array or cylindrical lenses and a traditional one-dimensional retroreflection layer. Referring to fig. 4, a conventional one-dimensional retro-reflective layer 601 is formed by a lenticular lens and a diffuse reflective layer, wherein the diffuse reflective layer is located at a focal length of the lenticular lens. Light emitted from the projector 300 passes through the lenticular lens 602 in the composite retroreflective structure to form a light spot 700 on the conventional one-dimensional retroreflective layer 601. These light rays are retroreflected back through the transmissive one-dimensional retroreflecting layer 601, however there must be divergence of the light beam. When the retroreflection light beam with certain divergence passes through the cylindrical lens grating 602 in the composite retroreflection structure, a one-dimensional retroreflection light path with smaller divergence is formed due to the constraint effect of the convex lens on the diverged light beam.
The technical principle of the invention for realizing the three-dimensional display is as follows:
referring to FIG. 1, in a projector arrayThe projectors 300 are arranged densely in any pattern. Each projector 300 projects an image onto the one-dimensional retroreflective sheet array 200 to form an image plane 100. These light rays reach each of the one-dimensional retroreflective sheets on the one-dimensional retroreflective sheet array 200 and are retroreflected by the one-dimensional retroreflective sheets. After the light generated by any one of the projectors 300 is reflected, the light converges on a straight line parallel to the lightyDirection of, andyperpendicular tozDirection andxand (4) direction. It will be appreciated that the information viewed on the line is from the same projector 300 and therefore the line should have consistent information. The above-mentioned property is provided for any projector 300, that is, the image projected by any projector 300 isyThe direction has an information invariant characteristic. Due to the one-dimensional retro-reflection effect, the straight lines to which the light rays projected by the different projectors 300 are converged are arranged in parallel and parallel toyDirection, thereby constructing a stereoscopic light field. When human eyes are in the stereoscopic visual light field, stereoscopic vision can be generated. When the human eye is at any position in the light field, it is especially not atx-yWhen in a flat plane, the image information it sees should be a linear combination of the information projected by each projector 300, with each projector 300 inyThe direction has an information invariant characteristic. Thus, the human eye at any position in the light field is parallel toyWhen the direction of the image is moved, the image seen by the image is not changed.
In the present invention, the light projected by the projector 300 converges in the direction ofyIs perpendicular to the normal direction of the one-dimensional retroreflective sheetzAnd the normal direction of the one-dimensional retroreflective sheetzCoincident with and not normal to the image planekIn parallel, thenyNot in the direction normal to the image planekAnd is vertical. Thus, the viewer is thereby made to be parallel toyWhen the direction of the three-dimensional stereo image is far away from the screen, the light field observed by the three-dimensional stereo image is not changed any more, and different observers in front and at the back can see consistent stereo images.