[go: up one dir, main page]

CN113794659A - 一种信道估计与信号检测方法 - Google Patents

一种信道估计与信号检测方法 Download PDF

Info

Publication number
CN113794659A
CN113794659A CN202111050681.9A CN202111050681A CN113794659A CN 113794659 A CN113794659 A CN 113794659A CN 202111050681 A CN202111050681 A CN 202111050681A CN 113794659 A CN113794659 A CN 113794659A
Authority
CN
China
Prior art keywords
quantum
mayfly
mayflies
population
male
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111050681.9A
Other languages
English (en)
Other versions
CN113794659B (zh
Inventor
高洪元
张震宇
陈梦晗
苏雨萌
赵海军
刘亚鹏
李慧爽
周晓琦
刘家威
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Engineering University
Original Assignee
Harbin Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Engineering University filed Critical Harbin Engineering University
Priority to CN202111050681.9A priority Critical patent/CN113794659B/zh
Publication of CN113794659A publication Critical patent/CN113794659A/zh
Application granted granted Critical
Publication of CN113794659B publication Critical patent/CN113794659B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/024Channel estimation channel estimation algorithms
    • H04L25/0254Channel estimation channel estimation algorithms using neural network algorithms
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N10/00Quantum computing, i.e. information processing based on quantum-mechanical phenomena
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/004Artificial life, i.e. computing arrangements simulating life
    • G06N3/006Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/048Activation functions
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03165Arrangements for removing intersymbol interference using neural networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2628Inverse Fourier transform modulators, e.g. inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators
    • H04L27/263Inverse Fourier transform modulators, e.g. inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators modification of IFFT/IDFT modulator for performance improvement
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2649Demodulators
    • H04L27/265Fourier transform demodulators, e.g. fast Fourier transform [FFT] or discrete Fourier transform [DFT] demodulators
    • H04L27/2651Modification of fast Fourier transform [FFT] or discrete Fourier transform [DFT] demodulators for performance improvement
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Computing Systems (AREA)
  • Software Systems (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Computational Linguistics (AREA)
  • Signal Processing (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Discrete Mathematics (AREA)
  • Power Engineering (AREA)
  • Computational Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Complex Calculations (AREA)

Abstract

本发明公开了一种信道估计与信号检测方法,建立OFDM系统数学模型;建立自动演化DNN信道估计与信号检测模型;初始化量子蜉蝣种群位置和量子速度并设定参数;对初代量子蜉蝣种群位置进行适应度评价,得到量子雄性种群的最优位置,以及量子蜉蝣种群的全局最优位置;进行量子速度的更新,并通过更新后的量子速度完成量子蜉蝣位置的更新;对量子蜉蝣进行交配与变异操作,完成量子蜉蝣种群的淘汰与更新;迭代更新至最大迭代次数,把全局最优结果带入模型中,将接收的时频信号序列输入DNN模型恢复出码元并输出。本发明通过量子演化机制与蜉蝣种群原理结合,自动求解DNN模型所需最优参数,提高了DNN模型的信道估计与信号检测效果。

Description

一种信道估计与信号检测方法
技术领域
本发明属于无线通信领域,涉及一种信道估计与信号检测方法,特别是一种基于量子蜉蝣机制自动演化DNN的信道估计与信号检测方法,用该方法完成了多种无线信道下的信道估计与信号检测。
背景技术
信道估计与信号检测是无线通信领域中较为重要的研究方向,现实中的信号在传输过程中会受到大尺度衰落、小尺度衰落以及噪声的干扰影响,接收信号会被被污染,而信道估计和信号检测的目的就是在尽可能的保留信号关键信息的条件下,完成传输信号的基带码元的恢复。目前,经典的信道估计与信号检测方法有很多,如最小二乘法、最小均方误差法等,但这些方法都是先估计信道,再进行信号检测,因此会损失一些信号的关键细节。
深度神经网络是上世纪60年代提出的神经网络模型,可以看成是更深层次的人工神经网络模型。深度神经网络与传统的人工神经网络的区别就是其网络结构层次更多、更复杂,因而对事物的建模或抽象表现能力更强,也能模拟更复杂的模型。在信道估计与信号检测上,深度神经网络将传统的信道估计与信号检测方法合二为一,克服了传统方法下信道估计与信号检测分两步完成会忽略大量信号关键信息的弊端。
根据已有的文献发现,Hao Ye,Geoffrey Ye Li等在“Power of Deep Learningfor Channel Estimation and Signal Detection in OFDM Systems”中提出的利用DNN模型同时完成信道估计与信号检测,其在导频充足、导频匮乏、甚至是无导频的情况下均取得了非常好的效果,但是该方法在确定关键参数时,使用的是人工交互实验法,该方法不能保证是最优参数。
综上所述,上述DNN模型在信道估计与信号检测上虽然取得了一定的效果,但是在参数设置上仍然是人工交互实验法,该方法效率低且不能保证是最优参数。
发明内容
针对上述现有技术,本发明要解决的技术问题是提供一种基于量子蜉蝣机制自动演化DNN的信道估计与信号检测方法,提高系统求解关键最优参数的效率和质量和DNN模型的信道估计与信号检测效果。
为解决上述技术问题,本发明的一种信道估计与信号检测方法,包括以下步骤:
步骤一,建立OFDM系统数学模型,用来生成DNN模型所需的训练集和测试集;
步骤二,建立自动演化DNN信道估计与信号检测模型;
步骤三,初始化量子蜉蝣种群位置和量子速度并设定参数;
步骤四,对初代量子蜉蝣种群位置进行适应度评价,得到量子雄性种群的最优位置,以及量子蜉蝣种群的全局最优位置;
步骤五,进行量子速度的更新,并通过更新后的量子速度完成量子蜉蝣位置的更新;
步骤六,对量子蜉蝣进行交配与变异操作,完成量子蜉蝣种群的淘汰与更新;
步骤七,判断是否达到最大迭代次数G,若未达到,令g=g+1,返回步骤五;若达到则终止迭代循环,把全局最优结果带入DNN信道估计与信号检测模型中,将接收的时频信号序列输入DNN模型恢复出码元并输出。
本发明还包括:
1.步骤一中建立OFDM系统数学模型,用来生成DNN模型所需的训练集和测试集具体为:
在信号发射机端,将插入导频后的发射符号转换成并行数据流,数据经过调制后用离散傅里叶逆变换将信号从频域转换到时域,之后插入循环前缀以降低码间干扰,再将并行的数据流转换成串行数据流进行发送;
在信号接收机端,接收的时域信号可以表示为
Figure BDA0003252842190000021
其中,
Figure BDA0003252842190000022
表示卷积,x表示发射信号,h表示不同环境下的多径信道,w表示加性高斯白噪声。在去除循环前缀并进行离散傅里叶变换变换后,接收到的频域信号可以表示为Y=XH+W,其中,Y、X、H、W分别是y、x、h、w的离散傅里叶变换。
2.步骤二中建立自动演化DNN信道估计与信号检测模型具体为:
采用M个并行DNN模型,每个DNN模型输出码元数为N,即整个并行DNN模型一次可以进行MN个码元的检测,采取将复信号的实部和虚部分开再合并成实数串的方法作为神经网络的输入,即并行网络中每个DNN模型的输入均为2MN;
单个DNN模型的网络架构采用的是全连接神经网络,共由5层神经网络全连接层构成,其中每层分别有2MN、C1、C2、C3、N个神经元,隐藏层的激活函数采用的是Relu函数,输出层的激活函数采用的是Sigmoid函数。
DNN模型选用均方误差作为训练的损失函数,即
Figure BDA0003252842190000023
其中B=[B(1),B(2),…,B(MN)]为网络训练集的标签码元时序序列,B(k)是B的第k维,k=1,2,...,MN,
Figure BDA0003252842190000024
为网络每次训练后的输出码元时序序列,
Figure BDA0003252842190000025
Figure BDA0003252842190000031
的第k维;
将由OFDM系统数学模型生成的训练集依次输入DNN信道估计与信号检测模型进行训练;
对完成训练的DNN信道估计与信号检测模型进行测试,对模型的输出结果进行码元[0,1]的判决,计算完成判决后的测试集输出码元的误码率,并将误码率作为量子蜉蝣演化机制的目标函数
Figure BDA0003252842190000032
其中S为测试集的码元总数,Btest=[Btest(1),Btest(2),…,Btest(MN)]为测试集标签码元时序序列,Btest(k)是Btest的第k维,
Figure BDA0003252842190000033
为模型完成判决后的输出码元时序序列,
Figure BDA0003252842190000034
Figure BDA0003252842190000035
的第k维。
3.步骤三中初始化量子蜉蝣种群位置和量子速度并设定参数具体为:
设置种群规模为n,其中雄性蜉蝣种群规模为
Figure BDA0003252842190000036
雌性蜉蝣种群规模为
Figure BDA0003252842190000037
最大迭代次数为G,迭代数标号为g,g∈[1,G],在第g次迭代中,第i个量子雄性蜉蝣位置为
Figure BDA0003252842190000038
第i个量子雄性蜉蝣的量子速度为
Figure BDA0003252842190000039
至第g代为止最优量子雄性蜉蝣位置记为
Figure BDA00032528421900000310
i∈[1,n1];第j个量子雌性蜉蝣位置为
Figure BDA00032528421900000311
第j个量子雌性蜉蝣的量子速度为
Figure BDA00032528421900000312
j∈[1,n2],至第g代为止全局最优量子蜉蝣位置记为
Figure BDA00032528421900000313
当g=1时,量子雄性蜉蝣位置和量子雌性蜉蝣位置的每一维随机初始化为0或1,量子雄性蜉蝣量子速度和量子雌性蜉蝣量子速度的每一维随机初始化为[0,1]之间的随机数,设定量子蜉蝣种群的个体学习系数a1,量子雄性蜉蝣种群全局学习系数a2,量子雌性蜉蝣种群全局学习系数a3,能见系数β,舞动系数δ,飞行系数ε,舞动阻尼比δdamp,飞行阻尼比εdamp,交配对数nc,种群突变概率φ,位置突变概率μ。
4.步骤四中对初代量子蜉蝣种群位置进行适应度评价,得到量子雄性种群的最优位置,以及量子蜉蝣种群的全局最优位置具体为:
在第g次迭代中,将第i个量子雄性蜉蝣位置由
Figure BDA00032528421900000314
根据二进制与十进制转换关系分段映射成
Figure BDA0003252842190000041
其中
Figure BDA0003252842190000042
表示DNN模型第c层的神经元个数,C表示DNN模型层数,c∈[1,C];第j个量子雌性蜉蝣位置由
Figure BDA0003252842190000043
分段映射成
Figure BDA0003252842190000044
第i个量子雄性蜉蝣或第j个量子雌性蜉蝣的适应度函数分别为:
Figure BDA0003252842190000045
Figure BDA0003252842190000046
计算完种群中所有量子蜉蝣位置的适应度值后,将第g代雄性蜉蝣种群和雌性蜉蝣种群的适应度值矢量分别记为
Figure BDA0003252842190000047
Figure BDA0003252842190000048
直至第g代蜉蝣种群全局最优位置的适应度值记为
Figure BDA0003252842190000049
初代时,根据适应度函数计算出初代量子种群的适应度矢量
Figure BDA00032528421900000410
Figure BDA00032528421900000411
再根据适应度值评价标准,得到初代量子雄性蜉蝣种群的最优位置
Figure BDA00032528421900000412
和量子蜉蝣种群的全局最优位置ζ1
5.步骤五中进行量子速度的更新,并通过更新后的量子速度完成量子蜉蝣位置的更新具体为
量子雌性蜉蝣根据其量子旋转角进行位置更新,第g+1代得到的第j个量子雌性蜉蝣位置记为
Figure BDA00032528421900000413
将第g代第j个量子雌性蜉蝣与第j个量子雄性蜉蝣的距离记为
Figure BDA00032528421900000414
第j个量子雌性蜉蝣位置第d维的量子速度更新方式为
Figure BDA00032528421900000415
其中雌性蜉蝣的量子旋转角第d维更新方式为
Figure BDA00032528421900000416
其中
Figure BDA00032528421900000417
为[-1,1]之间的随机数,根据量子雌性蜉蝣的量子速度来进行量子雌性蜉蝣位置第d维的更新
Figure BDA00032528421900000418
其中
Figure BDA00032528421900000419
为[0,1]之间的随机数,abs()表示绝对值计算,d∈[1,D];
量子雄性蜉蝣根据其量子旋转角进行位置更新,第g+1代得到的第i个量子雄性蜉蝣位置记为
Figure BDA00032528421900000420
将第g代第i个量子雄性蜉蝣与最优量子雄性蜉蝣的距离记为
Figure BDA0003252842190000051
将第g代第i个量子雄性蜉蝣与全局最优位置的距离记为
Figure BDA0003252842190000052
第i个量子雄性蜉蝣第d维的量子速度更新方式为
Figure BDA0003252842190000053
其中量子雄性蜉蝣的量子旋转角第d维更新方式为
Figure BDA0003252842190000054
其中
Figure BDA0003252842190000055
为[-1,1]之间的随机数,根据量子雄性蜉蝣的量子速度来进行量子雄性蜉蝣位置第d维的更新
Figure BDA0003252842190000056
其中
Figure BDA0003252842190000057
为[0,1]之间的随机数。
6.步骤六中对量子蜉蝣进行交配与变异操作,完成量子蜉蝣种群的淘汰与更新具体为:
分别对更新后的量子雄性蜉蝣和量子雌性蜉蝣根据适应度评价方式进行排序,按排名让前nc对量子雄雌蜉蝣进行交配,即最好的量子雄性蜉蝣与最好的量子雌性蜉蝣进行交配,次好的量子雄性蜉蝣与次好的量子雌性蜉蝣进行交配,依此类推,交配完后产生两个后代,第t对量子蜉蝣的后代分别记为
Figure BDA0003252842190000058
Figure BDA0003252842190000059
其中t∈[1,nc],第g次迭代第t对量子蜉蝣的两个后代第d维更新公式分别为
Figure BDA00032528421900000510
Figure BDA00032528421900000511
其中
Figure BDA00032528421900000512
为[0,1]之间的随机数,round()表示向最近的整数取整;
复制并变异量子蜉蝣的数量nm=ceil(φn),即从交配产生的后代量子蜉蝣集合ηg+1
Figure BDA00032528421900000513
中随机复制nm个量子蜉蝣作为待变异量子蜉蝣
Figure BDA00032528421900000514
其中ceil()表示向上取整,
Figure BDA00032528421900000515
突变后产生的第
Figure BDA00032528421900000519
个变异量子蜉蝣位置记为
Figure BDA00032528421900000516
第g次迭代产生的第
Figure BDA00032528421900000520
个变异量子蜉蝣第d维度更新公式为
Figure BDA00032528421900000517
其中
Figure BDA00032528421900000518
为[0,1]之间的随机数;
根据适应度评价标准,更新第g+1代全局最优量子位置ζg+1和最优量子雄性蜉蝣位置
Figure BDA0003252842190000061
合并种群集合σg+1、ηg+1和λg+1,根据适应度排名保留前n1名作为下一代的量子雄性蜉蝣种群位置pg+1,其中
Figure BDA0003252842190000062
Figure BDA0003252842190000063
Figure BDA0003252842190000064
Figure BDA0003252842190000065
合并种群集合ψg+1
Figure BDA0003252842190000066
根据适应度排名保留前n2名作为下一代的量子雌性蜉蝣种群位置qg+1,其中
Figure BDA0003252842190000067
Figure BDA0003252842190000068
Figure BDA0003252842190000069
发明的有益效果:传统的DNN模型需要手动进行隐藏层神经元个数的设置,这样会耗费大量的时间和人力,针对现有方法的缺点和不足,本发明对OFDM系统下的信道估计与信号检测进行了研究,设计了量子蜉蝣机制求取最优参数,将最优参数带入到深度神经网络中,用该神经网络进行信道估计与信号检测,完成信号接收端的码元恢复工作。本发明在参数设置上使用基于智能计算理论的最优参数求解法,极大的提高了系统求解关键最优参数的效率和质量。本发明设计了一种量子蜉蝣机制自动演化DNN的信道估计与信号检测方法,通过量子演化机制与蜉蝣种群原理结合,设计误码率为适应度函数,自动求解DNN模型所需的最优参数,提高了DNN模型的信道估计与信号检测效果。基于量子蜉蝣机制自动演化DNN模型能够实现对隐藏层神经元个数的自适应调整,确保了在相同条件下DNN模型所使用的是最优参数,从而到达自适应信道估计与信号检测的目的。仿真结果表明,对于OFDM系统的信道估计与信号检测问题,在不同信噪比下基于量子蜉蝣机制自动演化DNN模型的方法要比传统手动设置DNN模型模型参数的方法所得结果误码率更低。
附图说明
图1是本发明所设计的基于量子蜉蝣机制的自动演化DNN模型来进行OFDM系统的信道估计与信号检测方法示意图。
图2是平均最优目标函数值和迭代次数关系曲线。
图3是信噪比和误码率关系曲线。
具体实施方式
下面结合说明书附图和具体实施方式对本发明做进一步说明。
步骤一,建立OFDM系统数学模型,用来生成DNN模型所需的训练集和测试集。
(1)在信号发射机端,将插入导频后的发射符号转换成并行数据流,数据经过调制后用离散傅里叶逆变换将信号从频域转换到时域,之后插入循环前缀以降低码间干扰,再将并行的数据流转换成串行数据流进行发送。
(2)在信号接收机端,接收的时域信号可以表示为
Figure BDA0003252842190000071
其中,
Figure BDA0003252842190000072
表示卷积,x表示发射信号,h表示不同环境下的多径信道,w表示加性高斯白噪声。在去除循环前缀并进行离散傅里叶变换变换后,接收到的频域信号可以表示为Y=XH+W,其中,Y、X、H、W分别是y、x、h、w的离散傅里叶变换。
步骤二,建立自动演化DNN信道估计与信号检测模型。
(1)本专利采用M个并行DNN模型进行信道估计与信号检测,每个DNN模型输出码元数为N,即整个并行DNN模型一次可以进行MN个码元的检测,同时又因为接收的信号为复信号,神经网络对于复数的处理存在一定的缺陷,所以采取将复信号的实部和虚部分开再合并成实数串的方法作为神经网络的输入,即并行网络中每个DNN模型的输入均为2MN。
(2)单个DNN模型的网络架构采用的是全连接神经网络,共由5层神经网络全连接层构成,其中每层分别有2MN、C1、C2、C3、N个神经元。隐藏层的激活函数采用的是Relu函数,输出层的激活函数采用的是Sigmoid函数。
(3)DNN模型选用均方误差作为训练的损失函数,即
Figure BDA0003252842190000073
其中B=[B(1),B(2),…,B(MN)]为网络训练集的标签码元时序序列,B(k)是B的第k维,k=1,2,...,MN,
Figure BDA0003252842190000074
为网络每次训练后的输出码元时序序列,
Figure BDA0003252842190000075
Figure BDA0003252842190000076
的第k维。
(4)将由OFDM系统数学模型生成的训练集依次输入DNN信道估计与信号检测模型进行训练。
(5)对完成训练的DNN信道估计与信号检测模型进行测试,对模型的输出结果进行码元[0,1]的判决,计算完成判决后的测试集输出码元的误码率,并将误码率作为量子蜉蝣演化机制的目标函数
Figure BDA0003252842190000077
其中S为测试集的码元总数,Btest=[Btest(1),Btest(2),…,Btest(MN)]为测试集标签码元时序序列,Btest(k)是Btest的第k维,
Figure BDA0003252842190000078
为模型完成判决后的输出码元时序序列,
Figure BDA0003252842190000079
Figure BDA00032528421900000710
的第k维。
步骤三,初始化量子蜉蝣种群位置和量子速度并设定参数。
设置种群规模为n,其中雄性蜉蝣种群规模为
Figure BDA0003252842190000081
雌性蜉蝣种群规模为
Figure BDA0003252842190000082
最大迭代次数为G,迭代数标号为g,g∈[1,G]。在第g次迭代中,第i个量子雄性蜉蝣位置为
Figure BDA0003252842190000083
第i个量子雄性蜉蝣的量子速度为
Figure BDA0003252842190000084
至第g代为止最优量子雄性蜉蝣位置记为
Figure BDA0003252842190000085
i∈[1,n1];第j个量子雌性蜉蝣位置为
Figure BDA0003252842190000086
第j个量子雌性蜉蝣的量子速度为
Figure BDA0003252842190000087
j∈[1,n2],至第g代为止全局最优量子蜉蝣位置记为
Figure BDA0003252842190000088
当g=1时,量子雄性蜉蝣位置和量子雌性蜉蝣位置的每一维随机初始化为0或1,量子雄性蜉蝣量子速度和量子雌性蜉蝣量子速度的每一维随机初始化为[0,1]之间的随机数,设定量子蜉蝣种群的个体学习系数a1,量子雄性蜉蝣种群全局学习系数a2,量子雌性蜉蝣种群全局学习系数a3,能见系数β,舞动系数δ,飞行系数ε,舞动阻尼比δdamp,飞行阻尼比εdamp,交配对数nc,种群突变概率φ,位置突变概率μ。
步骤四,对初代量子蜉蝣种群位置进行适应度评价,得到量子雄性种群的最优位置,以及量子蜉蝣种群的全局最优位置。
在第g次迭代中,将第i个量子雄性蜉蝣位置由
Figure BDA0003252842190000089
根据二进制与十进制转换关系分段映射成
Figure BDA00032528421900000810
其中
Figure BDA00032528421900000811
表示DNN模型第c层的神经元个数,C表示DNN模型层数,c∈[1,C]。同理,第j个量子雌性蜉蝣位置由
Figure BDA00032528421900000812
分段映射成
Figure BDA00032528421900000813
第i个量子雄性蜉蝣或第j个量子雌性蜉蝣的适应度函数分别为:
Figure BDA00032528421900000814
Figure BDA00032528421900000815
计算完种群中所有量子蜉蝣位置的适应度值后,将第g代雄性蜉蝣种群和雌性蜉蝣种群的适应度值矢量分别记为
Figure BDA00032528421900000816
Figure BDA00032528421900000817
直至第g代蜉蝣种群全局最优位置的适应度值记为
Figure BDA00032528421900000818
初代时,根据适应度函数计算出初代量子种群的适应度矢量
Figure BDA00032528421900000819
Figure BDA00032528421900000820
再根据适应度值评价标准,得到初代量子雄性蜉蝣种群的最优位置
Figure BDA00032528421900000821
和量子蜉蝣种群的全局最优位置ζ1
步骤五,进行量子速度的更新,并通过更新后的量子速度完成量子蜉蝣位置的更新。
(1)量子雌性蜉蝣根据其量子旋转角进行位置更新,第g+1代得到的第j个量子雌性蜉蝣位置记为
Figure BDA0003252842190000091
将第g代第j个量子雌性蜉蝣与第j个量子雄性蜉蝣的距离记为
Figure BDA0003252842190000092
第j个量子雌性蜉蝣位置第d维的量子速度更新方式为
Figure BDA0003252842190000093
其中雌性蜉蝣的量子旋转角第d维更新方式为
Figure BDA0003252842190000094
其中
Figure BDA0003252842190000095
为[-1,1]之间的随机数,根据量子雌性蜉蝣的量子速度来进行量子雌性蜉蝣位置第d维的更新
Figure BDA0003252842190000096
其中
Figure BDA0003252842190000097
为[0,1]之间的随机数,abs()表示绝对值计算,d∈[1,D]。
(2)量子雄性蜉蝣根据其量子旋转角进行位置更新,第g+1代得到的第i个量子雄性蜉蝣位置记为
Figure BDA0003252842190000098
将第g代第i个量子雄性蜉蝣与最优量子雄性蜉蝣的距离记为
Figure BDA0003252842190000099
将第g代第i个量子雄性蜉蝣与全局最优位置的距离记为
Figure BDA00032528421900000910
第i个量子雄性蜉蝣第d维的量子速度更新方式为
Figure BDA00032528421900000911
其中量子雄性蜉蝣的量子旋转角第d维更新方式为
Figure BDA00032528421900000912
其中
Figure BDA00032528421900000913
为[-1,1]之间的随机数,根据量子雄性蜉蝣的量子速度来进行量子雄性蜉蝣位置第d维的更新
Figure BDA00032528421900000914
其中
Figure BDA00032528421900000915
为[0,1]之间的随机数。
步骤六,对量子蜉蝣进行交配与变异操作,完成量子蜉蝣种群的淘汰与更新。
(1)分别对更新后的量子雄性蜉蝣和量子雌性蜉蝣根据适应度评价方式进行排序,按排名让前nc对量子雄雌蜉蝣进行交配,即最好的量子雄性蜉蝣与最好的量子雌性蜉蝣进行交配,次好的量子雄性蜉蝣与次好的量子雌性蜉蝣进行交配,依此类推,交配完后产生两个后代,第t对量子蜉蝣的后代分别记为
Figure BDA0003252842190000101
Figure BDA0003252842190000102
其中t∈[1,nc]。第g次迭代第t对量子蜉蝣的两个后代第d维更新公式分别为
Figure BDA0003252842190000103
Figure BDA0003252842190000104
其中
Figure BDA0003252842190000105
为[0,1]之间的随机数,round()表示向最近的整数取整。
(2)交配产生的后代会有概率发生复制和变异产生新的量子蜉蝣,复制并变异量子蜉蝣的数量nm=ceil(φn),即从交配产生的后代量子蜉蝣集合ηg+1
Figure BDA0003252842190000106
中随机复制nm个量子蜉蝣作为待变异量子蜉蝣
Figure BDA0003252842190000107
其中ceil()表示向上取整,
Figure BDA0003252842190000108
突变后产生的第
Figure BDA0003252842190000109
个变异量子蜉蝣位置记为
Figure BDA00032528421900001010
第g次迭代产生的第
Figure BDA00032528421900001023
个变异量子蜉蝣第d维度更新公式为
Figure BDA00032528421900001011
其中
Figure BDA00032528421900001012
为[0,1]之间的随机数。
(3)根据适应度评价标准,更新第g+1代全局最优量子位置ζg+1和最优量子雄性蜉蝣位置
Figure BDA00032528421900001013
合并种群集合σg+1、ηg+1和λg+1,根据适应度排名保留前n1名作为下一代的量子雄性蜉蝣种群位置pg+1,其中
Figure BDA00032528421900001014
Figure BDA00032528421900001015
Figure BDA00032528421900001016
Figure BDA00032528421900001017
合并种群集合ψg+1
Figure BDA00032528421900001018
根据适应度排名保留前n2名作为下一代的量子雌性蜉蝣种群位置qg+1,其中
Figure BDA00032528421900001019
Figure BDA00032528421900001020
Figure BDA00032528421900001021
步骤七,判断是否达到最大迭代次数G,若未达到,令g=g+1,返回步骤五;若达到则终止迭代循环,把全局最优结果带入DNN信道估计与信号检测模型中,将接收的时频信号序列输入DNN模型恢复出码元并输出。
图2粒子群算法记为PSO,蜉蝣算法记为MA,量子蜉蝣算法记为QMA,仿真实验中使用二进制编码,且每个变量由10个二进制比特构成,用Griewank函数对PSO、MA、QMA在相同条件下进行收敛性的测试,画出平均最优目标函数值和迭代次数关系曲线。Griewank函数的具体公式为
Figure BDA00032528421900001022
设置k=3,取1000次仿真结果的平均值。从测试结果可以看出,所提QMA的收敛曲线在收敛的速度和精度上均好于PSO和MA,这表明量子蜉蝣算法具有较好的全局寻优能力,具有优秀的收敛速度与精度,搜索结果更为准确。
图3是在导频充足条件下,将手动调试DNN模型的信道估计与信号检测方法与用量子蜉蝣机制自动演化DNN模型的信道估计与信号检测方法的输出结果的误码率进行了比较,可以看出本专利所设计的方法比传统方法有着更低的误码率。在仿真实验中,量子蜉蝣机制自动演化DNN模型具体的参数为M=8、N=16、a1=1、a2=1.5、a3=1.5、β=2、δ=5、ε=1、δdamp=0.8、εdamp=0.99、φ=0.05、μ=0.5、n=10、nc=2。

Claims (7)

1.一种信道估计与信号检测方法,其特征在于,包括以下步骤:
步骤一,建立OFDM系统数学模型,用来生成DNN模型所需的训练集和测试集;
步骤二,建立自动演化DNN信道估计与信号检测模型;
步骤三,初始化量子蜉蝣种群位置和量子速度并设定参数;
步骤四,对初代量子蜉蝣种群位置进行适应度评价,得到量子雄性种群的最优位置,以及量子蜉蝣种群的全局最优位置;
步骤五,进行量子速度的更新,并通过更新后的量子速度完成量子蜉蝣位置的更新;
步骤六,对量子蜉蝣进行交配与变异操作,完成量子蜉蝣种群的淘汰与更新;
步骤七,判断是否达到最大迭代次数G,若未达到,令g=g+1,返回步骤五;若达到则终止迭代循环,把全局最优结果带入DNN信道估计与信号检测模型中,将接收的时频信号序列输入DNN模型恢复出码元并输出。
2.根据权利要求1所述的一种信道估计与信号检测方法,其特征在于:步骤一所述建立OFDM系统数学模型,用来生成DNN模型所需的训练集和测试集具体为:
在信号发射机端,将插入导频后的发射符号转换成并行数据流,数据经过调制后用离散傅里叶逆变换将信号从频域转换到时域,之后插入循环前缀以降低码间干扰,再将并行的数据流转换成串行数据流进行发送;
在信号接收机端,接收的时域信号可以表示为
Figure FDA0003252842180000011
其中,
Figure FDA0003252842180000012
表示卷积,x表示发射信号,h表示不同环境下的多径信道,w表示加性高斯白噪声。在去除循环前缀并进行离散傅里叶变换变换后,接收到的频域信号可以表示为Y=XH+W,其中,Y、X、H、W分别是y、x、h、w的离散傅里叶变换。
3.根据权利要求1所述的一种信道估计与信号检测方法,其特征在于:步骤二所述建立自动演化DNN信道估计与信号检测模型具体为:
采用M个并行DNN模型,每个DNN模型输出码元数为N,即整个并行DNN模型一次可以进行MN个码元的检测,采取将复信号的实部和虚部分开再合并成实数串的方法作为神经网络的输入,即并行网络中每个DNN模型的输入均为2MN;
单个DNN模型的网络架构采用的是全连接神经网络,共由5层神经网络全连接层构成,其中每层分别有2MN、C1、C2、C3、N个神经元,隐藏层的激活函数采用的是Relu函数,输出层的激活函数采用的是Sigmoid函数。
DNN模型选用均方误差作为训练的损失函数,即
Figure FDA0003252842180000021
其中B=[B(1),B(2),…,B(MN)]为网络训练集的标签码元时序序列,B(k)是B的第k维,k=1,2,...,MN,
Figure FDA0003252842180000022
为网络每次训练后的输出码元时序序列,
Figure FDA0003252842180000023
Figure FDA0003252842180000024
的第k维;
将由OFDM系统数学模型生成的训练集依次输入DNN信道估计与信号检测模型进行训练;
对完成训练的DNN信道估计与信号检测模型进行测试,对模型的输出结果进行码元[0,1]的判决,计算完成判决后的测试集输出码元的误码率,并将误码率作为量子蜉蝣演化机制的目标函数
Figure FDA0003252842180000025
其中S为测试集的码元总数,Btest=[Btest(1),Btest(2),…,Btest(MN)]为测试集标签码元时序序列,Btest(k)是Btest的第k维,
Figure FDA0003252842180000026
为模型完成判决后的输出码元时序序列,
Figure FDA0003252842180000027
Figure FDA0003252842180000028
的第k维。
4.根据权利要求1所述的一种信道估计与信号检测方法,其特征在于:步骤三所述初始化量子蜉蝣种群位置和量子速度并设定参数具体为:
设置种群规模为n,其中雄性蜉蝣种群规模为
Figure FDA0003252842180000029
雌性蜉蝣种群规模为
Figure FDA00032528421800000210
最大迭代次数为G,迭代数标号为g,g∈[1,G],在第g次迭代中,第i个量子雄性蜉蝣位置为
Figure FDA00032528421800000211
第i个量子雄性蜉蝣的量子速度为
Figure FDA00032528421800000212
至第g代为止最优量子雄性蜉蝣位置记为
Figure FDA00032528421800000213
第j个量子雌性蜉蝣位置为
Figure FDA00032528421800000214
第j个量子雌性蜉蝣的量子速度为
Figure FDA00032528421800000215
至第g代为止全局最优量子蜉蝣位置记为
Figure FDA00032528421800000216
当g=1时,量子雄性蜉蝣位置和量子雌性蜉蝣位置的每一维随机初始化为0或1,量子雄性蜉蝣量子速度和量子雌性蜉蝣量子速度的每一维随机初始化为[0,1]之间的随机数,设定量子蜉蝣种群的个体学习系数a1,量子雄性蜉蝣种群全局学习系数a2,量子雌性蜉蝣种群全局学习系数a3,能见系数β,舞动系数δ,飞行系数ε,舞动阻尼比δdamp,飞行阻尼比εdamp,交配对数nc,种群突变概率φ,位置突变概率μ。
5.根据权利要求1所述的一种信道估计与信号检测方法,其特征在于:步骤四所述对初代量子蜉蝣种群位置进行适应度评价,得到量子雄性种群的最优位置,以及量子蜉蝣种群的全局最优位置具体为:
在第g次迭代中,将第i个量子雄性蜉蝣位置由
Figure FDA0003252842180000031
根据二进制与十进制转换关系分段映射成
Figure FDA0003252842180000032
其中
Figure FDA0003252842180000033
表示DNN模型第c层的神经元个数,C表示DNN模型层数,c∈[1,C];第j个量子雌性蜉蝣位置由
Figure FDA0003252842180000034
分段映射成
Figure FDA0003252842180000035
第i个量子雄性蜉蝣或第j个量子雌性蜉蝣的适应度函数分别为:
Figure FDA0003252842180000036
Figure FDA0003252842180000037
计算完种群中所有量子蜉蝣位置的适应度值后,将第g代雄性蜉蝣种群和雌性蜉蝣种群的适应度值矢量分别记为
Figure FDA0003252842180000038
Figure FDA0003252842180000039
直至第g代蜉蝣种群全局最优位置的适应度值记为
Figure FDA00032528421800000310
初代时,根据适应度函数计算出初代量子种群的适应度矢量
Figure FDA00032528421800000311
Figure FDA00032528421800000312
再根据适应度值评价标准,得到初代量子雄性蜉蝣种群的最优位置
Figure FDA00032528421800000313
和量子蜉蝣种群的全局最优位置ζ1
6.根据权利要求1所述的一种信道估计与信号检测方法,其特征在于:步骤五所述进行量子速度的更新,并通过更新后的量子速度完成量子蜉蝣位置的更新具体为量子雌性蜉蝣根据其量子旋转角进行位置更新,第g+1代得到的第j个量子雌性蜉蝣位置记为
Figure FDA00032528421800000314
将第g代第j个量子雌性蜉蝣与第j个量子雄性蜉蝣的距离记为
Figure FDA00032528421800000315
第j个量子雌性蜉蝣位置第d维的量子速度更新方式为
Figure FDA00032528421800000316
其中雌性蜉蝣的量子旋转角第d维更新方式为
Figure FDA00032528421800000317
其中
Figure FDA00032528421800000318
为[-1,1]之间的随机数,根据量子雌性蜉蝣的量子速度来进行量子雌性蜉蝣位置第d维的更新
Figure FDA0003252842180000041
其中
Figure FDA0003252842180000042
为[0,1]之间的随机数,abs()表示绝对值计算,d∈[1,D];
量子雄性蜉蝣根据其量子旋转角进行位置更新,第g+1代得到的第i个量子雄性蜉蝣位置记为
Figure FDA0003252842180000043
将第g代第i个量子雄性蜉蝣与最优量子雄性蜉蝣的距离记为
Figure FDA0003252842180000044
将第g代第i个量子雄性蜉蝣与全局最优位置的距离记为
Figure FDA0003252842180000045
第i个量子雄性蜉蝣第d维的量子速度更新方式为
Figure FDA0003252842180000046
其中量子雄性蜉蝣的量子旋转角第d维更新方式为
Figure FDA0003252842180000047
其中
Figure FDA0003252842180000048
为[-1,1]之间的随机数,根据量子雄性蜉蝣的量子速度来进行量子雄性蜉蝣位置第d维的更新
Figure FDA0003252842180000049
其中
Figure FDA00032528421800000410
为[0,1]之间的随机数。
7.根据权利要求1所述的一种信道估计与信号检测方法,其特征在于:步骤六所述对量子蜉蝣进行交配与变异操作,完成量子蜉蝣种群的淘汰与更新具体为:
分别对更新后的量子雄性蜉蝣和量子雌性蜉蝣根据适应度评价方式进行排序,按排名让前nc对量子雄雌蜉蝣进行交配,即最好的量子雄性蜉蝣与最好的量子雌性蜉蝣进行交配,次好的量子雄性蜉蝣与次好的量子雌性蜉蝣进行交配,依此类推,交配完后产生两个后代,第t对量子蜉蝣的后代分别记为
Figure FDA00032528421800000411
Figure FDA00032528421800000412
其中t∈[1,nc],第g次迭代第t对量子蜉蝣的两个后代第d维更新公式分别为
Figure FDA00032528421800000413
Figure FDA00032528421800000414
其中
Figure FDA00032528421800000415
为[0,1]之间的随机数,round()表示向最近的整数取整;
复制并变异量子蜉蝣的数量nm=ceil(φn),即从交配产生的后代量子蜉蝣集合ηg+1
Figure FDA00032528421800000416
中随机复制nm个量子蜉蝣作为待变异量子蜉蝣
Figure FDA0003252842180000051
其中ceil()表示向上取整,
Figure FDA0003252842180000052
突变后产生的第
Figure FDA00032528421800000512
个变异量子蜉蝣位置记为
Figure FDA0003252842180000053
第g次迭代产生的第
Figure FDA0003252842180000054
个变异量子蜉蝣第d维度更新公式为
Figure FDA0003252842180000055
其中
Figure FDA0003252842180000056
为[0,1]之间的随机数;
根据适应度评价标准,更新第g+1代全局最优量子位置ζg+1和最优量子雄性蜉蝣位置
Figure FDA0003252842180000057
合并种群集合σg+1、ηg+1和λg+1,根据适应度排名保留前n1名作为下一代的量子雄性蜉蝣种群位置pg+1,其中
Figure FDA0003252842180000058
Figure FDA0003252842180000059
合并种群集合ψg+1
Figure FDA00032528421800000510
根据适应度排名保留前n2名作为下一代的量子雌性蜉蝣种群位置qg+1,其中
Figure FDA00032528421800000511
CN202111050681.9A 2021-09-08 2021-09-08 一种信道估计与信号检测方法 Active CN113794659B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111050681.9A CN113794659B (zh) 2021-09-08 2021-09-08 一种信道估计与信号检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111050681.9A CN113794659B (zh) 2021-09-08 2021-09-08 一种信道估计与信号检测方法

Publications (2)

Publication Number Publication Date
CN113794659A true CN113794659A (zh) 2021-12-14
CN113794659B CN113794659B (zh) 2023-09-22

Family

ID=79182738

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111050681.9A Active CN113794659B (zh) 2021-09-08 2021-09-08 一种信道估计与信号检测方法

Country Status (1)

Country Link
CN (1) CN113794659B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118574152A (zh) * 2024-05-21 2024-08-30 哈尔滨工程大学 一种演化可调指数分数低阶协方差的时延估计方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109376329A (zh) * 2018-09-05 2019-02-22 哈尔滨工程大学 一种基于量子鸟群演化机制的阵列幅相误差校正方法
WO2020092391A1 (en) * 2018-10-29 2020-05-07 Board Of Regents, The University Of Texas System Low resolution ofdm receivers via deep learning
CN113239628A (zh) * 2021-06-02 2021-08-10 哈尔滨工程大学 基于量子海鸥演化机制加权Myriad滤波器设计方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109376329A (zh) * 2018-09-05 2019-02-22 哈尔滨工程大学 一种基于量子鸟群演化机制的阵列幅相误差校正方法
WO2020092391A1 (en) * 2018-10-29 2020-05-07 Board Of Regents, The University Of Texas System Low resolution ofdm receivers via deep learning
CN113239628A (zh) * 2021-06-02 2021-08-10 哈尔滨工程大学 基于量子海鸥演化机制加权Myriad滤波器设计方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
高洪元等: "能量采集认知无线电的量子蝙蝠最优合作策略", 通信学报 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118574152A (zh) * 2024-05-21 2024-08-30 哈尔滨工程大学 一种演化可调指数分数低阶协方差的时延估计方法及系统

Also Published As

Publication number Publication date
CN113794659B (zh) 2023-09-22

Similar Documents

Publication Publication Date Title
CN114283287B (zh) 基于自训练噪声标签纠正的鲁棒领域自适应图像学习方法
CN110942100B (zh) 一种基于深度去噪神经网络的空间调制系统的工作方法
CN108566257B (zh) 一种基于反向传播神经网络的信号恢复方法
CN109246038B (zh) 一种数据模型双驱动的gfdm接收机及方法
CN111464465B (zh) 一种基于集成神经网络模型的信道估计方法
CN113014524B (zh) 一种基于深度学习的数字信号调制识别方法
CN113381828B (zh) 基于条件生成对抗网络的稀疏码多址接入随机信道建模方法
CN110474716A (zh) 基于降噪自编码器的scma编解码器模型的建立方法
CN110120926A (zh) 基于演化bp神经网络的通信信号调制方式识别方法
CN110808932B (zh) 基于多分布测试数据融合的多层感知器快速调制识别方法
CN113676266B (zh) 一种基于量子生成对抗网络的信道建模方法
CN112422208B (zh) 未知信道模型下基于对抗式学习的信号检测方法
CN116405158B (zh) 一种非高斯噪声下基于深度学习的端到端通信系统
CN117176517A (zh) 采用遗传算法和深度学习对mimo-ofdm可见光通信实施信道估计的方法及系统
CN114650199A (zh) 一种基于数据驱动的深度神经网络信道估计方法及系统
CN113794659B (zh) 一种信道估计与信号检测方法
CN103888392B (zh) 一种基于dna遗传优化的正交小波盲均衡方法
CN109547376A (zh) 一种基于调制特性的高斯混合模型的调制识别方法
CN105376185B (zh) 一种通信系统中基于dna蛙跳方法优化的常模盲均衡处理方法
CN111865489A (zh) 基于图神经网络的多输入多输出检测方法
CN105007247B (zh) 新变异dna遗传人工鱼群优化dna序列的频域加权多模方法
CN115941002B (zh) 一种人工智能辅助的mimo检测方法
CN113489545B (zh) 基于k均值聚类的光空间脉冲位置调制分步分类检测方法
Wang et al. Modulation recognition method for underwater acoustic communication signal based on relation network under small sample set
CN114363218B (zh) 一种基于端到端学习的通信可达速率检测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant