[go: up one dir, main page]

CN113411195B - Physical layer configuration method and device for 5G slice and computing equipment - Google Patents

Physical layer configuration method and device for 5G slice and computing equipment Download PDF

Info

Publication number
CN113411195B
CN113411195B CN202010187282.6A CN202010187282A CN113411195B CN 113411195 B CN113411195 B CN 113411195B CN 202010187282 A CN202010187282 A CN 202010187282A CN 113411195 B CN113411195 B CN 113411195B
Authority
CN
China
Prior art keywords
slice
physical layer
layer configuration
information
service
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010187282.6A
Other languages
Chinese (zh)
Other versions
CN113411195A (en
Inventor
邢彪
郑屹峰
张卷卷
陈维新
章淑敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Mobile Communications Group Co Ltd
China Mobile Group Zhejiang Co Ltd
Original Assignee
China Mobile Communications Group Co Ltd
China Mobile Group Zhejiang Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Mobile Communications Group Co Ltd, China Mobile Group Zhejiang Co Ltd filed Critical China Mobile Communications Group Co Ltd
Priority to CN202010187282.6A priority Critical patent/CN113411195B/en
Publication of CN113411195A publication Critical patent/CN113411195A/en
Application granted granted Critical
Publication of CN113411195B publication Critical patent/CN113411195B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0893Assignment of logical groups to network elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Information Transfer Between Computers (AREA)
  • Communication Control (AREA)

Abstract

The invention discloses a physical layer configuration method, a physical layer configuration device and computing equipment of a 5G slice, wherein the method comprises the following steps: responding to a slice creating request initiated by a slice user, and acquiring the requirement information of a service level protocol, scene description information of a slice service and slice air interface conditions corresponding to the slice creating request from a slice management framework; carrying out serialization preprocessing on the demand information of the service level protocol, the scene description information of the slicing service and the slicing air interface condition to generate an index sequence; inputting the index sequence into a trained slice physical layer configuration adaptive combiner to predict to obtain a physical layer configuration information combination; and carrying out physical layer configuration processing according to the physical layer configuration information combination. By the method, the corresponding physical layer configuration information combination can be obtained according to the prediction of various service scenes, and then the configuration is carried out according to the physical layer configuration information combination, so that the configuration efficiency and the configuration accuracy are improved.

Description

5G切片的物理层配置方法、装置及计算设备Physical layer configuration method, device and computing device for 5G slice

技术领域technical field

本发明涉及通信技术领域,具体涉及一种5G切片的物理层配置方法、装置及计算设备。The present invention relates to the field of communication technologies, and in particular, to a physical layer configuration method, apparatus and computing device for 5G slices.

背景技术Background technique

网络切片(Network Slice)是端到端的逻辑功能和其所需的物理或虚拟资源集合,包括接入网、传输网、核心网等,网络切片可认为是5G网络中的虚拟化“专网”;网络切片基于NFV(Network Functions Virtualization,简称网络功能虚拟化)的统一基础设施构建,实现低成本高效运营。网络切片技术可以实现通信网络的逻辑隔离,允许在每个网络切片中配置和重用网络元件及功能以满足特定的行业应用需求。Network Slice is an end-to-end logical function and a collection of physical or virtual resources required by it, including access network, transmission network, core network, etc. Network slice can be considered as a virtualized "private network" in 5G network ; Network slicing is based on the unified infrastructure construction of NFV (Network Functions Virtualization, referred to as Network Function Virtualization) to achieve low-cost and efficient operation. Network slicing technology can achieve logical isolation of communication networks, allowing network elements and functions to be configured and reused in each network slice to meet specific industry application requirements.

目前5G切片物理层配置可通过预先编程来进行配置,已实现软件定义空口,使得无线信号对业务场景“量体裁衣”。但该种方式仍依赖于专家经验进行人为编程,对于每一种业务场景均需单独编程来配置;当出现新的业务场景时仍需要重新编程,费时费力,效率较低,容易出现人为失误。可见,现有技术中的这种配置方式自动化程度和灵活性均无法满足未来5G切片多业务场景的需求。At present, the physical layer configuration of 5G slices can be configured through pre-programming, and software-defined air interfaces have been implemented, so that wireless signals can be "tailored" to service scenarios. However, this method still relies on expert experience for manual programming, and needs to be programmed separately for each business scenario; when a new business scenario appears, it still needs to be reprogrammed, which is time-consuming, labor-intensive, inefficient, and prone to human error. It can be seen that the degree of automation and flexibility of this configuration method in the existing technology cannot meet the needs of future 5G slicing multi-service scenarios.

发明内容SUMMARY OF THE INVENTION

鉴于上述问题,提出了本发明实施例以便提供一种克服上述问题或者至少部分地解决上述问题的5G切片的物理层配置方法、装置及计算设备。In view of the above problems, the embodiments of the present invention are proposed to provide a physical layer configuration method, apparatus and computing device for 5G slices that overcome the above problems or at least partially solve the above problems.

根据本发明实施例的一个方面,提供了一种5G切片的物理层配置方法,包括:According to an aspect of the embodiments of the present invention, a method for configuring a physical layer of a 5G slice is provided, including:

响应于切片用户发起的切片创建请求,从切片管理架构中获取与所述切片创建请求对应的服务等级协议的需求信息、切片业务的场景描述信息以及切片空口条件;In response to the slice creation request initiated by the slice user, obtain the requirement information of the service level agreement corresponding to the slice creation request, the scene description information of the slice service, and the slice air interface condition from the slice management framework;

对所述服务等级协议的需求信息、切片业务的场景描述信息以及切片空口条件进行序列化预处理,生成索引序列;Perform serialization preprocessing on the demand information of the service level agreement, the scene description information of the slicing service, and the slicing air interface conditions to generate an index sequence;

将所述索引序列输入至训练好的切片物理层配置自适应组合器预测得到物理层配置信息组合;Inputting the index sequence into the trained slice physical layer configuration adaptive combiner to predict the physical layer configuration information combination;

根据所述物理层配置信息组合进行物理层配置处理。Physical layer configuration processing is performed according to the physical layer configuration information combination.

根据本发明实施例的另一方面,提供了一种5G切片的物理层配置装置,包括:According to another aspect of the embodiments of the present invention, a device for configuring a physical layer of a 5G slice is provided, including:

获取模块,适于响应于切片用户发起的切片创建请求,从切片管理架构中获取与所述切片创建请求对应的服务等级协议的需求信息、切片业务的场景描述信息以及切片空口条件;an acquisition module, adapted to acquire, from the slice management framework, in response to a slice creation request initiated by a slice user, the requirement information of the SLA corresponding to the slice creation request, the scene description information of the slice service, and the slice air interface condition;

序列化模块,适于对所述服务等级协议的需求信息、切片业务的场景描述信息以及切片空口条件进行序列化预处理,生成索引序列;a serialization module, adapted to perform serialization preprocessing on the demand information of the service level agreement, the scene description information of the slicing service, and the slicing air interface conditions, and generate an index sequence;

预测模块,适于将所述索引序列输入至训练好的切片物理层配置自适应组合器预测得到物理层配置信息组合;a prediction module, adapted to input the index sequence into the trained slice physical layer configuration adaptive combiner to predict the physical layer configuration information combination;

配置模块,适于根据所述物理层配置信息组合进行物理层配置处理。The configuration module is adapted to perform physical layer configuration processing according to the physical layer configuration information combination.

根据本发明实施例的又一方面,提供了一种计算设备,包括:处理器、存储器、通信接口和通信总线,所述处理器、所述存储器和所述通信接口通过所述通信总线完成相互间的通信;According to yet another aspect of the embodiments of the present invention, a computing device is provided, including: a processor, a memory, a communication interface, and a communication bus, wherein the processor, the memory, and the communication interface complete each other through the communication bus communication between;

所述存储器用于存放至少一可执行指令,所述可执行指令使所述处理器执行上述5G切片的物理层配置方法对应的操作。The memory is used for storing at least one executable instruction, and the executable instruction enables the processor to perform operations corresponding to the above-mentioned physical layer configuration method for 5G slices.

根据本发明实施例的再一方面,提供了一种计算机存储介质,所述存储介质中存储有至少一可执行指令,所述可执行指令使处理器执行如上述5G切片的物理层配置方法对应的操作。According to yet another aspect of the embodiments of the present invention, a computer storage medium is provided, where at least one executable instruction is stored in the storage medium, and the executable instruction enables a processor to execute the physical layer configuration method corresponding to the foregoing 5G slice. operation.

根据本发明实施例的5G切片的物理层配置方法、装置及计算设备,在接收到切片创建请求后,通过对请求的服务等级协议的需求信息、切片业务的场景描述信息以及切片空口条件进行序列化预处理,生成索引序列;然后将索引序列输入至切片物理层配置自适应组合器,则可以得到物理层配置信息组合,进而可以进行相应的配置处理。由此可见,本实施例方案,针对任一新的切片业务场景,仅需将请求信息进行序列化预处理,然后输入切片物理层配置自适应组合器,即可得到物理层配置组合,而无需人工针对新的切片业务进行编程,提高了物理层配置的灵活性和自动化程度,进而可以满足未来5G切片多业务场景的需求。According to the physical layer configuration method, device, and computing device for 5G slices according to the embodiments of the present invention, after receiving the slice creation request, sequence the request information of the requested service level agreement, the scene description information of the slice service, and the slice air interface conditions. Then, the index sequence is input to the slice physical layer configuration adaptive combiner, and the physical layer configuration information combination can be obtained, and then the corresponding configuration processing can be performed. It can be seen that, for any new slice service scenario, the solution of this embodiment only needs to perform serialization preprocessing on the request information, and then input the slice physical layer configuration adaptive combiner to obtain the physical layer configuration combination, without the need for Manual programming for new slicing services improves the flexibility and automation of physical layer configuration, which in turn can meet the needs of future 5G slicing multi-service scenarios.

上述说明仅是本发明实施例技术方案的概述,为了能够更清楚了解本发明实施例的技术手段,而可依照说明书的内容予以实施,并且为了让本发明实施例的上述和其它目的、特征和优点能够更明显易懂,以下特举本发明实施例的具体实施方式。The above description is only an overview of the technical solutions of the embodiments of the present invention. In order to understand the technical means of the embodiments of the present invention more clearly, it can be implemented according to the contents of the description, and in order to make the above and other purposes, features and The advantages can be more obvious and easy to understand, and the following specific implementations of the embodiments of the present invention are given.

附图说明Description of drawings

通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明实施例的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:Various other advantages and benefits will become apparent to those of ordinary skill in the art upon reading the following detailed description of the preferred embodiments. The drawings are only for the purpose of illustrating the preferred embodiments, and are not considered to be limitations of the embodiments of the present invention. Also, the same components are denoted by the same reference numerals throughout the drawings. In the attached image:

图1示出了本发明实施例提供的5G切片的物理层配置方法的流程图;FIG. 1 shows a flowchart of a physical layer configuration method for a 5G slice provided by an embodiment of the present invention;

图2示出了本发明另一个实施例提供的5G切片的物理层配置方法的流程图;FIG. 2 shows a flowchart of a physical layer configuration method for a 5G slice provided by another embodiment of the present invention;

图3示出了本发明一个具体示例中的编解码神经网络结构的示意图;Fig. 3 shows the schematic diagram of the encoder-decoder neural network structure in a specific example of the present invention;

图4示出了本发明一个具体示例中依据切片请求进行物理层配置的完整流程;FIG. 4 shows a complete flow of physical layer configuration according to a slice request in a specific example of the present invention;

图5示出了本发明实施例提供的5G切片的物理层配置装置的结构示意图;FIG. 5 shows a schematic structural diagram of an apparatus for configuring a physical layer of a 5G slice provided by an embodiment of the present invention;

图6示出了本发明实施例提供的计算设备的结构示意图。FIG. 6 shows a schematic structural diagram of a computing device provided by an embodiment of the present invention.

具体实施方式Detailed ways

下面将参照附图更详细地描述本发明的示例性实施例。虽然附图中显示了本发明的示例性实施例,然而应当理解,可以以各种形式实现本发明而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本发明,并且能够将本发明的范围完整的传达给本领域的技术人员。Exemplary embodiments of the present invention will be described in more detail below with reference to the accompanying drawings. While exemplary embodiments of the present invention are shown in the drawings, it should be understood that the present invention may be embodied in various forms and should not be limited by the embodiments set forth herein. Rather, these embodiments are provided so that the present invention will be more thoroughly understood, and will fully convey the scope of the present invention to those skilled in the art.

在对本发明的实施方案进行说明之前,首先对本文中涉及的如下术语进行介绍:Before describing the embodiments of the present invention, the following terms involved in this document are first introduced:

1.Seq2Seq(序列到序列)模型:Seq2Seq模型实际上是一个Encoder-Decoder(编码器-解码器,又称编解码)的网络结构,其目前已被用于机器翻译领域,即从一种源语言翻译到另一种目标语言。1. Seq2Seq (sequence-to-sequence) model: The Seq2Seq model is actually an Encoder-Decoder (encoder-decoder, also known as codec) network structure, which has been used in the field of machine translation, that is, from a source Language translation to another target language.

2.LSTM(long short-term memory,长短期记忆)神经网络:一种特殊的循环神经网络类型,所谓的循环神经网络即同一个神经网络被重复使用。LSTM可以学习长期依赖信息,通过控制缓存中的值保存的时间,可以记住长期的信息,适合进行长序列的学习。每个神经元有四个输入和一个输出,每个神经元内有一个Cell存放记忆的数值,每一个LSTM神经元中含有三个门控:遗忘门、输入门以及输出门。长短期记忆神经网络在长序列的学习上具有较好的效果。LSTM神经元如下:2. LSTM (long short-term memory, long short-term memory) neural network: a special type of recurrent neural network, the so-called recurrent neural network is that the same neural network is used repeatedly. LSTM can learn long-term dependent information. By controlling the time that the value in the cache is stored, it can remember long-term information and is suitable for long-sequence learning. Each neuron has four inputs and one output, and each neuron has a Cell to store the memory value. Each LSTM neuron contains three gates: forgetting gate, input gate and output gate. Long short-term memory neural network has a good effect on the learning of long sequences. LSTM neurons are as follows:

Figure BDA0002414638800000046
Figure BDA0002414638800000046

Figure BDA0002414638800000041
Figure BDA0002414638800000041

Figure BDA0002414638800000042
Figure BDA0002414638800000042

Figure BDA0002414638800000043
Figure BDA0002414638800000043

Figure BDA0002414638800000044
Figure BDA0002414638800000044

Figure BDA0002414638800000045
Figure BDA0002414638800000045

Yt=σ(W'ht) (7)Y t =σ(W'h t ) (7)

每一个LSTM神经元中含有三个门控:遗忘门、输入门、输出门。公式(1)代表了遗忘门,在公式(2)和(3)中新的信息被添加进来,公式(4)融合了新信息和旧信息,公式(5)和(6)输出目前LSTM单元已学习到的关于下一个时间戳的信息。长短期记忆神经网络在长时间序列的学习上具有较好的效果,LSTM单元内每条连接线上含有相应的权重,Xt代表输入向量,ht代表隐藏状态,Ct代表t时刻的神经元状态,Yt代表神经元的输出,W为可训练的权重矩阵,b为偏置向量。Each LSTM neuron contains three gates: forget gate, input gate, and output gate. Formula (1) represents the forget gate, new information is added in formulas (2) and (3), formula (4) combines new information and old information, formulas (5) and (6) output the current LSTM unit Information that has been learned about the next timestamp. The long short-term memory neural network has a good effect on the learning of long-term sequences. Each connection line in the LSTM unit contains corresponding weights. Xt represents the input vector, ht represents the hidden state, and Ct represents the neuron state at time t. Yt represents the output of the neuron, W is the trainable weight matrix, and b is the bias vector.

3.切片管理架构:切片管理架构主要由CSMF、NSMF、NSSMF组成。3. Slice management architecture: The slice management architecture is mainly composed of CSMF, NSMF, and NSSMF.

其中,CSMF(Communication Service Management Function,通信业务管理功能):完成用户业务通信服务的需求订购和处理,负责将运营商/第三方客户的通信服务需求转化为对网络切片的需求,并通过和NSMF之间的接口向NSMF发送对网络切片的需求(如创建、终结、修改网络切片实例请求等)。Among them, CSMF (Communication Service Management Function, communication service management function): completes the demand ordering and processing of user business communication services, and is responsible for transforming the communication service requirements of operators/third-party customers into network slicing requirements, and through and NSMF The interface between them sends the requirements for network slices (such as creating, terminating, modifying network slice instance requests, etc.) to the NSMF.

其中,NSMF(Network Slice Management Function,网络切片管理功能):负责接收CSMF发送的网络切片需求,对网络切片实例的生命周期、性能、故障等进行管理,编排网络切片实例的组成,分解网络切片实例的需求为各网络切片子网实例或网络功能的需求,向各NSSMF发送网络切片子网实例管理请求。Among them, NSMF (Network Slice Management Function): responsible for receiving the network slice requirements sent by CSMF, managing the life cycle, performance, fault, etc. of network slice instances, arranging the composition of network slice instances, and decomposing network slice instances. The requirement is the requirement of each network slice subnet instance or network function, and a network slice subnet instance management request is sent to each NSSMF.

其中,NSSMF(Network Slice Subnet Management Function,网络切片子网管理功能):接收从NSMF下发的网络切片子网部署需求,对网络切片子网实例进行管理,编排网络切片子网实例的组成,将网络切片子网的SLA需求映射为网络服务的QoS需求,向ETSINFV域的NFVO系统下发网络服务的部署请求。Among them, NSSMF (Network Slice Subnet Management Function, Network Slice Subnet Management Function): Receive network slice subnet deployment requirements issued from NSMF, manage network slice subnet instances, arrange the composition of network slice subnet instances, and The SLA requirements of the network slicing subnet are mapped to the QoS requirements of the network service, and the deployment request of the network service is issued to the NFVO system in the ETSINFV domain.

图1示出了本发明实施例提供的5G切片的物理层配置方法的流程图。该方法可用于切片管理框架中的NSMF(Network Slice Management Function,网络切片管理功能)模块进行物理层配置。该方法可由任意具有数据处理能力的计算设备来执行。FIG. 1 shows a flowchart of a method for configuring a physical layer of a 5G slice provided by an embodiment of the present invention. This method can be used in the NSMF (Network Slice Management Function, network slice management function) module in the slice management framework to perform physical layer configuration. The method may be performed by any computing device with data processing capabilities.

如图1所示,该方法包括以下步骤:As shown in Figure 1, the method includes the following steps:

步骤S110:响应于切片用户发起的切片创建请求,从切片管理架构中获取与该切片创建请求对应的服务等级协议的需求信息、切片业务的场景描述信息以及切片空口条件。Step S110: In response to the slice creation request initiated by the slice user, acquire the requirement information of the SLA corresponding to the slice creation request, the scene description information of the slice service, and the slice air interface condition from the slice management framework.

具体地,切片用户向切片管理框架发起切片创建请求,此时即存在新的切片业务场景,通过从切片管理框架中获得该次请求的请求信息,包括SLA(Service levelAgreement,服务等级协议)需求信息,反映对覆盖率、容量、可靠性等要求的场景描述信息,以及反映对帧结构、波形等的支持情况的切片空口条件。Specifically, a slice user initiates a slice creation request to the slice management framework, and a new slice business scenario exists at this time. The request information of the request, including the SLA (Service level Agreement) requirement information, is obtained from the slice management framework. , which reflects the scene description information required for coverage, capacity, reliability, etc., as well as the slice air interface conditions that reflect the support for frame structure, waveform, etc.

步骤S120:对该服务等级协议的需求信息、切片业务的场景描述信息以及切片空口条件进行序列化预处理,生成索引序列。Step S120: Perform serialization preprocessing on the demand information of the service level agreement, the scene description information of the slice service, and the slice air interface conditions to generate an index sequence.

其中,序列化预处理是指一段文本中包含的词语进行索引化处理,最终转化成一段索引数字(即索引序列)的过程。相应的,在发明本实施例中,将服务等级协议的需求信息、切片业务的场景描述信息以及切片空口条件构成的文本段中的各个词语索引化,生成一段索引序列。Among them, serialization preprocessing refers to a process in which words contained in a piece of text are indexed and finally converted into a piece of index numbers (ie, an index sequence). Correspondingly, in this embodiment of the present invention, each word in the text segment formed by the requirement information of the service level agreement, the scene description information of the slice service, and the slice air interface condition is indexed to generate an index sequence.

步骤S130:将该索引序列输入至训练好的切片物理层配置自适应组合器预测得到物理层配置信息组合。Step S130: Input the index sequence into the trained slice physical layer configuration adaptive combiner to predict and obtain the physical layer configuration information combination.

其中,该切片物理层配置自适应组合器可以依据输入任意序列预测得到另一序列。该自适应组合器是通过对大量的历史切片请求的请求信息以及人工标注的物理层配置信息进行训练得到的。Wherein, the slice physical layer configuration adaptive combiner can predict another sequence according to the input arbitrary sequence. The adaptive combiner is obtained by training the request information of a large number of historical slice requests and the manually annotated physical layer configuration information.

在本发明实施例中,将确定切片物理层配置的问题视为序列到序列(seq2seq)的问题,即从请求信息对应的序列到物理层配置信息对应的序列。通过将索引序列输入至该自适应组合器中,可以输出一序列,该序列即为多种物理层配置的索引构成的索引组合,也即物理层配置信息组合。In the embodiment of the present invention, the problem of determining the physical layer configuration of a slice is regarded as a sequence-to-sequence (seq2seq) problem, that is, from the sequence corresponding to the request information to the sequence corresponding to the physical layer configuration information. By inputting the index sequence into the adaptive combiner, a sequence can be output, and the sequence is an index combination composed of indexes of multiple physical layer configurations, that is, a physical layer configuration information combination.

步骤S140:根据该物理层配置信息组合进行物理层配置处理。Step S140: Perform physical layer configuration processing according to the physical layer configuration information combination.

在得到物理层配置信息组合后,通过反序列化处理,可以得到物理层配置信息组合表示的物理层配置组合,据此则可进行配置处理以满足该新的切片业务场景的需求。After the physical layer configuration information combination is obtained, through deserialization processing, the physical layer configuration combination represented by the physical layer configuration information combination can be obtained, and accordingly, configuration processing can be performed to meet the requirements of the new slice service scenario.

根据本实施例提供的5G切片的物理层配置方法,在接收到切片创建请求后,通过对请求的服务等级协议的需求信息、切片业务的场景描述信息以及切片空口条件进行序列化预处理,生成索引序列;然后将索引序列输入至切片物理层配置自适应组合器,则可以得到物理层配置信息组合,进而可以进行相应的配置处理。由此可见,本实施例方案,针对任一新的切片业务场景,仅需将请求信息进行序列化预处理,然后输入切片物理层配置自适应组合器,即可得到物理层配置组合,而无需人工针对新的切片业务进行编程,提高了物理层配置的灵活性和自动化程度,进而可以满足未来5G切片多业务场景的需求。According to the physical layer configuration method for 5G slices provided in this embodiment, after receiving a slice creation request, by performing serialization preprocessing on the demand information of the requested service level agreement, the scene description information of the slice service, and the slice air interface conditions, the generated slice is generated. index sequence; and then input the index sequence to the slice physical layer configuration adaptive combiner, the physical layer configuration information combination can be obtained, and then the corresponding configuration processing can be performed. It can be seen that, for any new slice service scenario, the solution of this embodiment only needs to perform serialization preprocessing on the request information, and then input the slice physical layer configuration adaptive combiner to obtain the physical layer configuration combination, without the need for Manual programming for new slicing services improves the flexibility and automation of physical layer configuration, which in turn can meet the needs of future 5G slicing multi-service scenarios.

图2示出了本发明另一个实施例提供的5G切片的物理层配置方法的流程图。如图2所示,该方法包括以下步骤:FIG. 2 shows a flowchart of a method for configuring a physical layer of a 5G slice provided by another embodiment of the present invention. As shown in Figure 2, the method includes the following steps:

步骤S210:训练得到切片物理层配置自适应组合器。Step S210 : the adaptive combiner of the slice physical layer configuration is obtained by training.

本发明实施例将切片业务的物理层配置视为序列到序列(seq2seq)的问题,采用编解码神经网络即编码器-解码器(encoder-decoder)结构进行预测。将编解码模型用于切片物理层配置组合场景,编码器用于将切片应用的SLA需求、切片业务场景描述、切片空口条件文本编码成一个固定长度的上下文向量(context vector),解码器用于从编码后的上下文向量中生成对应的帧结构、波形、多址、调制编码、双工模式和/或多天线的六大切片物理层配置最佳组合。其中,神经元均采用长短期记忆(long short-term memory,简称LSTM)。In the embodiment of the present invention, the physical layer configuration of the slice service is regarded as a sequence-to-sequence (seq2seq) problem, and an encoder-decoder neural network, that is, an encoder-decoder structure, is used for prediction. The codec model is used in the scenario of slicing physical layer configuration and combination. The encoder is used to encode the SLA requirements of the slice application, the description of the slice service scenario, and the slice air interface condition text into a fixed-length context vector. In the latter context vector, the corresponding optimal combination of six slice physical layer configurations of frame structure, waveform, multiple access, modulation and coding, duplex mode and/or multi-antenna is generated. Among them, neurons all use long short-term memory (long short-term memory, referred to as LSTM).

具体地,获取历史的服务等级协议的需求信息、切片业务的场景描述信息以及切片空口条件形成数据集;其中,可从切片管理架构中获取历史的请求信息。针对任一条数据,对该条数据的服务等级协议的需求信息、切片业务的场景描述信息以及切片空口条件进行序列化预处理,生成该条数据对应的索引序列样本,包括移除所有标点符号,若文本为中文则对文本进行分词、若文本为英文则将字母统一为小写,同时将每个词索引化(tokenize),使得每一段文本被转化成一段索引数字,并且对未达到最大文本长度的序列补零;并且,取数据集中SLA需求信息、切片业务场景描述信息以及切片空口条件构成的最长长度作为索引序列长度,取数据集包含的所有词语的数量为词典的大小。以及,对该条数据标注物理层配置组合,并对该标注的物理层配置组合进行序列化预处理,得到物理层配置信息组合样本,即为每条服务等级协议的需求信息-切片业务的场景描述信息-切片空口条件数据人工标注对应的物理层配置组合,取与数据集对应的物理层配置组合的最长长度作为物理层配置信息组合样本的索引序列长度,取与数据集对应的物理层配置组合包含的所有词语的数量为词典的大小;将数据集中多条数据对应的索引序列样本作为编解码神经网络的训练输入数据,以及将多条数据对应的物理层配置信息组合样本作为训练输出数据;利用该训练输入数据和训练输出数据对该编解码神经网络进行训练,具体将每一次迭代的结果与训练输出数据比较计算目标函数,利用梯度下降逐渐找到使目标函数最小的权重值,以训练收敛后的网络权重构成切片物理层配置自适应组合器。实际中,可将总数据集划分为训练集和测试集,总数据集的90%划为训练集,总数据集的10%划为测试集。训练集用于训练模型,测试集用于测试模型。Specifically, the requirement information of the historical service level agreement, the scene description information of the slice service, and the air interface conditions of the slice are obtained to form a data set; wherein, the historical request information can be obtained from the slice management framework. For any piece of data, perform serialization preprocessing on the demand information of the service level agreement of the piece of data, the scene description information of the slice service, and the slice air interface conditions, and generate an index sequence sample corresponding to the piece of data, including removing all punctuation marks, If the text is in Chinese, the text is divided into words, if the text is in English, the letters are unified into lowercase, and each word is tokenized, so that each piece of text is converted into an index number, and the maximum text length is not reached. In addition, the longest length of the SLA requirement information, slice service scenario description information, and slice air interface conditions in the data set is taken as the index sequence length, and the number of all words contained in the data set is taken as the size of the dictionary. And, mark the physical layer configuration combination for the piece of data, and perform serialization preprocessing on the marked physical layer configuration combination to obtain a physical layer configuration information combination sample, which is the demand information of each service level agreement-slice business scenario Descriptive information-slice air interface condition data is manually marked with the corresponding physical layer configuration combination, and the longest length of the physical layer configuration combination corresponding to the data set is taken as the index sequence length of the physical layer configuration information combination sample, and the physical layer corresponding to the data set is taken. The number of all words included in the configuration combination is the size of the dictionary; the index sequence samples corresponding to multiple pieces of data in the dataset are used as the training input data of the encoder-decoder neural network, and the combination samples of physical layer configuration information corresponding to the multiple pieces of data are used as the training output. data; use the training input data and training output data to train the encoder-decoder neural network, specifically compare the results of each iteration with the training output data to calculate the objective function, and use gradient descent to gradually find the weight value that minimizes the objective function to The network weights after training convergence constitute the slice physical layer configuration adaptive combiner. In practice, the total data set can be divided into training set and test set, 90% of the total data set is divided into training set, and 10% of the total data set is divided into test set. The training set is used to train the model and the test set is used to test the model.

其中,切片应用的SLA通常包括但不限于以下一项或多项:安全性、私密性、可见性、可管理性、可靠性、可用性、具体的业务特征(业务类型、空口需求、定制化网络功能等)和相应的性能指标(时延、吞吐率、丢包率、掉话率等);相应的,切片应用的SLA需求包括但不限于以下一项或多项:时延(例如小于5ms)、带宽、吞吐率、丢包率、掉话率、连接数、可靠性(例如99.999%)、服务范围、用户规模、隔离性(例如强、中、弱)、安全性(例如强、中、弱)、接入方式以及max TP/site(例如5Gbps)。Among them, the SLA of slicing application usually includes but is not limited to one or more of the following: security, privacy, visibility, manageability, reliability, availability, specific service characteristics (service type, air interface requirements, customized network function, etc.) and corresponding performance indicators (delay, throughput rate, packet loss rate, call drop rate, etc.); correspondingly, the SLA requirements of slicing applications include but are not limited to one or more of the following: Delay (for example, less than 5ms) ), bandwidth, throughput rate, packet loss rate, call drop rate, number of connections, reliability (e.g. 99.999%), service range, user scale, isolation (e.g. strong, medium, weak), security (e.g. strong, medium , weak), access method, and max TP/site (eg 5Gbps).

其中,切片业务的场景包括但不限于以下一项或多项:广域大覆盖、热点高容量、低时延高可靠以及低功耗大连接。Among them, the scenarios of slicing services include but are not limited to one or more of the following: wide-area coverage, high-capacity hotspots, low-latency, high reliability, and low-power consumption and large connections.

其中,切片空口条件包括但不限于物理层对于帧结构、波形、多址、调制编码、双工模式和/或多天线的支持情况。The slice air interface conditions include, but are not limited to, the physical layer's support for frame structure, waveform, multiple access, modulation and coding, duplex mode and/or multiple antennas.

其中,切片物理层配置包括帧结构、波形、多址、调制编码、双工模式以及多天线技术六大配置,则物理层配置组合是由上述六大配置中一项或多项构成的组合。并且,上述各物理层配置的配置信息具体如下:波形信息可以为OFDM、非正交波形、单载波、多载波和/或滤波器组多载波;多址信息可以为正交频分多址(OFDMA)、单载波频分多址(SC-FDMA)、多用户共享接入(MUSA)、非正交多址(NOMA)、图样分割多址(PDMA)和/或稀疏码分多址(SCMA);调制编码信息可以为Turbo编码、Polar编码、多元域低密度奇偶校验(LDPC)和/或正交振幅调制(QAM);双工模式信息可以为TDD、FDD、XDD、全双工和/或灵活双工;多天线信息可以为集中式、分布式、大规模天线和/或数模混合mMIMO;帧结构信息可以为动态TTI、动态上下行配比、半静态上下行配比长TTI和/或半静态上下行配比短TTI。The slice physical layer configuration includes six configurations of frame structure, waveform, multiple access, modulation and coding, duplex mode, and multi-antenna technology, and the physical layer configuration combination is a combination composed of one or more of the above six configurations. In addition, the configuration information of each physical layer configuration is as follows: the waveform information can be OFDM, non-orthogonal waveform, single carrier, multi-carrier and/or filter bank multi-carrier; the multiple access information can be orthogonal frequency division multiple access (Orthogonal Frequency Division Multiple Access (OFDMA)) OFDMA), Single-Carrier Frequency Division Multiple Access (SC-FDMA), Multi-User Shared Access (MUSA), Non-Orthogonal Multiple Access (NOMA), Pattern Division Multiple Access (PDMA), and/or Sparse Code Division Multiple Access (SCMA) ); modulation coding information can be Turbo coding, Polar coding, multivariate domain low density parity check (LDPC) and/or quadrature amplitude modulation (QAM); duplex mode information can be TDD, FDD, XDD, full duplex and / or flexible duplex; multi-antenna information can be centralized, distributed, massive antenna and/or digital-analog hybrid mMIMO; frame structure information can be dynamic TTI, dynamic uplink and downlink configuration, semi-static uplink and downlink configuration long TTI And/or semi-static uplink and downlink matching short TTI.

图3示出了本发明一个具体示例中的编解码神经网络结构的示意图。该编解码神经网络依次由嵌入(embedding)层、长短期记忆网络编码层、长短期记忆网络解码层以及全连接(Dense)层构成;其中,该嵌入层将索引序列样本中的每个词转化为向量。如图3所示:第一层为输入层:输入索引化后的切片应用SLA需求、切片业务场景描述、切片空口条件,每条索引序列长度为SLA&scene&condition_length,因此该层输出数据的形状为(None,SLA&scene&condition_length);第二层为嵌入层(embedding):利用词嵌入(word embedding)将每个词转化为向量,输入数据维度为SLA&scene&conditio_vocab_size,输出设置为需要将词转换为128维度的空间向量,输入序列长度为SLA&scene&condition_length,因此该层输出数据的形状为(None,SLA&scene&condition_length,128),该层的作用是对输入的词进行向量映射,将每个词的索引转换为128维的固定形状向量;第三、四层为LSTM编码层:含256个LSTM神经元,激活函数设置为“relu”,该层输出数据的形状为(None,SLA&scene&condition_length,128);第五、六层为LSTM解码层:含256个LSTM神经元,激活函数设置为“relu”,该层输出数据的形状为(None,SLA&scene&condition_length,128);第七层为全连接(Dense)层(输出层):包含Dense全连接神经元个数为portfolio_vocab_size,激活函数设置为“softmax”,将softmax输出结果,送入多类交叉熵损失函数,该层输出数据的形状为(None,portfolio_vocab_size)。在利用图3搭建的神经网络结构进行训练时,将训练回合数设置为1000(epochs=1000),批处理大小设置为100(batch_size=100),选择categorical crossentropy多类交叉熵作为损失函数即目标函数(loss='categorical_crossentropy'):n是样本数,m是分类数。FIG. 3 shows a schematic diagram of the structure of the encoder-decoder neural network in a specific example of the present invention. The encoding and decoding neural network is composed of an embedding layer, a long short-term memory network encoding layer, a long short-term memory network decoding layer and a fully connected (Dense) layer in turn; wherein, the embedding layer converts each word in the index sequence sample into is a vector. As shown in Figure 3: The first layer is the input layer: input the indexed slice application SLA requirements, slice business scenario description, slice air interface conditions, and the length of each index sequence is SLA&scene&condition_length, so the shape of the output data of this layer is (None ,SLA&scene&condition_length); the second layer is the embedding layer: use word embedding to convert each word into a vector, the input data dimension is SLA&scene&conditio_vocab_size, the output is set to need to convert the word into a 128-dimensional space vector, input The sequence length is SLA&scene&condition_length, so the shape of the output data of this layer is (None, SLA&scene&condition_length, 128). The function of this layer is to perform vector mapping on the input words, and convert the index of each word into a 128-dimensional fixed shape vector; The third and fourth layers are LSTM encoding layers: containing 256 LSTM neurons, the activation function is set to "relu", and the shape of the output data of this layer is (None, SLA&scene&condition_length, 128); the fifth and sixth layers are LSTM decoding layers: containing 256 LSTM neurons, the activation function is set to "relu", the shape of the output data of this layer is (None, SLA&scene&condition_length, 128); the seventh layer is the fully connected (Dense) layer (output layer): Contains Dense fully connected neurons The number is portfolio_vocab_size, the activation function is set to "softmax", and the softmax output is sent to the multi-class cross-entropy loss function. The shape of the output data of this layer is (None, portfolio_vocab_size). When using the neural network structure built in Figure 3 for training, set the number of training rounds to 1000 (epochs=1000), set the batch size to 100 (batch_size=100), and select categorical crossentropy as the loss function, that is, the target Function (loss='categorical_crossentropy'): n is the number of samples, m is the number of categories.

Figure BDA0002414638800000091
Figure BDA0002414638800000091

梯度下降优化算法选择adam优化器用于改善传统梯度下降的学习速度(optimizer='adam'),通过梯度下降,可以找到使目标函数最小的最优权重值,神经网络通过训练会自主学习到权重值,并在模型收敛后导出该模型的权重。The gradient descent optimization algorithm selects the adam optimizer to improve the learning speed of traditional gradient descent (optimizer='adam'). Through gradient descent, the optimal weight value that minimizes the objective function can be found, and the neural network will learn the weight value autonomously through training. , and derive the weights for that model after the model has converged.

步骤S220:响应于切片用户发起的切片创建请求,从切片管理架构中获取与该切片创建请求对应的服务等级协议的需求信息、切片业务的场景描述信息以及切片空口条件。Step S220: In response to the slice creation request initiated by the slice user, acquire the requirement information of the SLA corresponding to the slice creation request, the scene description information of the slice service, and the slice air interface condition from the slice management framework.

具体地,切片用户向切片管理架构中的CSMF(通信业务管理功能)模块,发起切片创建请求,CSMF将相关请求信息传递给NSMF,具体在获取请求信息时,可从NSMF(网络切片管理功能)模块中获取切片应用SLA需求、切片业务场景描述以及切片空口条件;或者,可从切片管理架构中的通信业务管理功能模块获取与该切片创建请求对应的服务等级协议的需求信息和切片业务的场景描述信息;以及,从切片管理架构中的网络切片管理功能模块获取与该切片创建请求对应的切片空口条件。Specifically, the slice user initiates a slice creation request to the CSMF (communication service management function) module in the slice management architecture, and the CSMF transmits the relevant request information to the NSMF. Obtain the slice application SLA requirements, slice service scenario description, and slice air interface conditions from the module; or, obtain the SLA requirements and slice service scenarios corresponding to the slice creation request from the communication service management function module in the slice management architecture description information; and, acquiring the slice air interface condition corresponding to the slice creation request from the network slice management function module in the slice management architecture.

步骤S230:对该服务等级协议的需求信息、切片业务的场景描述信息以及切片空口条件进行序列化预处理,生成索引序列。Step S230: Perform serialization preprocessing on the requirement information of the service level agreement, the scene description information of the slicing service, and the slicing air interface condition to generate an index sequence.

具体地,根据词典对服务等级协议的需求信息、切片业务的场景描述信息以及切片空口条件对应的文本中包含的词索引化,生成索引序列。Specifically, the index sequence is generated according to the requirement information of the dictionary for the service level agreement, the scene description information of the slice service, and the indexing of words contained in the text corresponding to the slice air interface condition.

步骤S240:将该索引序列输入至训练好的切片物理层配置自适应组合器预测得到物理层配置信息组合。Step S240: Input the index sequence into the trained slice physical layer configuration adaptive combiner to predict and obtain the physical layer configuration information combination.

其中,该物理层配置包括帧结构、波形、多址、调制编码、双工模式和/或多天线技术。Wherein, the physical layer configuration includes frame structure, waveform, multiple access, modulation and coding, duplex mode and/or multi-antenna technology.

步骤S250:将该物理层配置信息组合反馈给切片管理架构中的网络切片管理功能模块,以供该网络切片管理功能模块根据物理层配置信息组合进行物理层配置处理。Step S250: Feedback the physical layer configuration information combination to the network slice management function module in the slice management architecture, so that the network slice management function module can perform physical layer configuration processing according to the physical layer configuration information combination.

图4示出了本发明一个具体示例中依据切片请求进行物理层配置的完整流程。如图4所示:FIG. 4 shows a complete flow of physical layer configuration according to a slice request in a specific example of the present invention. As shown in Figure 4:

1.切片用户向CSMF发起切片创建请求,CSMF将相关请求信息传递给NSMF;1. The slice user initiates a slice creation request to CSMF, and CSMF transmits the relevant request information to NSMF;

2.从NSMF中获取切片应用SLA需求、切片业务场景描述、切片空口条件;2. Obtain slice application SLA requirements, slice service scenario description, and slice air interface conditions from NSMF;

3.将获取的文本信息通过数据预处理模块转换为序列;3. Convert the acquired text information into sequences through the data preprocessing module;

4.将经预处理后的切片应用SLA需求、切片业务场景描述、切片空口条件输入至预训练完毕的切片物理层配置自适应组合器;4. Input the preprocessed slice application SLA requirements, slice service scenario description, slice air interface conditions into the pre-trained slice physical layer configuration adaptive combiner;

5.切片物理层配置自适应组合器输出所预测的最佳物理层配置最佳组合;5. The optimal combination of the optimal physical layer configuration predicted by the output of the slice physical layer configuration adaptive combiner;

6.NSMF根据所预测的最佳物理层配置最佳组合进行切片物理层配置。6. The NSMF performs slice physical layer configuration according to the best combination of the predicted best physical layer configurations.

根据本实施例提供的5G切片的物理层配置方法,为解决目前切片物理层配置仍依赖于专家经验的现状,从CSMF中获取历史切片应用的SLA需求、切片业务场景描述、切片空口条件形成数据集,对数据集中的每一条数据人工标记最佳切片物理层配置组合方案,并将数据集文本转换为序列。通过深度学习框架搭建编解码神经网络,其中编码器用于将切片应用的SLA需求、切片业务场景描述、切片空口条件文本序列编码成一个固定长度的上下文向量,解码器用于从编码后的上下文向量中生成对应的帧结构、波形、多址、调制编码、双工模式和多天线的六大切片物理层配置最佳组合。再与正确的配置组合比较计算目标函数,利用梯度下降逐渐找到使目标函数最小的权重值。将训练收敛后的模型权重作为切片物理层配置组合器。最终无线子切片管理器NSSMF按照该组合方案实施物理层配置组合。从而提高空口的灵活性,使得空口能够根据不同切片业务场景生成不同的物理层配置以最佳匹配业务的需求。According to the physical layer configuration method for 5G slices provided in this embodiment, in order to solve the current situation that the physical layer configuration of slices still relies on expert experience, the SLA requirements of historical slice applications, the description of slice service scenarios, and the formation data of slice air interface conditions are obtained from the CSMF. Set, manually mark the best slice physical layer configuration combination scheme for each piece of data in the data set, and convert the text of the data set into sequences. Build an encoder-decoder neural network through a deep learning framework. The encoder is used to encode the SLA requirements of the slice application, the slice business scenario description, and the slice air interface condition text sequence into a fixed-length context vector, and the decoder is used to extract the encoded context vector from the encoded context vector. The optimal combination of six slice physical layer configurations of corresponding frame structure, waveform, multiple access, modulation and coding, duplex mode and multi-antenna is generated. Then compare and calculate the objective function with the correct configuration combination, and use gradient descent to gradually find the weight value that minimizes the objective function. Configure the combiner with the model weights after training converged as a slice physical layer. The final wireless sub-slice manager NSSMF implements physical layer configuration composition according to this composition scheme. Thus, the flexibility of the air interface is improved, so that the air interface can generate different physical layer configurations according to different slicing service scenarios to best match the service requirements.

图5示出了本发明实施例提供的5G切片的物理层配置装置的结构示意图。如图5所示,该装置包括:FIG. 5 shows a schematic structural diagram of an apparatus for configuring a physical layer of a 5G slice provided by an embodiment of the present invention. As shown in Figure 5, the device includes:

获取模块510,适于响应于切片用户发起的切片创建请求,从切片管理架构中获取与所述切片创建请求对应的服务等级协议的需求信息、切片业务的场景描述信息以及切片空口条件;The obtaining module 510 is adapted to, in response to a slice creation request initiated by a slice user, obtain from the slice management framework the requirement information of the service level agreement corresponding to the slice creation request, the scene description information of the slice service, and the slice air interface condition;

序列化模块520,适于对所述服务等级协议的需求信息、切片业务的场景描述信息以及切片空口条件进行序列化预处理,生成索引序列;The serialization module 520 is adapted to perform serialization preprocessing on the demand information of the service level agreement, the scene description information of the slicing service, and the slicing air interface conditions, and generate an index sequence;

预测模块530,适于将所述索引序列输入至训练好的切片物理层配置自适应组合器预测得到物理层配置信息组合;The prediction module 530 is adapted to input the index sequence into the trained slice physical layer configuration adaptive combiner to predict the physical layer configuration information combination;

配置模块540,适于根据所述物理层配置信息组合进行物理层配置处理。The configuration module 540 is adapted to perform physical layer configuration processing according to the physical layer configuration information combination.

在一种可选的方式中,所述物理层配置包括帧结构、波形、多址、调制编码、双工模式和/或多天线技术。In an optional manner, the physical layer configuration includes frame structure, waveform, multiple access, modulation and coding, duplex mode and/or multi-antenna technology.

在一种可选的方式中,所述装置还包括:In an optional manner, the device further includes:

训练模块,适于获取历史的服务等级协议的需求信息、切片业务的场景描述信息以及切片空口条件形成数据集;The training module is suitable for obtaining the demand information of the historical service level agreement, the scene description information of the slice service, and the slice air interface condition to form a data set;

针对任一条数据,对该条数据的服务等级协议的需求信息、切片业务的场景描述信息以及切片空口条件进行序列化预处理,生成该条数据对应的索引序列样本;以及,对该条数据标注物理层配置组合,并对该标注的物理层配置组合进行序列化预处理,得到物理层配置信息组合样本;For any piece of data, perform serialization preprocessing on the demand information of the service level agreement of the piece of data, the scene description information of the slice service, and the conditions of the slice air interface, and generate an index sequence sample corresponding to the piece of data; and label the piece of data. physical layer configuration combination, and perform serialization preprocessing on the marked physical layer configuration combination to obtain a physical layer configuration information combination sample;

将数据集中多条数据对应的索引序列样本作为编解码神经网络的训练输入数据,以及将多条数据对应的物理层配置信息组合样本作为训练输出数据;The index sequence samples corresponding to the multiple pieces of data in the dataset are used as the training input data of the encoding and decoding neural network, and the combined samples of the physical layer configuration information corresponding to the multiple pieces of data are used as the training output data;

利用所述训练输入数据和训练输出数据对所述编解码神经网络进行训练,以训练收敛后的网络权重构成切片物理层配置自适应组合器。The encoding/decoding neural network is trained by using the training input data and the training output data, and an adaptive combiner is configured to form a slice physical layer with the network weights after training convergence.

在一种可选的方式中,所述编解码神经网络依次由嵌入层、长短期记忆网络编码层、长短期记忆网络解码层以及全连接层构成;In an optional manner, the encoding-decoding neural network is sequentially composed of an embedding layer, a long-short-term memory network encoding layer, a long-short-term memory network decoding layer, and a fully connected layer;

所述训练模块进一步适于:嵌入层将索引序列样本中的每个词转化为向量。The training module is further adapted: the embedding layer converts each word in the index sequence sample into a vector.

在一种可选的方式中,所述序列化模块进一步适于:In an optional manner, the serialization module is further adapted to:

根据词典对服务等级协议的需求信息、切片业务的场景描述信息以及切片空口条件对应的文本中包含的词索引化,生成索引序列。The index sequence is generated according to the requirement information of the dictionary for the service level agreement, the scene description information of the slice service, and the indexing of the words contained in the text corresponding to the slice air interface condition.

在一种可选的方式中,所述配置模块进一步适于:In an optional manner, the configuration module is further adapted to:

将所述物理层配置信息组合反馈给切片管理架构中的网络切片管理功能模块,以供所述网络切片管理功能模块根据物理层配置信息组合进行物理层配置处理。The physical layer configuration information combination is fed back to the network slice management function module in the slice management architecture, so that the network slice management function module can perform physical layer configuration processing according to the physical layer configuration information combination.

在一种可选的方式中,所述获取模块进一步适于:In an optional manner, the obtaining module is further adapted to:

从切片管理架构中的通信业务管理功能模块获取与所述切片创建请求对应的服务等级协议的需求信息和切片业务的场景描述信息;以及,Obtain the requirement information of the SLA corresponding to the slice creation request and the scene description information of the slice service from the communication service management function module in the slice management framework; and,

从切片管理架构中的网络切片管理功能模块获取与所述切片创建请求对应的切片空口条件。Obtain the slice air interface condition corresponding to the slice creation request from the network slice management function module in the slice management architecture.

本发明实施例提供了一种非易失性计算机存储介质,所述计算机存储介质存储有至少一可执行指令,该计算机可执行指令可执行上述任意方法实施例中的5G切片的物理层配置方法。An embodiment of the present invention provides a non-volatile computer storage medium, where the computer storage medium stores at least one executable instruction, and the computer-executable instruction can execute the physical layer configuration method for 5G slices in any of the foregoing method embodiments .

图6示出了本发明实施例提供的计算设备的结构示意图,本发明具体实施例并不对计算设备的具体实现做限定。FIG. 6 shows a schematic structural diagram of a computing device provided by an embodiment of the present invention. The specific embodiment of the present invention does not limit the specific implementation of the computing device.

如图6所示,该计算设备可以包括:处理器(processor)602、通信接口(Communications Interface)604、存储器(memory)606、以及通信总线608。As shown in FIG. 6 , the computing device may include: a processor (processor) 602 , a communications interface (Communications Interface) 604 , a memory (memory) 606 , and a communication bus 608 .

其中:处理器602、通信接口604、以及存储器606通过通信总线608完成相互间的通信。通信接口604,用于与其它设备比如客户端或其它服务器等的网元通信。处理器602,用于执行程序610,具体可以执行上述用于计算设备的5G切片的物理层配置方法实施例中的相关步骤。The processor 602 , the communication interface 604 , and the memory 606 communicate with each other through the communication bus 608 . The communication interface 604 is used to communicate with network elements of other devices such as clients or other servers. The processor 602 is configured to execute the program 610, and specifically may execute the relevant steps in the foregoing embodiments of the physical layer configuration method for a 5G slice of a computing device.

具体地,程序610可以包括程序代码,该程序代码包括计算机操作指令。Specifically, the program 610 may include program code including computer operation instructions.

处理器602可能是中央处理器CPU,或者是特定集成电路ASIC(ApplicationSpecific Integrated Circuit),或者是被配置成实施本发明实施例的一个或多个集成电路。计算设备包括的一个或多个处理器,可以是同一类型的处理器,如一个或多个CPU;也可以是不同类型的处理器,如一个或多个CPU以及一个或多个ASIC。The processor 602 may be a central processing unit (CPU), or an application specific integrated circuit (ASIC), or one or more integrated circuits configured to implement embodiments of the present invention. The one or more processors included in the computing device may be the same type of processors, such as one or more CPUs; or may be different types of processors, such as one or more CPUs and one or more ASICs.

存储器606,用于存放程序610。存储器606可能包含高速RAM存储器,也可能还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。The memory 606 is used to store the program 610 . Memory 606 may include high-speed RAM memory, and may also include non-volatile memory, such as at least one disk memory.

程序610具体可以用于使得处理器602执行以下操作:The program 610 can specifically be used to cause the processor 602 to perform the following operations:

响应于切片用户发起的切片创建请求,从切片管理架构中获取与所述切片创建请求对应的服务等级协议的需求信息、切片业务的场景描述信息以及切片空口条件;In response to the slice creation request initiated by the slice user, obtain the requirement information of the service level agreement corresponding to the slice creation request, the scene description information of the slice service, and the slice air interface condition from the slice management framework;

对所述服务等级协议的需求信息、切片业务的场景描述信息以及切片空口条件进行序列化预处理,生成索引序列;Perform serialization preprocessing on the demand information of the service level agreement, the scene description information of the slicing service, and the slicing air interface conditions to generate an index sequence;

将所述索引序列输入至训练好的切片物理层配置自适应组合器预测得到物理层配置信息组合;Inputting the index sequence into the trained slice physical layer configuration adaptive combiner to predict the physical layer configuration information combination;

根据所述物理层配置信息组合进行物理层配置处理。Physical layer configuration processing is performed according to the physical layer configuration information combination.

在一种可选的方式中,所述物理层配置包括帧结构、波形、多址、调制编码、双工模式和/或多天线技术。In an optional manner, the physical layer configuration includes frame structure, waveform, multiple access, modulation and coding, duplex mode and/or multi-antenna technology.

在一种可选的方式中,所述程序610使所述处理器602执行以下操作:In an optional manner, the program 610 causes the processor 602 to perform the following operations:

获取历史的服务等级协议的需求信息、切片业务的场景描述信息以及切片空口条件形成数据集;Obtain the demand information of the historical service level agreement, the scene description information of the slice service, and the slice air interface conditions to form a data set;

针对任一条数据,对该条数据的服务等级协议的需求信息、切片业务的场景描述信息以及切片空口条件进行序列化预处理,生成该条数据对应的索引序列样本;以及,对该条数据标注物理层配置组合,并对该标注的物理层配置组合进行序列化预处理,得到物理层配置信息组合样本;For any piece of data, perform serialization preprocessing on the service level agreement requirement information of the piece of data, the scene description information of the slice service, and the slice air interface conditions, and generate an index sequence sample corresponding to the piece of data; and, label the piece of data physical layer configuration combination, and perform serialization preprocessing on the marked physical layer configuration combination to obtain a physical layer configuration information combination sample;

将数据集中多条数据对应的索引序列样本作为编解码神经网络的训练输入数据,以及将多条数据对应的物理层配置信息组合样本作为训练输出数据;The index sequence samples corresponding to the multiple pieces of data in the dataset are used as the training input data of the encoding and decoding neural network, and the combined samples of the physical layer configuration information corresponding to the multiple pieces of data are used as the training output data;

利用所述训练输入数据和训练输出数据对所述编解码神经网络进行训练,以训练收敛后的网络权重构成切片物理层配置自适应组合器。The encoding/decoding neural network is trained by using the training input data and the training output data, and an adaptive combiner is configured to form a slice physical layer with the network weights after training convergence.

在一种可选的方式中,所述编解码神经网络依次由嵌入层、长短期记忆网络编码层、长短期记忆网络解码层以及全连接层构成;In an optional manner, the encoding-decoding neural network is sequentially composed of an embedding layer, a long-short-term memory network encoding layer, a long-short-term memory network decoding layer, and a fully connected layer;

其中,所述嵌入层将索引序列样本中的每个词转化为向量。Among them, the embedding layer converts each word in the index sequence sample into a vector.

在一种可选的方式中,所述程序610使所述处理器602执行以下操作:In an optional manner, the program 610 causes the processor 602 to perform the following operations:

根据词典对服务等级协议的需求信息、切片业务的场景描述信息以及切片空口条件对应的文本中包含的词索引化,生成索引序列。The index sequence is generated according to the requirement information of the dictionary for the service level agreement, the scene description information of the slice service, and the indexing of the words contained in the text corresponding to the slice air interface condition.

在一种可选的方式中,所述程序610使所述处理器602执行以下操作:In an optional manner, the program 610 causes the processor 602 to perform the following operations:

将所述物理层配置信息组合反馈给切片管理架构中的网络切片管理功能模块,以供所述网络切片管理功能模块根据物理层配置信息组合进行物理层配置处理。The physical layer configuration information combination is fed back to the network slice management function module in the slice management architecture, so that the network slice management function module can perform physical layer configuration processing according to the physical layer configuration information combination.

在一种可选的方式中,所述程序610使所述处理器602执行以下操作:In an optional manner, the program 610 causes the processor 602 to perform the following operations:

从切片管理架构中的通信业务管理功能模块获取与所述切片创建请求对应的服务等级协议的需求信息和切片业务的场景描述信息;以及,Obtain the requirement information of the SLA corresponding to the slice creation request and the scene description information of the slice service from the communication service management function module in the slice management framework; and,

从切片管理架构中的网络切片管理功能模块获取与所述切片创建请求对应的切片空口条件。Obtain the slice air interface condition corresponding to the slice creation request from the network slice management function module in the slice management architecture.

在此提供的算法或显示不与任何特定计算机、虚拟系统或者其它设备固有相关。各种通用系统也可以与基于在此的示教一起使用。根据上面的描述,构造这类系统所要求的结构是显而易见的。此外,本发明实施例也不针对任何特定编程语言。应当明白,可以利用各种编程语言实现在此描述的本发明实施例的内容,并且上面对特定语言所做的描述是为了披露本发明实施例的最佳实施方式。The algorithms or displays provided herein are not inherently related to any particular computer, virtual system, or other device. Various general-purpose systems can also be used with teaching based on this. The structure required to construct such a system is apparent from the above description. Furthermore, embodiments of the present invention are not directed to any particular programming language. It is to be understood that various programming languages can be used to implement the contents of the embodiments of the invention described herein and that the above descriptions of specific languages are intended to disclose the best mode of carrying out the embodiments of the invention.

在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本发明的实施例可以在没有这些具体细节的情况下实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。In the description provided herein, numerous specific details are set forth. It will be understood, however, that embodiments of the invention may be practiced without these specific details. In some instances, well-known methods, structures and techniques have not been shown in detail in order not to obscure an understanding of this description.

类似地,应当理解,为了精简本发明实施例并帮助理解各个发明方面中的一个或多个,在上面对本发明的示例性实施例的描述中,本发明实施例的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该公开的方法解释成反映如下意图:即所要求保护的本发明实施例要求比在每个权利要求中所明确记载的特征更多的特征。更确切地说,如下面的权利要求书所反映的那样,发明方面在于少于前面公开的单个实施例的所有特征。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都作为本发明的单独实施例。Similarly, it is to be understood that in the above description of exemplary embodiments of the invention, various features of the embodiments of the invention are sometimes grouped together in order to simplify the embodiments of the invention and to aid in the understanding of one or more of the various aspects of the invention. in a single embodiment, figure, or description thereof. However, this disclosed approach should not be construed to reflect an intention that the claimed embodiments of the invention require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive aspects lie in less than all features of a single foregoing disclosed embodiment. Thus, the claims following the Detailed Description are hereby expressly incorporated into this Detailed Description, with each claim standing on its own as a separate embodiment of this invention.

本领域那些技术人员可以理解,可以对实施例中的设备中的模块进行自适应性地改变并且把它们设置在与该实施例不同的一个或多个设备中。可以把实施例中的模块或单元或组件组合成一个模块或单元或组件,以及此外可以把它们分成多个子模块或子单元或子组件。除了这样的特征和/或过程或者单元中的至少一些是相互排斥之外,可以采用任何组合对本说明书(包括伴随的权利要求、摘要和附图)中公开的所有特征以及如此公开的任何方法或者设备的所有过程或单元进行组合。除非另外明确陈述,本说明书(包括伴随的权利要求、摘要和附图)中公开的每个特征可以由提供相同、等同或相似目的的替代特征来代替。Those skilled in the art will understand that the modules in the device in the embodiment can be adaptively changed and arranged in one or more devices different from the embodiment. The modules or units or components in the embodiments may be combined into one module or unit or component, and further they may be divided into multiple sub-modules or sub-units or sub-assemblies. All features disclosed in this specification (including accompanying claims, abstract and drawings) and any method so disclosed may be employed in any combination unless at least some of such features and/or procedures or elements are mutually exclusive. All processes or units of equipment are combined. Each feature disclosed in this specification (including accompanying claims, abstract and drawings) may be replaced by alternative features serving the same, equivalent or similar purpose, unless expressly stated otherwise.

此外,本领域的技术人员能够理解,尽管在此的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本发明的范围之内并且形成不同的实施例。例如,在下面的权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。Furthermore, it will be understood by those skilled in the art that although some of the embodiments herein include certain features, but not others, included in other embodiments, that combinations of features of the different embodiments are intended to be within the scope of the present invention And form different embodiments. For example, in the following claims, any of the claimed embodiments may be used in any combination.

本发明的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本发明实施例的一些或者全部部件的一些或者全部功能。本发明实施例还可以实现为用于执行这里所描述的方法的一部分或者全部的设备或者装置程序(例如,计算机程序和计算机程序产品)。这样的实现本发明实施例的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。Various component embodiments of the present invention may be implemented in hardware, or in software modules running on one or more processors, or in a combination thereof. Those skilled in the art will understand that a microprocessor or a digital signal processor (DSP) may be used in practice to implement some or all of the functions of some or all of the components according to the embodiments of the present invention. Embodiments of the present invention can also be implemented as apparatus or apparatus programs (eg, computer programs and computer program products) for performing part or all of the methods described herein. Such a program implementing embodiments of the present invention may be stored on a computer-readable medium, or may be in the form of one or more signals. Such signals may be downloaded from Internet sites, or provided on carrier signals, or in any other form.

应该注意的是上述实施例对本发明实施例进行说明而不是对本发明进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本发明实施例可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。上述实施例中的步骤,除有特殊说明外,不应理解为对执行顺序的限定。It should be noted that the above-described embodiments illustrate rather than limit embodiments of the invention, and that alternative embodiments may be devised by those skilled in the art without departing from the scope of the appended claims. In the claims, any reference signs placed between parentheses shall not be construed as limiting the claim. The word "comprising" does not exclude the presence of elements or steps not listed in a claim. The word "a" or "an" preceding an element does not exclude the presence of a plurality of such elements. Embodiments of the invention may be implemented by means of hardware comprising several different elements and by means of suitably programmed computers. In a unit claim enumerating several means, several of these means may be embodied by one and the same item of hardware. The use of the words first, second, and third, etc. do not denote any order. These words can be interpreted as names. The steps in the above embodiments should not be construed as limitations on the execution order unless otherwise specified.

Claims (10)

1.一种5G切片的物理层配置方法,包括:1. A physical layer configuration method for 5G slices, comprising: 响应于切片用户发起的切片创建请求,从切片管理架构中获取与所述切片创建请求对应的服务等级协议的需求信息、切片业务的场景描述信息以及切片空口条件;In response to the slice creation request initiated by the slice user, obtain the requirement information of the service level agreement corresponding to the slice creation request, the scene description information of the slice service, and the slice air interface condition from the slice management framework; 对所述服务等级协议的需求信息、切片业务的场景描述信息以及切片空口条件进行序列化预处理,生成索引序列;Perform serialization preprocessing on the demand information of the service level agreement, the scene description information of the slicing service, and the slicing air interface conditions to generate an index sequence; 将所述索引序列输入至训练好的切片物理层配置自适应组合器预测得到物理层配置信息组合;Inputting the index sequence into the trained slice physical layer configuration adaptive combiner to predict the physical layer configuration information combination; 根据所述物理层配置信息组合进行物理层配置处理。Physical layer configuration processing is performed according to the physical layer configuration information combination. 2.根据权利要求1所述的方法,其中,所述物理层配置包括帧结构、波形、多址、调制编码、双工模式和/或多天线技术。2. The method of claim 1, wherein the physical layer configuration includes frame structure, waveform, multiple access, modulation coding, duplex mode, and/or multiple antenna techniques. 3.根据权利要求1或2所述的方法,其中,所述切片物理层配置自适应组合器通过一下步骤训练得到:3. The method according to claim 1 or 2, wherein the slice physical layer configuration adaptive combiner is obtained by training through the following steps: 获取历史的服务等级协议的需求信息、切片业务的场景描述信息以及切片空口条件形成数据集;Obtain the demand information of the historical service level agreement, the scene description information of the slice service, and the slice air interface conditions to form a data set; 针对任一条数据,对该条数据的服务等级协议的需求信息、切片业务的场景描述信息以及切片空口条件进行序列化预处理,生成该条数据对应的索引序列样本;以及,对该条数据标注物理层配置组合,并对该标注的物理层配置组合进行序列化预处理,得到物理层配置信息组合样本;For any piece of data, perform serialization preprocessing on the service level agreement requirement information of the piece of data, the scene description information of the slice service, and the slice air interface conditions, and generate an index sequence sample corresponding to the piece of data; and, label the piece of data physical layer configuration combination, and perform serialization preprocessing on the marked physical layer configuration combination to obtain a physical layer configuration information combination sample; 将数据集中多条数据对应的索引序列样本作为编解码神经网络的训练输入数据,以及将多条数据对应的物理层配置信息组合样本作为训练输出数据;The index sequence samples corresponding to the multiple pieces of data in the dataset are used as the training input data of the encoding and decoding neural network, and the combined samples of the physical layer configuration information corresponding to the multiple pieces of data are used as the training output data; 利用所述训练输入数据和训练输出数据对所述编解码神经网络进行训练,以训练收敛后的网络权重构成切片物理层配置自适应组合器。The encoding/decoding neural network is trained by using the training input data and the training output data, and an adaptive combiner is configured to form a slice physical layer with the network weights after training convergence. 4.根据权利要求3所述的方法,其中,所述编解码神经网络依次由嵌入层、长短期记忆网络编码层、长短期记忆网络解码层以及全连接层构成;4. The method according to claim 3, wherein the encoding and decoding neural network is sequentially composed of an embedding layer, a long short-term memory network encoding layer, a long short-term memory network decoding layer and a fully connected layer; 其中,所述嵌入层将索引序列样本中的每个词转化为向量。Among them, the embedding layer converts each word in the index sequence sample into a vector. 5.根据权利要求1或2所述的方法,其中,所述序列化预处理进一步包括:5. The method according to claim 1 or 2, wherein the serialization preprocessing further comprises: 根据词典对服务等级协议的需求信息、切片业务的场景描述信息以及切片空口条件对应的文本中包含的词索引化,生成索引序列。The index sequence is generated according to the requirement information of the dictionary for the service level agreement, the scene description information of the slice service, and the indexing of the words contained in the text corresponding to the slice air interface condition. 6.根据权利要求1或2所述的方法,其中,所述根据所述物理层配置信息组合进行物理层配置处理进一步包括:6. The method according to claim 1 or 2, wherein the performing physical layer configuration processing according to the physical layer configuration information combination further comprises: 将所述物理层配置信息组合反馈给切片管理架构中的网络切片管理功能模块,以供所述网络切片管理功能模块根据物理层配置信息组合进行物理层配置处理。The physical layer configuration information combination is fed back to the network slice management function module in the slice management architecture, so that the network slice management function module can perform physical layer configuration processing according to the physical layer configuration information combination. 7.根据权利要求1或2所述的方法,其中,所述从切片管理架构中获取与所述切片创建请求对应的服务等级协议的需求信息、切片业务的场景描述信息以及切片空口条件进一步包括:7. The method according to claim 1 or 2, wherein the obtaining, from the slice management framework, the requirement information of the service level agreement corresponding to the slice creation request, the scene description information of the slice service, and the slice air interface condition further comprise: : 从切片管理架构中的通信业务管理功能模块获取与所述切片创建请求对应的服务等级协议的需求信息和切片业务的场景描述信息;以及,Obtain the requirement information of the SLA corresponding to the slice creation request and the scene description information of the slice service from the communication service management function module in the slice management framework; and, 从切片管理架构中的网络切片管理功能模块获取与所述切片创建请求对应的切片空口条件。Obtain the slice air interface condition corresponding to the slice creation request from the network slice management function module in the slice management architecture. 8.一种5G切片的物理层配置装置,包括:8. A physical layer configuration device for 5G slices, comprising: 获取模块,适于响应于切片用户发起的切片创建请求,从切片管理架构中获取与所述切片创建请求对应的服务等级协议的需求信息、切片业务的场景描述信息以及切片空口条件;an acquisition module, adapted to acquire, in response to a slice creation request initiated by a slice user, the requirement information of the service level agreement corresponding to the slice creation request, the scene description information of the slice service, and the slice air interface condition from the slice management framework; 序列化模块,适于对所述服务等级协议的需求信息、切片业务的场景描述信息以及切片空口条件进行序列化预处理,生成索引序列;a serialization module, adapted to perform serialization preprocessing on the demand information of the service level agreement, the scene description information of the slicing service, and the slicing air interface conditions, and generate an index sequence; 预测模块,适于将所述索引序列输入至训练好的切片物理层配置自适应组合器预测得到物理层配置信息组合;a prediction module, adapted to input the index sequence into the trained slice physical layer configuration adaptive combiner to predict the physical layer configuration information combination; 配置模块,适于根据所述物理层配置信息组合进行物理层配置处理。The configuration module is adapted to perform physical layer configuration processing according to the physical layer configuration information combination. 9.一种计算设备,包括:处理器、存储器、通信接口和通信总线,所述处理器、所述存储器和所述通信接口通过所述通信总线完成相互间的通信;9. A computing device, comprising: a processor, a memory, a communication interface and a communication bus, wherein the processor, the memory and the communication interface communicate with each other through the communication bus; 所述存储器用于存放至少一可执行指令,所述可执行指令使所述处理器执行如权利要求1-7中任一项所述的5G切片的物理层配置方法对应的操作。The memory is used for storing at least one executable instruction, and the executable instruction causes the processor to perform an operation corresponding to the physical layer configuration method for a 5G slice according to any one of claims 1-7. 10.一种计算机存储介质,所述存储介质中存储有至少一可执行指令,所述可执行指令使处理器执行如权利要求1-7中任一项所述的5G切片的物理层配置方法对应的操作。10. A computer storage medium, wherein at least one executable instruction is stored in the storage medium, the executable instruction enables a processor to execute the physical layer configuration method for 5G slices according to any one of claims 1-7 corresponding operation.
CN202010187282.6A 2020-03-17 2020-03-17 Physical layer configuration method and device for 5G slice and computing equipment Active CN113411195B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010187282.6A CN113411195B (en) 2020-03-17 2020-03-17 Physical layer configuration method and device for 5G slice and computing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010187282.6A CN113411195B (en) 2020-03-17 2020-03-17 Physical layer configuration method and device for 5G slice and computing equipment

Publications (2)

Publication Number Publication Date
CN113411195A CN113411195A (en) 2021-09-17
CN113411195B true CN113411195B (en) 2022-08-09

Family

ID=77677256

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010187282.6A Active CN113411195B (en) 2020-03-17 2020-03-17 Physical layer configuration method and device for 5G slice and computing equipment

Country Status (1)

Country Link
CN (1) CN113411195B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118804370A (en) * 2023-09-22 2024-10-18 中国移动通信集团浙江有限公司 Method, device, equipment and storage medium for occupying data channels of multiple applications

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018033074A1 (en) * 2016-08-15 2018-02-22 华为技术有限公司 Network slice configuration method and device
CN108990068A (en) * 2017-06-01 2018-12-11 华为技术有限公司 Communication means and the network equipment
CN109219020A (en) * 2018-09-14 2019-01-15 云迅智能科技南京有限公司 A kind of network dicing method and system
CN110138575A (en) * 2018-02-02 2019-08-16 中兴通讯股份有限公司 Network is sliced creation method, system, the network equipment and storage medium

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10772101B2 (en) * 2015-12-08 2020-09-08 Huawei Technologies Co., Ltd. Systems and methods for determining air interface configuration

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018033074A1 (en) * 2016-08-15 2018-02-22 华为技术有限公司 Network slice configuration method and device
CN108990068A (en) * 2017-06-01 2018-12-11 华为技术有限公司 Communication means and the network equipment
CN110138575A (en) * 2018-02-02 2019-08-16 中兴通讯股份有限公司 Network is sliced creation method, system, the network equipment and storage medium
CN109219020A (en) * 2018-09-14 2019-01-15 云迅智能科技南京有限公司 A kind of network dicing method and system

Also Published As

Publication number Publication date
CN113411195A (en) 2021-09-17

Similar Documents

Publication Publication Date Title
Zhang et al. A unified multi-task semantic communication system for multimodal data
Qi et al. FedBKD: Heterogenous federated learning via bidirectional knowledge distillation for modulation classification in IoT-edge system
US11277786B2 (en) Facilitating compact signaling design for reserved resource configuration in wireless communication systems
CN114731171A (en) Blend coefficient data for processing mode selection
CN112202584B (en) Alarm correlation method, device, computing device, and computer storage medium
US11201712B2 (en) Facilitating incremental downlink control information design to support downlink control information scheduling
Lee et al. Performance analysis of local exit for distributed deep neural networks over cloud and edge computing
CN112398674B (en) Method and device for generating VNFD configuration template for describing virtual network functions
CN117321576A (en) System for error reduction of encoded data for a neural network
US10505697B2 (en) Facilitating a mobile device specific physical downlink shared channel resource element mapping indicator
WO2020237689A1 (en) Network structure search method and apparatus, computer storage medium, and computer program product
CN113541980B (en) Network slicing fault root cause location method, device, computing equipment and storage medium
Guo et al. Energy efficiency based lifetime improvement for wireless body area network
CN113411195B (en) Physical layer configuration method and device for 5G slice and computing equipment
CN108737022A (en) Low complex degree SCMA coding/decoding methods based on quantum calculation and device
CN113824670B (en) 5G slice air interface protocol stack scheduling method and device and computing equipment
CN113259145B (en) End-to-end networking method, networking device and network slicing device for network slicing
CN113825151B (en) Method and device for predicting relationship between slice alarms based on relationship graph convolution network
CN113822453B (en) Multi-user complaint commonality determining method and device for 5G slices
CN114462573A (en) An efficient hierarchical parameter transmission delay optimization method for edge intelligence
Gao et al. Web services classification based on intelligent clustering techniques
Cheng et al. Efficient deep learning approach for computational offloading in mobile edge computing networks
CN113762978B (en) Complaint delimiting method and device for 5G slicing user and computing equipment
CN118473955A (en) Modulation coding scheme prediction method, device, medium and product
CN116384513A (en) Yun Bianduan collaborative learning system and method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant