[go: up one dir, main page]

CN113406560A - 一种非相干分布宽带源的角度和频率参数估计方法 - Google Patents

一种非相干分布宽带源的角度和频率参数估计方法 Download PDF

Info

Publication number
CN113406560A
CN113406560A CN202110552754.8A CN202110552754A CN113406560A CN 113406560 A CN113406560 A CN 113406560A CN 202110552754 A CN202110552754 A CN 202110552754A CN 113406560 A CN113406560 A CN 113406560A
Authority
CN
China
Prior art keywords
frequency
angle
matrix
incoherent
source signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110552754.8A
Other languages
English (en)
Other versions
CN113406560B (zh
Inventor
陈芳炯
杨丽丽
李�杰
季飞
余华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN202110552754.8A priority Critical patent/CN113406560B/zh
Publication of CN113406560A publication Critical patent/CN113406560A/zh
Application granted granted Critical
Publication of CN113406560B publication Critical patent/CN113406560B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/04Details
    • G01S3/12Means for determining sense of direction, e.g. by combining signals from directional antenna or goniometer search coil with those from non-directional antenna
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/02Arrangements for measuring frequency, e.g. pulse repetition rate; Arrangements for measuring period of current or voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/16Spectrum analysis; Fourier analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction
    • G01S3/46Systems for determining direction or deviation from predetermined direction using antennas spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mathematical Physics (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明公开了一种非相干分布宽带源的角度和频率参数估计方法。所述方法包括如下步骤:通过接收阵列获取远场非相干分布宽带源信号,估计非相干分布宽带源信号的协方差并将其向量化;建立向量化的非相干分布宽带源信号协方差模型,根据协方差模型中的方向导数矩阵的行重复性和奇异性,同时对方向导数矩阵和非相干分布宽带源信号协方差进行降维;将非相干分布宽带源信号协方差模型公式化为秩最小化问题,对秩最小化问题求解,得到角度‑频率联合分布矩阵的估计量,结合离散网格估计器估计出非相干分布宽带源的角度和频率分布的关键参数。本发明在提高非相干分布宽带源参数估计精度的基础上,降低计算复杂度,可用于雷达声呐等探测目标的识别和定位。

Description

一种非相干分布宽带源的角度和频率参数估计方法
技术领域
本发明涉及信号处理技术领域,具体涉及一种非相干分布宽带源的角度和频率参数估计方法。
背景技术
宽带信号具有分辨率高、信息量大、抗干扰能力强等特点,已经广泛应用于雷达、声呐、无线通信等领域。大多数宽带源的波达角(DOA)估计是基于点源假设。然而,源信号多径或散射传播引起的角分布是不可忽略的。大部分分布源的DOA估计方法是基于窄带假设。对于分布宽带源来说,随着频率带宽增大,基于窄带假设方法的DOA估计偏差也会增大。因此,分布宽带源的DOA估计问题需要更多的关注和研究。
近年来,一些分布宽带源的DOA估计方法已经被提出来。最大似然(ML)方法,通过重建角度分布的形状来估计角度参数。协方差匹配(CM)方法,一种基于频域快拍的匹配方法。然而这两种方法由于多维搜索维度随源数增加,使得计算负担较大。参数多项式方法,一种基于信号协方差时延的自回归模型方法。这三种方法都假定分布宽带源的宽带信号的频率分布已知,且频率范围相同。而实际应用中,宽带信号可能拥有不同的频率范围。
一些研究者也提出了一种将分数阶傅立叶变换(FRFT)算法与分布源参数估计器(DSPE)算法相结合的新方法,即FRFT-DSPE方法(参考文献Yu J,Zhang L,LiuK.Coherently Distributed Wideband LFM Source Localization[J].IEEE SignalProcessing Letters,2014,22(4):504-508.)。虽然该方法无需已知频率分布,但与上述方法一样,需要已知角度分布的参数化模型,而实际应用中确切的角度分布模型往往是未知的;同时该方法能估计源的角度分布,然而并不能有效估计频率分布,事实上频率也是目标源重要的特征参数。也有学者将稀疏贝叶斯学习(SBL)方法应用于分布宽带源,虽然该方法不需要已知角度和频率的分布模型,然而它要求分布宽带源在空间域中必须是稀疏的。而实际上分布源的稀疏性会随角度扩展而降低。
现有分布宽带源的角度分布估计方法,存在需要已知角度的参数化模型和频率分布以及计算复杂度高的问题,难以满足复杂场景下非相干分布宽带源的角度分布估计。因此提供一种无需已知角度和频率分布模型,又能降低计算复杂度,并能同时估计宽带分布源的角度和频率分布的方法是十分必要的。
发明内容
本发明的目的是针对现有分布宽带源的角度分布估计方法,存在需要已知角度的参数化模型和频率分布以及计算复杂度高的问题,基于低秩矩阵恢复公开发明了一种非相干分布宽带源的角度和频率参数估计方法。
本发明的目的至少通过如下技术方案之一实现。
一种非相干分布宽带源的角度和频率参数估计方法,包括如下步骤:
S1、通过接收阵列获取远场非相干分布宽带源信号,估计非相干分布宽带源信号的协方差并将其向量化;
S2、建立向量化的非相干分布宽带源信号协方差模型,根据协方差模型中的方向导数矩阵的行重复性和奇异性,同时对方向导数矩阵和步骤S1中估计的向量化的非相干分布宽带源信号协方差进行降维,以减少后续计算过程的复杂度;
S3、将步骤S2中向量化的非相干分布宽带源信号协方差模型公式化为秩最小化问题,结合交替方向乘子法(ADMM)和迭代加权核范数(IRNN)算法对秩最小化问题求解,得到角度-频率联合分布矩阵的估计量;
S4、根据步骤S3中得到的角度-频率联合分布矩阵的估计量,结合离散网格估计器估计出非相干分布宽带源的角度和频率分布的关键参数。
进一步地,步骤S1中,首先设置一个包括L个阵元的接收阵列,阵元间距为源信号最大频率对应的半波长;假设有K个远场非相干分布宽带源信号入射到接收阵列,则接收阵列在t时刻的输出信号为:
Figure BDA0003076039760000021
式中t=1,2,...,Q,这里Q为信号采样的快拍数;f和Г分别是源信号的频率和频率范围;θ和Θ分别是源信号在空间传播的方位角和角度范围;dSk(f)是第k个源信号频率谱的一个测量;γk(θ,t)是第k个源信号在角度方向传播的复增益;
Figure BDA0003076039760000022
是接收阵列关于(θ,f)的方向导数,j为虚数单位,(·)T为转置,τl(θ)为源信号传播到第l个阵元相对于传播到参考阵元(通常设置第一个阵元为参考阵元)的时延差,l=1,2,...,L;n(t)为高斯白噪声;
根据输出信号x(t),得到接收阵列输出信号的协方差为:
Figure BDA0003076039760000023
式中E(·)表示期望;(·)H表示共轭转置;Rs
Figure BDA0003076039760000024
分别是源信号与高斯白噪声的协方差;R的估计量为
Figure BDA0003076039760000025
Figure BDA0003076039760000026
为高斯白噪声方差,I为单位向量,对
Figure BDA0003076039760000027
进行特征值分解,可将
Figure BDA0003076039760000028
估计量设定为
Figure BDA0003076039760000029
的最小特征值;由公式(2)可得到非相干分布宽带源信号的协方差估计量为:
Figure BDA00030760397600000210
向量化的
Figure BDA00030760397600000211
为:
Figure BDA00030760397600000212
式中vec(·)表示将矩阵逐列堆叠为列向量,
Figure BDA0003076039760000031
这里
Figure BDA0003076039760000032
为复数集合。
进一步地,步骤S2的具体步骤如下:
S2.1、根据步骤S1中接收阵列输出信号x(t),建立向量化的非相干分布宽带源信号协方差模型rs,并进一步构造方向导数矩阵
Figure BDA0003076039760000033
S2.2、利用方向导数矩阵
Figure BDA0003076039760000034
的行重复性和奇异性,同时对方向导数矩阵
Figure BDA0003076039760000035
和步骤S1中估计的向量化的非相干分布宽带源信号协方差
Figure BDA0003076039760000036
进行降维。
4、根据权利要求3所述的一种非相干分布宽带源的角度和频率参数估计方法,其特征在于,步骤S2.1中,首先,对于非相干分布宽带源,假设不同源的信号不相关,同一源中来自不同角度的复增益不相干,同时源信号中不同频率的信号也不相干;由此,根据x(t)模型,可得出非相干分布宽带源信号的协方差为:
Figure BDA0003076039760000037
式中
Figure BDA0003076039760000038
aθ,f为方向导数a(θ,f)的简化形式;
Figure BDA0003076039760000039
Figure BDA00030760397600000310
为第k个非相干分布宽带源信号传播复增益的角度分布,pk(f)为第k个非相干分布宽带源信号的频率分布;
Figure BDA00030760397600000311
为K个非相干分布宽带源信号的角度-频率联合分布;
其次,将非相干分布宽带源信号的协方差公式(5)的积分式用求和式代替;用Pk表示当θ=θ12,...,θM和f=f1,f2,...,fN时pk(θ,f)的离散化,M和N分别是角度范围Θ和频率范围Γ离散化的数量,其中Pkm,fn)=pkm,fn)表示矩阵Pk的第(m,n)个元素的值为pkm,fn);同时用P表示pθ,f的离散化,
Figure BDA00030760397600000312
这里
Figure BDA00030760397600000313
为实数集合,那么
Figure BDA00030760397600000314
P表示K个非相干分布宽带源的角度-频率联合分布矩阵;P是本发明待估计的未知量,P的求解是估计角度和频率参数的关键;
根据离散化,非相干分布宽带源信号的协方差公式(5)可改写为:
Figure BDA00030760397600000315
式中
Figure BDA00030760397600000316
分别是Aθ,f和pθ,f在离散点(θm,fn)的值;
向量化的Rs可表示为:
Figure BDA00030760397600000317
式中
Figure BDA00030760397600000318
Figure BDA00030760397600000319
的向量化;pθ,f=vec(P),
Figure BDA00030760397600000320
为矩阵P的向量化,具体如下:
Figure BDA0003076039760000041
最终,根据向量化的Rs模型公式(7),可得出要构造的方向导数矩阵
Figure BDA0003076039760000042
Figure BDA0003076039760000043
这里
Figure BDA0003076039760000044
为复数集合,具体如下:
Figure BDA0003076039760000045
进一步地,步骤S2.2中,首先,由于在离散点(θm,fn)处的方向导数a(θm,fn)向量的元素成等比数列,使得
Figure BDA0003076039760000046
中存在相同的元素,那么方向导数矩阵
Figure BDA0003076039760000047
存在相同的行;因此可删除方向导数矩阵
Figure BDA0003076039760000048
中重复的行,同时可删除估计的向量化的非相干分布宽带源信号协方差
Figure BDA0003076039760000049
中对应的行,以降低
Figure BDA00030760397600000410
Figure BDA00030760397600000411
的维度;
其次,方向导数矩阵
Figure BDA00030760397600000412
是奇异的,可对
Figure BDA00030760397600000413
Figure BDA00030760397600000414
进行二次降维;其过程包括:
S2.2.1、对
Figure BDA00030760397600000415
进行奇异值分解(SVD),即
Figure BDA00030760397600000416
A、UA和UA分别是
Figure BDA00030760397600000417
进行SVD的奇异值对角矩阵、左奇异矩阵和右奇异矩阵;
S2.2.2、保留奇异值主成分;设置一个接近于1的奇异值主成分比例ε,当奇异值对角矩阵∑A对角线上前(q+1)个奇异值之和与所有奇异值之和的比例首次大于ε时,保留前q个较大的奇异值,删除其余较小的奇异值,即主成分的奇异值对角矩阵变为
Figure BDA00030760397600000418
主成分对应的左奇异矩阵和右奇异矩阵更新为
Figure BDA00030760397600000419
S2.2.3、对方向导数矩阵
Figure BDA00030760397600000420
和向量化的非相干分布宽带源信号协方差
Figure BDA00030760397600000421
进行二次降维,令
Figure BDA00030760397600000422
Figure BDA00030760397600000423
进一步地,步骤S3的具体步骤如下:
S3.1、根据步骤S2中向量化的非相干分布宽带源信号协方差模型Rs的角度-频率联合分布矩阵P具有低秩属性,将向量化的非相干分布宽带源信号协方差模型公式(7)化为秩最小化问题;
S3.2、结合交替方向乘子法(ADMM)和迭代加权核范数(IRNN)算法对秩最小化问题求解,估计角度-频率联合分布矩阵P。
进一步地,步骤S3.1中,首先,由于角度与频率是不相关的两个量,待估计量角度-频率联合分布矩阵P可表示为
Figure BDA0003076039760000051
其中,pk(θ)=[pk1),...,pkM)]T,pk(f)=[pk(f1),...,pk(fN)]T分别为角度和频率分布的离散向量,
Figure BDA0003076039760000052
由于向量的秩为1,可知矩阵Pk的秩也为1,从而P的秩小于等于K;而源数K通常小于离散化数量M和N,因此角度-频率联合分布矩阵P是具有低秩属性;
根据角度-频率联合分布矩阵P的低秩属性,将向量化的非相干分布宽带源信号协方差模型公式(7)化为秩最小化问题,具体如下:
Figure BDA0003076039760000053
式中rank(·)表示秩函数;
秩最小化问题是一个NP难问题,随着低秩矩阵恢复理论的发展,秩函数可以被核范数代替;用估计量
Figure BDA0003076039760000054
替代rs,公式(10)更新为拉格朗日软约束形式:
Figure BDA0003076039760000055
式中λ为拉格朗日乘子,通常λ∈(0,1);核范数||P||*为rank(P)非凸替代,
Figure BDA0003076039760000056
表示P的核范数为P的奇异值之和,其中σi为P进行SVD的第i个奇异值;‖·‖2为2范数。
进一步地,步骤S3.2中,公式(11)只能获得角度-频率联合分布矩阵P的一个次优解,结合交替方向乘子法(ADMM)和迭代加权核范数(IRNN)算法对秩最小化问题进一步优化,获得角度-频率联合分布矩阵P的一个全局最优解,具体如下:
S3.2.1、根据交替方向乘子法(ADMM)将公式(11)写成分布式最小化问题:
Figure BDA0003076039760000057
式中
Figure BDA0003076039760000058
为引入的未知量;公式(12)写成增广拉格朗日形式:
Figure BDA0003076039760000059
式中
Figure BDA00030760397600000510
和β分别是交替方向乘子法(ADMM)中的双变量和惩罚参数;<·>表示內积算子;‖·‖F表示F范数;
交替方向乘子法(ADMM)分为四步迭代:
S3.2.1.1、更新P:
Figure BDA00030760397600000511
式中pq,Zq,Yq,βq分别表示P,Z,Y,β在第q次迭代中的估计值;
S3.2.1.2、更新Z:
Figure BDA0003076039760000061
S3.2.1.3、更新Y:
Yq+1=Yqq(Pq+1-Zq+1); (42)
S3.2.1.4、更新β:
βq+1=min(βmax,ξβq); (43)
βmax是迭代过程中设置的ξ最大值,ξ是更新算子,ξ>1;
S3.2.2、为了求得P的最优解,利用迭代加权核范数(IRNN)算法解决公式(14)关于P的最小化子问题,求解过程如下:
考虑核范数的一个非凸替代:
Figure BDA0003076039760000062
式中,
Figure BDA0003076039760000063
是Lipschitz连续可导函数;gδ(x)为非凸替代函数,当gδ(x)=1-e-x/δ时能更好近似秩函数;在迭代过程中δ设置以较大值开始,δ取100~500,并在每次迭代中使δ=δ/ρ,ρ>1,避免初始δ过小使迭代陷入局部最小化;
将公式(18)更新为IRNN最小化形式:
Figure BDA0003076039760000064
其中μ>L(f)确保收敛,L(f)是
Figure BDA0003076039760000065
的Lipschitz常数;
Figure BDA0003076039760000066
是gδ(x)的导数;
Figure BDA0003076039760000067
秩最小化问题获得最优解为:
Figure BDA0003076039760000068
其中Gq=U∑VT是Gq的SVD;
Figure BDA0003076039760000069
是广义软边界算子,
Figure BDA00030760397600000610
Figure BDA00030760397600000611
S3.2.3、公式(15)关于Z的最小化子问题具有封闭解,求解过程如下:
简化公式(15)中矩阵的F范数为向量的2范数,Z的最小化子问题简化为:
Figure BDA00030760397600000612
其封闭解为:
Figure BDA00030760397600000613
Zq+1通过vec(Zq+1)向量化逆操作重组得到;
因此,根据公式(10)初始化变量P0,Z0=P0,Y0=0,β0;设置λ,βmax,ξ,δ,ρ,μ;设置d为迭代停止阈值;ADMM中4个迭代变量P,Z,Y,β根据公式(20)、公式(22)、公式(16)和公式(17)迭代更新,当迭代收敛使得||Pq+1-Pq||F/||Pq||F<d时,输出P作为的角度-频率联合分布矩阵的估计量
Figure BDA0003076039760000071
进一步地,步骤S4中,根据步骤S3中得到的角度-频率联合分布矩阵的估计量
Figure BDA0003076039760000072
利用基于功率谱密度矩估计的离散网格估计器(参考文献Shahbazpanahi S,Valaee S,Gershman A B.A covariance fitting approach to parametric localization ofmultiple incoherently distributed sources[M].IEEE Press,2004.),估计出非相干分布宽带源的关键参数,包括角度分布的中心DOA
Figure BDA0003076039760000073
和角度扩展
Figure BDA0003076039760000074
频率分布的中心频率
Figure BDA0003076039760000075
和频率带宽
Figure BDA0003076039760000076
具体如下:
Figure BDA0003076039760000077
Figure BDA0003076039760000078
Figure BDA0003076039760000079
Figure BDA00030760397600000710
式中,带宽
Figure BDA00030760397600000711
定义为频率分布标准差的
Figure BDA00030760397600000712
倍;Θk和Γk分别为第k个非相干分布宽带源信号感兴趣的角度和频率范围;对于角度和频率分布,当分布为高斯分布或拉普拉斯分布时,η=1;当分布为均匀分布时,η=3。
与现有非相干分布宽带源的角度分布估计方法相比,本发明具有以下优点:
(1)本发明无需已知非相干分布宽带源的角度分布参数化模型,能直接估计源的角度分布。
(2)本发明无需已知非相干分布宽带源信号的频率分布,能同时估计频率分布。
(3)本发明无需多维搜索和大规模信号重构,复杂度大为降低。
附图说明
图1是本发明分布宽带源的信号模型图;
图2是本发明参数估计方法的流程图;
图3是本发明仿真实际的角度-频率联合分布矩阵图;
图4是本发明仿真估计的角度-频率联合分布矩阵图;
图5是本发明中心DOA估计的RMSE随信噪比的变化图;
图6是本发明角度扩展估计的RMSE随信噪比的变化图;
图7是本发明中心频率估计的RMSE随信噪比的变化图;
图8是本发明频率带宽估计的RMSE随信噪比的变化图;
图9是本发明方法运行时间随阵元数的变化图。
具体实施方式
下面结合实施例对本发明作进一步详细的描述,本实施例说明了本发明的一种使用方式,但本发明的实施方式不限于此。
实施例:
一种非相干分布宽带源的角度和频率参数估计方法,如图2所示,包括如下步骤:
S1、通过接收阵列获取远场非相干分布宽带源信号,估计非相干分布宽带源信号的协方差并将其向量化,具体步骤如下:
图1是本发明分布宽带源(简称‘DW源’)的信号模型,首先设置一个包括L个阵元的接收阵列,阵元间距为信号最大频率对应的半波长;假设有K个远场非相干分布宽带源信号入射到接收阵列,θ0k
Figure BDA0003076039760000081
分别是第k个源的角度分布的中心DOA和角度扩展;
接收阵列在t时刻的输出信号为:
Figure BDA0003076039760000082
式中t=1,2,...,Q,这里Q为信号采样的快拍数;f和Γ分别是源信号的频率和频率范围;θ和Θ分别是源信号在空间传播的方位角和角度范围;dSk(f)是第k个源信号频率谱的一个测量;γk(θ,t)是第k个源信号在角度方向传播的复增益;
Figure BDA0003076039760000083
是接收阵列关于(θ,f)的方向导数,j为虚数单位,(·)T为转置,τl(θ)为源信号传播到第l个阵元相对于传播到参考阵元(通常设置第一个阵元为参考阵元)的时延差,l=1,2,...,L;n(t)为高斯白噪声;
估计得到输出信号的协方差为:
Figure BDA0003076039760000084
式中(·)H表示共轭转置。
由公式(2)可得到非相干分布宽带源信号的协方差估计量为:
Figure BDA0003076039760000085
式中
Figure BDA0003076039760000086
为高斯白噪声方差,I为单位向量,对
Figure BDA0003076039760000087
进行特征值分解,可将
Figure BDA0003076039760000088
估计量设定为
Figure BDA0003076039760000089
的最小特征值;
向量化的
Figure BDA00030760397600000810
为:
Figure BDA00030760397600000811
式中vec(·)表示将矩阵逐列堆叠为列向量,
Figure BDA00030760397600000812
S2、建立向量化的非相干分布宽带源信号协方差模型,根据协方差模型中的方向导数矩阵的行重复性和奇异性,同时对方向导数矩阵和步骤S1中估计的向量化的非相干分布宽带源信号协方差
Figure BDA0003076039760000091
进行降维,以减少后续计算过程的复杂度,具体步骤如下:
S2.1、建立向量化的非相干分布宽带源信号协方差模型rs,构造方向导数矩阵
Figure BDA0003076039760000092
其中rs表示为
Figure BDA0003076039760000093
将角度范围Θ和频率范围Γ离散化为[θ12,...,θM]和[f1,f2,...,fN],这里M和N分别是角度范围和频率范围离散化的数量;式中
Figure BDA0003076039760000094
Figure BDA0003076039760000095
在离散点(θm,fn)的值;
Figure BDA0003076039760000096
aθ,f为方向导数a(θ,f)的简化形式;
Figure BDA0003076039760000097
是K个非相干分布宽带源信号的角度-频率联合分布pθ,f在离散点(θm,fn)的值;pθ,f=vec(P),
Figure BDA0003076039760000098
为非相干分布宽带源信号的角度-频率联合分布矩阵P的向量化,具体如下:
Figure BDA0003076039760000099
这里
Figure BDA00030760397600000910
是本发明待估计的未知量,P的求解是估计角度和频率参数的关键;
构造方向导数矩阵
Figure BDA00030760397600000911
这里
Figure BDA00030760397600000912
为复数集合,具体如下:
Figure BDA00030760397600000913
S2.2、利用方向导数矩阵
Figure BDA00030760397600000914
的行重复性和奇异性,同时对方向导数矩阵
Figure BDA00030760397600000915
和步骤S1中估计的向量化的非相干分布宽带源信号协方差
Figure BDA00030760397600000916
进行降维;
首先,删除方向导数矩阵
Figure BDA00030760397600000917
中重复的行,同时
Figure BDA00030760397600000918
中对应的行,以降低
Figure BDA00030760397600000919
Figure BDA00030760397600000920
的维度;
其次,对
Figure BDA00030760397600000921
Figure BDA00030760397600000922
进行二次降维;其过程包括:
S2.2.1、对
Figure BDA00030760397600000923
进行奇异值分解(SVD),即
Figure BDA00030760397600000924
A、UA和UA分别是
Figure BDA00030760397600000925
进行SVD的奇异值对角矩阵、左奇异矩阵和右奇异矩阵;
S2.2.2、保留奇异值主成分;设置一个接近于1的奇异值主成分比例ε,当奇异值对角矩阵∑A对角线上前(q+1)个奇异值之和与所有奇异值之和的比例首次大于ε时,保留前q个较大的奇异值,删除其余较小的奇异值,即主成分的奇异值对角矩阵变为
Figure BDA0003076039760000101
主成分对应的左奇异矩阵和右奇异矩阵更新为
Figure BDA0003076039760000102
S2.2.3、对方向导数矩阵
Figure BDA0003076039760000103
和向量化的非相干分布宽带源信号协方差
Figure BDA0003076039760000104
进行二次降维,令
Figure BDA0003076039760000105
Figure BDA0003076039760000106
S3、将步骤S2中向量化非相干分布宽带源信号协方差rs模型公式化为秩最小化问题,结合ADMM和IRNN算法对秩最小化问题求解,从而得到的角度-频率联合分布矩阵的估计量,具体步骤如下:
S3.1、根据角度-频率联合分布矩阵P的低秩属性,可将rs模型公式化为秩最小化问题,具体如下:
Figure BDA0003076039760000107
式中rank(·)表示秩函数;
S3.2、结合交替方向乘子法(ADMM)和迭代加权核范数(IRNN)算法对秩最小化问题求解,估计角度-频率联合分布矩阵P;
根据ADMM方法可将公式(8)写成分布式最小化问题
Figure BDA0003076039760000108
式中λ为拉格朗日乘子,通常λ∈(0,1);核范数||P||*为rank(P)非凸替代,这里
Figure BDA0003076039760000109
表示P的核范数为P的奇异值之和,其中σi为P进行SVD的第i个奇异值;‖·‖2为2范数;
Figure BDA00030760397600001010
为引入的未知量;公式(9)可写成增广拉格朗日形式:
Figure BDA00030760397600001011
式中
Figure BDA00030760397600001012
和β分别是ADMM方法中的双变量和惩罚参数;<·>表示內积算子;‖·‖F表示F范数;
ADMM方法分为四步迭代:
S3.2.1、更新待估计矩阵P:
Figure BDA00030760397600001013
Figure BDA00030760397600001014
U∑VT=Gq; (13)
Figure BDA00030760397600001015
Figure BDA0003076039760000111
式中q表示迭代次数;公式(11)中,gδ(x)=1-e-x/δ是IRNN方法中核范数的替代函数;
Figure BDA0003076039760000112
表示函数对x的求导。这里δ设置以较大值开始,让ρ>1,每次迭代使δ=δ/ρ,避免初始δ过小使迭代陷入局部最小化;公式(12)中
Figure BDA0003076039760000113
μ>L(f)确保迭代收敛,L(f)是
Figure BDA0003076039760000114
的Lipschitz常数。公式(13)中U∑VT是Gq的SVD;
S3.2.2、更新未知量Z:
Figure BDA0003076039760000115
Zq+1可以通过vec(Zq+1)向量化逆操作重组得到;
S3.2.3、更新双变向量Y:
Yq+1=Yqq(Pq+1-Zq+1); (17)
S3.2.4、更新惩罚参数β:
βq+1=min(βmax,ξβq); (18)
βmax是迭代过程中β的最大值,ξ是更新算子,ξ>1;
因此,根据公式(8)初始化变量P0,Z0=P0,Y0=0,β0;设置λ,βmax,ξ,δ,ρ,μ;设置d为迭代停止阈值;ADMM中4个迭代变量P,Z,Y,β根据公式(15)-公式(18)迭代更新,当迭代收敛使得||Pq+1-Pq||F/||Pq||F<d时,输出P作为的角度-频率联合分布矩阵的估计量
Figure BDA0003076039760000116
S4、根据步骤S3中得到的角度-频率联合分布矩阵的估计量
Figure BDA0003076039760000117
利用基于功率谱密度矩估计的离散网格估计器(参考文献Shahbazpanahi S,Valaee S,Gershman A B.Acovariance fitting approach to parametric localization of multipleincoherently distributed sources[M].IEEE Press,2004.),估计出非相干分布宽带源的关键参数,包括角度分布的中心DOA
Figure BDA0003076039760000118
和角度扩展
Figure BDA0003076039760000119
频率分布的中心频率
Figure BDA00030760397600001110
和频率带宽
Figure BDA00030760397600001111
具体如下:
Figure BDA00030760397600001112
Figure BDA00030760397600001113
Figure BDA00030760397600001114
Figure BDA00030760397600001115
式中,带宽
Figure BDA0003076039760000121
定义为频率分布标准差的
Figure BDA0003076039760000122
倍;Θk和Γk分别为第k个非相干分布宽带源信号感兴趣的角度和频率范围;对于角度和频率分布,当分布为高斯分布或拉普拉斯分布时,η=1;当分布为均匀分布时,η=3。
本实施例中,本发明的效果可以通过以下的仿真结果进一步说明,仿真实验条件如下:
远场两个不同角度和频率分布的非相干分布宽带源入射到阵元数L=30的阵列上。其中第一个源的角度服从高斯分布,频率服从均匀分布;第二个源的角度和频率都服从均匀分布。那么两个源的角度-频率联合分布如下:
Figure BDA0003076039760000123
Figure BDA0003076039760000124
这里pk(θ,f)为第k个源的角度-频率联合分布,它可以组成为K个非相干分布宽带源信号的角度-频率联合分布
Figure BDA0003076039760000125
设置第一个源的角度分布的中心DOA和角度扩展为
Figure BDA0003076039760000126
频率分布的中心频率和带宽为(f01,B1)=(350Hz,100Hz);第二个源的角度分布参数设置为
Figure BDA0003076039760000127
Figure BDA0003076039760000128
频率分布参数设置为(f02,B2)=(150Hz,100Hz)。角度和频率的观测范围分别设置为Θ=[20°,50°],Γ=[90Hz,420Hz]。联合分布矩阵的角度和频率的离散分辨率分别设置为1°和10Hz。快拍数Q为104,信噪比SNR为10dB。对于迭代程序,初始化δ=100,并通过δ=δ/2更新;初始化惩罚参数为β=0.3,更新参数为ξ=1.2,βmax=105;设置λ=0.3,μ=103,ε=1-106,同时迭代停止阈值d=10-4
如图3显示了仿真的实际角度-频率联合分布矩阵,图4是通过本发明方法估计的联合分布矩阵,对比两图可知通过本发明方法估计的联合分布矩阵与真实的有较好的一致性。体现了本发明无需已知角度和频率分布,就能估计非相干分布宽带源的角度-频率联合分布的可行性。
2.1关键参数的估计性能随信噪比变化:
为了体现本发明方法有更高的参数估计精度,根据估计的角度-频率联合分布,进一步估计了联合分布的关键参数,并与现有FRFT-DSPE方法和SBL方法比较了参数估计的性能。在仿真中,设置阵元数L=20,快拍数Q=100,信噪比SNR由-10dB变化到10dB,其他参数保持与上例相同。进行100次蒙特卡洛实验,分析本发明方法参数估计的RMSE随信噪比SNR的变化。如图5和图6分别显示了角度分布的中心DOA和角度扩展的估计性能。由图可知,本发明方法角度分布参数估计性能接近克拉美罗下界;同时比现有方法有更高估计精度,特别是在低信噪比时。由于FRFT-DSPE方法不对分布宽带源的频率参数进行估计,本发明方法与SBL方法比较了在频率参数估计的性能。如图7和图8所示,与SBL方法相比,本发明方法在频率参数估计方面也有更好的估计精度。
2.2计算复杂度随阵元数量的变化:
为了体现本发明方法有更低的计算复杂度,申请人在仿真实验中分析了发明方法运行时间随阵元数的变化。保持其他参数不变,设置信噪比SNR=10dB,阵元数L从10增大到50。如图9所示,相比于需要多维搜索的FRFT-DSPE方法和需要大规模信号重构的SBL方法,本发明方法有更低的计算复杂度。
S5、通过步骤S3和S4估计的频率分布和参数信息,用于确定源目标的信号类型,可以进一步识别目标;估计的角度分布和参数信息,用于目标定位,可确定目标方位。
本发明的上述算例仅为详细地说明本发明的计算步骤和计算性能,而并非是对本发明的实施方式的限定。其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种非相干分布宽带源的角度和频率参数估计方法,其特征在于,包括如下步骤:
S1、通过接收阵列获取远场非相干分布宽带源信号,估计非相干分布宽带源信号的协方差并将其向量化;
S2、建立向量化的非相干分布宽带源信号协方差模型,根据协方差模型中的方向导数矩阵的行重复性和奇异性,同时对方向导数矩阵和步骤S1中估计的向量化的非相干分布宽带源信号协方差进行降维;
S3、将步骤S2中向量化的非相干分布宽带源信号协方差模型公式化为秩最小化问题,结合交替方向乘子法和迭代加权核范数算法对秩最小化问题求解,得到角度-频率联合分布矩阵的估计量;
S4、根据步骤S3中得到的角度-频率联合分布矩阵的估计量,结合离散网格估计器估计出非相干分布宽带源的角度和频率分布的关键参数。
2.根据权利要求1所述的一种非相干分布宽带源的角度和频率参数估计方法,其特征在于,步骤S1中,首先设置一个包括L个阵元的接收阵列,阵元间距为源信号最大频率对应的半波长;假设有K个远场非相干分布宽带源信号入射到接收阵列,则接收阵列在t时刻的输出信号为:
Figure FDA0003076039750000011
式中t=1,2,...,Q,这里Q为信号采样的快拍数;f和Γ分别是源信号的频率和频率范围;θ和Θ分别是源信号在空间传播的方位角和角度范围;dSk(f)是第k个源信号频率谱的一个测量;γk(θ,t)是第k个源信号在角度方向传播的复增益;
Figure FDA0003076039750000012
是接收阵列关于(θ,f)的方向导数,j为虚数单位,(·)T为转置,τl(θ)为源信号传播到第l个阵元相对于传播到参考阵元(通常设置第一个阵元为参考阵元)的时延差,l=1,2,...,L;n(t)为高斯白噪声。
3.根据权利要求2所述的一种非相干分布宽带源的角度和频率参数估计方法,其特征在于,步骤S1中,根据输出信号x(t),得到接收阵列输出信号的协方差为:
Figure FDA0003076039750000013
式中E(·)表示期望;(·)H表示共轭转置;Rs
Figure FDA0003076039750000014
分别是源信号与高斯白噪声的协方差;R的估计量为
Figure FDA0003076039750000015
Figure FDA0003076039750000016
为高斯白噪声方差,I为单位向量,对
Figure FDA0003076039750000017
进行特征值分解,可将
Figure FDA0003076039750000018
估计量设定为
Figure FDA0003076039750000019
的最小特征值;由公式(2)可得到非相干分布宽带源信号的协方差估计量为:
Figure FDA00030760397500000110
向量化的
Figure FDA0003076039750000021
为:
Figure FDA0003076039750000022
式中vec(·)表示将矩阵逐列堆叠为列向量,
Figure FDA0003076039750000023
这里
Figure FDA0003076039750000024
为复数集合。
4.根据权利要求3所述的一种非相干分布宽带源的角度和频率参数估计方法,其特征在于,步骤S2的具体步骤如下:
S2.1、根据步骤S1中接收阵列输出信号x(t),建立向量化的非相干分布宽带源信号协方差模型rs,并进一步构造方向导数矩阵
Figure FDA0003076039750000025
S2.2、利用方向导数矩阵
Figure FDA0003076039750000026
的行重复性和奇异性,同时对方向导数矩阵
Figure FDA0003076039750000027
和步骤S1中估计的向量化的非相干分布宽带源信号协方差
Figure FDA0003076039750000028
进行降维。
5.根据权利要求4所述的一种非相干分布宽带源的角度和频率参数估计方法,其特征在于,步骤S2.1中,首先,对于非相干分布宽带源,假设不同源的信号不相关,同一源中来自不同角度的复增益不相干,同时源信号中不同频率的信号也不相干;由此,根据x(t)模型,得出非相干分布宽带源信号的协方差为:
Figure FDA0003076039750000029
式中
Figure FDA00030760397500000210
aθ,f为方向导数a(θ,f)的简化形式;
Figure FDA00030760397500000211
Figure FDA00030760397500000212
为第k个非相干分布宽带源信号传播复增益的角度分布,pk(f)为第k个非相干分布宽带源信号的频率分布;
Figure FDA00030760397500000213
为K个非相干分布宽带源信号的角度-频率联合分布;
其次,将非相干分布宽带源信号的协方差公式(5)的积分式用求和式代替;用Pk表示当θ=θ1,θ2,...,θM和f=f1,f2,...,fN时pk(θ,f)的离散化,M和N分别是角度范围Θ和频率范围Γ离散化的数量,其中Pkm,fn)=pkm,fn)表示矩阵Pk的第(m,n)个元素的值为pkm,fn);同时用P表示pθ,f的离散化,
Figure FDA00030760397500000214
这里
Figure FDA00030760397500000215
为实数集合,那么
Figure FDA00030760397500000216
P表示K个非相干分布宽带源的角度-频率联合分布矩阵;
根据离散化,非相干分布宽带源信号的协方差公式(5)可改写为:
Figure FDA00030760397500000217
式中
Figure FDA00030760397500000218
分别是Aθ,f和pθ,f在离散点(θm,fn)的值;
向量化的Rs可表示为:
Figure FDA00030760397500000219
式中
Figure FDA00030760397500000220
Figure FDA00030760397500000221
的向量化;pθ,f=vec(P),
Figure FDA00030760397500000222
为矩阵P的向量化,具体如下:
Figure FDA0003076039750000031
最终,根据向量化的Rs模型公式(7),可得出要构造的方向导数矩阵
Figure FDA0003076039750000032
Figure FDA0003076039750000033
这里
Figure FDA0003076039750000034
为复数集合,具体如下:
Figure FDA0003076039750000035
6.根据权利要求5所述的一种非相干分布宽带源的角度和频率参数估计方法,其特征在于,步骤S2.2中,首先,由于在离散点(θm,fn)处的方向导数a(θm,fn)向量的元素成等比数列,使得
Figure FDA0003076039750000036
中存在相同的元素,那么方向导数矩阵
Figure FDA0003076039750000037
存在相同的行;因此可删除方向导数矩阵
Figure FDA0003076039750000038
中重复的行,同时可删除估计的向量化的非相干分布宽带源信号协方差
Figure FDA0003076039750000039
中对应的行,以降低
Figure FDA00030760397500000310
Figure FDA00030760397500000311
的维度;
其次,方向导数矩阵
Figure FDA00030760397500000312
是奇异的,可对
Figure FDA00030760397500000313
Figure FDA00030760397500000314
进行二次降维;其过程包括:
S2.2.1、对
Figure FDA00030760397500000315
进行奇异值分解,即
Figure FDA00030760397500000316
A、UA和UA分别是
Figure FDA00030760397500000317
进行SVD的奇异值对角矩阵、左奇异矩阵和右奇异矩阵;
S2.2.2、保留奇异值主成分;设置一个接近于1的奇异值主成分比例ε,当奇异值对角矩阵∑A对角线上前(q+1)个奇异值之和与所有奇异值之和的比例首次大于ε时,保留前q个较大的奇异值,删除其余较小的奇异值,即主成分的奇异值对角矩阵变为
Figure FDA00030760397500000318
主成分对应的左奇异矩阵和右奇异矩阵更新为
Figure FDA00030760397500000319
S2.2.3、对方向导数矩阵
Figure FDA00030760397500000320
和向量化的非相干分布宽带源信号协方差
Figure FDA00030760397500000321
进行二次降维,令
Figure FDA00030760397500000322
Figure FDA00030760397500000323
7.根据权利要求6所述的一种非相干分布宽带源的角度和频率参数估计方法,其特征在于,步骤S3的具体步骤如下:
S3.1、根据步骤S2中向量化的非相干分布宽带源信号协方差模型Rs的角度-频率联合分布矩阵P具有低秩属性,将向量化的非相干分布宽带源信号协方差模型公式(7)化为秩最小化问题;
S3.2、结合交替方向乘子法和迭代加权核范数算法对秩最小化问题求解,估计角度-频率联合分布矩阵P。
8.根据权利要求7所述的一种非相干分布宽带源的角度和频率参数估计方法,其特征在于,步骤S3.1中,首先,由于角度与频率是不相关的两个量,待估计量角度-频率联合分布矩阵P可表示为
Figure FDA0003076039750000041
其中,pk(θ)=[pk1),...,pkM)]T,pk(f)=[pk(f1),...,pk(fN)]T分别为角度和频率分布的离散向量,
Figure FDA0003076039750000042
由于向量的秩为1,可知矩阵Pk的秩也为1,从而P的秩小于等于K;而源数K通常小于离散化数量M和N,因此角度-频率联合分布矩阵P是具有低秩属性;
根据角度-频率联合分布矩阵P的低秩属性,将向量化的非相干分布宽带源信号协方差模型公式(7)化为秩最小化问题,具体如下:
Figure FDA0003076039750000043
式中rank(·)表示秩函数;
用估计量
Figure FDA0003076039750000044
替代rs,公式(10)更新为拉格朗日软约束形式:
Figure FDA0003076039750000045
式中λ为拉格朗日乘子,通常λ∈(0,1);核范数||P||*为rank(P)非凸替代,
Figure FDA0003076039750000046
表示P的核范数为P的奇异值之和,其中σi为P进行SVD的第i个奇异值;||·||2为2范数。
9.根据权利要求8所述的一种非相干分布宽带源的角度和频率参数估计方法,其特征在于,步骤S3.2中,公式(11)只能获得角度-频率联合分布矩阵P的一个次优解,结合交替方向乘子法和迭代加权核范数算法对秩最小化问题进一步优化,获得角度-频率联合分布矩阵P的一个全局最优解,具体如下:
S3.2.1、根据交替方向乘子法将公式(11)写成分布式最小化问题:
Figure FDA0003076039750000047
式中
Figure FDA0003076039750000048
为引入的未知量;公式(12)写成增广拉格朗日形式:
Figure FDA0003076039750000049
式中
Figure FDA00030760397500000410
和β分别是交替方向乘子法(ADMM)中的双变量和惩罚参数;<·>表示内积算子;||·||F表示F范数;
交替方向乘子法分为四步迭代:
S3.2.1.1、更新P:
Figure FDA0003076039750000051
式中Pq,Zq,Yq,βq分别表示P,Z,Y,β在第q次迭代中的估计值;
S3.2.1.2、更新Z:
Figure FDA0003076039750000052
S3.2.1.3、更新Y:
Yq+1=Yqq(Pq+1-Zq+1); (16)
S3.2.1.4、更新β:
βq+1=min(βmax,ξβq); (17)
βmax是迭代过程中设置的β最大值,ξ是更新算子,ξ>1;
S3.2.2、为了求得P的最优解,利用迭代加权核范数(IRNN)算法解决公式(14)关于P的最小化子问题,求解过程如下:
考虑核范数的一个非凸替代:
Figure FDA0003076039750000053
式中,
Figure FDA0003076039750000054
是Lipschitz连续可导函数;gδ(x)为非凸替代函数,当gδ(x)=1-e-x/δ时能更好近似秩函数;在迭代过程中δ设置以较大值开始,δ取100~500,并在每次迭代中使δ=δ/ρ,ρ>1;
将公式(18)更新为IRNN最小化形式:
Figure FDA0003076039750000055
其中μ>L(f)确保收敛,L(f)是
Figure FDA0003076039750000056
的Lipschitz常数;
Figure FDA0003076039750000057
是gδ(x)的导数;
Figure FDA0003076039750000058
秩最小化问题获得最优解为:
Figure FDA0003076039750000059
其中Gq=U∑VT是Gq的SVD;
Figure FDA00030760397500000510
是广义软边界算子,
Figure FDA00030760397500000511
Figure FDA00030760397500000512
S3.2.3、公式(15)关于Z的最小化子问题具有封闭解,求解过程如下:
简化公式(15)中矩阵的F范数为向量的2范数,Z的最小化子问题简化为:
Figure FDA0003076039750000061
其封闭解为:
Figure FDA0003076039750000062
Zq+1通过vec(Zq+1)向量化逆操作重组得到;
因此,根据公式(10)初始化变量P0,Z0=P0,Y0=0,β0;设置λ,βmax,ξ,δ,ρ,μ;设置d为迭代停止阈值;ADMM中4个迭代变量P,Z,Y,β根据公式(20)、公式(22)、公式(16)和公式(17)迭代更新,当迭代收敛使得||Pq+1-Pq||F/||Pq||F<d时,输出P作为的角度-频率联合分布矩阵的估计量
Figure FDA0003076039750000063
10.根据权利要求9所述的一种非相干分布宽带源的角度和频率参数估计方法,其特征在于,步骤S4中,根据步骤S3中得到的角度-频率联合分布矩阵的估计量
Figure FDA0003076039750000064
利用基于功率谱密度矩估计的离散网格估计器,估计出非相干分布宽带源的关键参数,包括角度分布的中心DOA
Figure FDA0003076039750000065
和角度扩展
Figure FDA0003076039750000066
频率分布的中心频率
Figure FDA0003076039750000067
和频率带宽
Figure FDA0003076039750000068
具体如下:
Figure FDA0003076039750000069
Figure FDA00030760397500000610
Figure FDA00030760397500000611
Figure FDA00030760397500000612
式中,带宽
Figure FDA00030760397500000613
定义为频率分布标准差的
Figure FDA00030760397500000614
倍;Θk和Γk分别为第k个非相干分布宽带源信号感兴趣的角度和频率范围;对于角度和频率分布,当分布为高斯分布或拉普拉斯分布时,η=1;当分布为均匀分布时,η=3。
CN202110552754.8A 2021-05-20 2021-05-20 一种非相干分布宽带源的角度和频率参数估计方法 Active CN113406560B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110552754.8A CN113406560B (zh) 2021-05-20 2021-05-20 一种非相干分布宽带源的角度和频率参数估计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110552754.8A CN113406560B (zh) 2021-05-20 2021-05-20 一种非相干分布宽带源的角度和频率参数估计方法

Publications (2)

Publication Number Publication Date
CN113406560A true CN113406560A (zh) 2021-09-17
CN113406560B CN113406560B (zh) 2024-07-16

Family

ID=77679042

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110552754.8A Active CN113406560B (zh) 2021-05-20 2021-05-20 一种非相干分布宽带源的角度和频率参数估计方法

Country Status (1)

Country Link
CN (1) CN113406560B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114859115A (zh) * 2022-07-08 2022-08-05 四川大学 一种基于快速交替算法的宽频密集频率信号分析方法
CN115032591A (zh) * 2022-06-02 2022-09-09 深圳大学 一种宽带多声源定位非同步测量方法、装置及相关介质
CN119247267A (zh) * 2024-10-15 2025-01-03 万基泰科工集团数字城市科技有限公司 一种近场非相干分布源定位方法
CN120429659A (zh) * 2025-07-04 2025-08-05 华南理工大学 基于频谱匹配的宽带非相干分布式源二维参数估计方法
CN119247267B (zh) * 2024-10-15 2025-12-26 万基泰科工集团数字城市科技有限公司 一种近场非相干分布源定位方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103091661A (zh) * 2013-02-01 2013-05-08 西安科技大学 基于迭代谱重构的宽带信号波达方向估计方法
US20140327571A1 (en) * 2013-05-02 2014-11-06 L-3 Communications Integrated Systems L.P. Systems And Methods For Direct Emitter Geolocation
CN107703477A (zh) * 2017-09-11 2018-02-16 电子科技大学 基于块稀疏贝叶斯学习的准平稳宽带阵列信号波达方向估计方法
CN109407045A (zh) * 2018-10-10 2019-03-01 苏州大学 一种非均匀传感器阵列宽带信号波达方向估计方法
CN109655799A (zh) * 2018-12-26 2019-04-19 中国航天科工集团八五研究所 基于iaa的协方差矩阵向量化的非均匀稀疏阵列测向方法
CN109901148A (zh) * 2019-03-21 2019-06-18 西安电子科技大学 基于协方差矩阵稀疏表示的宽带信号doa估计方法
US20200132800A1 (en) * 2018-10-30 2020-04-30 Electronics And Telecommunications Research Institute Method and apparatus for estimating location of signal source
CN112285639A (zh) * 2020-09-30 2021-01-29 中国船舶重工集团公司七五0试验场 一种基于十字形声压阵列的宽带信号方位估计方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103091661A (zh) * 2013-02-01 2013-05-08 西安科技大学 基于迭代谱重构的宽带信号波达方向估计方法
US20140327571A1 (en) * 2013-05-02 2014-11-06 L-3 Communications Integrated Systems L.P. Systems And Methods For Direct Emitter Geolocation
CN107703477A (zh) * 2017-09-11 2018-02-16 电子科技大学 基于块稀疏贝叶斯学习的准平稳宽带阵列信号波达方向估计方法
CN109407045A (zh) * 2018-10-10 2019-03-01 苏州大学 一种非均匀传感器阵列宽带信号波达方向估计方法
US20200132800A1 (en) * 2018-10-30 2020-04-30 Electronics And Telecommunications Research Institute Method and apparatus for estimating location of signal source
CN109655799A (zh) * 2018-12-26 2019-04-19 中国航天科工集团八五研究所 基于iaa的协方差矩阵向量化的非均匀稀疏阵列测向方法
CN109901148A (zh) * 2019-03-21 2019-06-18 西安电子科技大学 基于协方差矩阵稀疏表示的宽带信号doa估计方法
CN112285639A (zh) * 2020-09-30 2021-01-29 中国船舶重工集团公司七五0试验场 一种基于十字形声压阵列的宽带信号方位估计方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
S. VALAEE等: "Parametric localization of distributed sources", 《IEEE TRANSACTIONS ON SIGNAL PROCESSING》, vol. 43, no. 9, pages 2144 - 2153 *
李杰: "稳健波束形成与稀疏空间谱估计技术研究", 《中国博士学位论文全文数据库信息科技辑(月刊)》, no. 11, pages 136 - 9 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115032591A (zh) * 2022-06-02 2022-09-09 深圳大学 一种宽带多声源定位非同步测量方法、装置及相关介质
CN114859115A (zh) * 2022-07-08 2022-08-05 四川大学 一种基于快速交替算法的宽频密集频率信号分析方法
CN119247267A (zh) * 2024-10-15 2025-01-03 万基泰科工集团数字城市科技有限公司 一种近场非相干分布源定位方法
CN119247267B (zh) * 2024-10-15 2025-12-26 万基泰科工集团数字城市科技有限公司 一种近场非相干分布源定位方法
CN120429659A (zh) * 2025-07-04 2025-08-05 华南理工大学 基于频谱匹配的宽带非相干分布式源二维参数估计方法

Also Published As

Publication number Publication date
CN113406560B (zh) 2024-07-16

Similar Documents

Publication Publication Date Title
CN108957388B (zh) 一种基于协方差匹配sl0算法的mimo雷达相干信源doa估计方法
CN104977558B (zh) 一种基于贝叶斯压缩感知的分布源中心波达方向估计方法
CN110109050B (zh) 嵌套阵列下基于稀疏贝叶斯的未知互耦的doa估计方法
Boonstra et al. Gain calibration methods for radio telescope arrays
CN110113085B (zh) 一种基于协方差矩阵重构的波束形成方法及系统
CN110261841A (zh) 基于迭代加权近端投影的mimo雷达单测量矢量doa估计方法
CN113406560B (zh) 一种非相干分布宽带源的角度和频率参数估计方法
CN111257845B (zh) 一种基于近似消息传递的不在网格目标角度估计方法
CN109116293A (zh) 一种基于离格稀疏贝叶斯的波达方向估计方法
CN110703249A (zh) 稳健高效合成孔径雷达多元特征增强成像方法
CN118897250A (zh) 一种基于时空编码超表面的相干信号doa估计方法
Wax et al. Direction of arrival estimation in the presence of model errors by signal subspace matching
CN114624665B (zh) 基于动态参数迭代优化的互耦误差doa自校正方法
Wu et al. DOA estimation using an unfolded deep network in the presence of array imperfections
CN106788655B (zh) 互耦条件下未知互耦信息的干扰相干稳健波束形成方法
Molaei et al. Efficient clustering of non-coherent and coherent components regardless of sources’ powers for 2D DOA estimation
CN109683128A (zh) 冲击噪声环境下的单快拍测向方法
Asghari et al. Doa estimation of noncircular signals under impulsive noise using a novel empirical characteristic function-based music
CN114325563B (zh) 非均匀噪声环境下基于变分sbl的离格doa估计方法
CN108872928A (zh) 基于四线性分解的平面阵列角度的估算方法
Yang et al. A correlation-aware sparse Bayesian perspective for DOA estimation with off-grid sources
Wang et al. A quadrilinear decomposition method for direction estimation in bistatic MIMO radar
CN118962581A (zh) 一种柯西核图自适应滤波阵列雷达到达角估计方法
CN111077493B (zh) 一种基于实值离格变分贝叶斯推理的nested阵列波达方向估计方法
CN114355279A (zh) 基于变分稀疏贝叶斯学习的矢量共形阵列doa-极化参数联合估计方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant