CN113126643A - Intelligent robust reentry guidance method and system for hypersonic aircraft - Google Patents
Intelligent robust reentry guidance method and system for hypersonic aircraft Download PDFInfo
- Publication number
- CN113126643A CN113126643A CN202110467754.8A CN202110467754A CN113126643A CN 113126643 A CN113126643 A CN 113126643A CN 202110467754 A CN202110467754 A CN 202110467754A CN 113126643 A CN113126643 A CN 113126643A
- Authority
- CN
- China
- Prior art keywords
- robust
- uncertainty
- aircraft
- model
- random
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 80
- 238000005457 optimization Methods 0.000 claims abstract description 85
- 238000012549 training Methods 0.000 claims abstract description 65
- 238000013461 design Methods 0.000 claims abstract description 49
- 230000008569 process Effects 0.000 claims abstract description 43
- 238000009826 distribution Methods 0.000 claims abstract description 33
- 238000003062 neural network model Methods 0.000 claims abstract description 25
- 238000004445 quantitative analysis Methods 0.000 claims abstract description 15
- 238000005094 computer simulation Methods 0.000 claims abstract description 7
- 239000013598 vector Substances 0.000 claims description 34
- 238000013528 artificial neural network Methods 0.000 claims description 17
- 230000006870 function Effects 0.000 claims description 17
- 238000012360 testing method Methods 0.000 claims description 13
- 238000007418 data mining Methods 0.000 claims description 10
- 238000004422 calculation algorithm Methods 0.000 claims description 9
- 238000013135 deep learning Methods 0.000 claims description 8
- 238000005291 chaos (dynamical) Methods 0.000 claims description 7
- 238000005516 engineering process Methods 0.000 claims description 7
- 238000004458 analytical method Methods 0.000 claims description 6
- 230000010354 integration Effects 0.000 claims description 5
- 206010048669 Terminal state Diseases 0.000 claims description 4
- 230000004913 activation Effects 0.000 claims description 4
- 230000000739 chaotic effect Effects 0.000 claims description 4
- 238000005312 nonlinear dynamic Methods 0.000 claims description 4
- ORILYTVJVMAKLC-UHFFFAOYSA-N Adamantane Natural products C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 claims description 3
- 230000001133 acceleration Effects 0.000 claims description 3
- 230000001149 cognitive effect Effects 0.000 claims description 3
- 238000012938 design process Methods 0.000 claims description 3
- 238000013507 mapping Methods 0.000 claims description 3
- 230000007123 defense Effects 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 11
- 238000012795 verification Methods 0.000 description 7
- 238000012937 correction Methods 0.000 description 6
- 230000006872 improvement Effects 0.000 description 5
- 238000005309 stochastic process Methods 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 238000004590 computer program Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 230000007812 deficiency Effects 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 230000008092 positive effect Effects 0.000 description 2
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000010006 flight Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000013468 resource allocation Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/08—Control of attitude, i.e. control of roll, pitch, or yaw
- G05D1/0808—Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/10—Simultaneous control of position or course in three dimensions
- G05D1/101—Simultaneous control of position or course in three dimensions specially adapted for aircraft
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Feedback Control In General (AREA)
Abstract
Description
技术领域technical field
本发明属于高超声速滑翔飞行器再入轨迹规划制导技术领域,尤其涉及一种高超声速飞行器智能鲁棒再入制导方法及系统。The invention belongs to the technical field of re-entry trajectory planning and guidance of a hypersonic gliding aircraft, and in particular relates to an intelligent and robust re-entry guidance method and system for a hypersonic aircraft.
背景技术Background technique
目前,高超声速滑翔飞行器是临近空间高超声速飞行器的主要类型之一,通常由运载火箭运送至预定高度或由天基平台释放,以高超声速再入大气层,依靠自身高升阻比及气动力控制实现远距离无动力滑翔,最终完成目标的精确打击等任务。由于突破了常规弹道式再入模式,同时具有响应速度快、飞行距离远、空间跨度大、机动突防能力强、打击精度高等诸多优点,高超声速滑翔飞行器被各国视为临近空间资源争夺与国家战略安全保障的技术制高点。At present, hypersonic glide vehicles are one of the main types of hypersonic vehicles in near space. They are usually transported to a predetermined altitude by a launch vehicle or released by a space-based platform, and re-enter the atmosphere at hypersonic speed, relying on their own high lift-to-drag ratio and aerodynamic control. Long-distance unpowered gliding, and finally complete tasks such as precise strikes on targets. Because it breaks through the conventional ballistic reentry mode, and has many advantages such as fast response speed, long flight distance, large space span, strong maneuvering penetration capability, and high strike accuracy, hypersonic gliding vehicles are regarded by various countries as near space resources competition and national competition. The technical commanding heights of strategic security.
轨迹设计是高超声速飞行器制导控制领域核心问题,需要承担飞行器总体设计阶段的统筹分析任务,为制导、控制、突防及热防护等多学科设计提供理论依据,几乎贯穿了整个飞行器设计过程。高超声速滑翔飞行器无动力滑翔再入的固有属性,使得其轨迹设计所面临的挑战更加严峻。高超声速飞行器轨迹设计的“理想目标”是以超越导航误差的精度,以超越制导周期的效率,在满足所有约束的条件下,在线得到全局最优轨迹。Trajectory design is a core issue in the field of guidance and control of hypersonic aircraft. It needs to undertake the overall analysis task of the overall design stage of the aircraft, and provides a theoretical basis for the multidisciplinary design of guidance, control, penetration and thermal protection, and runs through almost the entire aircraft design process. The inherent properties of unpowered gliding and reentry of hypersonic glide vehicles make the trajectory design challenges more severe. The "ideal goal" of hypersonic vehicle trajectory design is to exceed the accuracy of the navigation error, to exceed the efficiency of the guidance period, and to obtain the global optimal trajectory online under the condition that all constraints are satisfied.
目前,受制于有限的弹载计算处理能力,工程上一般采用离线轨迹优化与在线跟踪制导的轨迹设计架构:离线设计阶段基于质点动力学模型优化参考轨迹并存储于弹载计算机;在线飞行过程中制导控制系统跟踪参考轨迹,按照预先规划轨迹将飞行器导引至终端位置。传统离线轨迹优化基于确定性标称模型展开,忽略了飞行器自身和环境中的不确定性,因此其参考轨迹往往缺乏鲁棒性,极易导致飞行过程出现不可预知的波动或者偏离设计方向,从而显著影响任务执行效果,甚至威胁飞行器自身安全。利用在线轨迹优化、在线跟踪制导或预测-校正制导等技术能够在一定程度上补偿确定性参考轨迹的不足,但仍存在新的设计困难:为满足实时性要求,在线轨迹优化通常以牺牲部分轨迹最优性为代价,但考虑到弹载耗材量限制,轨迹最优性设计仍然十分必要;在线跟踪制导计算速度快但制导精度低,预测-校正制导精度较高但严重依赖计算能力,二者的混合制导是现有架构下的改进方法,但对轨迹鲁棒设计与计算资源配置缺乏根本性改善,其有限的校正能力限制了飞行器性能的发挥。At present, due to the limited processing capability of missile-borne computing, the trajectory design framework of offline trajectory optimization and online tracking and guidance is generally adopted in engineering: the reference trajectory is optimized based on the particle dynamics model in the offline design stage and stored in the missile-borne computer; during the online flight process The guidance and control system tracks the reference trajectory and guides the aircraft to the terminal position according to the pre-planned trajectory. The traditional offline trajectory optimization is based on the deterministic nominal model, ignoring the uncertainty in the aircraft itself and the environment, so its reference trajectory often lacks robustness, which can easily lead to unpredictable fluctuations in the flight process or deviation from the design direction, thereby Significantly affect the performance of the mission, and even threaten the safety of the aircraft itself. Using technologies such as online trajectory optimization, online tracking guidance or predictive-correction guidance can compensate for the deficiencies of deterministic reference trajectories to a certain extent, but there are still new design difficulties: in order to meet real-time requirements, online trajectory optimization usually sacrifices part of the trajectory Optimality is at the expense, but considering the limitation of the amount of consumables on board, the optimal trajectory design is still very necessary; online tracking guidance is fast in calculation speed but low in guidance accuracy, and prediction-correction guidance accuracy is high but relies heavily on computing power. The hybrid guidance is an improved method under the existing architecture, but it lacks fundamental improvement in trajectory robust design and computing resource allocation, and its limited correction capability limits the performance of the aircraft.
智能轨迹规划制导相关研究已经表明,基于深度学习的轨迹控制器具有接管全部或部分弹载轨迹生成和制导系统的潜力,但考虑不确定性的鲁棒智能轨迹规划制导研究仍然没有引起重视。由于弹载计算能力难以支撑在线学习过程,深度神经网络飞行控制器主要通过“离线训练+在线应用”的方式实现。面对复杂多源不确定性再入轨迹优化问题,缺乏高保真鲁棒动态轨迹优化模型和多工况鲁棒轨迹设计数据支撑。Researches related to intelligent trajectory planning and guidance have shown that the deep learning-based trajectory controller has the potential to take over all or part of the missile-borne trajectory generation and guidance system, but the research on robust intelligent trajectory planning and guidance considering uncertainty has not attracted much attention. Since the on-board computing power is difficult to support the online learning process, the deep neural network flight controller is mainly implemented through "offline training + online application". Facing the complex multi-source uncertainty reentry trajectory optimization problem, there is a lack of high-fidelity robust dynamic trajectory optimization model and multi-condition robust trajectory design data support.
针对上述问题,突破高超声速飞行器传统轨迹优化和制导技术架构,开展基于鲁棒轨迹优化的高超声速飞行器智能再入制导方法研究具有重要的科学意义和工程应用价值。In view of the above problems, it is of great scientific significance and engineering application value to break through the traditional trajectory optimization and guidance technology framework of hypersonic vehicles and carry out research on intelligent reentry guidance methods for hypersonic vehicles based on robust trajectory optimization.
通过上述分析,现有技术存在的问题及缺陷为:Through the above analysis, the existing problems and defects in the prior art are:
(1)传统离线轨迹优化基于确定性标称模型展开,忽略了飞行器自身和环境中的不确定性,因此其参考轨迹往往缺乏鲁棒性,极易导致飞行过程出现不可预知的波动或者偏离设计方向,从而显著影响任务执行效果,甚至威胁飞行器自身安全。(1) The traditional offline trajectory optimization is based on the deterministic nominal model, ignoring the uncertainty in the aircraft itself and the environment, so its reference trajectory often lacks robustness, which can easily lead to unpredictable fluctuations in the flight process or deviation from the design direction, which significantly affects the performance of the mission, and even threatens the safety of the aircraft itself.
(2)利用在线轨迹优化、在线跟踪制导或预测-校正制导等技术能够在一定程度上补偿确定性参考轨迹的不足,但仍存在新的设计困难:为满足实时性要求,在线轨迹优化通常以牺牲部分轨迹最优性为代价,但考虑到弹载耗材量限制,轨迹最优性设计仍然十分必要。(2) Using technologies such as online trajectory optimization, online tracking guidance or prediction-correction guidance can compensate for the deficiencies of deterministic reference trajectories to a certain extent, but there are still new design difficulties: in order to meet real-time requirements, online trajectory optimization is usually based on At the cost of sacrificing part of the trajectory optimality, but considering the limitation of the amount of consumables onboard, the trajectory optimality design is still very necessary.
(3)在线跟踪制导计算速度快但制导精度低,预测-校正制导精度较高但严重依赖计算能力,二者的混合制导是现有架构下的改进方法,但对轨迹鲁棒设计与计算资源配置缺乏根本性改善,其有限的校正能力限制了飞行器性能的发挥。(3) Online tracking guidance has fast calculation speed but low guidance accuracy, and prediction-correction guidance has high accuracy but relies heavily on computing power. The hybrid guidance of the two is an improved method under the existing architecture, but it is robust to trajectory design and computational resources. The configuration lacks fundamental improvement, and its limited correction capabilities limit the performance of the aircraft.
(4)现有技术中,考虑不确定性的鲁棒智能轨迹规划制导研究仍然没有引起重视,且面对复杂多源不确定性再入轨迹优化问题,缺乏高保真鲁棒动态轨迹优化模型和多工况鲁棒轨迹设计数据支撑。(4) In the prior art, the research on robust intelligent trajectory planning and guidance considering uncertainty has not attracted much attention, and in the face of complex multi-source uncertainty re-entry trajectory optimization problems, there is a lack of high-fidelity robust dynamic trajectory optimization models and Multi-condition robust trajectory design data support.
解决以上问题及缺陷的难度为:The difficulty of solving the above problems and defects is as follows:
(1)传统轨迹设计架构下,轨迹数值求解效率往往与建模复杂度、离散化精度、全局最优性等其他关键指标存在矛盾关系,高超声速飞行器轨迹设计与制导领域亟需的灵活性与快速性需求仍然没有被满足。对于面向复杂不确定性的鲁棒再入轨迹优化问题,由于多种不确定因素与随机优化模型的引入,模型约束与设计变量数目成倍增加,其数值解算将更为困难。(1) Under the traditional trajectory design framework, the numerical trajectory solution efficiency often has a conflicting relationship with other key indicators such as modeling complexity, discretization accuracy, and global optimality. The much-needed flexibility in the field of hypersonic vehicle trajectory design and guidance The need for rapidity remains unmet. For the robust reentry trajectory optimization problem oriented to complex uncertainties, due to the introduction of various uncertain factors and stochastic optimization models, the number of model constraints and design variables increases exponentially, and its numerical solution will be more difficult.
(2)由于弹载计算能力难以支撑在线学习过程,深度神经网络飞行控制器主要通过“离线训练+在线应用”的方式实现,其可靠性高度依赖训练模型和训练数据。面对复杂多源不确定性再入轨迹优化问题,缺乏高保真鲁棒动态轨迹优化模型和多工况鲁棒轨迹设计数据支撑。(2) Since the on-board computing capability is difficult to support the online learning process, the deep neural network flight controller is mainly realized by the method of "offline training + online application", and its reliability is highly dependent on the training model and training data. Facing the complex multi-source uncertainty reentry trajectory optimization problem, there is a lack of high-fidelity robust dynamic trajectory optimization model and multi-condition robust trajectory design data support.
解决以上问题及缺陷的意义为:The significance of solving the above problems and defects is:
(1)开展面向多源不确定性的鲁棒轨迹设计,能够在传统架构的基础上构建离线轨迹优化与在线制导控制的逆向信息流,间接架起轨迹控制指令与真实再入场景的桥梁,使得原本在时间轴上相对独立的设计步骤成为交互的整体,有效改善总体设计的可靠性和安全性。(1) Carry out robust trajectory design for multi-source uncertainty, which can build a reverse information flow of offline trajectory optimization and online guidance control on the basis of traditional architecture, and indirectly build a bridge between trajectory control instructions and real re-entry scenarios. It makes the relatively independent design steps on the timeline become an interactive whole, effectively improving the reliability and security of the overall design.
(2)基于人工智能的模式识别能力,利用深度学习技术逼近不确定非线性动力学模型,学习鲁棒轨迹规划和制导最优化策略,建立智能鲁棒最优轨迹和制导模型,能够实现在线轨迹预测与路径选择,有效应对目标变更、终端作战变化、不确定性扰动等飞行问题,从而改善再入飞行的灵活性。(2) Based on the pattern recognition ability of artificial intelligence, use deep learning technology to approximate uncertain nonlinear dynamic models, learn robust trajectory planning and guidance optimization strategies, establish intelligent robust optimal trajectory and guidance models, and realize online trajectory Prediction and path selection can effectively deal with flight problems such as target changes, terminal combat changes, and uncertain disturbances, thereby improving the flexibility of reentry flights.
发明内容SUMMARY OF THE INVENTION
针对现有技术存在的问题,本发明提供了一种高超声速飞行器智能鲁棒再入制导方法及系统,尤其涉及一种基于鲁棒轨迹优化的高超声速飞行器智能再入制导方法及系统。In view of the problems existing in the prior art, the present invention provides an intelligent robust reentry guidance method and system for a hypersonic aircraft, in particular to an intelligent reentry guidance method and system for a hypersonic aircraft based on robust trajectory optimization.
本发明是这样实现的,一种高超声速飞行器智能鲁棒再入制导方法,所述高超声速飞行器智能鲁棒再入制导方法包括以下步骤:The present invention is implemented in this way, a method for intelligent and robust re-entry guidance for a hypersonic aircraft, the method for intelligent and robust re-entry guidance for a hypersonic aircraft includes the following steps:
步骤一,基于不确定性系统建模,依据数据挖掘与专家经验判断高超声速飞行器滑翔再入过程中存在的不确定性及其类型,并确定不确定性参数分布形式与分布区间,为再入轨迹鲁棒建模与设计奠定基础;Step 1: Based on the uncertainty system modeling, according to data mining and expert experience, determine the uncertainty and type of the hypersonic vehicle in the process of gliding reentry, and determine the distribution form and distribution interval of the uncertainty parameters, which is the reentry process. Trajectory robust modeling and design lay the foundation;
步骤二,根据步骤一获得的不确定因素,基于非嵌入式多项式混沌理论开展不确定性量化分析,建立包含随机系统目标与状态变量统计矩特性的鲁棒动态轨迹优化模型;通过改变不确定参数值并设计数值求解策略,建立针对多源不确定因素的鲁棒轨迹优化数值样本集合,为智能鲁棒制导模型设计提供可靠性依据与数据支撑;
步骤三,以轨迹状态向量为输入,以轨迹控制向量为输出,设计深度神经网络模型架构;利用步骤二获得的针对多源不确定因素的鲁棒轨迹优化数值样本集合进行模型训练,并验证模型有效性,为智能鲁棒制导模型的在线应用提供可行性分析;
步骤四,装载步骤三训练完备的深度神经网络模型,根据飞行器再入过程中导航定位系统和姿态控制系统在内的弹载控制系统输出的飞行状态信息,最终实现鲁棒轨迹规划制导指令智能实时更新。Step 4: Load the well-trained deep neural network model in
进一步,步骤一中,所述基于不确定性系统建模,依据数据挖掘与专家经验判断高超声速飞行器滑翔再入过程中存在的不确定性及其类型,并确定不确定性参数分布形式与分布区间,包括:Further, in
针对高速飞行动力学系统中的认知不确定性、随机不确定性和数值不确定性进行分类建模,在此基础上研究鲁棒轨迹优化设计过程中的不确定性来源与类型,围绕高超声速滑翔飞行器无动力再入过程中初始再入条件、气动模型数据、大气模型参数和飞行器自身摄动参数进行不确定性建模;The cognitive uncertainty, stochastic uncertainty and numerical uncertainty in the high-speed flight dynamics system are classified and modeled. On this basis, the sources and types of uncertainty in the robust trajectory optimization design process are studied. Uncertainty modeling of initial reentry conditions, aerodynamic model data, atmospheric model parameters and the vehicle's own perturbation parameters during unpowered reentry of a supersonic gliding vehicle;
其中,所述不确定因素类型为:Wherein, the types of uncertain factors are:
其中,ξ为随机变量向量;下标y0、θ0、V0、γ0、ψ0分别代表飞行器状态变量地心距、经度、纬度、速度、航迹角、航向角的初始再入状态,CL、CD分别代表飞行器升力系数、阻力系数,ρ代表大气密度,mV代表飞行器自身质量。Among them, ξ is a random variable vector; subscripts y 0 , θ 0 , V 0 , γ 0 , ψ 0 represent the initial re-entry state of the aircraft state variables geocentric distance, longitude, latitude, speed, track angle, and heading angle, respectively, C L and CD represent the lift coefficient and drag coefficient of the aircraft, ρ represents the density of the atmosphere, and m V represents the mass of the aircraft itself.
进一步,步骤一中,所述不确定因素分布形式假设为均匀分布且相互独立,所述系统随机模型与不确定因素分布范围为:Further, in
其中,分别表示飞行器随机初始再入状态;代表随机升力系数、随机阻力系数;为随机大气密度;为随机飞行器质量。in, respectively represent the random initial re-entry state of the aircraft; Represents random lift coefficient and random drag coefficient; is the random atmospheric density; is the random aircraft mass.
进一步,步骤二中,所述飞行器随机轨迹优化模型包括随机动力学微分方程、随机无量纲气动力、随机过程约束、随机初值约束、终端约束和控制变量,包括:Further, in
(1)随机动力学微分方程(1) Stochastic Dynamics Differential Equations
其中,y、θ、V、γ、ψ分别代表飞行器状态变量地心距、经度、纬度、速度、航迹角、航向角;Ω为地球自转角速率;y、V、t、Ω为无量纲化变量,无量纲化参数分别为R0、Vc=(g0R0)0.5、(R0/g0)0.5和(g0/R0)0.5,R0为地球平均半径,g0为海平面重力加速度。分别为随机无量纲升力、阻力,无量纲化参数为2mV·g0。Among them, y, θ, V, γ, and ψ represent the state variables of the aircraft, namely the geocentric distance, longitude, latitude, speed, track angle, and heading angle, respectively; Ω is the angular rate of the earth's rotation; y, V, t, and Ω are dimensionless variables, which are dimensionless. The parameters are R 0 , V c =(g 0 R 0 ) 0.5 , (R 0 /g 0 ) 0.5 and (g 0 /R 0 ) 0.5 , respectively, where R 0 is the average earth radius, and g 0 is the sea-level gravitational acceleration. are random dimensionless lift and drag, respectively, and the dimensionless parameter is 2m V ·g 0 .
(2)随机气动力(2) Random aerodynamic force
其中,SV为飞行器气动参考面积。Among them, S V is the aerodynamic reference area of the aircraft.
(3)随机过程约束(3) Stochastic process constraints
其中,为热流密度,qr为动压,nr为过载;qmax、nmax分别为对应的过程约束最大值。in, is the heat flux density, q r is the dynamic pressure, and n r is the overload; q max , n max are the corresponding process constraint maximum values, respectively.
(4)随机初值约束(4) Random initial value constraint
其中,为随机状态初值。in, is the initial value of the random state.
(5)终端约束(5) Terminal constraints
其中,Xf为终端状态,yf、θf、Vf分别为对应的终端状态设计值。Among them, X f is the terminal state, y f , θ f , V f are the corresponding terminal state design values, respectively.
(6)控制变量(6) Control variables
U=[α σ]T;U=[ασ] T ;
其中,α为攻角,σ为倾斜角。where α is the angle of attack and σ is the angle of inclination.
(7)优化目标函数(7) Optimize the objective function
J=tf;J=t f ;
其中,tf为终端时间。where t f is the terminal time.
进一步,步骤二中,采用非嵌入式多项式混沌算法进行不确定性量化分析,获得飞行系统状态变量、目标变量、过程约束和边界约束的统计矩信息,同时将随机动力学微分方程转化为高维的确定性微分方程求解,建立鲁棒动态轨迹优化模型;其中,所述鲁棒动态轨迹优化模型为以下形式:Further, in the second step, the non-embedded polynomial chaos algorithm is used to carry out quantitative analysis of uncertainty, and the statistical moment information of the state variables, target variables, process constraints and boundary constraints of the flight system is obtained, and the stochastic dynamic differential equations are transformed into high-dimensional The deterministic differential equation of , is solved, and a robust dynamic trajectory optimization model is established; wherein, the robust dynamic trajectory optimization model is in the following form:
其中,U(t)为控制变量,t为时间变量;JA为鲁棒优化目标,Jμ与Jσ分别为随机优化目标统计矩,kμ与kσ为对应系数;为随机状态向量;为随机状态微分方程转化而来的确定性微分方程,方程数目为n=1…mq,其中,q为随机变量向量ξ的维数,m为多项式混沌展开所采用的正交积分点数;Cμ与Cσ分别为随机过程约束的统计矩;Bμ与Bσ分别为随机边界约束的统计矩,t0为起始时间。Among them, U(t) is the control variable, t is the time variable; J A is the robust optimization objective, J μ and J σ are the statistical moments of the stochastic optimization objective, respectively, and k μ and k σ are the corresponding coefficients; is a random state vector; is a deterministic differential equation transformed from a stochastic state differential equation, the number of equations is n=1...m q , where q is the dimension of the random variable vector ξ, m is the number of orthogonal integration points used in the polynomial chaotic expansion; C μ and C σ are the statistical moments of the stochastic process constraints, respectively; B μ and B σ are the statistical moments of the random boundary constraints, respectively, and t 0 is the starting time.
进一步,步骤二中,根据步骤一所示的系统随机模型与不确定因素分布,随机改变不确定因素值并求解对应的鲁棒动态轨迹优化模型,得到面向多源不确定性的轨迹数据集,获得足够的离线鲁棒最优轨迹。Further, in
进一步,步骤三中,将数值离散点上的轨迹状态与控制数据对作为训练数据,形成鲁棒轨迹训练数据集合,包括:Further, in
其中,为轨迹状态变量,U=[α σ]T为轨迹控制变量;l=1,2,…,L代表不同轨迹标号,d=1,2…,D代表轨迹数值离散点数。在此基础上,利用深度学习技术逼近不确定非线性动力学模型,学习鲁棒轨迹规划和制导最优化策略,建立智能鲁棒最优轨迹和制导模型(f(X(d)):→U(d))。in, is the trajectory state variable, U=[α σ] T is the trajectory control variable; l=1,2,...,L represents the different trajectory labels, d=1,2...,D represents the trajectory numerical discrete points. On this basis, use deep learning technology to approximate the uncertain nonlinear dynamic model, learn robust trajectory planning and guidance optimization strategies, and establish an intelligent robust optimal trajectory and guidance model (f(X (d) ):→U (d) ).
进一步,步骤三中,以轨迹状态向量作为深度神经网络输入,以轨迹控制向量作为深度神经网络输出,进行深度神经网络的训练和测试,建立不确定非线性飞行动力学模型状态与控制最优性映射,包括:Further, in
在Python环境下,使用Keras深度学习包进行DNN的创建,Keras框架以基于GPU加速的Tensorflow作为后端运行;将轨迹数据集按照合适的比例分为训练集和测试集;深度神经网络由一个输入层,一个输出层以及多个隐藏层构成,所创建的DNN网络为序贯模型,相邻层之间相互连接;采用表现优秀的Adam优化算法,损失函数采用均方误差,隐藏层激活函数使用ReLU函数,每次传入一定批量的数据计算损失并更新网络参数,得到最佳的训练结果;最后通过最优控制生成的轨迹和DNN驱动生成的状态量生成的轨迹进行比较,验证模型有效性。In the Python environment, the Keras deep learning package is used to create a DNN. The Keras framework runs with GPU-accelerated Tensorflow as the backend; the trajectory data set is divided into training set and test set according to an appropriate ratio; the deep neural network consists of an input layer, an output layer and multiple hidden layers, the created DNN network is a sequential model, and adjacent layers are connected to each other; the Adam optimization algorithm with excellent performance is used, the loss function adopts the mean square error, and the hidden layer activation function uses ReLU function, each time a certain batch of data is passed in to calculate the loss and update the network parameters to obtain the best training results; finally, the trajectory generated by the optimal control is compared with the trajectory generated by the state quantity driven by the DNN to verify the validity of the model .
进一步,步骤四中,所述装载训练完备的深度神经网络模型,根据飞行器再入过程中导航定位系统和姿态控制系统在内的弹载控制系统输出的飞行状态信息,实现鲁棒轨迹规划制导指令智能实时更新,包括:Further, in
将训练完备的深度神经网络模型装载到飞行器,以飞行器再入过程中导航定位系统、姿态控制系统在内的弹载控制系统输出的实时飞行状态量作为网络输入,以控制量U(d)=[α σ]T作为输出,实现鲁棒轨迹规划制导指令智能实时更新。Load the well-trained deep neural network model into the aircraft, and use the real-time flight state quantity output by the missile-borne control system including the navigation and positioning system and the attitude control system during the re-entry process of the aircraft. As the input of the network, the control variable U (d) = [α σ] T is used as the output to realize the intelligent real-time update of the guidance instructions for robust trajectory planning.
本发明的另一目的在于提供一种应用所述的高超声速飞行器智能鲁棒再入制导方法的高超声速飞行器智能鲁棒再入制导系统,所述高超声速飞行器智能鲁棒再入制导系统包括:Another object of the present invention is to provide an intelligent and robust re-entry guidance system for a hypersonic aircraft applying the intelligent and robust re-entry guidance method for a hypersonic aircraft. The intelligent and robust re-entry guidance system for a hypersonic aircraft includes:
不确定性建模模块,用于基于不确定性系统分析,依据数据挖掘与专家经验判断高超声速飞行器滑翔再入过程中存在的不确定性及其类型,并确定不确定性参数分布形式与分布区间;Uncertainty modeling module, used for system analysis based on uncertainty, based on data mining and expert experience to judge the uncertainty and its types in the process of gliding and re-entry of hypersonic vehicle, and determine the distribution form and distribution of uncertainty parameters interval;
不确定性量化分析模块,用于根据获得的不确定因素,基于非嵌入式多项式混沌理论开展不确定性量化分析,The uncertainty quantitative analysis module is used to carry out the uncertainty quantitative analysis based on the non-embedded polynomial chaos theory according to the obtained uncertainty factors,
轨迹优化模型构建模块,用于建立包含随机系统目标与状态变量统计矩特性的鲁棒动态轨迹优化模型;The trajectory optimization model building module is used to establish a robust dynamic trajectory optimization model including the stochastic system objective and the statistical moment characteristics of state variables;
数值样本集合建立模块,用于通过改变不确定参数值并设计数值求解策略,建立针对多源不确定因素的鲁棒轨迹优化数值样本集合;The numerical sample set building module is used to establish a robust trajectory optimization numerical sample set for multi-source uncertain factors by changing the uncertain parameter values and designing a numerical solution strategy;
神经网络模型架构设计模块,用于以轨迹状态向量为输入,以轨迹控制向量为输出,设计深度神经网络模型架构;The neural network model architecture design module is used to design the deep neural network model architecture with the trajectory state vector as the input and the trajectory control vector as the output;
模型训练模块,用于利用获得的针对多源不确定因素的鲁棒轨迹优化数值样本集合进行模型训练,并验证模型有效性;The model training module is used to use the obtained robust trajectory optimization numerical sample set for multi-source uncertain factors to train the model and verify the validity of the model;
指令实时更新模块,用于装载训练完备的深度神经网络模型,根据飞行器再入过程中导航定位系统和姿态控制系统在内的弹载控制系统输出的飞行状态信息,实现鲁棒轨迹规划制导指令智能实时更新。The command real-time update module is used to load the well-trained deep neural network model. According to the flight status information output by the missile-borne control system including the navigation and positioning system and the attitude control system during the re-entry process of the aircraft, it can realize robust trajectory planning and guidance command intelligence. Live Update.
结合上述的所有技术方案,本发明所具备的优点及积极效果为:本发明提供的基于鲁棒轨迹优化的高超声速飞行器智能再入制导方法,首先基于不确定性系统建模,依据数据挖掘与专家经验判断高超声速飞行器滑翔再入过程中存在的不确定性及其类型,并确定不确定性参数分布形式与分布区间;其次基于非嵌入式多项式混沌理论开展不确定性量化分析,建立包含目标与状态变量统计矩信息的鲁棒动态轨迹优化模型,通过改变不确定参数值并设计数值求解策略,建立针对多源不确定因素的鲁棒轨迹优化数值样本集合;然后以轨迹状态向量为输入,以轨迹控制向量为输出,设计了深度神经网络模型并利用样本集合进行了训练与验证;最后装载训练完备的深度神经网络模型,根据导航定位系统、姿态控制系统等弹载控制系统输出的飞行状态信息,实现鲁棒轨迹规划制导指令智能实时更新。本发明能够实现针对多源不确定因素的鲁棒再入轨迹智能在线规划,极大减少鲁棒轨迹设计时间,有效增强制导指令对复杂不确定性的主动防御能力,从而有效降低飞行器制导控制系统设计负担。Combined with all the above technical solutions, the advantages and positive effects of the present invention are as follows: the intelligent reentry guidance method for hypersonic aircraft based on robust trajectory optimization provided by the present invention is first based on uncertainty system modeling, and based on data mining and Expert experience judges the uncertainties and types in the process of gliding and re-entry of hypersonic vehicles, and determines the distribution form and distribution interval of uncertainty parameters. A robust dynamic trajectory optimization model based on statistical moment information of state variables, by changing the uncertain parameter values and designing a numerical solution strategy, a robust trajectory optimization numerical sample set for multi-source uncertain factors is established; then the trajectory state vector is used as input, Taking the trajectory control vector as the output, a deep neural network model was designed and the sample set was used for training and verification; finally, the fully trained deep neural network model was loaded, and the flight state output by the missile-borne control system such as the navigation and positioning system and the attitude control system was used. information to achieve intelligent real-time update of robust trajectory planning guidance instructions. The invention can realize intelligent online planning of robust re-entry trajectory against multi-source uncertain factors, greatly reduce robust trajectory design time, effectively enhance the active defense capability of guidance instructions against complex uncertainties, thereby effectively reducing the aircraft guidance and control system Design burden.
本发明分析了再入过程的不确定性参数分布形式与分布区间,用以实现针对多源不确定因素的鲁棒再入轨迹智能在线规划,然后求解对应的鲁棒动态轨迹优化模型,获得足够的离线鲁棒最优轨迹,将数值离散点上的轨迹状态与控制数据对作为训练数据,完成对神经网络的训练,得到状态量和控制量之间的非线性映射关系,相较于传统的轨迹优化方法,有效增强了制导指令对复杂多源不确定性的主动防御能力,降低了飞行器制导控制系统设计负担。The invention analyzes the uncertainty parameter distribution form and distribution interval of the re-entry process, so as to realize the robust re-entry trajectory intelligent online planning for multi-source uncertain factors, and then solves the corresponding robust dynamic trajectory optimization model to obtain sufficient The offline robust optimal trajectory is based on the trajectory state and the control data pair on the numerical discrete points as the training data to complete the training of the neural network, and obtain the nonlinear mapping relationship between the state quantity and the control quantity. Compared with the traditional The trajectory optimization method effectively enhances the guidance command's active defense capability against complex multi-source uncertainties, and reduces the design burden of the aircraft guidance and control system.
附图说明Description of drawings
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图做简单的介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下还可以根据这些附图获得其他的附图。In order to illustrate the technical solutions of the embodiments of the present invention more clearly, the following will briefly introduce the accompanying drawings that need to be used in the embodiments of the present invention. Obviously, the drawings described below are only some embodiments of the present invention. For those of ordinary skill in the art, other drawings can also be obtained from these drawings without creative effort.
图1是本发明实施例提供的高超声速飞行器智能鲁棒再入制导方法流程图。FIG. 1 is a flowchart of an intelligent robust reentry guidance method for a hypersonic aircraft provided by an embodiment of the present invention.
图2是本发明实施例提供的高超声速飞行器智能鲁棒再入制导方法原理图。FIG. 2 is a schematic diagram of an intelligent robust reentry guidance method for a hypersonic aircraft provided by an embodiment of the present invention.
图3是本发明实施例提供的高超声速飞行器智能鲁棒再入制导系统结构框图。FIG. 3 is a structural block diagram of an intelligent robust reentry guidance system for a hypersonic aircraft provided by an embodiment of the present invention.
图中:1、不确定性建模模块;2、不确定性量化分析模块;3、轨迹优化模型构建模块;4、数值样本集合建立模块;5、神经网络模型架构设计模块;6、模型训练模块;7、指令实时更新模块。In the figure: 1. Uncertainty modeling module; 2. Uncertainty quantitative analysis module; 3. Trajectory optimization model building module; 4. Numerical sample set building module; 5. Neural network model architecture design module; 6. Model training module; 7. Instruction real-time update module.
图4是本发明实施例提供的智能制导模型再入飞行高度鲁棒性验证示意图。FIG. 4 is a schematic diagram of the robustness verification of the re-entry flight height of the intelligent guidance model provided by the embodiment of the present invention.
图5是本发明实施例提供的智能制导模型再入飞行经度鲁棒性验证示意图。FIG. 5 is a schematic diagram of the longitude robustness verification of the re-entry flight of the intelligent guidance model provided by the embodiment of the present invention.
图6是本发明实施例提供的智能制导模型再入飞行纬度鲁棒性验证示意图。FIG. 6 is a schematic diagram of the latitude robustness verification of the re-entry flight of the intelligent guidance model provided by the embodiment of the present invention.
图7是本发明实施例提供的智能制导模型再入飞行速度鲁棒性验证示意图。FIG. 7 is a schematic diagram of the robustness verification of the reentry flight speed of the intelligent guidance model provided by the embodiment of the present invention.
图8是本发明实施例提供的智能制导模型再入飞行航迹角鲁棒性验证示意图。FIG. 8 is a schematic diagram of the robustness verification of the re-entry flight track angle of the intelligent guidance model provided by the embodiment of the present invention.
图9是本发明实施例提供的智能制导模型再入飞行航向角鲁棒性验证示意图。FIG. 9 is a schematic diagram of the robustness verification of the re-entry flight heading angle of the intelligent guidance model provided by the embodiment of the present invention.
图10是本发明实施例提供的高超声速飞行器智能鲁棒再入制导应用示意图。FIG. 10 is a schematic diagram of an application of intelligent robust reentry guidance for a hypersonic aircraft provided by an embodiment of the present invention.
具体实施方式Detailed ways
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below with reference to the embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention.
针对现有技术存在的问题,本发明提供了一种高超声速飞行器智能鲁棒再入制导方法及系统,下面结合附图对本发明作详细的描述。In view of the problems existing in the prior art, the present invention provides an intelligent and robust reentry guidance method and system for a hypersonic aircraft. The present invention will be described in detail below with reference to the accompanying drawings.
如图1所示,本发明实施例提供的高超声速飞行器智能鲁棒再入制导方法包括以下步骤:As shown in FIG. 1 , the intelligent robust reentry guidance method for a hypersonic aircraft provided by an embodiment of the present invention includes the following steps:
S101,基于不确定性系统建模,依据数据挖掘与专家经验判断高超声速飞行器滑翔再入过程中存在的不确定性及其类型,并确定不确定性参数分布形式与分布区间;S101, based on uncertainty system modeling, according to data mining and expert experience, to judge the uncertainty and its type in the process of gliding and re-entry of the hypersonic vehicle, and to determine the distribution form and distribution interval of uncertainty parameters;
S102,根据S101获得的不确定因素,基于非嵌入式多项式混沌理论开展不确定性量化分析,建立包含随机系统目标与状态变量统计矩特性的鲁棒动态轨迹优化模型;通过改变不确定参数值并设计数值求解策略,建立针对多源不确定因素的鲁棒轨迹优化数值样本集合;S102, according to the uncertain factors obtained in S101, carry out quantitative analysis of uncertainty based on non-embedded polynomial chaos theory, and establish a robust dynamic trajectory optimization model including the stochastic system target and statistical moment characteristics of state variables; Design a numerical solution strategy, and establish a robust trajectory optimization numerical sample set for multi-source uncertain factors;
S103,以轨迹状态向量为输入,以轨迹控制向量为输出,设计深度神经网络模型架构;利用S102获得的针对多源不确定因素的鲁棒轨迹优化数值样本集合进行模型训练,并验证模型有效性;S103, take the trajectory state vector as input and the trajectory control vector as output, design a deep neural network model architecture; use the robust trajectory optimization numerical sample set for multi-source uncertain factors obtained in S102 to train the model, and verify the validity of the model ;
S104,装载S103训练完备的深度神经网络模型,根据飞行器再入过程中导航定位系统和姿态控制系统在内的弹载控制系统输出的飞行状态信息,实现鲁棒轨迹规划制导指令智能实时更新。S104, load the deep neural network model fully trained in S103, and realize intelligent real-time update of robust trajectory planning guidance instructions according to the flight status information output by the missile-borne control system including the navigation and positioning system and the attitude control system during the re-entry process of the aircraft.
本发明实施例提供的高超声速飞行器智能鲁棒再入制导方法原理图如图2所示。The principle diagram of the intelligent robust reentry guidance method for a hypersonic aircraft provided by the embodiment of the present invention is shown in FIG. 2 .
如图3所示,本发明实施例提供的高超声速飞行器智能鲁棒再入制导系统包括:As shown in FIG. 3 , the intelligent robust reentry guidance system for a hypersonic aircraft provided by an embodiment of the present invention includes:
不确定性建模模块1,用于基于不确定性系统分析,依据数据挖掘与专家经验判断高超声速飞行器滑翔再入过程中存在的不确定性及其类型,并确定不确定性参数分布形式与分布区间;
不确定性量化分析模块2,用于根据获得的不确定因素,基于非嵌入式多项式混沌理论开展不确定性量化分析,Uncertainty
轨迹优化模型构建模块3,用于建立包含随机系统目标与状态变量统计矩特性的鲁棒动态轨迹优化模型;The trajectory optimization
数值样本集合建立模块4,用于通过改变不确定参数值并设计数值求解策略,建立针对多源不确定因素的鲁棒轨迹优化数值样本集合;The numerical sample set
神经网络模型架构设计模块5,用于以轨迹状态向量为输入,以轨迹控制向量为输出,设计深度神经网络模型架构;The neural network model
模型训练模块6,用于利用获得的针对多源不确定因素的鲁棒轨迹优化数值样本集合进行模型训练,并验证模型有效性;The
指令实时更新模块7,用于装载训练完备的深度神经网络模型,根据飞行器再入过程中导航定位系统和姿态控制系统在内的弹载控制系统输出的飞行状态信息,实现鲁棒轨迹规划制导指令智能实时更新。The command real-
下面结合实施例对本发明的技术方案作进一步描述。The technical solutions of the present invention will be further described below in conjunction with the embodiments.
以CAV-H飞行器为具体实施例对本发明的技术方案进行详细说明。The technical solution of the present invention will be described in detail by taking the CAV-H aircraft as a specific example.
如图2所示,基于鲁棒轨迹优化的高超声速飞行器智能再入制导方法,包括以下步骤:As shown in Figure 2, the intelligent reentry guidance method for hypersonic aircraft based on robust trajectory optimization includes the following steps:
步骤一:基于不确定性系统建模,依据数据挖掘与专家经验判断高超声速飞行器滑翔再入过程中存在的不确定性及其类型,并确定不确定性参数分布形式与分布区间。Step 1: Based on uncertainty system modeling, according to data mining and expert experience, determine the uncertainty and type of the hypersonic vehicle in the process of gliding and re-entry, and determine the distribution form and distribution interval of uncertainty parameters.
本实施例针对高速飞行动力学系统中的认知不确定性、随机不确定性、数值不确定性等进行分类建模,在此基础上研究鲁棒轨迹优化设计过程中的不确定性来源与类型,围绕高超声速滑翔飞行器无动力再入过程中初始再入条件、气动模型数据、大气模型参数、飞行器自身摄动参数等进行不确定性建模。具体采用的不确定因素类型为:In this embodiment, the cognitive uncertainty, random uncertainty, numerical uncertainty, etc. in the high-speed flight dynamics system are classified and modeled. On this basis, the source of uncertainty in the process of robust trajectory optimization design and The uncertainty modeling is carried out around the initial reentry conditions, aerodynamic model data, atmospheric model parameters, and the perturbation parameters of the aircraft itself during the unpowered reentry process of the hypersonic glide vehicle. The specific types of uncertain factors used are:
其中,ξ为随机变量向量,服从均匀分布;下标y0、θ0、V0、γ0、ψ0分别代表飞行器状态变量地心距、经度、纬度、速度、航迹角、航向角的初始再入状态,CL、CD分别代表飞行器升力系数、阻力系数,ρ代表大气密度,mV代表飞行器自身质量。Among them, ξ is a random variable vector, which obeys a uniform distribution; the subscripts y 0 , θ 0 , V 0 , γ 0 , ψ 0 represent the initial re-entry state of the aircraft state variables geocentric distance, longitude, latitude, speed, track angle, and heading angle, respectively, C L and CD represent the lift coefficient and drag coefficient of the aircraft, ρ represents the density of the atmosphere, and m V represents the mass of the aircraft itself.
本实施例具体采用的不确定因素分布形式假设为均匀分布且相互独立,系统随机模型与不确定因素分布范围为:The distribution form of uncertain factors specifically adopted in this embodiment is assumed to be uniformly distributed and independent of each other, and the system random model and the distribution range of uncertain factors are:
其中,分别表示飞行器随机初始再入状态;代表随机升力系数、随机阻力系数;为随机大气密度;为随机飞行器质量;in, respectively represent the random initial re-entry state of the aircraft; Represents random lift coefficient and random drag coefficient; is the random atmospheric density; is the mass of the random aircraft;
飞行器的初始再入状态y0=100km+R0,θ0=160°,V0=7200m·s-1,γ0=-2°,ψ0=58°,其中地球平均半径R0=6378000m;The initial re-entry state of the aircraft y 0 =100km+R 0 , θ 0 =160°, V 0 =7200m·s -1 , γ 0 =-2°, ψ 0 =58°, where the average earth radius R 0 =6378000m;
采用双变量气动系数模型与非线性最小二乘法对飞行器的升力系数和阻力系数进行拟合计算,表达式为其中马赫数声速vS≈295.188m/s,α为攻角;The two-variable aerodynamic coefficient model and nonlinear least squares method are used to fit and calculate the lift coefficient and drag coefficient of the aircraft, and the expressions are as follows: in Mach number The speed of sound v S ≈ 295.188m/s, and α is the angle of attack;
采用一般指数大气模型,大气密度其中,海平面大气密度ρ0=1.2258kg/m3,海拔高度h=y-R0,系数β0=1.3785×10-4m-1;Using a general exponential atmospheric model, the atmospheric density Among them, the sea level air density ρ 0 =1.2258kg/m 3 , the altitude h=yR 0 , the coefficient β 0 =1.3785×10 -4 m -1 ;
飞行器质量mV=907.2kg。Aircraft mass m V =907.2kg.
步骤二:基于非嵌入式多项式混沌理论开展不确定性量化分析,建立包含随机系统目标与状态变量统计矩特性的鲁棒动态轨迹优化模型,设计数值求解策略,建立针对多源不确定因素的鲁棒轨迹优化数值样本集合。Step 2: Carry out quantitative analysis of uncertainty based on non-embedded polynomial chaos theory, establish a robust dynamic trajectory optimization model including stochastic system objectives and statistical moment characteristics of state variables, design numerical solution strategies, and establish robust solutions for multi-source uncertain factors. Rod Trajectory Optimization Numerical Sample Collection.
采用的飞行器随机轨迹优化模型包括随机动力学微分方程、随机无量纲气动力、随机过程约束、随机初值约束、终端约束、控制变量等,具体如下:The adopted aircraft stochastic trajectory optimization model includes stochastic dynamic differential equations, stochastic dimensionless aerodynamic forces, stochastic process constraints, stochastic initial value constraints, terminal constraints, control variables, etc. The details are as follows:
随机动力学微分方程为:The stochastic dynamic differential equation is:
其中,y、θ、V、γ、ψ分别代表飞行器状态变量地心距、经度、纬度、速度、航迹角、航向角;Ω=7.2722×10-5rad/s为地球自转角速率;y、V、t、Ω为无量纲化变量,无量纲化参数分别为R0、Vc=(g0R0)0.5、(R0/g0)0.5和(g0/R0)0.5,地球平均半径R0=6378000m,海平面重力加速度g0=9.80665m/s2。分别为随机无量纲升力、阻力,无量纲化参数为2mV·g0。Among them, y, θ, V, γ, and ψ represent the state variables of the aircraft's geocentric distance, longitude, latitude, speed, track angle, and heading angle, respectively; Ω=7.2722×10 -5 rad/s is the angular rate of the earth's rotation; y, V, t, Ω are dimensionless variables, and the dimensionless parameters are R 0 , V c =(g 0 R 0 ) 0.5 , (R 0 /g 0 ) 0.5 and (g 0 /R 0 ) 0.5 , and the average earth radius R 0 = 6378000m, sea level gravitational acceleration g 0 =9.80665m/s 2 . are random dimensionless lift and drag, respectively, and the dimensionless parameter is 2m V ·g 0 .
随机气动力为:The random aerodynamic force is:
其中,飞行器气动参考面积SV=0.4839m2。Among them, the aircraft aerodynamic reference area S V =0.4839m 2 .
随机过程约束为:The random process constraints are:
其中,为热流密度,qr为动压,nr为过载;qmax、nmax分别为对应的过程约束最大值,qmax=400kPa,nmax=6。in, is the heat flux density, q r is the dynamic pressure, and n r is the overload; q max , n max are the corresponding maximum process constraints, respectively, q max =400 kPa, n max =6.
随机初值约束为:The random initial value constraint is:
终端约束为:The terminal constraints are:
其中,yf=20km+R0、θf=236°、Vf=1000m·s-1。Among them, y f =20km+R 0 , θ f =236°, V f =1000 m·s -1 .
控制变量为:The control variables are:
U=[ασ]T (8)U=[ασ] T (8)
其中,攻角α∈[10°,20°],倾斜角σ∈[-80°,80°]。Among them, the angle of attack α∈[10°, 20°], the angle of inclination σ∈[-80°, 80°].
优化目标函数为:The optimization objective function is:
J=tf (9)J=t f (9)
其中,tf为终端时间。where t f is the terminal time.
然后采用非嵌入式多项式混沌算法进行不确定性量化分析,获得飞行系统状态变量、目标变量、过程约束、边界约束的统计矩信息,同时将随机动力学微分方程转化为高维的确定性微分方程求解,最终建立的鲁棒动态轨迹优化模型为以下形式:Then, the non-embedded polynomial chaos algorithm is used for quantitative analysis of uncertainty, and the statistical moment information of the state variables, target variables, process constraints, and boundary constraints of the flight system is obtained, and the stochastic dynamic differential equation is transformed into a high-dimensional deterministic differential equation. After solving, the finally established robust dynamic trajectory optimization model is in the following form:
其中,U(t)为控制变量,t为时间变量;JA为鲁棒优化目标,Jμ与Jσ分别为随机优化目标统计矩,kμ与kσ为对应系数;为随机状态向量;为随机状态微分方程转化而来的确定性微分方程,方程数目为n=1…mq,其中,q为随机变量向量ξ的维数,本例中q=10,m为多项式混沌展开所采用的正交积分点数,本例中m=6;Cμ与Cσ分别为随机过程约束的统计矩;Bμ与Bσ分别为随机边界约束的统计矩,t0为起始时间。Among them, U(t) is the control variable, t is the time variable; J A is the robust optimization objective, J μ and J σ are the statistical moments of the stochastic optimization objective, respectively, and k μ and k σ are the corresponding coefficients; is a random state vector; It is a deterministic differential equation transformed from a stochastic state differential equation. The number of equations is n=1...m q , where q is the dimension of the random variable vector ξ, in this example q=10, m is the polynomial chaos expansion used The number of orthogonal integration points of , m=6 in this example; C μ and C σ are the statistical moments of the stochastic process constraints respectively; B μ and B σ are the statistical moments of the random boundary constraints, respectively, and t 0 is the starting time.
综合考虑计算精度与计算负担两方面的要求,仿真分析中采用6高斯采样点2阶非嵌入式多项式混沌展开;采用粒子群算法对鲁棒动态优化模型进行求解,粒子种群大小为50,最大迭代次数为100,离散节点数量为100,积分点数为500。Considering the requirements of computational accuracy and computational burden, 6 Gaussian sampling points are used in the second-order non-embedded polynomial chaotic expansion in the simulation analysis; the robust dynamic optimization model is solved by particle swarm algorithm, the particle population size is 50, and the maximum iteration The number of times is 100, the number of discrete nodes is 100, and the number of integration points is 500.
根据公式(1)与公式(2)所示的系统随机模型与不确定因素分布,随机改变不确定因素取值并求解对应的鲁棒动态轨迹优化模型,获得4000条离线鲁棒最优轨迹。According to the system random model and the distribution of uncertain factors shown in formula (1) and formula (2), the values of uncertain factors are randomly changed and the corresponding robust dynamic trajectory optimization model is solved to obtain 4000 offline robust optimal trajectories.
步骤三:以轨迹状态向量为输入,以轨迹控制向量为输出,设计深度神经网络模型架构,利用步骤二获得的针对多源不确定因素的鲁棒轨迹优化数值样本集合进行模型训练,并验证模型有效性。Step 3: Take the trajectory state vector as input and the trajectory control vector as output, design a deep neural network model architecture, use the robust trajectory optimization numerical sample set for multi-source uncertainties obtained in
具体为将数值离散点上的轨迹状态与控制数据对作为训练数据,形成鲁棒轨迹训练数据集合,通过收集其中的状态和控制对,形成鲁棒轨迹训练数据集合其中,为轨迹状态变量,U=[αcσc]T为轨迹控制变量;l=1,2,…,L代表不同轨迹标号,d=1,2…,D代表轨迹数值离散点数。在此基础上,利用深度学习技术逼近不确定非线性动力学模型,学习鲁棒轨迹规划和制导最优化策略,建立智能鲁棒最优轨迹和制导模型(f(X(d)):→U(d))。Specifically, the trajectory state and control data pairs on the numerical discrete points are used as training data to form a robust trajectory training data set, and by collecting the state and control pairs, a robust trajectory training data set is formed. in, is the trajectory state variable, U=[α c σ c ] T is the trajectory control variable; l=1,2,...,L represents different trajectory labels, d=1,2...,D represents the number of discrete points of the trajectory value. On this basis, use deep learning technology to approximate the uncertain nonlinear dynamic model, learn robust trajectory planning and guidance optimization strategies, and establish an intelligent robust optimal trajectory and guidance model (f(X (d) ):→U (d) ).
本实施例在MATLAB中优化4000条鲁棒最优轨迹,每条轨迹包含500个数值离散点,进而得到了面向多源不确定因素的鲁棒轨迹优化数值样本集合,数据集中的鲁棒状态与控制数据对个数为4000×500对。In this example, 4000 robust optimal trajectories are optimized in MATLAB, and each trajectory contains 500 numerical discrete points, and then a numerical sample set of robust trajectory optimization oriented to multi-source uncertain factors is obtained. The robust state in the data set is the same as The number of control data pairs is 4000×500 pairs.
在深度神经网络训练前,为提高网络训练效率,使神经网络能够更快更好地训练收敛,对数据集内的轨迹状态变量进行归一化处理,将数据的大小压缩到[0,1]的范围内,归一化方法为:Before the deep neural network training, in order to improve the network training efficiency and enable the neural network to train faster and better, normalize the trajectory state variables in the data set, and compress the data size to [0, 1] In the range of , the normalization method is:
本实施例将数据集按照75%训练集和25%测试集的比例随机划分,其中训练集用于深度神经网络的训练,经过多次迭代,当损失函数的值达到所要求的误差或最大迭代次数时,完成网络训练;测试集用于对训练好的网络性能进行验证和测试,评判指标包括均方误差(MSE)、平均绝对误差(MAE)、准确率。In this embodiment, the data set is randomly divided according to the ratio of 75% of the training set and 25% of the test set, wherein the training set is used for training the deep neural network. After many iterations, when the value of the loss function reaches the required error or the maximum iteration When the number of times, network training is completed; the test set is used to verify and test the performance of the trained network, and the evaluation indicators include mean square error (MSE), mean absolute error (MAE), and accuracy.
深度神经网络由一个输入层,一个输出层以及多个隐含层组成,本实施例的深度神经网络在Python3.8.3环境下使用Keras2.3.1深度学习包构建,Keras框架以基于GPU加速的Tensorflow2.2.0作为后端运行,定义网络模型为序贯模型,相邻层之间相互全连接。The deep neural network consists of an input layer, an output layer and multiple hidden layers. The deep neural network in this embodiment is constructed using the Keras2.3.1 deep learning package in the Python3.8.3 environment, and the Keras framework is based on GPU-accelerated Tensorflow2. 2.0 runs as the back-end, defining the network model as a sequential model, and the adjacent layers are fully connected to each other.
输入层:飞行器d时刻的状态量为,包含6个状态参数,y、θ、V、γ、ψ分别代表飞行器状态变量地心距、经度、纬度、速度、航迹角、航向角。Input layer: the state quantity of the aircraft at time d is, contains 6 state parameters, y, θ, V, γ, and ψ represent the state variables of the aircraft, namely the center-to-center distance, longitude, latitude, speed, track angle, and heading angle, respectively.
隐藏层:通过一般经验和反复训练的实验结果确定合适的隐藏层个数以及每层的节点个数;激活函数选择能在大多数情况下避免梯度消失问题并且收敛速度更快的ReLU函数,表达式为:Hidden layer: Determine the appropriate number of hidden layers and the number of nodes in each layer through general experience and experimental results of repeated training; the activation function selects the ReLU function that can avoid the problem of gradient disappearance in most cases and converge faster, expressing The formula is:
输出层:由于所输出的控制量U(d)=[ασ]T,不涉及分类问题,只是输出网络预测值,输出层不需另外调用激活函数。Output layer: Since the output control quantity U (d) = [ασ] T , it does not involve the classification problem, but only outputs the predicted value of the network, and the output layer does not need to call the activation function.
网络输出误差的度量是损失函数,损失值越大,也就代表网络的预测精确度越差,本实施例采用均方误差作为损失函数,表达式为:The measurement of the network output error is the loss function. The larger the loss value, the worse the prediction accuracy of the network. In this embodiment, the mean square error is used as the loss function, and the expression is:
其中C代表每一批量的误差大小,Xd代表输入的状态量,Us代表控制量真实值,Up表示网络输出值,Nb代表每一次提供给网络训练的一批数据大小。Among them, C represents the error size of each batch, X d represents the input state quantity, U s represents the real value of the control quantity, U p represents the network output value, and N b represents the size of a batch of data provided to the network for training each time.
本实施例用于训练和测试网络的数据集中,鲁棒状态与控制数据对个数为2×106对,考虑到数据集较大,计算机的计算资源有限,不能一次性地将数据传入网络,而每次只依靠一个数据更新参数,会导致训练过程中损失函数波动很大,导致模型不收敛,所以每一次将一定的批量的数据集传入到网络中进行训练,本实施例选取Nb=1024。In the data set used in this embodiment for training and testing the network, the number of pairs of robust state and control data is 2×10 6 pairs. Considering the large data set and limited computing resources of the computer, the data cannot be transferred in one time. network, and only relying on one data to update the parameters at a time will cause the loss function to fluctuate greatly during the training process, resulting in the model not converging, so each time a certain batch of data sets are imported into the network for training, this example selects N b =1024.
在配置模型时,选择表现优秀的Adam优化算法训练网络,以更快、更好地让网络收敛,算法参数设置遵循默认值。When configuring the model, select the excellent Adam optimization algorithm to train the network to make the network converge faster and better. The algorithm parameter settings follow the default values.
网络训练轮数的设置也会影响模型的预测能力。考虑到计算复杂度问题,训练的轮数越多,结果可能越精确,但相应的训练时间也在增加。本实例中先设置训练轮数为200次,来选取合适的隐藏层结构,并在最优结构下增大训练轮数,使网络充分收敛,并将模型保存实现对飞行器控制量的预测。The setting of the number of network training epochs also affects the predictive ability of the model. Considering the computational complexity issue, the more epochs of training, the more accurate the results may be, but the corresponding training time also increases. In this example, first set the number of training rounds to 200 to select the appropriate hidden layer structure, and increase the number of training rounds under the optimal structure to make the network fully converge, and save the model to predict the control amount of the aircraft.
在网络隐藏层结构的选择上,通过固定每次训练的批量值大小为1024和训练轮数为200次,来对比不同隐藏层结构对网络预测精度的影响。表1对比分析了不同隐藏层个数和节点数所得到的训练集和测试集上的均方误差值(MSE)大小和准确率。In the selection of the hidden layer structure of the network, by fixing the batch size of each training to 1024 and the number of training rounds to 200, the influence of different hidden layer structures on the prediction accuracy of the network is compared. Table 1 compares and analyzes the mean square error (MSE) size and accuracy on the training set and test set obtained with different numbers of hidden layers and nodes.
表1不同隐藏层结构下MSE和准确率结果Table 1 MSE and accuracy results under different hidden layer structures
从表1可以看出,单元数量有限、相对较浅的网络,会降低网络逼近最优控制结构的能力,导致训练不足;增加单元数量会在降低Tr-MSE和Te-MSE值以及增加准确率方面产生积极的作用,更多层次的网络也往往会带来更多的好处。但当网络规模过大时,计算复杂度会相应的提高,网络收敛速度变慢,训练结果指标的提升也不明显,最终将网络搭载到飞行器后,前向预测的计算量也随深度的增大而增加,导致实时性变差;另外,网络规模过大,可能导致网络被过度训练,导致过拟合。本实施例根据计算机的算力以及网络的训练指标,选择隐藏层为6/64的结构。It can be seen from Table 1 that a relatively shallow network with a limited number of units will reduce the ability of the network to approximate the optimal control structure, resulting in insufficient training; increasing the number of units will reduce the Tr-MSE and Te-MSE values and increase the accuracy. Aspects have a positive effect, and more layers of the network tend to bring more benefits. However, when the network scale is too large, the computational complexity will increase accordingly, the network convergence speed will become slower, and the improvement of training result indicators will not be obvious. After the network is finally mounted on the aircraft, the calculation amount of forward prediction will also increase with the depth. If the size of the network is too large, it may cause the network to be over-trained, resulting in over-fitting. In this embodiment, a structure in which the hidden layer is 6/64 is selected according to the computing power of the computer and the training index of the network.
为确定不同训练轮数对深度神经网络精度的影响,表2列出了在相同隐藏层结构下,即隐藏层个数为6,每层节点数为64,相同批量大小1024下,不同训练轮数所得到训练集和测试集评估指标结果。In order to determine the impact of different training rounds on the accuracy of deep neural networks, Table 2 lists the same hidden layer structure, that is, the number of hidden layers is 6, the number of nodes in each layer is 64, and the same batch size of 1024, different training rounds. Count the obtained training set and test set evaluation index results.
表2不同训练轮数下网络评估指标结果Table 2 Results of network evaluation indicators under different training rounds
从表2可以看出,初始阶段随着训练轮数的不断增加,训练集和测试集误差和准确率整体呈现改善趋势,但当训练轮数很大时,在测试集上训练结果的趋优性不再明显,反而表现为在一定误差范围内不断波动。此外,网络的训练时间也是随着轮数的增加而增加的。本实例最终选择训练轮数为1000的DNN模型进行保存,以供调用和测试。It can be seen from Table 2 that in the initial stage, with the continuous increase of the number of training rounds, the error and accuracy of the training set and test set show an overall improvement trend, but when the number of training rounds is large, the training results on the test set tend to be better. Sex is no longer obvious, but instead shows constant fluctuations within a certain margin of error. In addition, the training time of the network also increases with the number of epochs. In this example, the DNN model with 1000 training rounds is finally selected and saved for calling and testing.
步骤四:对DNN驱动控制方案的性能进行测试。在Windows 10操作系统8G内存i5-7300HQ CPU环境下,DNN完成500个离散点的轨迹预测仅需0.04s,具有满足鲁棒轨迹规划制导指令智能实时更新的能力。Step 4: Test the performance of the DNN-driven control scheme. In the
为验证鲁棒轨迹规划制导指令的鲁棒性,考虑上述离线鲁棒优化设计阶段所采用的再入初值与大气参数等不确定因素取值范围,利用DNN模型预测鲁棒轨迹控制向量UC,并基于四阶龙格库塔积分算法求解动力学方程,计算对应的轨迹状态向量XC。在此基础上,分别将原不确定因素取值范围增大15%、20%、25%,依次计算对应的DNN控制向量与状态向量,获得 In order to verify the robustness of the robust trajectory planning guidance command, considering the range of uncertain factors such as re-entry initial value and atmospheric parameters used in the above-mentioned offline robust optimization design stage, the DNN model is used to predict the robust trajectory control vector U C , and solve the dynamic equation based on the fourth-order Runge-Kutta integral algorithm, and calculate the corresponding trajectory state vector X C . On this basis, increase the value range of the original uncertainty factors by 15%, 20%, and 25% respectively, and calculate the corresponding DNN control vector and state vector in turn to obtain
针对上述四种情况下获得的再入轨迹状态,分析DNN模型轨迹规划制导的鲁棒性,获得的飞行器轨迹状态变量结果分别如图4至图9所示。可以看出,由于采用了针对多源不确定因素的鲁棒轨迹优化数值样本集合进行训练,在将原不确定因素取值范围依次增大15%、20%、25%后,DNN模型驱动的轨迹状态向量几乎重合在一起,制导指令保持了良好的鲁棒性。For the re-entry trajectory states obtained in the above four cases, the robustness of the trajectory planning guidance of the DNN model is analyzed, and the obtained aircraft trajectory state variable results are shown in Figures 4 to 9, respectively. It can be seen that due to the use of a robust trajectory optimization numerical sample set for multi-source uncertainty factors for training, after increasing the value range of the original uncertainty factors by 15%, 20%, and 25%, the DNN model-driven The trajectory state vectors are almost coincident, and the guidance command maintains good robustness.
综上所述,本发明提供的一种基于鲁棒轨迹优化的高超声速飞行器智能再入制导方法,其应用示意图如图10所示。相较于传统轨迹优化方法,该方法能够增强制导指令对复杂多源不确定性的主动防御能力,同时有效降低飞行器制导控制系统设计负担。To sum up, the present invention provides an intelligent reentry guidance method for hypersonic aircraft based on robust trajectory optimization, and its application schematic diagram is shown in FIG. 10 . Compared with the traditional trajectory optimization method, this method can enhance the active defense capability of the guidance command against complex multi-source uncertainties, and at the same time effectively reduce the design burden of the aircraft guidance and control system.
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用全部或部分地以计算机程序产品的形式实现,所述计算机程序产品包括一个或多个计算机指令。在计算机上加载或执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输)。所述计算机可读取存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘SolidState Disk(SSD))等。In the above-mentioned embodiments, it may be implemented in whole or in part by software, hardware, firmware or any combination thereof. When implemented in whole or in part in the form of a computer program product, the computer program product includes one or more computer instructions. When the computer program instructions are loaded or executed on a computer, all or part of the processes or functions described in the embodiments of the present invention are generated. The computer may be a general purpose computer, special purpose computer, computer network, or other programmable device. The computer instructions may be stored in or transmitted from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.)). The computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that includes an integration of one or more available media. The usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk (SSD)), among others.
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,都应涵盖在本发明的保护范围之内。The above are only specific embodiments of the present invention, but the protection scope of the present invention is not limited to this. Any person skilled in the art is within the technical scope disclosed by the present invention, and all within the spirit and principle of the present invention Any modifications, equivalent replacements and improvements made within the scope of the present invention should be included within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202110467754.8A CN113126643A (en) | 2021-04-28 | 2021-04-28 | Intelligent robust reentry guidance method and system for hypersonic aircraft |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202110467754.8A CN113126643A (en) | 2021-04-28 | 2021-04-28 | Intelligent robust reentry guidance method and system for hypersonic aircraft |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN113126643A true CN113126643A (en) | 2021-07-16 |
Family
ID=76780566
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202110467754.8A Pending CN113126643A (en) | 2021-04-28 | 2021-04-28 | Intelligent robust reentry guidance method and system for hypersonic aircraft |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN113126643A (en) |
Cited By (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN114440711A (en) * | 2021-12-03 | 2022-05-06 | 北京星途探索科技有限公司 | Particle swarm algorithm-based four-stage solid carrier rocket trajectory optimization method |
| CN114442673A (en) * | 2022-02-18 | 2022-05-06 | 哈尔滨逐宇航天科技有限责任公司 | Intelligent aircraft trajectory planning method based on chaotic model and DNN |
| CN114489095A (en) * | 2021-12-11 | 2022-05-13 | 西北工业大学 | Brain-like pulse neural network control method applied to morphing aircraft |
| CN114510067A (en) * | 2022-01-28 | 2022-05-17 | 北京航空航天大学 | An Approximate Optimal Guidance Method for Reusable Aircraft |
| CN114659519A (en) * | 2022-03-23 | 2022-06-24 | 中国人民解放军32804部队 | Method for obtaining equivalent attack angle based on linear regression algorithm in spacecraft reentry prediction |
| CN114815878A (en) * | 2022-03-23 | 2022-07-29 | 北京理工大学 | A collaborative guidance method for hypersonic vehicles based on real-time optimization and deep learning |
| CN114840019A (en) * | 2022-04-15 | 2022-08-02 | 北京航空航天大学 | A method and system for generating real-time penetration trajectory of aircraft |
| CN115268501A (en) * | 2022-08-29 | 2022-11-01 | 北京航空航天大学 | Multi-aircraft cooperative re-entry trajectory planning method, system, electronic device and medium |
| CN115951585A (en) * | 2023-03-08 | 2023-04-11 | 中南大学 | Hypersonic vehicle reentry guidance method based on deep neural network |
| CN116244825A (en) * | 2022-12-23 | 2023-06-09 | 中国舰船研究院(中国船舶集团有限公司第七研究院) | Ship design optimization method |
| CN116385627A (en) * | 2022-12-06 | 2023-07-04 | 星智航天科技有限公司 | Visual display system of modularized platform |
| CN119129299A (en) * | 2024-11-15 | 2024-12-13 | 南京理工大学 | A multi-stage trajectory uncertainty propagation method for high-speed flying objects |
| CN119312468A (en) * | 2024-08-26 | 2025-01-14 | 中国航天空气动力技术研究院 | A method for determining equipment parameters for advanced aerodynamic layout aircraft |
| CN119321706A (en) * | 2024-12-18 | 2025-01-17 | 西安电子科技大学 | Sparse data driving guidance method and device integrating physical information neural network |
| CN119576006A (en) * | 2024-11-27 | 2025-03-07 | 中国人民解放军火箭军工程大学 | A long-distance gliding and jumping guidance control method |
| CN119740489A (en) * | 2024-12-26 | 2025-04-01 | 哈尔滨工业大学 | A hypersonic vehicle dynamics correction method based on neural network |
| CN120066061A (en) * | 2024-11-15 | 2025-05-30 | 北京理工大学 | Method, equipment and medium for optimizing closed-loop robust track of aircraft |
| CN120735987A (en) * | 2025-08-27 | 2025-10-03 | 合肥工业大学 | Low thrust spacecraft trajectory optimization method and system based on hybrid expert model |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN111351488A (en) * | 2020-03-03 | 2020-06-30 | 南京航空航天大学 | Re-entry guidance method for aircraft intelligent trajectory reconstruction |
| CN111881518A (en) * | 2020-07-30 | 2020-11-03 | 中国人民解放军火箭军工程大学 | Intelligent reentry maneuver guidance method and system for hypersonic aircraft |
| CN112256061A (en) * | 2020-10-30 | 2021-01-22 | 北京航空航天大学 | Reentry guidance method for hypersonic aircraft under complex environment and task constraint |
-
2021
- 2021-04-28 CN CN202110467754.8A patent/CN113126643A/en active Pending
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN111351488A (en) * | 2020-03-03 | 2020-06-30 | 南京航空航天大学 | Re-entry guidance method for aircraft intelligent trajectory reconstruction |
| CN111881518A (en) * | 2020-07-30 | 2020-11-03 | 中国人民解放军火箭军工程大学 | Intelligent reentry maneuver guidance method and system for hypersonic aircraft |
| CN112256061A (en) * | 2020-10-30 | 2021-01-22 | 北京航空航天大学 | Reentry guidance method for hypersonic aircraft under complex environment and task constraint |
Non-Patent Citations (3)
| Title |
|---|
| CHUNYUN DONG 等: "Robust Trajectory Planning for Hypersonic Glide Vehicle with Parametric Uncertainties", 《MATHEMATICAL PROBLEMS IN ENGINEERING》 * |
| 曾志峰等: "基于神经网络的飞行器再入制导研究", 《飞行力学》 * |
| 赵红超等: "飞行器控制系统中不确定性的估计方法综述", 《飞航导弹》 * |
Cited By (27)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN114440711A (en) * | 2021-12-03 | 2022-05-06 | 北京星途探索科技有限公司 | Particle swarm algorithm-based four-stage solid carrier rocket trajectory optimization method |
| CN114440711B (en) * | 2021-12-03 | 2024-02-02 | 北京星途探索科技有限公司 | Four-stage solid carrier rocket trajectory optimization method based on particle swarm optimization |
| CN114489095A (en) * | 2021-12-11 | 2022-05-13 | 西北工业大学 | Brain-like pulse neural network control method applied to morphing aircraft |
| CN114489095B (en) * | 2021-12-11 | 2023-12-26 | 西北工业大学 | A brain-like impulse neural network control method applied to morphing aircraft |
| CN114510067A (en) * | 2022-01-28 | 2022-05-17 | 北京航空航天大学 | An Approximate Optimal Guidance Method for Reusable Aircraft |
| CN114442673A (en) * | 2022-02-18 | 2022-05-06 | 哈尔滨逐宇航天科技有限责任公司 | Intelligent aircraft trajectory planning method based on chaotic model and DNN |
| CN114659519A (en) * | 2022-03-23 | 2022-06-24 | 中国人民解放军32804部队 | Method for obtaining equivalent attack angle based on linear regression algorithm in spacecraft reentry prediction |
| CN114815878A (en) * | 2022-03-23 | 2022-07-29 | 北京理工大学 | A collaborative guidance method for hypersonic vehicles based on real-time optimization and deep learning |
| CN114815878B (en) * | 2022-03-23 | 2024-05-10 | 北京理工大学 | Hypersonic aircraft collaborative guidance method based on real-time optimization and deep learning |
| CN114840019A (en) * | 2022-04-15 | 2022-08-02 | 北京航空航天大学 | A method and system for generating real-time penetration trajectory of aircraft |
| CN115268501A (en) * | 2022-08-29 | 2022-11-01 | 北京航空航天大学 | Multi-aircraft cooperative re-entry trajectory planning method, system, electronic device and medium |
| CN116385627B (en) * | 2022-12-06 | 2023-09-05 | 星智航天科技有限公司 | Visual display system of modularized platform |
| CN116385627A (en) * | 2022-12-06 | 2023-07-04 | 星智航天科技有限公司 | Visual display system of modularized platform |
| CN116244825A (en) * | 2022-12-23 | 2023-06-09 | 中国舰船研究院(中国船舶集团有限公司第七研究院) | Ship design optimization method |
| CN115951585B (en) * | 2023-03-08 | 2023-06-02 | 中南大学 | Hypersonic aircraft reentry guidance method based on deep neural network |
| CN115951585A (en) * | 2023-03-08 | 2023-04-11 | 中南大学 | Hypersonic vehicle reentry guidance method based on deep neural network |
| CN119312468B (en) * | 2024-08-26 | 2025-11-18 | 中国航天空气动力技术研究院 | A method for determining equipment parameters for advanced aerodynamic layout aircraft |
| CN119312468A (en) * | 2024-08-26 | 2025-01-14 | 中国航天空气动力技术研究院 | A method for determining equipment parameters for advanced aerodynamic layout aircraft |
| CN119129299B (en) * | 2024-11-15 | 2025-04-04 | 南京理工大学 | A multi-stage trajectory uncertainty propagation method for high-speed flying objects |
| CN120066061A (en) * | 2024-11-15 | 2025-05-30 | 北京理工大学 | Method, equipment and medium for optimizing closed-loop robust track of aircraft |
| CN119129299A (en) * | 2024-11-15 | 2024-12-13 | 南京理工大学 | A multi-stage trajectory uncertainty propagation method for high-speed flying objects |
| CN119576006A (en) * | 2024-11-27 | 2025-03-07 | 中国人民解放军火箭军工程大学 | A long-distance gliding and jumping guidance control method |
| CN119321706A (en) * | 2024-12-18 | 2025-01-17 | 西安电子科技大学 | Sparse data driving guidance method and device integrating physical information neural network |
| CN119740489A (en) * | 2024-12-26 | 2025-04-01 | 哈尔滨工业大学 | A hypersonic vehicle dynamics correction method based on neural network |
| CN119740489B (en) * | 2024-12-26 | 2025-08-26 | 哈尔滨工业大学 | A hypersonic vehicle dynamics correction method based on neural network |
| CN120735987A (en) * | 2025-08-27 | 2025-10-03 | 合肥工业大学 | Low thrust spacecraft trajectory optimization method and system based on hybrid expert model |
| CN120735987B (en) * | 2025-08-27 | 2025-11-04 | 合肥工业大学 | A Method and System for Trajectory Optimization of Low-Thrust Spacecraft Based on Hybrid Expert Model |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN113126643A (en) | Intelligent robust reentry guidance method and system for hypersonic aircraft | |
| CN111351488B (en) | Intelligent trajectory reconstruction reentry guidance method for aircraft | |
| CN111813146B (en) | Reentry Prediction-Correction Guidance Method Based on BP Neural Network to Predict Voyage | |
| CN112947592B (en) | A Re-Entry Vehicle Trajectory Planning Method Based on Reinforcement Learning | |
| US20230367934A1 (en) | Method and apparatus for constructing vehicle dynamics model and method and apparatus for predicting vehicle state information | |
| CN115951585B (en) | Hypersonic aircraft reentry guidance method based on deep neural network | |
| CN117908565A (en) | Unmanned aerial vehicle safety path planning method based on maximum entropy multi-agent reinforcement learning | |
| CN115437406A (en) | Aircraft Reentry Tracking and Guidance Method Based on Reinforcement Learning Algorithm | |
| Xianyong et al. | Research on maneuvering decision algorithm based on improved deep deterministic policy gradient | |
| CN119645096A (en) | Method, device, equipment and medium for generating aircraft attitude control model | |
| Tang et al. | Trajectory tracking control for fixed-wing UAV based on DDPG | |
| Xu et al. | Aircraft trajectory prediction for terminal airspace employing social spatiotemporal graph convolutional network | |
| CN117420845A (en) | A UAV swarm obstacle avoidance method based on field of view and adaptive obstacle avoidance radius | |
| CN119200622B (en) | A formation control method and system based on ODE-PDE | |
| CN114818124A (en) | Virtual-real fusion grid rudder model parameter optimization method based on DPPO | |
| CN118395855B (en) | A solid rocket core stage energy management method | |
| Fang et al. | Cooperative Control Model Using Reinforcement Learning for Connected and Automated Vehicles and Traffic Signal Light at Signalized Intersections | |
| CN118210229A (en) | Cooperative guidance method with time and angle constraints based on reinforcement learning | |
| Tang et al. | A Digital Twins-Assisted Multi-Autonomous Vehicle Distributed Collaborative Path Planning Algorithm With Fidelity Guarantee | |
| Ma et al. | Strategy generation based on reinforcement learning with deep deterministic policy gradient for UCAV | |
| Luo et al. | Autonomous Maneuver Decision-Making for Unmanned Combat Aerial Vehicle Based on Modified Marine Predator Algorithm and Fuzzy Inference. | |
| Gu et al. | Fixed-Time Distributed Event-Triggered Cooperative Guidance Methods for Multiple Vehicles with Limited Communications to Achieve Simultaneous Arrival | |
| Zuo et al. | Flight attitude simulator control system design based on model-free reinforcement learning method | |
| Xu | Research on optimization design method of autonomous deformation decision for intelligent morphing aircraft | |
| Origer et al. | Certifying Guidance & Control Networks: Uncertainty Propagation to an Event Manifold |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| RJ01 | Rejection of invention patent application after publication |
Application publication date: 20210716 |
|
| RJ01 | Rejection of invention patent application after publication |