CN112949179B - 一种树脂包膜氮肥施用下冬小麦生长模拟方法及系统 - Google Patents
一种树脂包膜氮肥施用下冬小麦生长模拟方法及系统 Download PDFInfo
- Publication number
- CN112949179B CN112949179B CN202110225443.0A CN202110225443A CN112949179B CN 112949179 B CN112949179 B CN 112949179B CN 202110225443 A CN202110225443 A CN 202110225443A CN 112949179 B CN112949179 B CN 112949179B
- Authority
- CN
- China
- Prior art keywords
- parameters
- model
- soil
- nutrient release
- resin coated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/27—Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/02—Agriculture; Fishing; Forestry; Mining
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2111/00—Details relating to CAD techniques
- G06F2111/10—Numerical modelling
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Economics (AREA)
- General Physics & Mathematics (AREA)
- Strategic Management (AREA)
- Human Resources & Organizations (AREA)
- General Business, Economics & Management (AREA)
- Tourism & Hospitality (AREA)
- Evolutionary Computation (AREA)
- Marketing (AREA)
- Entrepreneurship & Innovation (AREA)
- Quality & Reliability (AREA)
- Primary Health Care (AREA)
- Marine Sciences & Fisheries (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Husbandry (AREA)
- Agronomy & Crop Science (AREA)
- Development Economics (AREA)
- Game Theory and Decision Science (AREA)
- General Health & Medical Sciences (AREA)
- Operations Research (AREA)
- Mining & Mineral Resources (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Computer Hardware Design (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- Fertilizers (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明公开了一种树脂包膜氮肥施用下冬小麦生长模拟方法及系统。本发明通过设计田间试验、构建养分释放模型、结合APSIM机理模型、GLUE算法优化模型参数,来实现树脂包膜氮肥施用下冬小麦生长的准确模拟,有利于未来冬小麦产量的准确预测。
Description
技术领域
本发明涉及冬小麦生长领域,特别是涉及一种树脂包膜氮肥施用下冬小麦生长模拟方法及系统。
背景技术
树脂包膜氮肥可一次性施入农田,在水-热耦合作用下,养分的释放能够与作物氮素吸收基本同步,有利于作物生长和产量的提高,可提高氮肥利用率、降低劳动成本和减少化肥的污染与浪费。
为了准确预测农作物的产量,机理模型得到了广泛的应用,如APSIM、DSSAT、DNDC等可根据不同的农田管理措施和气象数据来预测作物的生长。但目前,农作物模型还都无法较好地对树脂包膜氮肥的养分释放进行逐日模拟,将影响模型对作物生长以及最终产量的准确估算。
目前养分释放模型多为室内试验得到的理论模型,田间作物条件下土壤温度和水分复杂多变,理论模型难以真正反映田间条件下养分释放的真实状态。
发明内容
本发明的目的是提供一种树脂包膜氮肥施用下冬小麦生长模拟方法及系统,通过设计田间试验、构建养分释放模型、结合APSIM机理模型、GLUE算法优化模型参数,来实现树脂包膜氮肥施用下冬小麦生长的准确模拟,有利于未来冬小麦产量的准确预测。
为实现上述目的,本发明提供了如下方案:
一种树脂包膜氮肥施用下冬小麦生长模拟方法,包括:
设置三个冬小麦田间试验,为第一田间试验、第二田间试验以及第三田间试验;
基于所述第一田间试验构建树脂包膜氮肥养分释放模型;
采用GLUE算法对所述树脂包膜氮肥养分释放模型的参数进行优化;
通过所述第二田间试验的试验数据,采用GLUE算法对APSIM模型中的作物参数和土壤水分温度参数进行优化;
基于优化后的树脂包膜氮肥养分释放模型以及优化后的APSIM模型构建更新后的APSIM模型;
通过所述第三田间试验的试验数据,采用GLUE算法对所述更新后的APSIM模型中的养分释放参数、作物参数和优化后的土壤水分温度参数进行优化,得到优化后的参数;
基于所述优化后的参数、预设管理数据和气象数据进行冬小麦产量预测。
可选地,所述树脂包膜氮肥养分释放模型的构建如下:
Nt=N0[1-exp[-kSW,T(t-tlag)]]
其中,Nt为t时间养分释放率,N0为养分的最大释放率,t为时间,kSW,T为养分释放速率常数,SW为土壤体积含水量,T为土壤绝对温度,tlag为养分释放滞后期,kB为玻尔兹曼常数K,EB和Eb分别为kSW,T和tlag中的激活能,A、C、a、c皆为树脂包膜氮肥养分释放模型的参数。
可选地,所述第二田间试验的试验数据包括生物量、产量、开花期、成熟期、土壤温度和土壤体积含水量。
可选地,所述第三田间试验的试验数据包括生物量、产量、开花期、成熟期、土壤温度和土壤体积含水量。
可选地,所述GLUE算法如下:
确定需优化参数的先验概率分布;
从每个参数的先验概率分布中进行蒙特卡洛取样,形成多个参数集;
计算所述参数集的似然度;
根据所述似然度计算后验概率密度;
根据所述后验概率密度构建后验概率分布。
本发明还提供了一种树脂包膜氮肥施用下冬小麦生长模拟系统,包括:
试验设置模块,用于设置三个冬小麦田间试验,为第一田间试验、第二田间试验以及第三田间试验;
模型构建模块,用于基于所述第一田间试验构建树脂包膜氮肥养分释放模型;
第一参数优化模块,用于采用GLUE算法对所述树脂包膜氮肥养分释放模型的参数进行优化;
第二参数优化模块,用于通过所述第二田间试验的试验数据,采用GLUE算法对APSIM模型中的作物参数和土壤水分温度参数进行优化;
模型更新模块,用于基于优化后的树脂包膜氮肥养分释放模型以及优化后的APSIM模型构建更新后的APSIM模型;
第三参数优化模块,用于通过所述第三田间试验的试验数据,采用GLUE算法对所述更新后的APSIM模型中的养分释放参数、作物参数和优化后的土壤水分温度参数进行优化,得到优化后的参数;
产量预测模块,用于基于所述优化后的参数、预设管理数据和气象数据进行冬小麦产量预测。
可选地,所述树脂包膜氮肥养分释放模型的构建如下:
Nt=N0[1-exp[-kSW,T(t-tlag)]]
其中,Nt为t时间养分释放率,N0为养分的最大释放率,t为时间,kSW,T为养分释放速率常数,SW为土壤体积含水量,T为土壤绝对温度,tlag为养分释放滞后期,kB为玻尔兹曼常数K,EB和Eb分别为kSW,T和tlag中的激活能,A、C、a、c皆为树脂包膜氮肥养分释放模型的参数。
可选地,所述第二田间试验的试验数据包括生物量、产量、开花期、成熟期、土壤温度和土壤体积含水量。
可选地,所述第三田间试验的试验数据包括生物量、产量、开花期、成熟期、土壤温度和土壤体积含水量。
根据本发明提供的具体实施例,本发明公开了以下技术效果:
本发明公开了一种树脂包膜氮肥施用下冬小麦生长模拟方法及系统。该方法,包括设置三个冬小麦田间试验,为第一田间试验、第二田间试验以及第三田间试验;基于所述第一田间试验构建树脂包膜氮肥养分释放模型;采用GLUE算法对所述树脂包膜氮肥养分释放模型的参数进行优化;通过所述第二田间试验的试验数据,采用GLUE算法对APSIM模型中的作物参数和土壤水分温度参数进行优化;基于优化后的树脂包膜氮肥养分释放模型以及优化后的APSIM模型构建更新后的APSIM模型;通过所述第三田间试验的试验数据,采用GLUE算法对所述更新后的APSIM模型中的养分释放参数、作物参数和优化后的土壤水分温度参数进行优化,得到优化后的参数;基于所述优化后的参数、预设管理数据和气象数据进行冬小麦产量预测。本发明通过设计田间试验、构建养分释放模型、结合APSIM机理模型、GLUE算法优化模型参数,来实现树脂包膜氮肥施用下冬小麦生长的准确模拟,有利于未来冬小麦产量的准确预测。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例树脂包膜氮肥施用下冬小麦生长模拟方法的流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的目的是提供一种树脂包膜氮肥施用下冬小麦生长模拟方法及系统,通过设计田间试验、构建养分释放模型、结合APSIM机理模型、GLUE算法优化模型参数,来实现树脂包膜氮肥施用下冬小麦生长的准确模拟,有利于未来冬小麦产量的准确预测。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
如图1所示,一种树脂包膜氮肥施用下冬小麦生长模拟方法包括以下步骤:
步骤101:设置三个冬小麦田间试验,为第一田间试验、第二田间试验以及第三田间试验。
第一田间试验用于树脂包膜氮肥养分释放模型的构建。
在小麦种植条件下需设置4个不同灌溉量处理:不灌溉,20立方米/亩,40立方米/亩,60立方米/亩。灌溉时间与当地农民的灌溉时间相一致,树脂包膜氮肥施氮量与当地农民常规氮肥施氮量相一致。其他田间管理措施与农民的管理措施相同。采用随机区组设计,每个处理设置3次重复,共12个小区。每个小区需安装一台土壤水分和温度实时记录仪,监测0-10cm土壤体积含水量和摄氏温度变化。
装袋:对于每个小区,取树脂包膜氮肥5g(精确至0.001g)放入10cm×10cm的聚丙烯网袋(孔径1mm×1mm)并封口,总袋数bn≥n×3×0.9(n为作物生长季的天数)。
埋袋:树脂包膜氮肥的施用时间同当地农民种植小麦的基肥施用时间相一致,将装有树脂包膜氮肥的袋子平铺于土层中,与当地农民施肥深度一致。尽可能让树脂包膜氮肥均匀分布在袋内,并覆盖上土。假设当地农民施氮总量为x kgN/ha,小麦行间距为y cm,树脂包膜氮肥含氮率为z%,则聚丙烯网袋的纵向间距dv和横向间距dh计算公式如下:
dv=y-10
取袋:每次取3袋。在每次强降雨或灌溉前取样1次,之后每2天取样1次,直到表层土壤水分恢复到之前的水平。其余时间每1周取样1次。取样时用小铁铲将肥料网袋挖出并尽量避免肥料的机械损伤。网袋取样后,进行至少14天的风干处理,将肥料颗粒与网袋和土壤进行手工分离,并称重。
数据的计算:根据土壤水分和温度实时记录仪计算出土壤体积含水量和土壤温度为当天的平均值;t时间取袋后,树脂包膜氮肥的养分释放率Nt=w/5×100%,其中w为取3袋处理后测量的干重平均值。
第二田间试验用于APSIM模型中小麦生长、土壤水分和土壤温度模拟的参数优化。
在小麦种植条件下采用当地农民常规氮肥施用方式,设置4个不同灌溉量处理:不灌溉,20立方米/亩,40立方米/亩,60立方米/亩。每个处理设置3次重复,共12个小区。其他田间管理措施与农民的管理措施相同。每个小区需安装一台土壤水分和温度实时记录仪,监测0-10cm土壤体积含水量和摄氏温度变化。
获取土壤0-10cm、10-30cm、30-60cm和60-100cm的土壤容重、含水量、土壤硝态氮和铵态氮含量、饱和含水量、田间持水量,萎焉含水量、土壤有机质、pH、土壤粘粒含量。这些数值将作为APSIM模型的初始输入值。获取当地气象数据,包括每日的最高温、最低温、日照辐射和降雨量,来驱动APSIM模型的运行。获取具体管理措施,包括播种日期、密度、深度和行距,灌溉日期及灌溉量,施氮日期、施氮量、类型及深度。
在冬小麦的关键生育期,进行地上植株取样,每个小区分别于分蘖期、返青期、起身期、拔节期、孕穗期、抽穗期、开花期、完熟期采取植株样10株,于105℃杀青,80℃烘至衡重后称重。收获时各小区取4行共12m2计产、考种。
第三田间试验用于嵌入树脂包膜氮肥养分释放模块的APSIM模型中养分释放参数、作物参数和土壤水分温度参数的进一步优化。
在小麦种植条件下施用树脂包膜氮肥,设置4个不同灌溉量处理:不灌溉,20立方米/亩,40立方米/亩,60立方米/亩。每个处理设置3次重复,共12个小区。树脂包膜氮肥处理采用一次性施肥方式,施氮方式和施氮时间与农民底肥施用方式和时间相一致。其他田间管理措施与农民的管理措施相同。每个小区需安装一台土壤水分和温度实时记录仪,监测0-10cm土壤体积含水量和摄氏温度变化。
获取土壤0-10cm、10-30cm、30-60cm和60-100cm的土壤容重、含水量、土壤硝态氮和铵态氮含量、饱和含水量、田间持水量,萎焉含水量、土壤有机质、pH、土壤粘粒含量。这些数值将作为APSIM模型的初始输入值。获取当地气象数据,包括每日的最高温、最低温、日照辐射和降雨量,来驱动APSIM模型的运行。获取具体管理措施,包括播种日期、密度、深度和行距,灌溉日期及灌溉量,施氮日期、施氮量、类型及深度。
在冬小麦的关键生育期,进行地上植株取样,每个小区分别于分蘖期、返青期、起身期、拔节期、孕穗期、抽穗期、开花期、完熟期采取植株样10株,于105℃杀青,80℃烘至衡重后称重。收获时各小区取4行共12m2计产、考种。
步骤102:基于所述第一田间试验构建树脂包膜氮肥养分释放模型。
所述树脂包膜氮肥养分释放模型的构建如下:
Nt=N0[1-exp[-kSW,T(t-tlag)]]
其中,Nt为t时间养分释放率(%),N0为养分的最大释放率(%),t为时间(d),kSW,T为养分释放速率常数,SW为土壤体积含水量(%),T为土壤绝对温度(K),等于摄氏温度加上273.15K,tlag为养分释放滞后期,即养分开始释放需要的天数,kB为玻尔兹曼常数K,8.617×10-5eV/K,EB和Eb分别为kSW,T和tlag中的激活能,A、C、a、c皆为树脂包膜氮肥养分释放模型的参数。
N0取值范围70%~100%,EB和Eb取值范围都为0.1~1.0eV,A取值范围0~4,a取值范围0~50,C和c的取值范围都为0~100。通过第一田间试验获取的数据(土壤体积含水量、土壤温度和养分释放率),
步骤103:采用GLUE算法对所述树脂包膜氮肥养分释放模型的参数进行优化。
步骤104:通过所述第二田间试验的试验数据,采用GLUE算法对APSIM模型中的作物参数和土壤水分温度参数进行优化。
APSIM模型中的作物参数:vern_sens的取值范围为1.5~2.5;photop_sens的取值范围为2.0~4.0;potential_grain_filling_rate的取值范围为0.0015~0.0030;max_grain_size的取值范围为0.02~0.05;Startgf_to_mat的取值范围为450-700;grains_per_gram_stem的取值范围为20~45。APSIM模型中的土壤水分参数:SWCON的取值范围为0.2~0.8;APSIM模型中的土壤温度参数:BoundaryLayerConductance的取值范围为0~100。
通过第二田间试验获取的数据(生物量、产量、开花期、成熟期、土壤温度和土壤体积含水量),利用GLUE算法对以上8个参数进行优化,其先验概率分布都为均匀分布,其实测值类型为6,即生物量、产量、开花期、成熟期、土壤温度和土壤体积含水量,也就是第二田间试验的得到的结果。
步骤105:基于优化后的树脂包膜氮肥养分释放模型以及优化后的APSIM模型构建更新后的APSIM模型。
将优化后的树脂包膜氮肥养分释放模型嵌入APSIM模型中,将步骤104优化后的生物量、产量、开花期、成熟期、土壤温度和土壤体积含水量嵌入APSIM模型中,作为更新后的APSIM模型,可用于模拟树脂包膜氮肥施用下的作物生长动态。嵌入树脂包膜氮肥养分释放模块的APSIM模型共涉及15个参数,包括树脂包膜氮肥养分释放模型中的7个关键参数和APSIM模型中的8个关键参数。
步骤106:通过所述第三田间试验的试验数据,采用GLUE算法对所述更新后的APSIM模型中的养分释放参数、作物参数和优化后的土壤水分温度参数进行优化,得到优化后的参数。
通过第三田间试验获取的数据(生物量、产量、开花期、成熟期、土壤温度和土壤体积含水量)利用GLUE算法对以上15个参数进行优化,。
步骤107:基于所述优化后的参数、预设管理数据和气象数据进行冬小麦产量预测。
获取未来或以前气象数据,包括每日的最高温、最低温、日照辐射和降雨量,来驱动APSIM模型的运行。设定具体管理措施,包括播种日期、密度、深度和行距,灌溉日期及灌溉量,施氮日期、施氮量、类型及深度。
通过步骤106获取了15个参数的后验概率分布,采用马尔科夫链蒙特卡洛方法对15个参数进行M次(M≥500)取样,然后在气象数据和管理数据的驱动下即可进行树脂包膜氮肥施用下进行M次模拟,并可计算出小麦生物量和产量的平均值、标准差和置信区间。
GLUE算法如下:
1)确定需优化参数的先验概率分布。
2)从每个参数的先验概率分布中进行蒙特卡洛取样,形成I个参数集θ(θi,i=1,2,…,I),I≥50000。
3)在构建的模型中运行步骤2)中的参数集,并利用实测和模拟的结果来计算似然度L(θi|Y),计算公式如下:
4)估算后验概率密度p(θi|Y),公式如下
5)依据后验概率密度来构建后验概率分布
本发明还提供了一种树脂包膜氮肥施用下冬小麦生长模拟系统,包括:
试验设置模块,用于设置三个冬小麦田间试验,为第一田间试验、第二田间试验以及第三田间试验;
模型构建模块,用于基于所述第一田间试验构建树脂包膜氮肥养分释放模型;
第一参数优化模块,用于采用GLUE算法对所述树脂包膜氮肥养分释放模型的参数进行优化;
第二参数优化模块,用于通过所述第二田间试验的试验数据,采用GLUE算法对APSIM模型中的作物参数和土壤水分温度参数进行优化;
模型更新模块,用于基于优化后的树脂包膜氮肥养分释放模型以及优化后的APSIM模型构建更新后的APSIM模型;
第三参数优化模块,用于通过所述第三田间试验的试验数据,采用GLUE算法对所述更新后的APSIM模型中的养分释放参数、作物参数和优化后的土壤水分温度参数进行优化,得到优化后的参数;
产量预测模块,用于基于所述优化后的参数、预设管理数据和气象数据进行冬小麦产量预测。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的系统而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。
Claims (6)
1.一种树脂包膜氮肥施用下冬小麦生长模拟方法,其特征在于,包括:
设置三个冬小麦田间试验,为第一田间试验、第二田间试验以及第三田间试验;
基于所述第一田间试验构建树脂包膜氮肥养分释放模型;
采用GLUE算法对所述树脂包膜氮肥养分释放模型的参数进行优化;所述GLUE算法如下:确定需优化参数的先验概率分布;从每个参数的先验概率分布中进行蒙特卡洛取样,形成多个参数集;计算所述参数集的似然度;根据所述似然度计算后验概率密度;根据所述后验概率密度构建后验概率分布;
通过所述第二田间试验的试验数据,采用GLUE算法对APSIM模型中的作物参数和土壤水分温度参数进行优化;
基于优化后的树脂包膜氮肥养分释放模型以及优化后的APSIM模型构建更新后的APSIM模型;
通过所述第三田间试验的试验数据,采用GLUE算法对所述更新后的APSIM模型中的养分释放参数、作物参数和优化后的土壤水分温度参数进行优化,得到优化后的参数;
基于所述优化后的参数、预设管理数据和气象数据进行冬小麦产量预测;
其中,所述树脂包膜氮肥养分释放模型的构建如下:
Nt=N0[1-exp[-kSW,T(t-tlag)]]
其中,Nt为t时间养分释放率,N0为养分的最大释放率,t为时间,kSW,T为养分释放速率常数,SW为土壤体积含水量,T为土壤绝对温度,tlag为养分释放滞后期,kB为玻尔兹曼常数K,EB和Eb分别为kSW,T和tlag中的激活能,A、C、a、c皆为树脂包膜氮肥养分释放模型的参数。
2.根据权利要求1所述的树脂包膜氮肥施用下冬小麦生长模拟方法,其特征在于,所述第二田间试验的试验数据包括生物量、产量、开花期、成熟期、土壤温度和土壤体积含水量。
3.根据权利要求1所述的树脂包膜氮肥施用下冬小麦生长模拟方法,其特征在于,所述第三田间试验的试验数据包括生物量、产量、开花期、成熟期、土壤温度和土壤体积含水量。
4.一种树脂包膜氮肥施用下冬小麦生长模拟系统,其特征在于,包括:
试验设置模块,用于设置三个冬小麦田间试验,为第一田间试验、第二田间试验以及第三田间试验;
模型构建模块,用于基于所述第一田间试验构建树脂包膜氮肥养分释放模型;
第一参数优化模块,用于采用GLUE算法对所述树脂包膜氮肥养分释放模型的参数进行优化;所述GLUE算法如下:确定需优化参数的先验概率分布;从每个参数的先验概率分布中进行蒙特卡洛取样,形成多个参数集;计算所述参数集的似然度;根据所述似然度计算后验概率密度;根据所述后验概率密度构建后验概率分布;
第二参数优化模块,用于通过所述第二田间试验的试验数据,采用GLUE算法对APSIM模型中的作物参数和土壤水分温度参数进行优化;
模型更新模块,用于基于优化后的树脂包膜氮肥养分释放模型以及优化后的APSIM模型构建更新后的APSIM模型;
第三参数优化模块,用于通过所述第三田间试验的试验数据,采用GLUE算法对所述更新后的APSIM模型中的养分释放参数、作物参数和优化后的土壤水分温度参数进行优化,得到优化后的参数;
产量预测模块,用于基于所述优化后的参数、预设管理数据和气象数据进行冬小麦产量预测;
所述树脂包膜氮肥养分释放模型的构建如下:
其中,Nt为t时间养分释放率,N0为养分的最大释放率,t为时间,kSW,T为养分释放速率常数,SW为土壤体积含水量,T为土壤绝对温度,tlag为养分释放滞后期,kB为玻尔兹曼常数K,EB和Eb分别为kSW,T和tlag中的激活能,A、C、a、c皆为树脂包膜氮肥养分释放模型的参数。
5.根据权利要求4所述的树脂包膜氮肥施用下冬小麦生长模拟系统,其特征在于,所述第二田间试验的试验数据包括生物量、产量、开花期、成熟期、土壤温度和土壤体积含水量。
6.根据权利要求4所述的树脂包膜氮肥施用下冬小麦生长模拟系统,其特征在于,所述第三田间试验的试验数据包括生物量、产量、开花期、成熟期、土壤温度和土壤体积含水量。
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202110225443.0A CN112949179B (zh) | 2021-03-01 | 2021-03-01 | 一种树脂包膜氮肥施用下冬小麦生长模拟方法及系统 |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202110225443.0A CN112949179B (zh) | 2021-03-01 | 2021-03-01 | 一种树脂包膜氮肥施用下冬小麦生长模拟方法及系统 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN112949179A CN112949179A (zh) | 2021-06-11 |
| CN112949179B true CN112949179B (zh) | 2023-05-12 |
Family
ID=76246955
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202110225443.0A Active CN112949179B (zh) | 2021-03-01 | 2021-03-01 | 一种树脂包膜氮肥施用下冬小麦生长模拟方法及系统 |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN112949179B (zh) |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106485002A (zh) * | 2016-10-13 | 2017-03-08 | 云南省农业科学院甘蔗研究所 | 在复杂地形气候区域估算太阳辐射和甘蔗潜在产量的方法 |
| CN107392376A (zh) * | 2017-07-25 | 2017-11-24 | 中国农业科学院农业信息研究所 | 一种农作物气象产量预测方法及系统 |
| CN109978265A (zh) * | 2019-03-28 | 2019-07-05 | 中国农业科学院农业信息研究所 | 一种控释肥农田养分释放速率估算方法及系统 |
| CN110927082A (zh) * | 2019-11-25 | 2020-03-27 | 北京大学 | 一种基于无人机成像高光谱遥感的冬小麦产量预测方法 |
| CN111095314A (zh) * | 2017-08-22 | 2020-05-01 | 巴斯夫农化商标有限公司 | 作物植物种植的产量估计 |
-
2021
- 2021-03-01 CN CN202110225443.0A patent/CN112949179B/zh active Active
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106485002A (zh) * | 2016-10-13 | 2017-03-08 | 云南省农业科学院甘蔗研究所 | 在复杂地形气候区域估算太阳辐射和甘蔗潜在产量的方法 |
| CN107392376A (zh) * | 2017-07-25 | 2017-11-24 | 中国农业科学院农业信息研究所 | 一种农作物气象产量预测方法及系统 |
| CN111095314A (zh) * | 2017-08-22 | 2020-05-01 | 巴斯夫农化商标有限公司 | 作物植物种植的产量估计 |
| CN109978265A (zh) * | 2019-03-28 | 2019-07-05 | 中国农业科学院农业信息研究所 | 一种控释肥农田养分释放速率估算方法及系统 |
| CN110927082A (zh) * | 2019-11-25 | 2020-03-27 | 北京大学 | 一种基于无人机成像高光谱遥感的冬小麦产量预测方法 |
Non-Patent Citations (2)
| Title |
|---|
| Projecting maize yield under local-scale climate change scenarios using crop models: Sensitivity to sowing dates, cultivar, and nitrogen fertilizer rates;Charles B. Chisanga 等;《Food and Energy Security》;1-17 * |
| 甘蔗农业生产系统模拟模型模块化设计与应用研究进展;毛钧 等;《中国糖料》;第39卷(第1期);44-50 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN112949179A (zh) | 2021-06-11 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Mustafa et al. | Combined deficit irrigation and soil fertility management on different soil textures to improve wheat yield in drought-prone Bangladesh | |
| Li et al. | A spatially referenced water and nitrogen management model (WNMM) for (irrigated) intensive cropping systems in the North China Plain | |
| Yu et al. | Modeling a wheat–maize double cropping system in China using two plant growth modules in RZWQM | |
| Chen et al. | Modelling the effects of climate variability and water management on crop water productivity and water balance in the North China Plain | |
| Yao et al. | Permanent wilting point plays an important role in simulating winter wheat growth under water deficit conditions | |
| Sun et al. | Uncertainty and sensitivity assessments of an agricultural–hydrological model (RZWQM2) using the GLUE method | |
| CN103959970B (zh) | 农田水肥高效利用多维临界调控方法 | |
| Li et al. | Modification of CSM-CROPGRO-Cotton model for simulating cotton growth and yield under various deficit irrigation strategies | |
| Rana et al. | Water budgeting in conservation agriculture-based sub-surface drip irrigation using HYDRUS-2D in rice under annual rotation with wheat in Western Indo-Gangetic Plains | |
| CN110826797B (zh) | 基于多目标综合评价体系确定最佳农业种植系统的方法 | |
| Chatterjee et al. | Actual evapotranspiration and crop coefficients for tropical lowland rice (Oryza sativa L.) in eastern India | |
| Zhang et al. | Exploring management strategies to improve yield and mitigate nitrate leaching in a typical radish field in northern China | |
| Shi et al. | Modeling ammonia volatilization following urea and controlled-release urea application to paddy fields | |
| Hadria et al. | Calibration and validation of the STICS crop model for managing wheat irrigation in the semi-arid Marrakech/Al Haouz Plain | |
| Huang et al. | Modeling and assessing water and nitrogen use and crop growth of peanut in semi-arid areas of Northeast China | |
| Pirmoradian et al. | A very simple model for yield prediction of rice under different water and nitrogen applications | |
| Ezekiel et al. | Calibrating and validating AquaCrop model for maize crop in Northern zone of Nigeria | |
| Nain et al. | Calibration and validation of CERES model for simulating | |
| CN117474704A (zh) | 一种玉米昼夜生长差异和产量的估算方法 | |
| Wang et al. | Nitrogen management to reduce GHG emissions while maintaining high crop productivity in temperate summer rainfall climate | |
| Shen et al. | Simulation modeling for effective management of irrigation water for winter wheat | |
| Ghasemi-Saadatabadi et al. | Improving prediction accuracy of CSM-CERES-Wheat model for water and nitrogen response using a modified Penman-Monteith equation in a semi-arid region | |
| Xu et al. | WOFOST-N: An improved WOFOST model with nitrogen module for simulation of Korla Fragrant pear tree growth and nitrogen dynamics | |
| CN112949179B (zh) | 一种树脂包膜氮肥施用下冬小麦生长模拟方法及系统 | |
| Xu et al. | Evaluation and application of AquaCrop in simulation of alternate irrigation with brackish and fresh water for cotton under mulch drip irrigation in southern Xinjiang |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |