CN112566143B - Load balancing method, device and computing device - Google Patents
Load balancing method, device and computing device Download PDFInfo
- Publication number
- CN112566143B CN112566143B CN201910854702.9A CN201910854702A CN112566143B CN 112566143 B CN112566143 B CN 112566143B CN 201910854702 A CN201910854702 A CN 201910854702A CN 112566143 B CN112566143 B CN 112566143B
- Authority
- CN
- China
- Prior art keywords
- cell
- load balancing
- balanced
- preset
- azimuth angle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 58
- 238000005457 optimization Methods 0.000 claims abstract description 44
- 238000004891 communication Methods 0.000 claims abstract description 18
- 230000006870 function Effects 0.000 claims description 95
- 230000000737 periodic effect Effects 0.000 claims description 20
- 238000012360 testing method Methods 0.000 claims description 15
- 238000004364 calculation method Methods 0.000 claims description 13
- 238000004422 calculation algorithm Methods 0.000 claims description 11
- 238000012937 correction Methods 0.000 claims description 3
- 230000000694 effects Effects 0.000 abstract description 10
- 230000002159 abnormal effect Effects 0.000 description 7
- 238000005070 sampling Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000004590 computer program Methods 0.000 description 4
- 230000007774 longterm Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 230000012010 growth Effects 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 238000012795 verification Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 2
- 230000001932 seasonal effect Effects 0.000 description 2
- 230000003442 weekly effect Effects 0.000 description 2
- 241001191009 Gymnomyza Species 0.000 description 1
- 208000025174 PANDAS Diseases 0.000 description 1
- 208000021155 Paediatric autoimmune neuropsychiatric disorders associated with streptococcal infection Diseases 0.000 description 1
- 240000000220 Panda oleosa Species 0.000 description 1
- 235000016496 Panda oleosa Nutrition 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- 238000007477 logistic regression Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/02—Arrangements for optimising operational condition
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/08—Load balancing or load distribution
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
技术领域technical field
本发明实施例涉及无线通信技术领域,具体涉及一种负载均衡方法、装置及计算设备。Embodiments of the present invention relate to the field of wireless communication technologies, and in particular, to a load balancing method, apparatus, and computing device.
背景技术Background technique
随着长期演进(Long Term Evolution,LTE)业务的不断发展,热点区域、突发高负荷区域频繁出现。针对容量不足问题,一般通过小区扩容、站点新建等措施予以解决。通过监控现网的关键性能指标(Key Performance Indicators,KPI),会发现同覆盖小区之间的容量差异问题日益严重,部分小区的用户数或者物理资源块(Physical Resource Block,PRB)的利用率已接近容量极限,而其他小区的资源利用率却很低,从而造成投资资源浪费。因此,如何均衡同覆盖或者存在重叠覆盖区域的小区间的负载具有重要意义。With the continuous development of Long Term Evolution (Long Term Evolution, LTE) services, hot spots and sudden high load areas frequently appear. The problem of insufficient capacity is generally solved by measures such as cell expansion and new site construction. By monitoring the key performance indicators (Key Performance Indicators, KPI) of the existing network, it will be found that the problem of capacity difference between the same coverage cells is becoming more and more serious, and the number of users or the utilization rate of physical resource blocks (PRB) in some cells has already It is close to the capacity limit, while the resource utilization rate of other cells is very low, resulting in a waste of investment resources. Therefore, how to balance the load between cells with the same coverage or overlapping coverage areas is of great significance.
目前,负载均衡方法主要通过用户自主切换小区进行优化,无法判别因天馈覆盖差异造成的负载不均衡,优化效果有限。At present, the load balancing method is mainly optimized through the user's autonomous switching of cells, and the load imbalance caused by the difference in the coverage of the antenna and feeder cannot be determined, and the optimization effect is limited.
发明内容SUMMARY OF THE INVENTION
鉴于上述问题,本发明实施例提供了一种负载均衡方法、装置及计算设备,克服了上述问题或者至少部分地解决了上述问题。In view of the above problems, embodiments of the present invention provide a load balancing method, apparatus, and computing device, which overcome the above problems or at least partially solve the above problems.
根据本发明实施例的一个方面,提供了一种负载均衡方法,所述方法包括:根据所述待均衡小区的负载均衡结果,从所述待均衡小区确定问题小区;计算所述问题小区的实际方位角;若所述实际方位角与其对应的预设方位角的差值大于或者等于预设偏差阈值,则在将所述预设方位角调整为所述实际方位角后,对所述待均衡小区进行再次负载均衡。According to an aspect of the embodiments of the present invention, a load balancing method is provided, the method includes: determining a problem cell from the to-be-balanced cell according to a load balancing result of the to-be-balanced cell; calculating the actual value of the problem cell Azimuth; if the difference between the actual azimuth and its corresponding preset azimuth is greater than or equal to a preset deviation threshold, after adjusting the preset azimuth to the actual azimuth, The cell performs load balancing again.
在一种可选的方式中,所述计算所述问题小区的实际方位角,进一步包括:获取所述问题小区的最小化路测数据;根据所述最小化路测数据,获取用户位置数据;根据所述用户位置数据,确定所述问题小区的覆盖中心;根据所述覆盖中心,计算所述问题小区的实际方位角。In an optional manner, the calculating the actual azimuth angle of the problem cell further includes: obtaining the minimum drive test data of the problem cell; and obtaining user location data according to the minimum drive test data; According to the user location data, the coverage center of the problem cell is determined; according to the coverage center, the actual azimuth of the problem cell is calculated.
在一种可选的方式中,所述方法还包括:若所述实际方位角与其对应的预设方位角的差值小于所述预设偏差阈值,则计算各所述待均衡小区的覆盖距离;根据各所述待均衡小区的覆盖距离,确定待校正小区;在将所述待校正小区进行天线校正后,对所述待均衡小区进行再次负载均衡。In an optional manner, the method further includes: if the difference between the actual azimuth and its corresponding preset azimuth is less than the preset deviation threshold, calculating the coverage distance of each of the cells to be equalized ; Determine the cells to be calibrated according to the coverage distances of the cells to be equalized; and perform load balancing on the cells to be equalized again after performing antenna calibration on the cells to be calibrated.
在一种可选的方式中,所述计算各所述待均衡小区的覆盖距离,进一步包括:获取所述待均衡小区的天线高度以及下倾角;根据所述待均衡小区的天线高度以及下倾角,计算所述待均衡小区的覆盖距离。In an optional manner, the calculating the coverage distance of each cell to be equalized further includes: acquiring the antenna height and downtilt angle of the cell to be equalized; according to the antenna height and downtilt angle of the cell to be equalized , and calculate the coverage distance of the cells to be equalized.
在一种可选的方式中,在所述根据待均衡小区的负载均衡结果,从所述待均衡小区确定问题小区之前,所述方法还包括:获取待均衡小区的历史负载数据;将所述历史负载数据代入预设预测模型,以确定预设预测函数,其中,所述预设预测函数与时间有关;根据所述预设预测函数,对所述待均衡小区进行负载均衡。In an optional manner, before determining the problem cell from the cell to be balanced according to the load balancing result of the cell to be balanced, the method further includes: acquiring historical load data of the cell to be balanced; The historical load data is substituted into a preset prediction model to determine a preset prediction function, wherein the preset prediction function is related to time; load balancing is performed on the cells to be balanced according to the preset prediction function.
在一种可选的方式中,所述预设预测模型包括负载趋势函数模型、周期函数模型和节假日函数模型;则,所述将所述历史负载数据代入预设预测模型,以确定预设预测函数,进一步包括:将所述历史负载数据分别代入所述负载趋势函数模型、所述周期函数模型和所述节假日函数模型,根据L-BFGS拟牛顿法拟合得到负载趋势函数、周期函数和节假日函数;根据所述负载趋势函数、所述周期函数和所述节假日函数,确定所述预设预测函数。In an optional manner, the preset prediction model includes a load trend function model, a periodic function model and a holiday function model; then, the historical load data is substituted into the preset prediction model to determine the preset prediction function, further comprising: substituting the historical load data into the load trend function model, the periodic function model and the holiday function model respectively, and fitting the load trend function, the periodic function and the holiday according to the L-BFGS quasi-Newton method function; the preset prediction function is determined according to the load trend function, the periodic function and the holiday function.
根据本发明实施例的另一方面,提供了一种负载均衡装置,所述装置包括:问题小区确定模块,用于根据待均衡小区的负载均衡结果,从所述待均衡小区确定问题小区;实际方位角计算模块,用于计算所述问题小区的实际方位角;第一再优化模块,用于若所述实际方位角与其对应的预设方位角的差值大于或者等于预设偏差阈值,则在将所述预设方位角调整为所述实际方位角后,对所述待均衡小区进行再次负载均衡。According to another aspect of the embodiments of the present invention, a load balancing apparatus is provided, the apparatus includes: a problem cell determination module, configured to determine a problem cell from the to-be-balanced cell according to the load balancing result of the to-be-balanced cell; an azimuth angle calculation module, used for calculating the actual azimuth angle of the problem cell; the first re-optimization module is used for if the difference between the actual azimuth angle and its corresponding preset azimuth angle is greater than or equal to a preset deviation threshold, then After the preset azimuth angle is adjusted to the actual azimuth angle, load balancing is performed on the cells to be balanced again.
根据本发明实施例的又一方面,提供了一种计算设备,包括:处理器、存储器、通信接口和通信总线,所述处理器、所述存储器和所述通信接口通过所述通信总线完成相互间的通信;所述存储器用于存放至少一可执行指令,所述可执行指令使所述处理器执行如上所述的负载均衡方法的操作。According to yet another aspect of the embodiments of the present invention, a computing device is provided, including: a processor, a memory, a communication interface, and a communication bus, wherein the processor, the memory, and the communication interface complete each other through the communication bus The memory is used for storing at least one executable instruction, and the executable instruction enables the processor to perform the operations of the load balancing method as described above.
根据本发明实施例的另一方面,提供了一种计算机存储介质,所述存储介质中存储有至少一可执行指令,所述可执行指令使处理器执行如上所述的负载均衡方法。According to another aspect of the embodiments of the present invention, a computer storage medium is provided, wherein the storage medium stores at least one executable instruction, and the executable instruction causes a processor to execute the above load balancing method.
本发明实施例通过在待均衡小区进行负载均衡后,根据待均衡小区的负载均衡结果,从待均衡小区确定问题小区,计算问题小区的实际方位角,若实际方位角与其对应的预设方位角的差值大于或者等于预设偏差阈值,则在将预设方位角调整为实际方位角后,对待均衡小区进行再次负载均衡,能够对多轮优化后仍无法改善的小区进行分析,判别因天馈覆盖异常造成的负载不均衡,提高了优化效果。In the embodiment of the present invention, after performing load balancing in the cells to be balanced, according to the load balancing results of the cells to be balanced, the problem cells are determined from the cells to be balanced, and the actual azimuth angle of the problem cell is calculated. If the difference is greater than or equal to the preset deviation threshold, after adjusting the preset azimuth angle to the actual azimuth angle, the load balancing of the cells to be balanced can be performed again, and the cells that cannot be improved after multiple rounds of optimization can be analyzed. The load imbalance caused by the abnormal feed coverage improves the optimization effect.
上述说明仅是本发明实施例技术方案的概述,为了能够更清楚了解本发明实施例的技术手段,而可依照说明书的内容予以实施,并且为了让本发明实施例的上述和其它目的、特征和优点能够更明显易懂,以下特举本发明的具体实施方式。The above description is only an overview of the technical solutions of the embodiments of the present invention. In order to understand the technical means of the embodiments of the present invention more clearly, it can be implemented according to the contents of the description, and in order to make the above and other purposes, features and The advantages can be more clearly understood, and the following specific embodiments of the present invention are given.
附图说明Description of drawings
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:Various other advantages and benefits will become apparent to those of ordinary skill in the art upon reading the following detailed description of the preferred embodiments. The drawings are for the purpose of illustrating preferred embodiments only and are not to be considered limiting of the invention. Also, the same components are denoted by the same reference numerals throughout the drawings. In the attached image:
图1示出了本发明实施例提供的负载均衡方法的流程图;FIG. 1 shows a flowchart of a load balancing method provided by an embodiment of the present invention;
图2示出了图1中的步骤150的流程图;Figure 2 shows a flowchart of
图3示出了图1中的步骤150的流程图;Fig. 3 shows the flow chart of
图4示出了DBSCAN算法的示意图;Fig. 4 shows the schematic diagram of DBSCAN algorithm;
图5示出了本发明另一实施例提供的负载均衡方法的流程图;FIG. 5 shows a flowchart of a load balancing method provided by another embodiment of the present invention;
图6示出了天线高度以及下倾角的示意图;FIG. 6 shows a schematic diagram of antenna height and downtilt angle;
图7示出了本发明另又一实施例提供的负载均衡方法的流程图;FIG. 7 shows a flowchart of a load balancing method provided by another embodiment of the present invention;
图8示出了本发明实施例提供的生成优化工单的流程图;FIG. 8 shows a flowchart of generating an optimization work order provided by an embodiment of the present invention;
图9示出了本发明实施例提供的负载均衡装置的结构示意图;FIG. 9 shows a schematic structural diagram of a load balancing apparatus provided by an embodiment of the present invention;
图10示出了本发明实施例提供的计算设备的结构示意图。FIG. 10 shows a schematic structural diagram of a computing device provided by an embodiment of the present invention.
具体实施方式Detailed ways
下面将参照附图更详细地描述本发明的示例性实施例。虽然附图中显示了本发明的示例性实施例,然而应当理解,可以以各种形式实现本发明而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本发明,并且能够将本发明的范围完整的传达给本领域的技术人员。Exemplary embodiments of the present invention will be described in more detail below with reference to the accompanying drawings. While exemplary embodiments of the present invention are shown in the drawings, it should be understood that the present invention may be embodied in various forms and should not be limited by the embodiments set forth herein. Rather, these embodiments are provided so that the present invention will be more thoroughly understood, and will fully convey the scope of the present invention to those skilled in the art.
本实施例提供的负载均衡方法、装置及计算设备可用于长期演进(Long TermEvolution,LTE)等移动通信网络中。The load balancing method, apparatus, and computing device provided in this embodiment can be used in mobile communication networks such as Long Term Evolution (Long Term Evolution, LTE).
图1示出了本发明实施例提供的负载均衡方法的流程图。该方法应用于计算设备中,例如通信网络中的服务器。如图1所示,该方法包括以下步骤:FIG. 1 shows a flowchart of a load balancing method provided by an embodiment of the present invention. The method is applied in a computing device, such as a server in a communication network. As shown in Figure 1, the method includes the following steps:
步骤140、根据待均衡小区的负载均衡结果,从待均衡小区确定问题小区。Step 140: Determine a problem cell from the cells to be balanced according to the load balancing result of the cells to be balanced.
其中,待均衡小区为若干个需要进行负载均衡的小区。例如,基站分别向四周覆盖信号,每120度作为一个小区,共覆盖三个小区,则这三个小区可以作为待均衡小区。Among them, the cells to be balanced are several cells that need to perform load balancing. For example, if the base station covers signals in all directions, every 120 degrees is used as a cell, covering three cells in total, then these three cells can be used as the cells to be equalized.
当小区负载不平衡时,需要对小区进行负载均衡优化。但由于可能存在部分小区资源管理数据错误、方位角配置不合理或者主覆盖方向偏移用户实际分布区域,这些小区经过多轮优化仍无法改善,从而无法完成负载均衡优化。When the cell load is unbalanced, it is necessary to perform load balancing optimization on the cell. However, due to some cell resource management data errors, unreasonable azimuth configuration, or the deviation of the main coverage direction from the actual user distribution area, these cells cannot be improved after multiple rounds of optimization, so the load balancing optimization cannot be completed.
在步骤140中,问题小区为经过若干轮负载均衡优化仍无法改善的小区,其中,问题小区可以为一个或者多个。则根据待均衡小区的负载均衡结果,从待均衡小区确定问题小区,具体实施方式可以为:在待均衡小区进行三次负载均衡优化后,获取待均衡小区的负载均衡结果,并比较各小区在负载均衡前和负载均衡后的各项指标,从而确定问题小区。例如,A小区在进行负载均衡前m指标为20,在负载均衡后m指标为22,变化幅度小于预设变化阈值10,则确定A小区为问题小区。In
步骤150、计算问题小区的实际方位角。Step 150: Calculate the actual azimuth of the problem cell.
其中,实际方位角为实际环境中小区的覆盖中心和基站的连线与指定方向之间方位角。例如,若指定方向为正北方向,小区的覆盖中心位于基站的北偏东30度,则方位角为30度。Wherein, the actual azimuth is the azimuth between the coverage center of the cell and the connection between the base station and the designated direction in the actual environment. For example, if the specified direction is due north and the coverage center of the cell is located 30 degrees east of the north of the base station, the azimuth angle is 30 degrees.
在步骤150中,如图2所示,计算问题小区的实际方位角,进一步包括:In
步骤151、获取问题小区的最小化路测数据;Step 151: Obtain the minimum drive test data of the problem cell;
步骤152、根据最小化路测数据,获取用户位置数据;Step 152: Obtain user location data according to the minimized drive test data;
步骤155、根据用户位置数据,确定问题小区的覆盖中心;Step 155: Determine the coverage center of the problem cell according to the user location data;
步骤156、根据覆盖中心,计算问题小区的实际方位角。Step 156: Calculate the actual azimuth of the problem cell according to the coverage center.
其中,最小化路测数据为通过最小化路测(Minimization of Drive Tests,MDT)技术获取的数据。MDT技术主要通过手机上报的携带有全球导航卫星系统位置信息的测量报告,获取网络优化的所需要的相关参数。与传统MR数据相比,MDT数据自带准确的经纬度信息,可对现网覆盖进行精准定位。MDT数据量非常庞大,单个基站每天数据量就在GB以上,普通工具根本无法解析,因此可以使用Pandas大数据处理工具处理MDT数据。其中,在步骤151中,获取问题小区的最小化路测数据具体可以为:获取全部问题小区一天的MDT数据。Wherein, the minimization drive test data is the data obtained by the Minimization of Drive Tests (MDT) technology. The MDT technology mainly obtains the relevant parameters required for network optimization through the measurement report that carries the position information of the global navigation satellite system reported by the mobile phone. Compared with traditional MR data, MDT data comes with accurate longitude and latitude information, which can accurately locate the coverage of the existing network. The amount of MDT data is very large. The daily data volume of a single base station is more than GB, which cannot be parsed by ordinary tools. Therefore, Pandas big data processing tools can be used to process MDT data. Wherein, in
在步骤152中,用户位置数据具体为用户的经纬度信息数据,可从最小化路测数据中获取。例如,通过maos平台导出MDT数据,使用python gzip工具对MDT数据进行解压、解码以及数据拼接,提取经纬度信息数据,并去除数据中的空值。In
在步骤155中,在获取用户位置数据后,根据用户的分布位置,确定用户的分布中心,即为问题小区的覆盖中心。In
在步骤156中,具体实施方式可以为:获取问题小区对应的基站位置,根据基站位置与覆盖中心的连线与指定方向之间的夹角,从而确定问题小区的实际方位角。例如可以编写球体几何解析函数geodirection,以求解实际方位角。In
为了更加准确的计算问题小区的实际方位角,如图3所示,步骤150进一步还包括:In order to more accurately calculate the actual azimuth of the problem cell, as shown in FIG. 3 , step 150 further includes:
步骤153、根据最小化路测数据,获取网络覆盖参数;Step 153: Obtain network coverage parameters according to the minimized drive test data;
步骤154、根据基于密度聚类的DBSCAN算法对用户位置数据进行噪声去除;
步骤155、根据用户位置数据以及网络覆盖参数,加权平均计算问题小区的覆盖中心。Step 155: Calculate the coverage center of the problem cell by weighted average according to the user location data and the network coverage parameter.
其中,网络覆盖参数为各个用户的网络覆盖强度,例如可以从最小化路测数据中获取的采样点的参考信号接收功率(Reference Signal Receiving Power,RSRP)。The network coverage parameter is the network coverage strength of each user, for example, the reference signal receiving power (Reference Signal Receiving Power, RSRP) of the sampling point that can be obtained from the minimized drive test data.
由于存在无线信号快衰效应、GPS收信异常、室内定位不准或MDT平台采集等问题,导致一部分MDT采样点偏离实际覆盖区域,成为噪声点,对实际方位角的计算造成干扰。则在步骤154中,采用基于密度聚类的DBSCAN算法对用户位置数据进行噪声去除,以得到准确的用户位置数据。Due to the rapid fading effect of wireless signals, abnormal GPS reception, inaccurate indoor positioning, or MDT platform acquisition, some MDT sampling points deviate from the actual coverage area and become noise points, which interfere with the calculation of the actual azimuth angle. Then, in
其中,DBSCAN算法的基本思想就是计算某个eps半径范围内采样点的数量是否大于设定值minPts。其中eps和minPts是DBSCAN算法中最重要的两个参数,分别限定算法的区域半径和最少样本点数量。如图4所示,设定minPts=11,数据集X={xi}为采样点,x1的eps邻域内包含12个质差点,则x1为核心质差点;而x2的eps邻域内包含9个质差点,但x2由于在x1的邻域内,其为边界质差点;x3不在其他样本点的邻域内,其自己的邻域内样本点数也少于11,为噪音点。Among them, the basic idea of the DBSCAN algorithm is to calculate whether the number of sampling points within a certain eps radius is greater than the set value minPts. Among them, eps and minPts are the two most important parameters in the DBSCAN algorithm, which respectively limit the area radius of the algorithm and the minimum number of sample points. As shown in Figure 4, set minPts=11, the data set X={xi} is the sampling point, the eps neighborhood of x1 contains 12 quality difference points, then x1 is the core quality difference point; and the eps neighborhood of x2 contains 9 The quality difference point, but x2 is a boundary quality difference point because it is in the neighborhood of x1; x3 is not in the neighborhood of other sample points, and the number of sample points in its own neighborhood is less than 11, which is a noise point.
由于相同距离下,天线主波板方向的MDT采样点电平强于旁波瓣,可为高电平MDT采样点赋予更高的权值。则步骤155的具体实施方式可以为:根据采样点的经纬度信息数据以及RSRP值,加权平均计算问题小区的覆盖中心。Since the level of the MDT sampling point in the direction of the main wave plate of the antenna is stronger than that of the side lobe at the same distance, a higher weight can be given to the high-level MDT sampling point. The specific implementation of
步骤160、若实际方位角与其对应的预设方位角的差值大于或者等于预设偏差阈值,则在将预设方位角调整为实际方位角后,对待均衡小区进行再次负载均衡。Step 160: If the difference between the actual azimuth and the corresponding preset azimuth is greater than or equal to the preset deviation threshold, after adjusting the preset azimuth to the actual azimuth, load balance the cells to be balanced again.
其中,预设方位角为预先设置的某个小区的方位角,预设方位角可以记录在资源管理系统中,则将预设方位角调整为实际方位角可以是:将资源管理系统中预设方位角的数据调整为实际方位角的数值。Wherein, the preset azimuth is the preset azimuth of a certain cell, and the preset azimuth can be recorded in the resource management system, and adjusting the preset azimuth to the actual azimuth can be: setting the preset azimuth in the resource management system The azimuth data is adjusted to the actual azimuth value.
步骤160的具体实施方式可以为:获取该问题小区的预设方位角,比较该问题小区的实际方位角与预设方位角,若两者差值大于或者等于预设偏差阈值,则将预设方位角调整为实际方位角之后,对所有待均衡小区进行再次负载均衡。例如,若A小区的预设方位角为78度,预设偏差阈值为10,计算得到实际方位角为89度,则预设方位角与实际方位角的偏差大于预设偏差阈值,则在将预设方位角调整为89度后,对所有待均衡小区进行再次负载均衡。The specific implementation of
本发明实施例通过在待均衡小区进行负载均衡后,根据待均衡小区的负载均衡结果,从待均衡小区确定问题小区,计算问题小区的实际方位角,若实际方位角与其对应的预设方位角的差值大于或者等于预设偏差阈值,则在将预设方位角调整为实际方位角后,对待均衡小区进行再次负载均衡,能够对多轮优化后仍无法改善的小区进行分析,判别因天馈覆盖异常造成的负载不均衡,提高了优化效果。In the embodiment of the present invention, after performing load balancing in the cells to be balanced, according to the load balancing results of the cells to be balanced, the problem cells are determined from the cells to be balanced, and the actual azimuth angle of the problem cell is calculated. If the difference is greater than or equal to the preset deviation threshold, after adjusting the preset azimuth angle to the actual azimuth angle, the load balancing of the cells to be balanced can be performed again, and the cells that cannot be improved after multiple rounds of optimization can be analyzed. The load imbalance caused by the abnormal feed coverage improves the optimization effect.
图5示出了本发明另一实施例提供的负载均衡方法的流程图。如图5所示,该方法还包括:FIG. 5 shows a flowchart of a load balancing method provided by another embodiment of the present invention. As shown in Figure 5, the method further includes:
步骤170、若实际方位角与其对应的预设方位角的差值小于预设偏差阈值,则计算各待均衡小区的覆盖距离。Step 170: If the difference between the actual azimuth and the corresponding preset azimuth is smaller than the preset deviation threshold, calculate the coverage distance of each cell to be equalized.
若实际方位角与其对应的预设方位角的差值小于预设偏差阈值,则表明小区的方位角设置合理,则需进一步确定问题。If the difference between the actual azimuth and the corresponding preset azimuth is less than the preset deviation threshold, it indicates that the azimuth of the cell is set reasonably, and the problem needs to be further determined.
其中,计算各待均衡小区的覆盖距离,进一步包括:获取待均衡小区的天线高度以及下倾角;根据待均衡小区的天线高度以及下倾角,计算待均衡小区的覆盖距离。其中,小区的天线高度以及下倾角可以通过用户输入或从其他系统上获取。例如,如图6所示,假设获取小区的天线高度为H,下倾角为B,天线垂直平面的半功率角为A/2,则根据三角函数关系有tg(B-A/2)=H/R,从而能够求得小区的覆盖距离R。Wherein, calculating the coverage distance of each cell to be equalized further includes: acquiring the antenna height and downtilt angle of the cell to be equalized; and calculating the coverage distance of the cell to be equalized according to the antenna height and downtilt angle of the cell to be equalized. The antenna height and downtilt angle of the cell can be input by the user or obtained from other systems. For example, as shown in Figure 6, assuming that the height of the antenna of the acquired cell is H, the down-tilt angle is B, and the half-power angle of the vertical plane of the antenna is A/2, then according to the trigonometric function relationship, tg(B-A/2)=H/R , so that the coverage distance R of the cell can be obtained.
步骤180、根据各待均衡小区的覆盖距离,确定待校正小区。Step 180: Determine the cells to be calibrated according to the coverage distances of the cells to be equalized.
其中,步骤180的具体实施方式可以为:在求得全网共覆盖扇区组内各个待均衡小区的覆盖距离后,计算覆盖距离最大值与覆盖距离最小值的比值,若该比值大于预设距离比例,则确定待校正小区。例如,预设距离比例为2,计算得到全网共覆盖扇区组内A、B、C、D小区的覆盖距离分别为100、201、150、130,覆盖距离最大值201与覆盖距离最小值100的比值为2.01,大于预设距离比例2,并且A小区的覆盖距离与C、D小区较为接近,则确定覆盖差异较大的小区为B小区,即B小区为待校正小区。The specific implementation of
步骤190、在将待校正小区进行天线校正后,对待均衡小区进行再次负载均衡。Step 190: After performing antenna calibration on the cells to be calibrated, perform load balancing again on the cells to be balanced.
其中,天线校正可以为调整天线挂高或下倾角。The antenna correction may be to adjust the antenna hanging height or downtilt angle.
本发明实施例通过当实际方位角与其对应的预设方位角的差值小于预设偏差阈值时,计算各待均衡小区的覆盖距离,确定待校正小区,并在将待校正小区进行天线校正后,对待均衡小区进行再次负载均衡,能够对多轮优化后仍无法改善的小区进行分析,判别因天馈覆盖异常造成的负载不均衡,提高了优化效果。In the embodiment of the present invention, when the difference between the actual azimuth angle and the corresponding preset azimuth angle is smaller than the preset deviation threshold, the coverage distance of each cell to be equalized is calculated, the cell to be corrected is determined, and after antenna calibration is performed on the cell to be corrected , the load balancing of the cells to be balanced can be performed again, and the cells that cannot be improved after multiple rounds of optimization can be analyzed, and the unbalanced load caused by the abnormal coverage of the antenna feeder can be judged, which improves the optimization effect.
图7示出了本发明另又一实施例提供的负载均衡方法的流程图。如图7所示,与上述实施例的不同之处在于,在步骤140之前,该方法还包括:FIG. 7 shows a flowchart of a load balancing method provided by another embodiment of the present invention. As shown in FIG. 7 , the difference from the above embodiment is that before
步骤110、获取待均衡小区的历史负载数据。Step 110: Obtain historical load data of the cells to be balanced.
其中,历史负载数据为可以为历史的话务量数据,并且记录有对应的时间,例如至少包括当前是否为节假日、当天所属季节等。例如,历史负载数据为2016年至2018年的每天的话务量数据。The historical load data may be historical traffic data, and the corresponding time is recorded, for example, at least including whether the current day is a holiday, the season to which the current day belongs, and the like. For example, the historical load data is the daily traffic data from 2016 to 2018.
步骤120、将历史负载数据代入预设预测模型,以确定预设预测函数,其中,预设预测函数与时间有关。Step 120: Substitute the historical load data into a preset prediction model to determine a preset prediction function, wherein the preset prediction function is related to time.
其中,预设预测模型为预先设定的计算模型,预设预测模型中设有若干个未知参数,通过将历史负载数据代入预设预测模型,确定未知参数,从而确定预设预测函数。The preset prediction model is a preset calculation model, and the preset prediction model is provided with several unknown parameters. By substituting historical load data into the preset prediction model to determine the unknown parameters, the preset prediction function is determined.
在本实施例中,由于负载具有上涨趋势明显、随季节周期性变化、节假日效应显著等特点,因此,预测预测模型可以包括负载趋势函数模型、周期函数模型和节假日函数模型。In this embodiment, since the load has the characteristics of an obvious upward trend, periodic changes with seasons, and significant holiday effects, the forecasting model may include a load trend function model, a periodic function model, and a holiday function model.
在本实施例中,预测预测模型的计算遵循以下公式:In this embodiment, the calculation of the prediction prediction model follows the following formula:
y(t)=g(t)+s(t)+h(t)+εt y(t)=g(t)+s(t)+h(t)+ε t
其中,y(t)为预测预测模型,g(t)为负载趋势函数模型,s(t)为周期函数模型,h(t)为节假日函数模型,t为当天的日期,εt为偏移误差量。Among them, y(t) is the forecast prediction model, g(t) is the load trend function model, s(t) is the periodic function model, h(t) is the holiday function model, t is the date of the day, ε t is the offset amount of error.
其中,受人口及消费模式显示,可预见未来的负载数据的增长存在一定的上限,因此可用逻辑回归模型拟合负载增长趋势。负载趋势函数模型g(t)可以表示为:Among them, the population and consumption patterns show that there is a certain upper limit for the growth of load data in the foreseeable future, so a logistic regression model can be used to fit the load growth trend. The load trend function model g(t) can be expressed as:
其中,C为承载量,其限定了所能增长的最大值,k为增长率,m为偏移量。C、k、m均为未知参数,通过将历史负载数据代入预设预测模型以进行确定。Among them, C is the carrying capacity, which defines the maximum value that can be increased, k is the growth rate, and m is the offset. C, k, and m are all unknown parameters, which are determined by substituting historical load data into a preset prediction model.
其中,由于时间序列会随着天、周、月、年等变化而呈现季节性的变化,或称周期性的变换,因此可用傅里叶级数模拟每年的季节性分量。周期函数模型s(t)可以表示为:Among them, because the time series will show seasonal changes with the changes of days, weeks, months, years, etc., or periodic transformations, Fourier series can be used to simulate the seasonal components of each year. The periodic function model s(t) can be expressed as:
其中,P表示某个固定的周期,可以由用户根据需要进行设置,例如,在用天为单位的统计数据中,年数据的P=365.25,周数据P=7。N表示希望在模型中使用的这种周期的个数,较大的N值可以拟合出更复杂的周期函数,可以由用户根据需要进行设置。例如,年周期N=10,周周期N=3。Among them, P represents a fixed period, which can be set by the user as required. For example, in the statistical data in days, P=365.25 for annual data and P=7 for weekly data. N represents the number of such cycles that you want to use in the model. A larger N value can fit a more complex periodic function, which can be set by the user as needed. For example, annual period N=10 and weekly period N=3.
其中,由于不同的节假日可以看成相互独立的模型,并且可以为不同的节假日会影响前后一段时间的负载数据,则可以为不同的节假日设置不同的前后窗口值。节假日函数模型h(t)可以表示为:Among them, since different holidays can be regarded as independent models, and different holidays can affect the load data for a period of time before and after, different window values before and after can be set for different holidays. The holiday function model h(t) can be expressed as:
其中,对于节假日i,Di表示该节假日前后窗口时间,全年节假日序列可以用Z(t)矩阵来表示,DL为该年中的最后一个节假日,在实际实现过程中,可以提前将节假日标注在程序中;κ为节假日对负载的影响因子,κ为未知参数,通过将历史负载数据代入预设预测模型以进行确定。Among them, for holiday i, D i represents the window time before and after the holiday, the whole year holiday sequence can be represented by Z (t) matrix, DL is the last holiday in the year, in the actual implementation process, the holiday can be set in advance It is marked in the program; κ is the influence factor of the holiday on the load, and κ is the unknown parameter, which is determined by substituting the historical load data into the preset prediction model.
在步骤120中,进一步包括:步骤121、将历史负载数据分别代入负载趋势函数模型、周期函数模型和节假日函数模型,根据L-BFGS拟牛顿法拟合得到负载趋势函数、周期函数和节假日函数;步骤122、根据负载趋势函数、周期函数和节假日函数,确定预设预测函数。In
其中,根据负载趋势函数、周期函数和节假日函数,确定预设预测函数,具体可以为:首先拟合得到负载趋势函数g(t)、周期函数s(t)和节假日函数h(t),再由g(t)、s(t)和h(t)计算预测出y(t),则得到确定的预设预测函数。Among them, the preset prediction function is determined according to the load trend function, the period function and the holiday function, which may be specifically as follows: first, the load trend function g(t), the period function s(t) and the holiday function h(t) are obtained by fitting, and then y(t) is calculated and predicted by g(t), s(t) and h(t), and then a predetermined preset prediction function is obtained.
步骤130、根据预设预测函数,对待均衡小区进行负载均衡。Step 130: Perform load balancing of the cells to be balanced according to a preset prediction function.
当得到确定的预设预测函数后,可以根据预设预测函数计算出的未来的负载数值,从而根据这个数值提前对待均衡小区进行负载均衡。根据预设预测函数,对待均衡小区进行负载均衡,具体实施方式可以为:根据预设预测函数,增加或减少待均衡小区进行负载均衡的频率。例如,假设A小区和B小区当天负载量大致相同,若根据预设预测函数得到未来三天A小区的负载将上升20%,B小区的负载将下降20%,则提前对A、B小区进行负载均衡,以维持A、B小区的负载量大致相同。又例如,假设每隔一周进行一次负载均衡操作,若根据预设预测函数得到未来一周内的负载量十分不平均,则在未来一周增加进行负载均衡操作的频率。After the determined preset prediction function is obtained, the future load value calculated by the preset prediction function can be used to perform load balancing of the cells to be balanced in advance according to this value. According to the preset prediction function, load balancing is performed on the cells to be balanced. The specific implementation may be: according to the preset prediction function, increasing or decreasing the frequency of performing load balancing in the cells to be balanced. For example, assuming that cell A and cell B have roughly the same load on the day, if the load of cell A will increase by 20% and the load of cell B will decrease by 20% in the next three days according to the preset prediction function, the Load balancing to keep the load of cells A and B roughly the same. For another example, assuming that the load balancing operation is performed every other week, if the load amount in the next week is very uneven according to the preset prediction function, the frequency of the load balancing operation will be increased in the next week.
在一些实施中,该方法还包括:接收白名单信息,并根据白名单信息确定待均衡小区。其中,白名单信息可以为任意频段(例如FDD900频段)、室分3DMIMO等无需均衡的网元信息,可以根据用户的需要自由设置。通过接收白名单信息,能够自由配置不需要均衡的网元,提高负载均衡的灵活性。In some implementations, the method further includes: receiving whitelist information, and determining cells to be equalized according to the whitelist information. The whitelist information can be any frequency band (for example, FDD900 frequency band), room division 3DMIMO and other network element information that does not require equalization, and can be freely set according to user needs. By receiving whitelist information, network elements that do not need balancing can be freely configured, improving the flexibility of load balancing.
在一些实施例中,该方法还包括:接收参数配置信息,并根据参数配置信息对待均衡小区进行负载均衡。其中,参数配置信息可以为各频段利用率加权参数、不均衡问题扇区组高低负荷小区PRB利用率差值门限参数等信息,可以根据用户的需要自由设置。例如,设置频段FDD900的利用率加权参数为1.2,设置频段FDD1800的利用率加权参数为0.9,设置频段F2的利用率加权参数为1.2。通过根据参数配置信息对待均衡小区进行负载均衡,能够实现精细化负载均衡。In some embodiments, the method further includes: receiving parameter configuration information, and performing load balancing on the cells to be balanced according to the parameter configuration information. Wherein, the parameter configuration information may be information such as weighting parameters of each frequency band utilization rate, threshold parameters of PRB utilization rate difference between high and low load cells of unbalanced problem sector groups, etc., which can be freely set according to the needs of users. For example, set the utilization weighting parameter of frequency band FDD900 to 1.2, set the utilization weighting parameter of frequency band FDD1800 to 0.9, and set the utilization weighting parameter of frequency band F2 to 1.2. By performing load balancing on the cells to be balanced according to the parameter configuration information, refined load balancing can be achieved.
在一些实施例中,该方法还包括:生成优化工单,并根据优化工单对待均衡小区进行负载均衡。其中,可以按照以下顺序生成优化工单:一、双向邻区关系核查以及增补工单生成;二、同频段内小区功率核查以及拉平工单生成;三、移动性负载均衡(Mobility LoadBalancing,MLB)参数集核查以及优化工单生成;四、互操作参数集核查以及优化工单生成;五、点对点切换邻区参数(CIO)精细优化。例如,可以参照如图8所示的流程生成优化工单。其中,在计算MLB参数以及互操作参数(A2、A4、A5、CIO等)时,抛弃原有的“小步快跑”模式(每轮优化以例如2dB小步长保守的输出调整方案),而是采用PID控制算法中的比例控制思想,即:M=K*e。其中,M为输出的调整步长,e为小区当前PRB利用率与预设目标PRB利用率的差值,K为比例系数(根据用户经验自由设定)。通过比例控制算法,能够大大提升目标小区PRB利用率的收敛速度,减少迭代优化次数,以提高负载均衡的效率。In some embodiments, the method further includes: generating an optimization work order, and performing load balancing of the cells to be balanced according to the optimization work order. Among them, optimization work orders can be generated in the following order: 1. Two-way neighbor relationship check and supplementary work order generation; 2. Cell power verification in the same frequency band and generation of leveling work orders; 3. Mobility Load Balancing (MLB) Parameter set verification and optimization work order generation; 4. Interoperability parameter set verification and optimization work order generation; 5. Fine optimization of peer-to-peer switching neighborhood parameters (CIO). For example, an optimization work order can be generated with reference to the process shown in FIG. 8 . Among them, when calculating MLB parameters and interoperability parameters (A2, A4, A5, CIO, etc.), discard the original "small step and fast run" mode (each round of optimization uses a conservative output adjustment scheme with small steps of 2dB, for example), Instead, the proportional control idea in the PID control algorithm is adopted, namely: M=K*e. Among them, M is the output adjustment step size, e is the difference between the current PRB utilization rate of the cell and the preset target PRB utilization rate, and K is the proportional coefficient (freely set according to user experience). Through the proportional control algorithm, the convergence speed of the PRB utilization rate of the target cell can be greatly improved, the number of iterative optimizations can be reduced, and the efficiency of load balancing can be improved.
本发明实施例通过获取待均衡小区的历史负载数据,将历史负载数据代入预设预测模型,以确定预设预测函数,根据预设预测函数,对待均衡小区进行负载均衡优化,能够预测负载数据并进行提前优化,提高了自动化程度。The embodiment of the present invention obtains the historical load data of the cells to be balanced, substitutes the historical load data into a preset prediction model to determine a preset prediction function, and performs load balancing optimization on the cells to be balanced according to the preset prediction function, so that the load data can be predicted and the load balance can be optimized. Optimized in advance to improve the degree of automation.
图9示出了本发明实施例提供的负载均衡装置的结构示意图。如图9所示,该装置200包括:问题小区确定模块210、实际方位角计算模块220和第一再优化模块230。FIG. 9 shows a schematic structural diagram of a load balancing apparatus provided by an embodiment of the present invention. As shown in FIG. 9 , the apparatus 200 includes: a problem cell determination module 210 , an actual azimuth angle calculation module 220 and a first re-optimization module 230 .
其中,问题小区确定模块210用于根据待均衡小区的负载均衡结果,从所述待均衡小区确定问题小区;实际方位角计算模块220用于计算所述问题小区的实际方位角;第一再优化模块230用于若所述实际方位角与其对应的预设方位角的差值大于或者等于预设偏差阈值,则在将所述预设方位角调整为所述实际方位角后,对所述待均衡小区进行再次负载均衡。The problem cell determination module 210 is used to determine the problem cell from the cells to be balanced according to the load balancing result of the cells to be balanced; the actual azimuth calculation module 220 is used to calculate the actual azimuth of the problem cell; the first re-optimization Module 230 is configured to, if the difference between the actual azimuth and its corresponding preset azimuth is greater than or equal to a preset deviation threshold, after adjusting the preset azimuth to the actual azimuth, perform a The balancing cell performs load balancing again.
在一种可选的方式中,实际方位角计算模块具体用于:获取所述问题小区的最小化路测数据;根据所述最小化路测数据,获取用户位置数据;根据所述用户位置数据,确定所述问题小区的覆盖中心;根据所述覆盖中心,计算所述问题小区的实际方位角。In an optional manner, the actual azimuth calculation module is specifically configured to: obtain the minimum drive test data of the problem cell; obtain user location data according to the minimized drive test data; and obtain user location data according to the user location data , determine the coverage center of the problem cell; calculate the actual azimuth of the problem cell according to the coverage center.
在一种可选的方式中,实际方位角计算模块具体还用于:根据基于密度聚类的DBSCAN算法对所述用户位置数据进行噪声去除;根据所述最小化路测数据,获取网络覆盖参数;所述根据所述用户位置数据,确定所述问题小区的覆盖中心,具体包括:根据所述用户位置数据以及所述网络覆盖参数,加权平均计算所述问题小区的覆盖中心。In an optional manner, the actual azimuth calculation module is further configured to: remove noise from the user location data according to the DBSCAN algorithm based on density clustering; obtain network coverage parameters according to the minimized drive test data ; the determining the coverage center of the problem cell according to the user location data specifically includes: calculating the coverage center of the problem cell by weighted average according to the user position data and the network coverage parameter.
在一种可选的方式中,所述装置200还包括:覆盖距离计算模块、待校正小区确定模块和第二再优化模块。覆盖距离计算模块用于若所述实际方位角与其对应的预设方位角的差值小于所述预设偏差阈值,则计算各所述待均衡小区的覆盖距离;待校正小区确定模块用于根据各所述待均衡小区的覆盖距离,确定待校正小区;第二再优化模块用于在将所述待校正小区进行天线校正后,对所述待均衡小区进行再次负载均衡。In an optional manner, the apparatus 200 further includes: a coverage distance calculation module, a cell to be corrected determination module, and a second re-optimization module. The coverage distance calculation module is used to calculate the coverage distance of each of the cells to be equalized if the difference between the actual azimuth and its corresponding preset azimuth is less than the preset deviation threshold; The coverage distance of each of the cells to be balanced determines the cells to be calibrated; the second re-optimization module is configured to perform load balancing on the cells to be balanced again after performing antenna calibration on the cells to be calibrated.
在一种可选的方式中,覆盖距离计算模块具体用于获取所述待均衡小区的天线高度以及下倾角;根据所述待均衡小区的天线高度以及下倾角,计算所述待均衡小区的覆盖距离。In an optional manner, the coverage distance calculation module is specifically configured to obtain the antenna height and downtilt angle of the cell to be equalized; calculate the coverage of the cell to be equalized according to the antenna height and downtilt angle of the cell to be equalized distance.
在一种可选的方式中,所述装置200还包括:历史数据获取模块、预测函数确定模块和优化模块。历史数据获取模块用于获取所述待均衡小区的历史负载数据;预测函数确定模块用于将所述历史负载数据代入预设预测模型,以确定预设预测函数,其中,所述预设预测函数与时间有关;优化模块用于根据所述预设预测函数,对所述待均衡小区进行负载均衡。In an optional manner, the apparatus 200 further includes: a historical data acquisition module, a prediction function determination module, and an optimization module. The historical data acquisition module is used to acquire the historical load data of the cells to be balanced; the prediction function determination module is used to substitute the historical load data into a preset prediction model to determine a preset prediction function, wherein the preset prediction function It is related to time; the optimization module is configured to perform load balancing on the cells to be balanced according to the preset prediction function.
在一种可选的方式中,所述预设预测模型包括负载趋势函数模型、周期函数模型和节假日函数模型;则预测函数确定模块具体用于:将所述历史负载数据分别代入所述负载趋势函数模型、所述周期函数模型和所述节假日函数模型,根据L-BFGS拟牛顿法拟合得到负载趋势函数、周期函数和节假日函数;根据所述负载趋势函数、所述周期函数和所述节假日函数,确定所述预设预测函数。In an optional manner, the preset prediction model includes a load trend function model, a periodic function model and a holiday function model; the prediction function determination module is specifically configured to: substitute the historical load data into the load trend respectively The function model, the periodic function model and the holiday function model are fitted according to the L-BFGS quasi-Newton method to obtain a load trend function, a periodic function and a holiday function; according to the load trend function, the periodic function and the holiday function to determine the preset prediction function.
需要说明的是,本发明实施例提供的负载均衡装置是能够执行上述负载均衡方法的装置,则上述负载均衡方法的所有实施例均适用于该装置,且均能达到相同或相似的有益效果。It should be noted that, the load balancing apparatus provided by the embodiment of the present invention is a device capable of executing the above load balancing method, and all embodiments of the above load balancing method are applicable to the apparatus, and can achieve the same or similar beneficial effects.
本发明实施例通过在待均衡小区进行提前负载均衡后,获取问题小区和待校正小区,进行方位角调整或天线校正后,对待均衡小区再次进行负载均衡,不仅能够预测负载数据并进行提前优化,提高了自动化程度,还能够对多轮优化后仍无法改善的小区进行分析,并做天馈优化处理,再次进行负载均衡优化,从而提高负载均衡优化的质量。In the embodiment of the present invention, after performing advance load balancing in the cells to be balanced, the cells in question and the cells to be corrected are acquired, and after azimuth adjustment or antenna correction is performed, the load balancing of the cells to be balanced is performed again, which can not only predict the load data and perform advance optimization, The degree of automation is improved, and the cells that cannot be improved after multiple rounds of optimization can be analyzed, and the antenna feeder optimization can be performed, and the load balancing optimization can be performed again, thereby improving the quality of the load balancing optimization.
本发明实施例提供了一种计算机存储介质,所述存储介质中存储有至少一可执行指令,所述可执行指令使处理器执行上述任意方法实施例中的负载均衡方法。An embodiment of the present invention provides a computer storage medium, where at least one executable instruction is stored in the storage medium, and the executable instruction enables a processor to execute the load balancing method in any of the foregoing method embodiments.
本发明实施例通过在待均衡小区进行负载均衡后,根据待均衡小区的负载均衡结果,从待均衡小区确定问题小区,计算问题小区的实际方位角,若实际方位角与其对应的预设方位角的差值大于或者等于预设偏差阈值,则在将预设方位角调整为实际方位角后,对待均衡小区进行再次负载均衡,能够对多轮优化后仍无法改善的小区进行分析,判别因天馈覆盖异常造成的负载不均衡,提高了优化效果。In the embodiment of the present invention, after performing load balancing in the cells to be balanced, according to the load balancing results of the cells to be balanced, the problem cells are determined from the cells to be balanced, and the actual azimuth angle of the problem cell is calculated. If the difference is greater than or equal to the preset deviation threshold, after adjusting the preset azimuth angle to the actual azimuth angle, the load balancing of the cells to be balanced can be performed again, and the cells that cannot be improved after multiple rounds of optimization can be analyzed. The load imbalance caused by the abnormal feed coverage improves the optimization effect.
本发明实施例通过本发明实施例提供了一种计算机程序产品,所述计算机程序产品包括存储在计算机存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行上述任意方法实施例中的负载均衡方法。The embodiments of the present invention provide a computer program product through the embodiments of the present invention. The computer program product includes a computer program stored on a computer storage medium, and the computer program includes program instructions. When the program instructions are executed by a computer , causing the computer to execute the load balancing method in any of the foregoing method embodiments.
本发明实施例通过在待均衡小区进行负载均衡后,根据待均衡小区的负载均衡结果,从待均衡小区确定问题小区,计算问题小区的实际方位角,若实际方位角与其对应的预设方位角的差值大于或者等于预设偏差阈值,则在将预设方位角调整为实际方位角后,对待均衡小区进行再次负载均衡,能够对多轮优化后仍无法改善的小区进行分析,判别因天馈覆盖异常造成的负载不均衡,提高了优化效果。In the embodiment of the present invention, after performing load balancing in the cells to be balanced, according to the load balancing results of the cells to be balanced, the problem cells are determined from the cells to be balanced, and the actual azimuth angle of the problem cell is calculated. If the difference is greater than or equal to the preset deviation threshold, after adjusting the preset azimuth angle to the actual azimuth angle, the load balancing of the cells to be balanced can be performed again, and the cells that cannot be improved after multiple rounds of optimization can be analyzed. The load imbalance caused by the abnormal feed coverage improves the optimization effect.
图10示出了本发明实施例提供的计算设备的结构示意图,本发明具体实施例并不对计算设备的具体实现做限定。FIG. 10 shows a schematic structural diagram of a computing device provided by an embodiment of the present invention. The specific embodiment of the present invention does not limit the specific implementation of the computing device.
如图10所示,该计算设备可以包括:处理器(processor)302、通信接口(Communications Interface)304、存储器(memory)306、以及通信总线308。As shown in FIG. 10 , the computing device may include: a processor (processor) 302 , a communications interface (Communications Interface) 304 , a memory (memory) 306 , and a
其中:处理器302、通信接口304、以及存储器306通过通信总线308完成相互间的通信。通信接口304,用于与其它设备比如客户端或其它服务器等的网元通信。处理器302,用于执行程序310,具体可以执行上述任意方法实施例中的负载均衡方法。The processor 302 , the
具体地,程序310可以包括程序代码,该程序代码包括计算机操作指令。Specifically, the
处理器302可能是中央处理器CPU,或者是特定集成电路ASIC(ApplicationSpecific Integrated Circuit),或者是被配置成实施本发明实施例的一个或多个集成电路。计算设备包括的一个或多个处理器,可以是同一类型的处理器,如一个或多个CPU;也可以是不同类型的处理器,如一个或多个CPU以及一个或多个ASIC。The processor 302 may be a central processing unit (CPU), or an application specific integrated circuit (ASIC), or one or more integrated circuits configured to implement embodiments of the present invention. The one or more processors included in the computing device may be the same type of processors, such as one or more CPUs; or may be different types of processors, such as one or more CPUs and one or more ASICs.
存储器306,用于存放程序310。存储器306可能包含高速RAM存储器,也可能还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。The memory 306 is used to store the
本发明实施例通过在待均衡小区进行负载均衡后,根据待均衡小区的负载均衡结果,从待均衡小区确定问题小区,计算问题小区的实际方位角,若实际方位角与其对应的预设方位角的差值大于或者等于预设偏差阈值,则在将预设方位角调整为实际方位角后,对待均衡小区进行再次负载均衡,能够对多轮优化后仍无法改善的小区进行分析,判别因天馈覆盖异常造成的负载不均衡,提高了优化效果。In the embodiment of the present invention, after performing load balancing in the cells to be balanced, according to the load balancing results of the cells to be balanced, the problem cells are determined from the cells to be balanced, and the actual azimuth angle of the problem cell is calculated. If the difference is greater than or equal to the preset deviation threshold, after adjusting the preset azimuth angle to the actual azimuth angle, the load balancing of the cells to be balanced can be performed again, and the cells that cannot be improved after multiple rounds of optimization can be analyzed. The load imbalance caused by the abnormal feed coverage improves the optimization effect.
在此提供的算法或显示不与任何特定计算机、虚拟系统或者其它设备固有相关。各种通用系统也可以与基于在此的示教一起使用。根据上面的描述,构造这类系统所要求的结构是显而易见的。此外,本发明实施例也不针对任何特定编程语言。应当明白,可以利用各种编程语言实现在此描述的本发明的内容,并且上面对特定语言所做的描述是为了披露本发明的最佳实施方式。The algorithms or displays provided herein are not inherently related to any particular computer, virtual system, or other device. Various general-purpose systems can also be used with teaching based on this. The structure required to construct such a system is apparent from the above description. Furthermore, embodiments of the present invention are not directed to any particular programming language. It is to be understood that various programming languages may be used to implement the inventions described herein, and that the descriptions of specific languages above are intended to disclose the best mode for carrying out the invention.
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本发明的实施例可以在没有这些具体细节的情况下实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。In the description provided herein, numerous specific details are set forth. It will be understood, however, that embodiments of the invention may be practiced without these specific details. In some instances, well-known methods, structures and techniques have not been shown in detail in order not to obscure an understanding of this description.
类似地,应当理解,为了精简本发明并帮助理解各个发明方面中的一个或多个,在上面对本发明的示例性实施例的描述中,本发明实施例的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。本领域那些技术人员可以理解,可以对实施例中的设备中的模块进行自适应性地改变并且把它们设置在与该实施例不同的一个或多个设备中。可以把实施例中的模块或单元或组件组合成一个模块或单元或组件,以及此外可以把它们分成多个子模块或子单元或子组件。除了这样的特征和/或过程或者单元中的至少一些是相互排斥之外,可以采用任何组合对本说明书(包括伴随的权利要求、摘要和附图)中公开的所有特征以及如此公开的任何方法或者设备的所有过程或单元进行组合。除非另外明确陈述,本说明书(包括伴随的权利要求、摘要和附图)中公开的每个特征可以由提供相同、等同或相似目的的替代特征来代替。Similarly, it is to be understood that, in the above description of exemplary embodiments of the invention, various features of the embodiments of the invention are sometimes grouped together into a single implementation in order to simplify the invention and to aid in the understanding of one or more of the various aspects of the invention. examples, figures, or descriptions thereof. Those skilled in the art will understand that the modules in the device in the embodiment can be adaptively changed and arranged in one or more devices different from the embodiment. The modules or units or components in the embodiments may be combined into one module or unit or component, and further they may be divided into multiple sub-modules or sub-units or sub-assemblies. All features disclosed in this specification (including accompanying claims, abstract and drawings) and any method so disclosed may be employed in any combination, unless at least some of such features and/or procedures or elements are mutually exclusive. All processes or units of equipment are combined. Each feature disclosed in this specification (including accompanying claims, abstract and drawings) may be replaced by alternative features serving the same, equivalent or similar purpose, unless expressly stated otherwise.
此外,本领域的技术人员能够理解,尽管在此的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本发明的范围之内并且形成不同的实施例。例如,在权利要求书中所要求保护的实施例的任意之一都可以以任意的组合方式来使用。Furthermore, it will be understood by those skilled in the art that although some of the embodiments herein include certain features, but not others, included in other embodiments, that combinations of features of the different embodiments are intended to be within the scope of the present invention And form different embodiments. For example, any of the embodiments claimed in the claims may be used in any combination.
应该注意的是上述实施例对本发明进行说明而不是对本发明进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本发明可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。上述实施例中的步骤,除有特殊说明外,不应理解为对执行顺序的限定。It should be noted that the above-described embodiments illustrate rather than limit the invention, and that alternative embodiments may be devised by those skilled in the art without departing from the scope of the appended claims. In the claims, any reference signs placed between parentheses shall not be construed as limiting the claim. The word "comprising" does not exclude the presence of elements or steps not listed in a claim. The word "a" or "an" preceding an element does not exclude the presence of a plurality of such elements. The invention can be implemented by means of hardware comprising several different elements and by means of a suitably programmed computer. In a unit claim enumerating several means, several of these means may be embodied by one and the same item of hardware. The use of the words first, second, and third, etc. do not denote any order. These words can be interpreted as names. The steps in the above embodiments should not be construed as limitations on the execution order unless otherwise specified.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910854702.9A CN112566143B (en) | 2019-09-10 | 2019-09-10 | Load balancing method, device and computing device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910854702.9A CN112566143B (en) | 2019-09-10 | 2019-09-10 | Load balancing method, device and computing device |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN112566143A CN112566143A (en) | 2021-03-26 |
| CN112566143B true CN112566143B (en) | 2022-07-12 |
Family
ID=75029012
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201910854702.9A Active CN112566143B (en) | 2019-09-10 | 2019-09-10 | Load balancing method, device and computing device |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN112566143B (en) |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN113133058B (en) * | 2021-04-07 | 2024-08-02 | 中国移动通信集团陕西有限公司 | Load balancing method, device and system |
| CN113553234A (en) * | 2021-07-19 | 2021-10-26 | 神策网络科技(北京)有限公司 | Data Anomaly Detection Methods |
| CN114169568A (en) * | 2021-11-03 | 2022-03-11 | 国网浙江省电力有限公司瑞安市供电公司 | Prophet model-based power distribution line current prediction and heavy overload early warning and system |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101873596A (en) * | 2009-04-27 | 2010-10-27 | 中兴通讯股份有限公司 | Method and system for optimizing network coverage and capacity |
| CN102202351A (en) * | 2011-06-13 | 2011-09-28 | 北京邮电大学 | Method for optimizing load balance among cells |
| CN104918262A (en) * | 2014-03-11 | 2015-09-16 | 华为技术有限公司 | Network optimization method and apparatus |
| CN106792913A (en) * | 2017-01-19 | 2017-05-31 | 努比亚技术有限公司 | A kind of load-balancing method and device |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2014146700A1 (en) * | 2013-03-19 | 2014-09-25 | Nokia Solutions And Networks Oy | Methods and apparatus for antenna tilt optimization |
-
2019
- 2019-09-10 CN CN201910854702.9A patent/CN112566143B/en active Active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101873596A (en) * | 2009-04-27 | 2010-10-27 | 中兴通讯股份有限公司 | Method and system for optimizing network coverage and capacity |
| CN102202351A (en) * | 2011-06-13 | 2011-09-28 | 北京邮电大学 | Method for optimizing load balance among cells |
| CN104918262A (en) * | 2014-03-11 | 2015-09-16 | 华为技术有限公司 | Network optimization method and apparatus |
| CN106792913A (en) * | 2017-01-19 | 2017-05-31 | 努比亚技术有限公司 | A kind of load-balancing method and device |
Non-Patent Citations (3)
| Title |
|---|
| Concurrent Optimization of Coverage, Capacity, and Load Balance in HetNets Through Soft and Hard Cell Association Parameters;Ahmad Asghar et al.;《IEEE Transactions on Vehicular Technology 》;20180612;全文 * |
| LTE网络结构优化分析;庞亮 等;《数字通信世界》;20160901(第09期);全文 * |
| 自动扇区规划(ACP)中进化类算法的应用研究;隋翔;《中国优秀硕士学位论文全文数据库 信息科技辑》;20150815;全文 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN112566143A (en) | 2021-03-26 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN109379752B (en) | Optimization method, apparatus, device and medium for Massive MIMO | |
| CN108306699B (en) | Antenna feeder optimization method based on gain estimation | |
| CN112566143B (en) | Load balancing method, device and computing device | |
| CN109495899B (en) | Antenna parameter optimization method and device, electronic equipment and storage medium | |
| CN101800995B (en) | Method and equipment for determining cell relationship, and method and equipment for planning frequency | |
| CN113965942B (en) | A network configuration method and device | |
| CN1951027A (en) | Location determination and location tracking in wireless networks | |
| CN111328103B (en) | Method and device for adjusting antenna coverage | |
| CN112291844B (en) | Positioning method and device based on MR and MDT | |
| CN112950243A (en) | 5G station address planning method and device, electronic equipment and storage medium | |
| CN112867147B (en) | Positioning method and positioning device | |
| CN111148111B (en) | Method, device and equipment for adjusting antenna parameters and computer storage medium | |
| WO2022156226A1 (en) | Antenna configuration parameter optimization method and apparatus, and storage medium | |
| CN109981195A (en) | The processing method and processing device of wireless signal strength | |
| CN111818550B (en) | Method, device and device for predicting network coverage | |
| CN113131974A (en) | Method and device for automatically optimizing antenna weight based on 3DMIMO | |
| TW202341681A (en) | Beam domain based localization system and method | |
| CN117202319A (en) | A base station selection method, device, electronic equipment and storage medium | |
| WO2021238346A1 (en) | Coverage indicator prediction method, model training method and apparatus, device, and medium | |
| CN114339913B (en) | Neighbor cell updating method and device of wireless network, medium and electronic equipment | |
| CN113038485B (en) | MDT data-based base station cell power parameter calculation method and device | |
| CN103402209A (en) | Method and system for optimizing network based on coverage conditions of macro base station cell | |
| CN112929907B (en) | Method and device for determining antenna parameters | |
| CN119255265A (en) | Robust network optimization method, related device and medium | |
| CN112434885A (en) | Service prediction method and device for energy-saving cell |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |