CN112101186A - Apparatus and method for vehicle driver identification and application thereof - Google Patents
Apparatus and method for vehicle driver identification and application thereof Download PDFInfo
- Publication number
- CN112101186A CN112101186A CN202010953462.0A CN202010953462A CN112101186A CN 112101186 A CN112101186 A CN 112101186A CN 202010953462 A CN202010953462 A CN 202010953462A CN 112101186 A CN112101186 A CN 112101186A
- Authority
- CN
- China
- Prior art keywords
- face
- nir light
- nir
- sensing unit
- light sensing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/16—Human faces, e.g. facial parts, sketches or expressions
- G06V40/161—Detection; Localisation; Normalisation
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/10—Image acquisition
- G06V10/12—Details of acquisition arrangements; Constructional details thereof
- G06V10/14—Optical characteristics of the device performing the acquisition or on the illumination arrangements
- G06V10/141—Control of illumination
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/10—Image acquisition
- G06V10/12—Details of acquisition arrangements; Constructional details thereof
- G06V10/14—Optical characteristics of the device performing the acquisition or on the illumination arrangements
- G06V10/143—Sensing or illuminating at different wavelengths
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/59—Context or environment of the image inside of a vehicle, e.g. relating to seat occupancy, driver state or inner lighting conditions
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/16—Human faces, e.g. facial parts, sketches or expressions
- G06V40/172—Classification, e.g. identification
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Human Computer Interaction (AREA)
- Image Analysis (AREA)
Abstract
一种用于车辆驾驶员识别的装置包括:NIR LED照明器,被配置为在车辆中发射NIR光;NIR光感测单元,被配置为捕获反射的NIR光;图像控制和处理单元,被配置为协调NIR LED照明器和NIR光感测单元,并分析反射的NIR光,以生成图像;脸部检测器,被配置为确定图像中存在人脸,并识别脸部区域;脸部特征提取器,被配置为分析脸部区域,以提取表示脸部区域的特征向量;脸部特征字典,被配置为存储现有特征向量;脸部检索系统,被配置为生成识别结果,指示特征向量与任何现有特征向量之间的相似度是否大于第一阈值;以及用户界面,被配置为显示识别结果。
An apparatus for vehicle driver identification includes: a NIR LED illuminator configured to emit NIR light in a vehicle; a NIR light sensing unit configured to capture reflected NIR light; and an image control and processing unit configured To coordinate the NIR LED illuminator and the NIR light sensing unit, and to analyze the reflected NIR light to generate an image; a face detector, configured to determine the presence of a human face in the image, and to identify face regions; a facial feature extractor , is configured to analyze the face region to extract feature vectors representing the face region; the face feature dictionary is configured to store the existing feature vectors; the face retrieval system is configured to generate recognition results indicating that the feature vectors are related to any whether the similarity between the existing feature vectors is greater than a first threshold; and a user interface configured to display the recognition result.
Description
技术领域technical field
本发明总体上涉及人工智能,并且更具体地涉及一种用于舱内(in-cabin)驾驶员识别的装置和方法及其应用。The present invention relates generally to artificial intelligence, and more particularly to an apparatus and method for in-cabin driver identification and applications thereof.
背景技术Background technique
本文提供的背景技术描述是为了总体上呈现本发明的背景。在发明的背景技术部分中讨论的主题不应由于在发明的背景技术部分中被提及,就被认为是现有技术。类似地,在本发明的背景技术部分中提到的问题或与本发明的背景技术部分的主题相关联的问题不应被认为是现有技术中先前已经认识到的。发明的背景技术部分中的主题仅表示不同的方法,这些方法本身也可以是发明。The background description provided herein is for the purpose of generally presenting the context of the invention. Subject matter discussed in the Background of the Invention section should not be admitted to be prior art by virtue of its mention in the Background of the Invention section. Similarly, problems raised in the Background of the Invention or problems associated with the subject matter of the Background of the Invention should not be regarded as having been previously recognized in the prior art. The subject matter in the Background of the Invention section is merely indicative of various approaches, which may themselves be inventions.
在一组人中区分个人身份的人识别是许多应用中的关键功能。这种识别需要从一组目标人群收集生物特征。这样的生物信息的良好收集,更具体地,此类收集数据的良好统计分布,要求每个数据点在其特征空间中具有统计上明显的分离。Person recognition, which distinguishes individuals among a group of people, is a critical function in many applications. This identification requires the collection of biometrics from a set of target populations. A good collection of such biological information, and more specifically, a good statistical distribution of such collected data, requires that each data point have a statistically significant separation in its feature space.
舱内驾驶员识别(驾驶员ID)最近在汽车工业中引起了越来越多的关注,因为它具有为车辆启用众多智能或安全功能的潜力。例如,舱内驾驶员识别可以用作车辆钥匙的替代品,以提供流畅的无钥匙进入体验,或提供其他触发警报,以防任何非法进入。此外,舱内驾驶员识别还基于驾驶员的喜好,诸如座椅位置,车内温度,后视镜角度等,为车辆配备了各种自定义设置。最近,舱内驾驶员识别还被用作许多舱内娱乐系统或界面的输入。借助驾驶员ID的知识,车辆的嵌入式系统可以提供自定义的娱乐功能,诸如播放驾驶员喜欢的专辑,个性化路线导航以及为向驾驶员提供喜欢的新闻频道。In-cabin driver identification (driver ID) has recently attracted increasing attention in the automotive industry due to its potential to enable numerous smart or safety features for vehicles. For example, in-cabin driver identification can be used as a substitute for a vehicle key to provide a smooth keyless entry experience, or provide other trigger alerts to prevent any unauthorized entry. Additionally, in-cab driver recognition equips the vehicle with various custom settings based on driver preferences such as seat position, interior temperature, mirror angle, and more. More recently, in-cabin driver identification has also been used as an input to many in-cabin entertainment systems or interfaces. With knowledge of the driver ID, the vehicle's embedded system can provide customized entertainment features such as playing the driver's favorite album, personalizing route navigation, and providing the driver with a favorite news channel.
在该行业中,主要有两种类型的人识别:侵入式和非接触式。侵入式方法通常需要对生物特征,诸如与个人识别明确相关的DNA指纹,进行直接测量。侵入式方法在识别的精确度方面是出众的。但是,这些方法严重依靠控制良好的实验室环境、昂贵的设备以及较长的测试时间。此外,侵入式方法要求系统与个人身体之间直接接触的属性可能会导致令人不快和令人讨厌的体验。因此,如果将侵入式方法应用于包括车辆舱内的设置在内的大多数实时应用中,即使并非不可能,这种方法的时间要求和成本也使其变得不切实际。In the industry, there are two main types of person identification: invasive and contactless. Invasive methods often require direct measurement of biometrics, such as DNA fingerprints that are clearly associated with personal identification. Intrusive methods are superior in the accuracy of identification. However, these methods rely heavily on a well-controlled laboratory environment, expensive equipment, and long testing times. Furthermore, the nature of invasive methods that require direct contact between the system and the individual's body can lead to unpleasant and annoying experiences. Therefore, the time requirements and cost of the invasive approach make it impractical, if not impossible, if applied to most real-time applications, including settings in the vehicle cabin.
非接触式方法试图基于生物特征的间接测量来识别个体,例如脚印、笔迹或脸部识别。大多数非接触式人识别技术不需要昂贵的设备和高技能的专业人员,从而大大降低了成本。Contactless methods attempt to identify individuals based on indirect measurements of biometrics, such as footprints, handwriting, or facial recognition. Most contactless person recognition technologies do not require expensive equipment and highly-skilled professionals, greatly reducing costs.
在所有这些非接触式技术中,基于相机的人识别引起了学术界和工业界极大的兴趣。基于相机的人识别仅依靠相机模块和后续的包含特定算法的计算模块来区分个体。这些算法旨在从输入图像中提取显著特征,然后基于先前学习的特征字典中的相似性或相异性进行决策。这些特征可以从各种特征,例如身体姿势、身高、体重、皮肤和运动模式等,中提取出来。行业内,尤其是在汽车舱内的应用中,广泛采用的最具鲁棒性和最精确的基于相机的识别方法是脸部识别技术。Among all these contactless technologies, camera-based person recognition has attracted great interest from both academia and industry. Camera-based person recognition relies solely on a camera module and subsequent computational modules containing specific algorithms to distinguish individuals. These algorithms aim to extract salient features from input images and then make decisions based on similarities or dissimilarities in a previously learned dictionary of features. These features can be extracted from various features such as body pose, height, weight, skin and movement patterns, etc. The most robust and accurate camera-based recognition method widely adopted in the industry, especially in automotive cabin applications, is facial recognition technology.
舱内驾驶员脸部识别是一项新兴技术,可为驾驶员的识别问题提供无接触且准确的解决方案。舱内驾驶员脸部识别使用相机捕获脸部生物特征信息,并将其与存储的脸部信息库进行比较,以找到最佳匹配。如所说的,该系统应该包括两个模块:脸部特征库和脸部识别模块。脸部特征库可以注册新的脸部信息或删除现有的脸部信息。脸部识别模块通过相机捕获图像,使用设计的算法提取特征,并在预先构建的脸部特征库中找到最佳匹配。第一个过程称为脸部注册,而第二个过程称为脸部检索。In-cabin driver facial recognition is an emerging technology that provides a contactless and accurate solution to driver identification problems. In-cab driver facial recognition uses a camera to capture facial biometric information and compares it to a library of stored facial information to find the best match. As said, the system should include two modules: face feature library and face recognition module. The facial feature database can register new facial information or delete existing facial information. The face recognition module captures images through a camera, extracts features using a designed algorithm, and finds the best match in a library of pre-built facial features. The first process is called face registration, while the second is called face retrieval.
但是,舱内脸部识别在很多方面与普通脸部识别从根本上是不同的。首先,舱内基于相机的脸部识别必须在所有照明条件下(包括在漆黑的环境中)都具有鲁棒性。不同于大多数在室外良好照明的场景下或假设室内照明得到良好控制的脸部识别设置,舱内脸部识别在成像和图像质量方面带来了更多挑战。即使对于受到不足照明的户外识别应用,也可以容易地加入强光补偿。然而,舱内照明是困难的,这是因为舱内设备对功耗非常敏感,由于与普通的脸部识别设备相比其尺寸较小,功耗可能导致严重的发热。此外,用于更好成像的补偿光源对人眼可见,会给车辆驾驶员带来不愉快的体验。以驾驶员脸部为目标且对人眼可见的强光不仅伤害人眼,而且会分散注意力,可能导致交通事故。However, in-cabin facial recognition is fundamentally different from normal facial recognition in many ways. First, in-cabin camera-based facial recognition must be robust in all lighting conditions, including in pitch darkness. Unlike most face recognition setups in well-lit outdoor scenes or assuming well-controlled indoor lighting, in-cabin face recognition presents additional challenges in imaging and image quality. Even for under-illuminated outdoor identification applications, glare compensation can easily be added. However, in-cabin lighting is difficult because in-cabin devices are very sensitive to power consumption, which can cause severe heating due to their small size compared to common face recognition devices. In addition, the compensated light source for better imaging is visible to the human eye, creating an unpleasant experience for the vehicle driver. Strong light that is visible to the human eye and targeted at the driver's face is not only harmful to the human eye, but also distracting and can lead to traffic accidents.
除了成像方面的挑战外,舱内脸部识别在使用受限制计算资源进行操作的方式上也很独特。包括脸部注册和检索在内的舱内脸部识别需要消耗最少的计算资源,因为所有算法都在嵌入式系统,即电子控制单元(ECU),中运行,而嵌入式系统仅配备了有限的计算能力。与包含在强大的本地服务器或甚至具有理论上无限的计算能力的在线云中的一般脸部识别方法相比,ECU在可扩展性和实时性能方面几乎没有优势。为了生产实用的舱内脸部识别系统,用于脸部识别的算法设计应非常谨慎,以减少代码计算量。In addition to the imaging challenges, in-cabin facial recognition is also unique in the way it operates using constrained computing resources. In-cab facial recognition, including face registration and retrieval, requires minimal computational resource consumption because all algorithms are run in embedded systems, the electronic control units (ECUs), which are equipped with only limited Calculate ability. Compared to general face recognition methods contained in powerful local servers or even online clouds with theoretically unlimited computing power, ECUs have few advantages in terms of scalability and real-time performance. In order to produce a practical in-cabin facial recognition system, the algorithm design for facial recognition should be very careful to reduce the amount of code computation.
第三,舱内脸部识别在车辆中起着非常特殊的作用,因为它是各种模块的输入,同时也需要在用户界面中很好地呈现。如前所述,脸部识别的结果应连接到各种功能模块,并传输到诸如嵌入式显示器、平视显示器或仪表板等车辆显示器。脸部识别系统与其他模块的复杂连接性进一步增加了设计此类系统的难度。Third, in-cabin facial recognition plays a very specific role in the vehicle, as it is an input to various modules and also needs to be well presented in the user interface. As mentioned earlier, the results of facial recognition should be connected to various functional modules and transmitted to vehicle displays such as embedded displays, head-up displays or dashboards. The complex connectivity of facial recognition systems to other modules further adds to the difficulty of designing such systems.
与相机位于车外的其他识别场景相比,舱内脸部识别有所不同。例如,车外监视识别系统可以只捕获一个或最多几个用于ID注册的图像,而舱内应通过从多角度捕获目标脸部的多个图像来实现更高的精确度。通过从更多角度捕获图像,无论驾驶员的头部姿势如何,系统都可以更全面地了解驾驶员的脸部,从而使识别变得更具鲁棒性。In-cab facial recognition is different compared to other recognition scenarios where the camera is located outside the car. For example, an off-board surveillance recognition system can capture only one or at most a few images for ID registration, while the inside of the cabin should achieve greater accuracy by capturing multiple images of the target's face from multiple angles. By capturing images from more angles, regardless of the driver's head pose, the system can gain a more complete picture of the driver's face, making recognition more robust.
因此,在本领域中存在解决上述缺陷和不足的需求,但迄今仍未解决。Accordingly, there is a need in the art to address the above-mentioned deficiencies and deficiencies, but heretofore unaddressed.
发明内容SUMMARY OF THE INVENTION
本发明涉及用于可视化车辆周围物体的潜在行为的装置和方法。The present invention relates to an apparatus and method for visualizing the underlying behavior of objects around a vehicle.
在本发明的一个方面中,一种用于车辆驾驶员识别的装置包括:近红外(NIR)发光二极管(LED)照明器,被配置为在车辆中发射NIR光;近红外(NIR)光感测单元,被配置为捕获反射的NIR光;图像控制和处理单元,被配置为协调NIR LED照明器和NIR光感测单元,并分析由NIR光感测单元捕获的反射的NIR光,以生成图像;脸部检测器,被配置为确定图像中存在人脸,并识别人脸的脸部区域;脸部特征提取器,被配置为分析脸部区域,以提取表示脸部区域的特征向量;脸部特征字典,被配置为存储现有特征向量;脸部检索系统,被配置为生成识别结果,所述识别结果指示特征向量与任何现有特征向量之间的相似度是否大于第一阈值;以及用户界面,被配置为显示识别结果。In one aspect of the invention, an apparatus for vehicle driver identification includes: a near infrared (NIR) light emitting diode (LED) illuminator configured to emit NIR light in a vehicle; a near infrared (NIR) light sensor a detection unit configured to capture reflected NIR light; an image control and processing unit configured to coordinate the NIR LED illuminator and the NIR light sensing unit and analyze the reflected NIR light captured by the NIR light sensing unit to generate an image; a face detector configured to determine the presence of a human face in the image and to identify a face region of the human face; a facial feature extractor configured to analyze the face region to extract feature vectors representing the face region; a face feature dictionary configured to store existing feature vectors; a face retrieval system configured to generate a recognition result indicating whether the similarity between the feature vector and any existing feature vector is greater than a first threshold; and a user interface, configured to display the recognition results.
在一个实施例中,NIR光感测单元是焦平面阵列(FPA)NIR光感测单元。In one embodiment, the NIR light sensing unit is a focal plane array (FPA) NIR light sensing unit.
在一个实施例中,NIR光感测单元覆盖有滤光器,该滤光器具有在825nm至875nm之间的通频带。在另一个实施例中,NIR光感测单元覆盖有滤光器,该滤光器具有在915nm至965nm之间的通频带。In one embodiment, the NIR light sensing unit is covered with a filter having a passband between 825nm and 875nm. In another embodiment, the NIR light sensing unit is covered with a filter having a passband between 915nm and 965nm.
在一个实施例中,图像控制和处理单元被配置为通过控制NIR LED照明器的占空比、NIR光感测单元的模拟增益、NIR光感测单元的数字增益、NIR光感测单元的曝光时间以及NIR光感测单元的帧率中的一项或多项来协调NIR LED照明器和NIR光感测单元。In one embodiment, the image control and processing unit is configured to control the duty cycle of the NIR LED illuminator, the analog gain of the NIR light sensing unit, the digital gain of the NIR light sensing unit, the exposure of the NIR light sensing unit One or more of time and the frame rate of the NIR light sensing unit to coordinate the NIR LED illuminator and the NIR light sensing unit.
在一个实施例中,图像控制和处理单元被配置为协调NIR LED照明器和NIR光感测单元,以生成具有最佳成像质量的图像。In one embodiment, the image control and processing unit is configured to coordinate the NIR LED illuminator and the NIR light sensing unit to generate images with optimal imaging quality.
在一个实施例中,脸部检测器被配置为采用深度神经网络(DNN)确定图像中存在人脸,并识别人脸的脸部区域。在一个实施例中,深度神经网络是多任务卷积神经网络(MTCNN)。在另一个实施例中,深度神经网络是快速的基于区域的卷积神经网络(Fast R-CNN)。In one embodiment, the face detector is configured to employ a deep neural network (DNN) to determine the presence of a human face in the image and to identify the facial region of the human face. In one embodiment, the deep neural network is a multi-task convolutional neural network (MTCNN). In another embodiment, the deep neural network is a Fast Region-based Convolutional Neural Network (Fast R-CNN).
在一个实施例中,该设备还包括脸部对齐单元。脸部对齐单元被配置为将脸部区域校准为与驾驶员的直立姿势相关联的校准的脸部区域,其中,脸部特征提取器被配置为分析校准的脸部区域,以提取表示校准的脸部区域的特征向量。In one embodiment, the apparatus further includes a face alignment unit. The face alignment unit is configured to calibrate the face region to a calibrated face region associated with the driver's upright posture, wherein the facial feature extractor is configured to analyze the calibrated face region to extract a representative of the calibration The feature vector of the face region.
在一个实施例中,脸部特征提取器被配置为采用骨干网络、局部特征描述符、聚类技术以及降维技术中的一项或多项。In one embodiment, the facial feature extractor is configured to employ one or more of backbone networks, local feature descriptors, clustering techniques, and dimensionality reduction techniques.
在一个实施例中,相似度是余弦相似度。In one embodiment, the similarity is cosine similarity.
在本发明的另一方面,一种用于车辆驾驶员识别的方法包括:通过近红外(NIR)发光二极管(LED)照明器在车辆中发射NIR光;通过近红外(NIR)光感测单元捕获反射的NIR光;通过图像控制和处理单元协调NIR LED照明器和NIR光感测单元;通过图像控制和处理单元对由NIR光感测单元捕获的反射的NIR光进行分析,以生成图像;确定图像中存在人脸;识别人脸的脸部区域;分析脸部区域,以提取表示脸部区域的特征向量;确定特征向量与脸部特征字典中的任何现有特征向量之间的相似度是否大于第一阈值;当特征向量与脸部特征字典中的第一现有特征向量之间的相似度大于第一阈值时,生成指示与所述第一现有特征向量相关联的标识的第一识别结果;以及显示第一识别结果;当所述特征向量与所述脸部特征字典中的任何现有特征向量之间的相似度不大于第一阈值时,生成指示所述特征向量不存在于所述脸部特征字典中的第二识别结果;显示第二识别结果;以及在脸部特征字典中存储脸部特征。In another aspect of the present invention, a method for vehicle driver identification includes: emitting NIR light in a vehicle through a near-infrared (NIR) light emitting diode (LED) illuminator; and through a near-infrared (NIR) light sensing unit capturing reflected NIR light; coordinating the NIR LED illuminator and NIR light sensing unit by the image control and processing unit; analyzing the reflected NIR light captured by the NIR light sensing unit by the image control and processing unit to generate an image; Determine the presence of a face in the image; identify the face region of the face; analyze the face region to extract a feature vector representing the face region; determine the similarity between the feature vector and any existing feature vector in the face feature dictionary Whether it is greater than the first threshold value; when the similarity between the feature vector and the first existing feature vector in the face feature dictionary is greater than the first threshold value, generate the first existing feature vector indicating the identification associated with the first existing feature vector. a recognition result; and displaying a first recognition result; when the similarity between the feature vector and any existing feature vector in the face feature dictionary is not greater than a first threshold, generating an indication that the feature vector does not exist storing the second recognition result in the facial feature dictionary; displaying the second recognition result; and storing the facial feature in the facial feature dictionary.
在一个实施例中,NIR光感测单元是焦平面阵列(FPA)NIR光感测单元。In one embodiment, the NIR light sensing unit is a focal plane array (FPA) NIR light sensing unit.
在一个实施例中,NIR光感测单元覆盖有滤光器,该滤光器具有在825nm至875nm之间的通频带。在另一个实施例中,NIR光感测单元覆盖有滤光器,该滤光器具有在915nm至965nm之间的通频带。In one embodiment, the NIR light sensing unit is covered with a filter having a passband between 825nm and 875nm. In another embodiment, the NIR light sensing unit is covered with a filter having a passband between 915nm and 965nm.
在一个实施例中,图像控制和处理单元通过控制NIR LED照明器的占空比、NIR光感测单元的模拟增益、NIR光感测单元的数字增益、NIR光感测单元的曝光时间以及NIR光感测单元的帧率中的一项或多项协调NIR LED照明器和NIR光感测单元。In one embodiment, the image control and processing unit controls the duty cycle of the NIR LED illuminator, the analog gain of the NIR light sensing unit, the digital gain of the NIR light sensing unit, the exposure time of the NIR light sensing unit, and the NIR One or more of the frame rates of the light sensing unit coordinate the NIR LED illuminator and the NIR light sensing unit.
在一个实施例中,图像控制和处理单元协调NIR LED照明器和NIR光感测单元,以生成具有最佳成像质量的图像。In one embodiment, the image control and processing unit coordinates the NIR LED illuminator and the NIR light sensing unit to generate images with optimal imaging quality.
在一个实施例中,通过采用深度神经网络(DNN)确定图像中存在人脸并识别人脸的脸部区域。在一个实施例中,深度神经网络是多任务卷积神经网络(MTCNN)。在一个实施例中,深度神经网络是快速的基于区域的卷积神经网络(Fast R-CNN)。In one embodiment, the presence of a human face in the image is determined by employing a deep neural network (DNN) and the facial region of the human face is identified. In one embodiment, the deep neural network is a multi-task convolutional neural network (MTCNN). In one embodiment, the deep neural network is a Fast Region-based Convolutional Neural Network (Fast R-CNN).
在一个实施例中,该方法还包括:将脸部区域校准为与驾驶员的直立姿势相关联的校准的脸部区域,其中,校准的脸部区域被分析,以提取表示校准的脸部区域的特征向量。In one embodiment, the method further comprises: calibrating the face region to a calibrated face region associated with the driver's upright posture, wherein the calibrated face region is analyzed to extract a face region representing the calibration eigenvectors of .
在一个实施例中,通过采用骨干网络、局部特征描述符、聚类技术以及降维技术中的一项或多项分析脸部区域以提取表示脸部区域的特征向量。In one embodiment, the facial regions are analyzed by employing one or more of backbone networks, local feature descriptors, clustering techniques, and dimensionality reduction techniques to extract feature vectors representing the facial regions.
在一个实施例中,相似度是余弦相似度。In one embodiment, the similarity is cosine similarity.
在另一方面,本发明涉及一种存储指令的非暂时性有形计算机可读介质,所述指令在由一个或多个处理器执行时,使车辆驾驶员识别的方法得以执行。该方法包括:通过近红外(NIR)发光二极管(LED)照明器在车辆中发射NIR光;通过近红外(NIR)光感测单元捕获反射的NIR光;通过图像控制和处理单元协调NIR LED照明器和NIR光感测单元;通过图像控制和处理单元对由NIR光感测单元捕获的反射的NIR光进行分析,以生成图像;确定图像中存在人脸;识别人脸的脸部区域;分析脸部区域,以提取表示脸部区域的特征向量;确定特征向量与脸部特征字典中的任何现有特征向量之间的相似度是否大于第一阈值;当所述特征向量与脸部特征字典中的第一现有特征向量之间的相似度大于第一阈值时,生成指示与所述第一现有特征向量相关联的标识的第一识别结果;以及显示第一识别结果;当所述特征向量与脸部特征字典中的任何现有特征向量之间的相似度不大于第一阈值时,生成指示所述特征向量不存在于所述脸部特征字典中的第二识别结果;显示第二识别结果;以及在脸部特征字典中存储脸部特征。In another aspect, the invention relates to a non-transitory tangible computer-readable medium storing instructions that, when executed by one or more processors, cause a method of vehicle driver identification to be performed. The method includes: emitting NIR light in a vehicle via a near-infrared (NIR) light emitting diode (LED) illuminator; capturing the reflected NIR light via a near-infrared (NIR) light sensing unit; and coordinating the NIR LED lighting via an image control and processing unit and NIR light sensing unit; analyze reflected NIR light captured by the NIR light sensing unit by the image control and processing unit to generate an image; determine the presence of a human face in the image; identify the face area of the human face; analyze face region to extract feature vectors representing the face region; determine whether the similarity between the feature vector and any existing feature vector in the face feature dictionary is greater than a first threshold; when the feature vector and the face feature dictionary When the degree of similarity between the first existing feature vectors in is greater than a first threshold, generating a first recognition result indicating an identification associated with the first existing feature vector; and displaying the first recognition result; when the When the similarity between the feature vector and any existing feature vector in the face feature dictionary is not greater than the first threshold, generate a second recognition result indicating that the feature vector does not exist in the face feature dictionary; display the first recognition result. two recognition results; and storing the facial features in the facial feature dictionary.
从以下结合附图对优选实施例的描述中,本发明的这些和其他方面将变得显而易见,尽管其中的变化和修改在不脱离本公开的新颖概念的精神和范围的情况下会受到影响。These and other aspects of the present invention will become apparent from the following description of the preferred embodiments, taken in conjunction with the accompanying drawings, although changes and modifications therein may be effected without departing from the spirit and scope of the novel concepts of this disclosure.
附图说明Description of drawings
附图示出了本发明的一个或多个实施例,并且与书面描述一起来解释本发明的原理。在所有附图中可以使用相同的附图标记指示实施例中的相同或相似的元件。The drawings illustrate one or more embodiments of the invention, and together with the written description serve to explain the principles of the invention. The same reference numbers may be used throughout the drawings to refer to the same or like elements of the embodiments.
图1示意性地示出了根据本发明的一个实施例的用于车辆驾驶员识别的系统的整体架构。FIG. 1 schematically shows the overall architecture of a system for vehicle driver identification according to an embodiment of the present invention.
图2示意性地示出了根据本发明的一个实施例的使用用于车辆驾驶员识别的系统进行脸部注册的流程图。FIG. 2 schematically shows a flow chart of face registration using a system for vehicle driver identification according to an embodiment of the present invention.
图3示意性地示出了根据本发明的一个实施例的使用用于车辆驾驶员识别的系统进行脸部检索的流程图。FIG. 3 schematically shows a flow chart of face retrieval using a system for vehicle driver identification according to an embodiment of the present invention.
图4示意性地示出了根据本发明的一个实施例的用于车辆驾驶员识别的方法的流程图。FIG. 4 schematically shows a flowchart of a method for vehicle driver identification according to an embodiment of the present invention.
图5示意性地示出了根据本发明一个实施例的用于车辆驾驶员识别的方法的流程图。FIG. 5 schematically shows a flowchart of a method for vehicle driver identification according to an embodiment of the present invention.
具体实施方式Detailed ways
现在将参考附图在下文中更全面地描述本发明,附图中示出的是本发明的示例性实施例。然而,本发明可以体现为许多不同的形式,并且不应被解释为限于这里阐述的实施例。相反,提供这些实施例是为了使本发明更加彻底和完整,并充分地将本发明的范围传达给本领域技术人员。贯穿全文,相同的附图标记表示相同的元件。The present invention will now be described more fully hereinafter with reference to the accompanying drawings, in which exemplary embodiments of the invention are shown. However, the present invention may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. The same reference numbers refer to the same elements throughout.
在本发明的上下文中以及在使用每个术语的特定上下文中,本说明书中使用的术语通常具有其在本领域中的普通含义。在下文或说明书的其他地方讨论了用于描述本发明的某些术语,以为实施者提供有关本发明描述的附加指导。为了方便起见,某些术语可能会突出显示,例如使用斜体和/或引号。突出显示的使用不会影响术语的范围和含义;无论是否突出显示,在相同上下文中,术语的范围和含义都相同。应当理解,可以以多于一种的方式描述同一事物。因此,替代性的语言和同义词可以用于本文所讨论的任何一个或多个术语,关于是否在此阐述或讨论该术语也没有任何特殊意义。某些术语的同义词被提供。一个或多个同义词的详述不排除其他同义词的使用。在本说明书中任何地方使用的示例,包括本文讨论的任何术语的示例,仅是示例性的,绝不限制本发明或任何示例性术语的范围和含义。同样,本发明不限于本说明书中给出的各种实施例。Terms used in this specification generally have their ordinary meanings in the art, in the context of the present invention and in the specific context in which each term is used. Certain terms used to describe the invention are discussed below or elsewhere in the specification to provide the practitioner with additional guidance regarding the description of the invention. Certain terms may be highlighted for convenience, such as using italics and/or quotation marks. The use of highlighting does not affect the scope and meaning of the term; the scope and meaning of the term in the same context is the same whether or not it is highlighted. It should be understood that the same thing can be described in more than one way. Accordingly, alternative language and synonyms may be used for any one or more of the terms discussed herein without any special meaning as to whether the term is set forth or discussed herein. Synonyms for certain terms are provided. The recitation of one or more synonyms does not exclude the use of other synonyms. Examples used anywhere in this specification, including examples of any terms discussed herein, are exemplary only and in no way limit the scope and meaning of the invention or any exemplary term. Likewise, the present invention is not limited to the various embodiments presented in this specification.
将理解的是,如本文的说明书和随后的整个权利要求书中所使用的,“一个”,“一种”和“该”的含义包括复数形式,除非上下文另外明确指出。同样,将理解的是,当一个元件被提到在另一个元件“上”时,它可以直接在另一个元件上,或者在它们之间可以存在中间元件。相反,当一个元件被提到“直接在”另一个元件“上”时,则不存在中间元件。如本文所使用的,术语“和/或”包括一个或多个相关联的所列项目的任何和所有组合。It will be understood that as used herein in the specification and throughout the claims that follow, the meanings of "a," "an," and "the" include plural referents unless the context clearly dictates otherwise. Also, it will be understood that when an element is referred to as being "on" another element, it can be directly on the other element or intervening elements may be present therebetween. In contrast, when an element is referred to as being "directly on" another element, there are no intervening elements present. As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items.
将理解,尽管术语第一,第二,第三等在本文中可用于描述各种元件,组件,区域,层和/或部分,但是这些元件,组件,区域,层和/或部分不应为受这些术语的限制。这些术语仅用于区分一个元件、一个组件、一个区域、一个层或一个部分与另一元件、另一组件、另一区域、另一层或另一部分。因此,在不脱离本发明的启示的情况下,下面讨论的第一元件、第一组件、第一区域、第一层或第一部分可以被称为第二元件、第二组件、第二区域、第二层或第二部分。It will be understood that, although the terms first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be subject to these terms. These terms are only used to distinguish one element, component, region, layer or section from another element, component, region, layer or section. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, Second layer or second part.
此外,相对术语,诸如“下部”或“底部”以及“上部”或“顶部”,在本文中可用于描述如图所示的一个元件与另一元件的关系。将理解的是,除了附图中描绘的取向之外,相对术语旨在涵盖设备的不同取向。例如,如果将其中一个附图中的设备翻转,则描述为在其他元件的“下部”侧的元件将定向在其他元件的“上部”侧。因此,根据附图的特定方向,示例性术语“下部”可以包括“下部”和“上部”这两个方向。类似地,如果将其中一个附图中的设备翻转,则描述为在其他元件“下方”或“之下”的元件将定向为在其他元件“上方”。因此,示例性术语“在...下方”或“在...之下”可以包含上方和下方两个方位。Furthermore, relative terms, such as "lower" or "bottom" and "upper" or "top," may be used herein to describe one element's relationship to another element as illustrated in the figures. It will be understood that relative terms are intended to encompass different orientations of the device in addition to the orientation depicted in the figures. For example, if the device in one of the figures is turned over, elements described as being on the "lower" side of the other elements would then be oriented on the "upper" side of the other elements. Thus, the exemplary term "lower" may include both "lower" and "upper" orientations, depending on the particular orientation of the drawings. Similarly, if the device in one of the figures is turned over, elements described as "below" or "beneath" other elements would then be oriented "above" the other elements. Thus, the exemplary terms "below" or "under" can encompass both an orientation of above and below.
将进一步理解,术语“包括”,或“包含”,或“具有”,或“携带”,或“包含”,或“涉及”等是开放式的,即意味着包括但不限于。当在本发明中使用时,它们指定所述特征、区域、整数、步骤、操作、元素和/或组件的存在,但不排除存在或附加一个或多个其他特征、区域、整数、步骤、操作、元素、组件和/或其组。It will be further understood that the terms "including", or "comprising", or "having", or "carrying", or "comprising", or "involving" etc. are open ended, meaning including but not limited to. When used in the present invention, they specify the presence of said features, regions, integers, steps, operations, elements and/or components, but do not preclude the presence or addition of one or more other features, regions, integers, steps, operations , elements, components and/or groups thereof.
除非另有定义,否则本文中使用的所有术语(包括技术术语和科学术语)具有与本发明所属领域的普通技术人员所通常理解的相同含义。还将理解的是,诸如在常用字典中定义的那些术语应被解释为具有与它们在相关领域和本发明的上下文中的含义相一致的含义,并且将不会以理想化或过于正式的意义被解释,除非在此明确定义。Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It will also be understood that terms such as those defined in commonly used dictionaries should be construed to have meanings consistent with their meanings in the relevant art and in the context of the invention, and not in an idealized or overly formal sense be construed unless expressly defined herein.
如本文所使用的,短语A,B和C中的至少一个应被解释为使用非排他性逻辑“或”的逻辑(A或B或C)。如本文所使用的,术语“和/或”包括一个或多个相关联的所列项目的任何和所有组合。As used herein, at least one of the phrases A, B, and C should be construed as a logical (A or B or C) using a non-exclusive logical "or". As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items.
如本文中所使用的,术语模块可以包括专用集成电路(ASIC),电子电路,;组合逻辑电路;现场可编程门阵列(FPGA);执行代码的处理器(共享的,专用的或组);可提供上述功能的其他合适的硬件组件;或上述某些或全部的组合,诸如在芯片上系统中,或者可以指它们的部分。术语模块可以包括存储由处理器执行的代码的存储器(共享的,专用的或组)。As used herein, the term module may include an application specific integrated circuit (ASIC), an electronic circuit,; a combinational logic circuit; a field programmable gate array (FPGA); a processor (shared, dedicated or group) that executes code; Other suitable hardware components may provide the above-described functionality; or a combination of some or all of the above, such as in a system-on-a-chip, or may refer to portions thereof. The term module may include memory (shared, dedicated, or group) that stores code executed by a processor.
如本文中所使用的,术语芯片或计算机芯片通常是指硬件电子组件,并且可以指或包括小型电子电路单元,也称为集成电路(IC),或电子电路或IC的组合。As used herein, the term chip or computer chip generally refers to a hardware electronic component, and may refer to or include a small electronic circuit unit, also known as an integrated circuit (IC), or a combination of electronic circuits or ICs.
如本文所使用的,术语微控制器单元或其缩写MCU通常是指单个IC芯片上的小型计算机,其可以执行用于控制其他设备或机器的程序。微控制器单元包含一个或多个CPU(处理器内核)以及存储器和可编程输入/输出(I/O)外设,通常被设计用于嵌入式应用程序。As used herein, the term microcontroller unit or its acronym MCU generally refers to a small computer on a single IC chip that can execute programs for controlling other devices or machines. A microcontroller unit contains one or more CPUs (processor cores) as well as memory and programmable input/output (I/O) peripherals, and is typically designed for embedded applications.
如本文中所使用的,术语接口通常是指在组件之间的交互点处用于在组件之间执行有线或无线数据通信的通信工具或装置。通常,接口可以在硬件和软件两者上适用,并且可以是单向或双向接口。物理硬件接口的示例可以包括电连接器、总线、端口、电缆、终端以及其他I/O设备或组件。与接口通信的组件可以是例如计算机系统的多个组件或外围设备。As used herein, the term interface generally refers to a communication tool or device at an interaction point between components for performing wired or wireless data communication between components. In general, the interface can be available in both hardware and software, and can be a unidirectional or bidirectional interface. Examples of physical hardware interfaces may include electrical connectors, buses, ports, cables, terminals, and other I/O devices or components. The components in communication with the interface may be, for example, various components of a computer system or peripheral devices.
如本文所使用的,术语代码可以包括软件、固件和/或微代码,并且可以指程序、例程、功能、类和/或对象。可以使用单个(共享的)处理器来执行来自多个模块的一些或全部代码。另外,来自多个模块的一些或全部代码可以由单个(共享的)存储器存储。还可以使用一组处理器来执行来自单个模块的一些或全部代码。此外,可以使用一组存储器来存储来自单个模块的一些或全部代码。As used herein, the term code may include software, firmware, and/or microcode, and may refer to programs, routines, functions, classes, and/or objects. A single (shared) processor may be used to execute some or all code from multiple modules. Additionally, some or all code from multiple modules may be stored by a single (shared) memory. A group of processors may also be used to execute some or all of the code from a single module. Additionally, a set of memories may be used to store some or all of the code from a single module.
该装置和方法将在以下详细的说明书中进行描述,并结合附图中通过各种块、组件、电路、过程、算法等(统称为“元素”)进行说明。可以使用电子硬件、计算机软件或其任意组合来实现这些元素。将这些元素实现为硬件还是软件取决于特定的应用和施加在整个系统上的设计约束。举例来说,可以将元件或元件的任何部分或元件的任何组合实现为包括一个或多个处理器的“处理系统”。处理器的示例包括微处理器、微控制器、图形处理单元(GPU)、中央处理器(CPU)、应用处理器、数字信号处理器(DSP)、精简指令集计算(RISC)处理器、片上系统(SoC)、基带处理器、现场可编程门阵列(FPGA)、可编程逻辑设备(PLD)、状态机、门控逻辑、分立硬件电路,以及其他合适的被配置为执行整个本公开文本中描述的各种功能的硬件。处理系统中的一个或多个处理器可以执行软件。软件应广义地解释为指指令、指令集、代码、代码段、程序代码、程序、子程序、软件组件、应用程序、软件应用程序、软件包、例程、子例程、对象、可执行文件、执行线程、过程、功能等等,无论是被称为软件,固件,中间件,微码,硬件描述语言还是其他形式。The apparatus and methods will be described in the following detailed specification and illustrated in the accompanying drawings by means of various blocks, components, circuits, processes, algorithms, etc. (collectively referred to as "elements"). These elements may be implemented using electronic hardware, computer software, or any combination thereof. Whether these elements are implemented as hardware or software depends on the specific application and design constraints imposed on the overall system. For example, an element, or any portion of an element, or any combination of elements may be implemented as a "processing system" that includes one or more processors. Examples of processors include microprocessors, microcontrollers, graphics processing units (GPUs), central processing units (CPUs), application processors, digital signal processors (DSPs), reduced instruction set computing (RISC) processors, on-chip systems (SoCs), baseband processors, field programmable gate arrays (FPGAs), programmable logic devices (PLDs), state machines, gated logic, discrete hardware circuits, and other suitable Describes the various functions of the hardware. One or more processors in the processing system may execute software. Software shall be construed broadly to mean instructions, sets of instructions, codes, code segments, program code, programs, subroutines, software components, applications, software applications, software packages, routines, subroutines, objects, executables , threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
因此,在一个或多个示例实施例中,可以以硬件、软件或其任何组合来实现所描述的功能。如果以软件实现,则功能可以在计算机可读介质上作为一个或多个指令或代码进行存储或编码。计算机可读介质包括计算机存储介质。存储介质可以是计算机可以访问的任何可用介质。作为示例而非限制,这种计算机可读介质可以包括随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程ROM(EEPROM)、光盘存储器、磁盘存储器、其他磁存储设备、上述类型的计算机可读介质的组合或任何其他可用于以计算机可以访问的指令或数据结构形式存储计算机可执行代码的介质。Accordingly, in one or more example embodiments, the described functions may be implemented in hardware, software, or any combination thereof. If implemented in software, the functions may be stored on or encoded on a computer-readable medium as one or more instructions or code. Computer readable media includes computer storage media. A storage medium can be any available medium that can be accessed by a computer. By way of example and not limitation, such computer-readable media may include random access memory (RAM), read only memory (ROM), electrically erasable programmable ROM (EEPROM), optical disk memory, magnetic disk memory, other magnetic storage devices , combinations of the above types of computer-readable media, or any other medium that can be used to store computer-executable code in the form of computer-accessible instructions or data structures.
以下描述本质上仅是说明性的,绝不旨在限制本发明及其应用或用途。本发明的广泛启示可以以多种形式实现。因此,尽管本发明包括特定示例,但是本发明的真实范围不应受到如此限制,因为在研究附图、说明书和所附权利要求书后,其他修改将变得显而易见。为了清楚起见,在附图中将使用相同的附图标记标识相似的元件。应当理解,在不改变本发明的原理的情况下,可以以不同的顺序(或同时)执行方法中的一个或多个步骤。The following description is merely illustrative in nature and is in no way intended to limit the invention, its application or uses. The broad teachings of the present invention can be implemented in a variety of forms. Thus, although this disclosure includes specific examples, the true scope of this disclosure should not be so limited, as other modifications will become apparent after a study of the drawings, specification, and appended claims. For the sake of clarity, the same reference numbers will be used throughout the drawings to identify similar elements. It should be understood that one or more steps within a method may be executed in different order (or concurrently) without altering the principles of the present disclosure.
图1示意性地示出了根据本发明的一个实施例的用于车辆驾驶员识别的系统的整体架构。系统100包括近红外(NIR)发光二极管(LED)照明器102、近红外(NIR)光感测单元104、图像控制和处理单元106、脸部检测器108、脸部特征提取器110、脸部特征字典112、脸部检索系统114、用户界面116以及一个或多个应用接口118。FIG. 1 schematically shows the overall architecture of a system for vehicle driver identification according to an embodiment of the present invention. The
NIR LED照明器102在NIR光谱中发射光(即,电磁辐射)。NIR LED照明器102被配置为与NIR光感测单元104同步并且提供足够的亮度,使得NIR光感测单元104即使在夜间也可以捕获驾驶员脸部的细节。另一方面,NIR照明器102对于驾驶员是不可见的,因为NIR光谱与人的可见光谱不重叠,从而消除了分散注意力和眼睛危害的可能性。人类视觉系统只对大约400nm至700nm的光谱做出响应。在一个实施例中,NIR LED照明器102发射具有825nm至875nm的光谱的光,与NIR光感测单元104的响应光谱对齐。在另一个实施例中,NIR LED照明器102发射具有915nm至965nm的光谱的光,与NIR光感测单元104的响应光谱对齐。在一个实施例中,NIR LED照明器102由具有可配置占空比的脉宽调制(PWM)供电。更大的占空比为NIR光感测单元104提供了更多益处,但是却以更高的过热风险为代价。由于有限的模块尺寸会导致导热不良,因此需要在照明质量和过热之间取得平衡。同样,占空比应与NIR光感测单元104同步,以便其辐射被NIR光感测单元104充分利用,从而产生最佳的感测质量。这种同步通过图像控制和处理单元106实现,下面将对其进行详细说明。The
光感测单元104捕获源自NIR LED照明器102或其他光源的光,所述其他光源诸如太阳、月亮或其他在其光谱中具有丰富的NIR分量的照明器。NIR光感测单元104将照明强度转换为电信号,更具体地,转换为NIR光感测单元104的数字读出。NIR光感测单元104捕获来自NIR LED照明器102或其他光源的光。在一个实施例中,NIR光感测单元104被设计为仅对特定的光谱带做出响应。例如,NIR光感测单元104被设计为仅对825nm至875nm的光谱带做出响应。在另一示例中,NIR光感测单元104被设计为仅对915nm至965nm的光谱带做出响应。可以通过在NIR光感测单元104顶部应用带通滤光器来实现这种对光谱的选择性灵敏度。应当指出,NIR光感测单元不单独地依靠NIR LED照明器102。太阳光的光谱比人类视觉系统的光谱宽得多,并且在NIR波段也很强。NIR光感测单元104应该在良好的日光照射条件下工作良好,甚至更好。尽管如此,当不存在自然的NIR光源时,NIR LED照明器102对于弱光或黑暗条件仍然是必不可少的。The
在一个实施例中,光感测单元104是覆盖有NIR带通滤波器的相机。在一个实施例中,NIR光感测单元104是焦平面阵列(FPA)NIR光感测单元104。FPA NIR光感测单元104是由在透镜的焦平面处的光感测像素的阵列(通常为矩形)组成的图像感测设备。FPA NIR光感测单元104通过检测特定波长的光子,然后生成与每个像素检测到的光子数量有关的电荷、电压或电阻来进行操作。然后该电荷、电压或电阻被测量、数字化,并用于构建发射光子的物体、场景或现象的图像。FPA NIR光感测单元104可提供多种属性以控制其感测行为,包括曝光时间、数字增益、模拟增益、伽玛值以及帧率。这些属性对于图像控制和处理单元106获得最佳图像质量至关重要,这是后续脸部注册或脸部检索的基础。In one embodiment, the
图像控制和处理单元106调节NIR LED照明器102和NIR光感测单元104两者的行为并生成图像。图像控制和处理单元106被配置为一起调节NIR LED照明器102的开/关周期和NIR光感测单元104的光感测快门,以充分利用来自NIR LED照明器102的能量,从而获得更好的成像质量。而且,图像控制和处理单元106可以分析NIR光感测单元104的数字读出的统计,并且向NIR LED照明器102和NIR光感测单元104两者发送命令。图像控制和处理单元106可以控制的NIR光感测单元104的属性的一些示例包括曝光时间、模拟增益、数字增益、伽玛值以及帧率。基于图像控制和处理单元106发送的命令,NIR LED照明器102和NIR光感测单元可以相应地调节它们的属性。然后,图像控制和处理单元106生成具有最佳成像质量的图像,以最大化成功进行脸部注册和脸部检索的可能性。The image control and
在一个实施例中,图像控制和处理单元106包含于车辆的电子控制单元(ECU)中。图像控制和处理单元106发送命令到NIR LED照明器102和NIR光感测单元104,以对它们进行协调。更具体地,图像控制和处理单元106在弱光条件下协调NIR LED照明器102的占空比和NIR光感测单元104的曝光时间的对齐。在一个实施例中,图像控制和处理单元106可以分析NIR光感测单元104的数字读出的统计数据,以评估照明条件。如果图像控制和处理单元106确定环境照明足够强,则它将关闭NIR LED照明器102,从而显着降低功耗和发热。In one embodiment, the image control and
图2示意性地示出了根据本发明的一个实施例的使用用于车辆驾驶员识别的系统进行脸部注册的流程图。脸部检测器108被配置为确定在由图像控制和处理单元106生成的图像202中是否存在人脸区域。如果脸部检测器108确定在由图像控制和处理单元106生成的图像202中存在人的脸部区域204,则脸部检测器108使用边界框定位脸部区域204的位置。脸部检测器108可以由诸如多任务卷积神经网络(MTCNN)、快速的基于区域的卷积神经网络(Fast R-CNN)之类的深度神经网络(DNN)或任何其他深度神经网络实现。深度神经网络是在输入和输出层之间具有多个层的人工神经网络。无论是线性关系还是非线性关系,DNN都会找到正确的数学操作,以将输入转换为输出。每个数学操作都被视为一层,而复杂的深度神经网络则具有许多层。网络遍历各层,计算每个输出的概率。卷积神经网络(CNN)是一类深层神经网络,最常用于分析视觉图像。FIG. 2 schematically shows a flow chart of face registration using a system for vehicle driver identification according to an embodiment of the present invention. The
在一个实施例中,脸部检测器108可以是ECU中的一种软件或硬件实现,其可以确定在由图像控制和处理单元106生成的图像202中是否存在人的脸部区域204。如上所述,图像202已经由图像控制和处理单元106优化。脸部检测器108可以裁剪图像202中的脸部区域204。应当注意,对于舱内驾驶员注册,不同视角的驾驶员的脸部的图像可以增强后续脸部检索的鲁棒性,从而使得之后的脸部检索相对不受视角变化的影响。可以通过在嵌入式显示器上显示驾驶员视觉指导实现从不同视角捕获驾驶员的脸部的图像,使得驾驶员在注册过程中可以遵循视觉指导并移动他的头部,直到不同视角的驾驶员的脸部图像被捕获。In one embodiment,
除了边界框外,脸部检测器108还可以输出一系列称为界标(landmark)208的关键面部点。这些界标208是诸如人脸上的鼻尖、眼睛中心和嘴角的点。这些界标208对于后续的特征生成非常关键。由于在这些显著区域中人脸之间的区别最大,因此在之后的脸部注册和脸部检索期间,脸部上靠近这些界标208的区域会被赋予较高的权重。更重要的是,这些界标208可用于驾驶员脸部的透视校正。在脸部注册或脸部检索期间,驾驶员的脸部很可能并非完全垂直于成像平面。因此,在进一步处理之前,必须对人的脸部区域204进行透视校正。In addition to bounding boxes, the
基于界标208,脸部对齐单元206将驾驶员的脸部的姿势校准为直立姿势。在一个实施例中,脸部对齐单元206使用包括偏航、俯仰和滚转的三轴角对驾驶员的脸部的姿势进行对齐,从而为后续的脸部识别提供更多信息。应当注意,脸部对齐单元206可以是与脸部检测器108独立的单元,但是它也可以是集成在脸部检测器108中的组件。还应当注意,与仅生成边界框的其他系统相比,由脸部对齐单元206基于界标208进行的对齐增加了后续的脸部识别的准确性。Based on the
脸部特征提取器110分析对齐的脸部区域204并提取表示脸部区域204的特征向量212。该过程也可以称为脸部编码。脸部特征提取器110可以通过各种神经网络,诸如骨干网络(例如,移动网(MobileNets))或局部特征描述符(例如,SIFT)加上聚类(例如,K-means聚类)及其后续的降维技术例如词袋(BoW)来实现。骨干网络是计算机网络的一部分,它互连各部分网络,为不同的LAN或子网之间的信息交换提供路径。尺度不变特征变换(SIFT)是计算机视觉中的一种特征检测算法,用于检测和描述图像中的局部特征。K-means聚类是一种向量量化方法,最初来自信号处理,在数据挖掘中的聚类分析中很流行。K-means聚类旨在将n个观察值划分为k个聚类,其中每个观察值均属于具有最近均值的聚类,作为聚类的原型。词袋(BoW)模型是自然语言处理和信息检索中使用的简化表示。在此模型中,文本(诸如句子或文档)表示为文本中单词的包(多集),而忽略了语法甚至单词顺序,但保持了多重性。词袋(BoW)模型也已用于计算机视觉。应当注意,对于脸部注册,系统可能需要捕获同一驾驶员的多个图像以更好地匹配。The
在一个实施例中,脸部特征提取器110实质上是用于识别每个驾驶员的脸部区域204的信息的编码器。在一个实施例中,脸部特征提取器110包含在ECU中。脸部特征提取器110输出表示检测的驾驶员的脸部区域204的高维特征向量212。该特征向量212应该是检测的驾驶员的脸部区域204的公平表示(fair representation)(从数学上来说,良好的区别分布)。这意味着,无论如何捕获,同一人物的特征向量212都应该在特征空间中彼此非常接近,同时,两个不同人物的特征向量212应该很好地分开,即使是在相同条件下捕获的。In one embodiment, the
脸部特征字典112存储所有注册的驾驶员的特征向量。脸部特征字典112能够添加新的特征向量(例如,特征向量212)。脸部特征字典112还能够删除现有特征向量。脸部特征字典112可以响应于用户的命令(例如,驾驶员的命令)添加或删除特征向量。可选地,脸部特征字典112可以在某些情况下自动添加或删除特征向量(例如,在确定特征向量212是新的特征向量之后将其添加)。脸部特征字典112包括不同驾驶员的特征向量212,以及查找表,该查找表将每个特征向量212和其对应的驾驶员相关联。The
在NIR光谱中进行操作可减少复杂照明对识别性能的负面影响,但在设计算法时提出了更多挑战。首先,基于NIR的识别忽略色相信息,这有助于建立更强的识别力。第二,需要收集大规模的脸部数据集以基于深度卷积神经网络(CNN)训练脸部特征提取器110。考虑到几乎所有的公共脸部图像都在可见(VIS)光谱中而不是在NIR光谱中,因此深度CNN可能无法一般化,因为存在明显的域差异。因此,公共VIS数据集(例如MS-Celeb-1M,VGGFace2)和私有NIR图像被使用,并且NIR光谱被过采样以同时消除不平衡。MS-Celeb-1M是一个公共VIS数据集,用于识别脸部图像并将这些图像关联到知识库中的相应实体键。VGGFace2是另一个公共VIS数据集,其包含9131万个对象的331万张图像。Operating in the NIR spectrum reduces the negative impact of complex lighting on recognition performance, but presents more challenges when designing algorithms. First, NIR-based recognition ignores hue information, which helps build stronger discrimination. Second, a large-scale facial dataset needs to be collected to train the
受计算资源和CNN参数大小的限制,对复杂度(相对于时间和空间)与模型容量之间的权衡的控制至关重要。密集的算术运算会消耗大量功率并导致过热,而太多的参数则会耗费无法忍受的加载时间。因此,可以采用具有深度方向可分离卷积(DW Conv)和点向卷积(PW Conv)的某些轻网络(例如,移动网(Mobilenet),混洗网(Shufflenet))。此外,还采用了量化和蒸馏技术来减少计算量。Constrained by computational resources and the size of CNN parameters, control over the trade-off between complexity (vs. time and space) and model capacity is critical. Intensive arithmetic operations consume a lot of power and cause overheating, while too many parameters can consume unbearable load times. Therefore, some light networks (eg Mobilenet, Shufflenet) with depthwise separable convolution (DW Conv) and pointwise convolution (PW Conv) can be employed. In addition, quantization and distillation techniques are employed to reduce the computational effort.
与真正率(true positive rate)至关重要的室外环境相比,舱内场景更注重安全性和便利性,即较低的假负率(false negative rate)和较高的真正率。因此,创建包含各种困难案例(例如眼镜,照明,头部姿势)的测试数据集,并且使用所述测试数据集进行大量实验,以寻求更好的解决方案并寻找最佳模型。模型只有通过严格的测试才能部署。Compared to outdoor environments where true positive rate is critical, in-cabin scenarios focus more on safety and convenience, i.e. lower false negative rate and higher true rate. Therefore, a test dataset containing various difficult cases (e.g. glasses, lighting, head pose) is created, and extensive experiments are performed using said test dataset to find better solutions and find the best model. Models can only be deployed if they pass rigorous testing.
为了使用户(例如驾驶员)有参与感并提高识别的准确性,可以在屏幕上显示注册指导。更具体地说,用户应该处于几种不同的姿势,使得与不同视角相对应的特征向量可以被提取并被存储在脸部特征字典112中。从理论上讲,从三维(3D)真实世界到二维(2D)脸部图像的投影而导致的信息丢失可以通过这种方式部分消除,从而在实践中改善脸部识别性能。In order to engage the user (eg the driver) and improve the accuracy of the recognition, registration instructions can be displayed on the screen. More specifically, the user should be in several different poses so that feature vectors corresponding to different perspectives can be extracted and stored in the
图3示意性地示出了根据本发明的一个实施例的使用用于车辆驾驶员识别的系统进行脸部检索的流程图。类似于图2所示的脸部注册的流程图,脸部检测器108、脸部对齐单元206和脸部提取器以相同的方式起作用。如果脸部检测器108确定在由图像控制和处理单元106生成的图像202中存在人的脸部区域204,则脸部检测器108使用边界框定位脸部区域204的位置并输出一系列界标208。基于界标208,脸部对齐单元206将驾驶员的脸部的姿势校准为直立姿势。脸部特征提取器110分析对齐的脸部区域204并提取表示脸部区域204的特征向量212。FIG. 3 schematically shows a flow chart of face retrieval using a system for vehicle driver identification according to an embodiment of the present invention. Similar to the flow chart of face registration shown in Figure 2, the
由脸部特征提取器110生成的特征向量212最终将用于发起对脸部特征字典112的查询。更具体地说,脸部检索系统114试图在脸部特征字典112中找到最相似的特征向量。存在很多方法可以量化两个特征向量之间的相似度并对其进行相应排列。在一个实施例中,脸部检索系统是相似度比较器316。相似度比较器316使用余弦相似度作为度量。对于表示提取的特征向量212和脸部特征字典112中的现有特征向量的两个N维特征向量fq和fi,它们的余弦相似度通过以下公式测量。The
分子是两个N维特征向量fq和fi的点积,而分母是两个N维特征向量fq和fi的大小的乘积。特征向量fq和fi被归一化为1,所以可以省略分母,即在这种情况下,余弦相似度实质上等于欧几里德距离。然后,相似度比较器316将余弦相似度与预定的相似度阈值进行比较。如果余弦相似度大于预定相似度阈值,则相似度比较器316生成识别结果318。换句话说,相似性比较器316识别驾驶员(例如,John Doe)的身份。The numerator is the dot product of the two N-dimensional eigenvectors f q and fi , and the denominator is the product of the magnitudes of the two N-dimensional eigenvectors f q and fi . The feature vectors f q and f i are normalized to 1, so the denominator can be omitted, i.e. in this case the cosine similarity is essentially equal to the Euclidean distance. The similarity comparator 316 then compares the cosine similarity to a predetermined similarity threshold. If the cosine similarity is greater than the predetermined similarity threshold, the similarity comparator 316 generates a
然而,如果相似度比较器316在脸部特征字典112中没有找到任何匹配(即,没有余弦相似度大于预定的相似度阈值),则相似度比较器316将输出识别结果318,指示驾驶员尚未注册,进而指示潜在的非法车辆进入或需要脸部注册。However, if the similarity comparator 316 does not find any matches in the face feature dictionary 112 (ie, no cosine similarity is greater than a predetermined similarity threshold), the similarity comparator 316 will output a
如图1和图3所示,脸部检索系统114(例如,相似度比较器316)将识别结果318输出到用户界面116。然后,用户界面116相应地向驾驶员(和乘客)显示所述识别结果318。在一个实施例中,用户界面116是舱内显示器320。舱内显示器320向驾驶员显示视觉或声音反馈,以将识别结果318通知驾驶员。用户界面116可以是然后舱内视频或音频设备,包括但不限于仪表板显示器、嵌入式显示器、平视显示器和扬声器。识别结果318可以以图形或文本方式呈现,指示脸部检索的失败或成功。而且,用户界面116输出用于对驾驶员的指导,以在脸部注册模式和脸部检索模式之间切换。出于安全考虑,从检索模式切换到注册模式需要对第二步身份验证,例如密码、指纹和按键激活。As shown in FIGS. 1 and 3 , face retrieval system 114 (eg, similarity comparator 316 ) outputs recognition results 318 to
脸部检索系统114(例如,相似度比较器316)也可以将识别结果318输出到一个或多个应用接口118。如图3所示,一个或多个应用接口118可以包括但不限于个性化娱乐系统322、无钥匙进入系统324、个性化座椅系统326。一个或多个应用接口118还可以包括防盗系统、驾驶模式定制系统以及数字验证支付系统。所有一个或多个应用接口118先前都要求对身份进行额外的验证,例如密码、指纹以及按键激活。Face retrieval system 114 (eg, similarity comparator 316 ) may also output recognition results 318 to one or more application interfaces 118 . As shown in FIG. 3 , the one or more application interfaces 118 may include, but are not limited to, a
在本发明的另一方面,所述用于车辆驾驶员识别的方法,如图4和图5所示,包括以下步骤:图4和图5共同示意性地示出了根据本发明一个实施例的用于车辆驾驶员识别的方法的流程图。所述方法可以由上述用于车辆驾驶员识别的系统100实现。应当注意,该方法可以由其他装置实现。应当注意,根据本发明实施例的全部或部分步骤可以通过硬件或指示相关硬件的程序实现。In another aspect of the present invention, the method for vehicle driver identification, as shown in FIG. 4 and FIG. 5 , includes the following steps: FIG. 4 and FIG. 5 together schematically show an embodiment according to the present invention A flowchart of a method for vehicle driver identification. The method may be implemented by the above-described
在步骤402,NIR LED照明器102在车辆中发射NIR光。At
在步骤404,NIR光感测单元104捕获反射的NIR光。At
在步骤406,图像控制和处理单元106协调NIR LED照明器和NIR光感测单元。At
在步骤408,图像控制和处理单元106分析由NIR光感测单元捕获的反射的NIR光,以生成图像。At
在步骤410,脸部检测器108确定图像中存在人脸。At
在步骤412,脸部检测器108识别人脸的脸部区域。At
在步骤414,脸部检测器108分析脸部区域,以提取表示脸部区域的特征向量。步骤414之后是图5中的步骤502。At
在步骤502,脸部检索系统114确定特征向量与脸部特征字典112中的任何现有特征向量之间的相似度是否大于第一阈值。At
当特征向量与脸部特征字典112中的第一现有特征向量之间的相似度大于第一阈值时,在步骤504,脸部检索系统114生成指示与第一现有特征向量相关联的标识的第一识别结果。在步骤512,用户界面116显示第一识别结果。When the similarity between the feature vector and the first existing feature vector in the
当特征向量与脸部特征字典112中的任何现有特征向量之间的相似度不大于第一阈值时,在步骤506,脸部检索统114生成指示特征向量不存在于脸部特征字典112中的第二识别结果。在步骤508,用户界面116显示第二识别结果。在步骤510,脸部特征字典112将脸部特征存储在脸部特征字典112中。When the similarity between the feature vector and any existing feature vector in the
本发明的又一方面提供了一种存储指令的非暂时性有形计算机可读介质,所述指令在由一个或多个处理器执行时使以上公开的用于车辆驾驶员识别的方法得以执行。该计算机可执行指令或程序代码使以上公开的装置或类似系统能够根据以上公开的方法完成各种操作。该存储介质或存储器可以包括但不限于诸如DRAM,SRAM,DDR RAM或其他随机存取固态存储设备的高速随机访问介质或存储器,以及诸如一个或多个磁盘存储设备、光盘存储设备、闪存设备或其他非易失性固态存储设备的非易失性存储设备。Yet another aspect of the present invention provides a non-transitory tangible computer-readable medium storing instructions that, when executed by one or more processors, cause the above-disclosed method for vehicle driver identification to be performed. The computer-executable instructions or program code enables the above-disclosed apparatus or similar system to perform various operations in accordance with the above-disclosed methods. The storage medium or memory may include, but is not limited to, high-speed random access media or memory such as DRAM, SRAM, DDR RAM, or other random access solid state storage devices, and storage devices such as one or more magnetic disks, optical disks, flash memory, or Non-volatile storage devices for other non-volatile solid-state storage devices.
仅出于说明和描述的目的呈现了对本发明的示例性实施例的前述描述,而不旨在穷举本发明或将本发明限制为所公开的精确形式。根据上述启示,许多修改和变化是可能的。The foregoing description of the exemplary embodiments of the present invention has been presented for purposes of illustration and description only, and is not intended to be exhaustive or to limit the invention to the precise form disclosed. Many modifications and variations are possible in light of the above teachings.
为了解释本发明的原理及其实际应用选择和描述实施例,以便使本领域的其他技术人员能够利用本发明和各种实施例,并使用各种实施例以适合于预期的特定用途。在不脱离本发明的精神和范围的情况下,可替代实施例对于本发明所属领域的技术人员将变得显而易见。因此,本发明的范围由所附权利要求而不是前述说明和其中描述的示例性实施例来限定。The embodiments were chosen and described in order to explain the principles of the invention and its practical application to enable others skilled in the art to utilize the invention and various embodiments as are suited to the particular use contemplated. Alternative embodiments will become apparent to those skilled in the art to which the invention pertains without departing from the spirit and scope of the invention. Accordingly, the scope of the present invention is to be defined by the appended claims rather than the foregoing description and the exemplary embodiments described therein.
在本公开的说明书中引用和讨论了一些参考文献,其可能包括专利、专利申请和各种出版物。提供这样的参考文献的引用和/或讨论仅仅是为了阐明本公开文本的描述,而不是承认任何这样的参考文献是本文描述的公开文本的“现有技术”。在本说明书中引用和讨论的所有参考文献均通过用整体引用并入本文,其程度与每个参考文献通过单独引用被并入的程度相同。Several references, which may include patents, patent applications, and various publications, are cited and discussed in the specification of the present disclosure. The citation and/or discussion of such references is provided solely to clarify the description of the present disclosure and is not an admission that any such reference is "prior art" to the disclosure described herein. All references cited and discussed in this specification are hereby incorporated by reference in their entirety to the same extent as if each reference was incorporated by reference individually.
Claims (13)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202010953462.0A CN112101186A (en) | 2020-09-11 | 2020-09-11 | Apparatus and method for vehicle driver identification and application thereof |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202010953462.0A CN112101186A (en) | 2020-09-11 | 2020-09-11 | Apparatus and method for vehicle driver identification and application thereof |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN112101186A true CN112101186A (en) | 2020-12-18 |
Family
ID=73752403
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202010953462.0A Pending CN112101186A (en) | 2020-09-11 | 2020-09-11 | Apparatus and method for vehicle driver identification and application thereof |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN112101186A (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN115033145A (en) * | 2022-06-22 | 2022-09-09 | 上海集度汽车有限公司 | Vehicle-mounted screen display method and device, vehicle and storage medium |
| CN115909254A (en) * | 2022-12-27 | 2023-04-04 | 钧捷智能(深圳)有限公司 | DMS system based on camera original image and image processing method thereof |
| FR3130218A1 (en) * | 2021-12-15 | 2023-06-16 | Robert Bosch Gmbh | Method for acquiring images from the interior of a vehicle and vehicle interior camera system |
| CN117078960A (en) * | 2023-08-22 | 2023-11-17 | 华东理工大学 | A near-infrared spectrum analysis method and system based on image feature extraction |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103116749A (en) * | 2013-03-12 | 2013-05-22 | 上海洪剑智能科技有限公司 | Near-infrared face identification method based on self-built image library |
| CN106250877A (en) * | 2016-08-19 | 2016-12-21 | 深圳市赛为智能股份有限公司 | Near-infrared face identification method and device |
| CN108162915A (en) * | 2017-12-25 | 2018-06-15 | 四川长虹电器股份有限公司 | Vehicle-mounted middle control personalized configuration system based on recognition of face |
| CN108304789A (en) * | 2017-12-12 | 2018-07-20 | 北京深醒科技有限公司 | Face recognition method and device |
| CN108810421A (en) * | 2017-05-03 | 2018-11-13 | 福特全球技术公司 | Improve the vehicle camera performance in low illumination scene using near-infrared luminaire |
| CN110234545A (en) * | 2017-03-10 | 2019-09-13 | 金泰克斯公司 | Imaging systems and methods for vehicle occupant identification and monitoring |
| CN110728234A (en) * | 2019-10-12 | 2020-01-24 | 爱驰汽车有限公司 | Driver face recognition method, system, device and medium |
-
2020
- 2020-09-11 CN CN202010953462.0A patent/CN112101186A/en active Pending
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103116749A (en) * | 2013-03-12 | 2013-05-22 | 上海洪剑智能科技有限公司 | Near-infrared face identification method based on self-built image library |
| CN106250877A (en) * | 2016-08-19 | 2016-12-21 | 深圳市赛为智能股份有限公司 | Near-infrared face identification method and device |
| CN110234545A (en) * | 2017-03-10 | 2019-09-13 | 金泰克斯公司 | Imaging systems and methods for vehicle occupant identification and monitoring |
| CN108810421A (en) * | 2017-05-03 | 2018-11-13 | 福特全球技术公司 | Improve the vehicle camera performance in low illumination scene using near-infrared luminaire |
| CN108304789A (en) * | 2017-12-12 | 2018-07-20 | 北京深醒科技有限公司 | Face recognition method and device |
| CN108162915A (en) * | 2017-12-25 | 2018-06-15 | 四川长虹电器股份有限公司 | Vehicle-mounted middle control personalized configuration system based on recognition of face |
| CN110728234A (en) * | 2019-10-12 | 2020-01-24 | 爱驰汽车有限公司 | Driver face recognition method, system, device and medium |
Non-Patent Citations (1)
| Title |
|---|
| 红外与激光工程编辑部编: "《现代光学与光子学的进展:庆祝王大珩院士从事科研活动六十五周年集》", 28 February 2003, 天津科学技术出版社 * |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR3130218A1 (en) * | 2021-12-15 | 2023-06-16 | Robert Bosch Gmbh | Method for acquiring images from the interior of a vehicle and vehicle interior camera system |
| CN115033145A (en) * | 2022-06-22 | 2022-09-09 | 上海集度汽车有限公司 | Vehicle-mounted screen display method and device, vehicle and storage medium |
| CN115909254A (en) * | 2022-12-27 | 2023-04-04 | 钧捷智能(深圳)有限公司 | DMS system based on camera original image and image processing method thereof |
| CN115909254B (en) * | 2022-12-27 | 2024-05-10 | 钧捷智能(深圳)有限公司 | A DMS system based on camera original image and image processing method thereof |
| CN117078960A (en) * | 2023-08-22 | 2023-11-17 | 华东理工大学 | A near-infrared spectrum analysis method and system based on image feature extraction |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11068701B2 (en) | Apparatus and method for vehicle driver recognition and applications of same | |
| US11699293B2 (en) | Neural network image processing apparatus | |
| US12223760B2 (en) | Systems and methods for performing fingerprint based user authentication using imagery captured using mobile devices | |
| CN108921100B (en) | Face recognition method and system based on visible light image and infrared image fusion | |
| Jian et al. | Facial-feature detection and localization based on a hierarchical scheme | |
| CN1977286B (en) | Object recognition method and apparatus therefor | |
| CN112101186A (en) | Apparatus and method for vehicle driver identification and application thereof | |
| CN109800643B (en) | Identity recognition method for living human face in multiple angles | |
| CN114270417B (en) | Face recognition system and method capable of updating registered face template | |
| JP2018032391A (en) | Liveness test method and apparatus | |
| CN105844128A (en) | Method and device for identity identification | |
| KR20120069922A (en) | Face recognition apparatus and method thereof | |
| JP2008146539A (en) | Face recognition device | |
| Gupta et al. | Face detection using modified Viola jones algorithm | |
| CN114821695A (en) | Material spectrometry | |
| JP2015106197A (en) | Image processing apparatus and image processing method | |
| CN106682578A (en) | Human face recognition method based on blink detection | |
| Kang et al. | Face recognition for vehicle personalization with near infrared frame differencing | |
| Wong et al. | Face detection in thermal imaging using head curve geometry | |
| Nambiar et al. | Frontal gait recognition combining 2D and 3D data | |
| JP2005259049A (en) | Face matching device | |
| US11195009B1 (en) | Infrared-based spoof detection | |
| Ozkaya et al. | Discriminative common vector based finger knuckle recognition | |
| KR20110092848A (en) | Facial authentication and registration method | |
| KR102883351B1 (en) | Liveness test method and liveness test apparatus |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| RJ01 | Rejection of invention patent application after publication |
Application publication date: 20201218 |
|
| RJ01 | Rejection of invention patent application after publication |