CN111860760A - Training of generators for domain transformation - Google Patents
Training of generators for domain transformation Download PDFInfo
- Publication number
- CN111860760A CN111860760A CN202010331313.0A CN202010331313A CN111860760A CN 111860760 A CN111860760 A CN 111860760A CN 202010331313 A CN202010331313 A CN 202010331313A CN 111860760 A CN111860760 A CN 111860760A
- Authority
- CN
- China
- Prior art keywords
- domain
- generator
- data set
- training
- learning data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0464—Convolutional networks [CNN, ConvNet]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/047—Probabilistic or stochastic networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0475—Generative networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/0895—Weakly supervised learning, e.g. semi-supervised or self-supervised learning
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/094—Adversarial learning
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Computing Systems (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Life Sciences & Earth Sciences (AREA)
- Molecular Biology (AREA)
- Artificial Intelligence (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Probability & Statistics with Applications (AREA)
- Image Analysis (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种训练方法,利用该训练方法,生成器能够被训练用于,在两个域A和B之间转换具有测量数据的数据集。利用这样的生成器又可以在例如针对至少部分自动化的行驶而对能训练的模块进行训练的情况下缓解学习数据集的不足(Knappheit)。The invention relates to a training method with which a generator can be trained to convert a dataset with measurement data between two domains A and B. The use of such a generator in turn makes it possible to alleviate the lack of learning data sets, for example, in the case of training trainable modules for at least partially automated driving.
背景技术Background technique
在道路交通中由人类驾驶员来对车辆进行的驾驶通常被训练,其方式是,使驾驶学习者在自身的培训范畴内一再地面临对多个情形的确定准则(Kanon)。驾驶学习者必须分别对这些情形进行作出反应并且通过评语或者甚至是驾驶教师的干预来得到反馈:自身的反应是正确的还是错误的。利用有限数目的情形而进行的训练应该使得该驾驶学习者在对车辆的独立驾驶中也能够胜任未知的情形。The driving of vehicles by human drivers in road traffic is usually trained by subjecting the driving learner repeatedly to certain criteria (Kanon) for a number of situations within the scope of his own training. The driving learner must react to these situations individually and get feedback through comments or even the intervention of the driving instructor: whether their own responses were correct or incorrect. Training with a limited number of situations should enable the driving learner to also become competent in unknown situations in independent driving of the vehicle.
为了使车辆能够完全或部分自动化地参与道路交通而力求:利用能以非常类似的方式训练的模块来控制这些车辆。这些模块例如从车辆环境中获得传感器数据来作为输入参量并且作为输出参量来提供操控信号,利用这些操控信号来干预车辆的运行,和/或提供半成品(Vorprodukt),由这些半成品来构成这样的操控信号。例如,对车辆的环境中的对象的分类可以是这样的半成品。In order to enable vehicles to participate in road traffic fully or partially automatically: these vehicles are controlled with modules that can be trained in a very similar way. These modules acquire, for example, sensor data from the vehicle environment as input variables and as output variables to provide actuation signals with which the operation of the vehicle is intervened and/or semi-finished products from which such actuations are formed Signal. For example, the classification of objects in the environment of the vehicle may be such a semi-finished product.
对于在这种训练中的时间和成本耗费的推进是如下必要性:创建足够数量的学习数据集。分别需要用于能训练的模块的输入参量的学习值和用于输出参量的学习值,能训练的模块应该在经正确训练的状态下由此生成这些学习值。The time- and cost-intensive advance in such training is the necessity to create a sufficient number of learning datasets. The learned values for the input parameters and the learned values for the output parameters of the trainable module, which the trainable module should thereby generate in a correctly trained state, are respectively required.
发明内容SUMMARY OF THE INVENTION
在本发明的范畴内开发了一种用于训练生成器的方法,该生成器被构造用于,将具有测量数据的数据集从第一个域A转换到第二个域B。Within the scope of the present invention, a method for training a generator is developed which is designed to transform a data set with measurement data from a first domain A to a second domain B.
在此,测量数据的概念非常一般而言地包括如下数据,这些数据已通过物理测量过程和/或通过部分或完全模拟这样的测量过程和/或通过部分或完全模拟利用这样的测量过程能观察的技术系统所获得。测量数据因此总是如下数据,所述数据表征在技术系统中的过程和/或物理观察。为了更好的可读性并且鉴于在许多应用中的模拟是对于物理实验的几乎同等价值的替代方案这一事实,在下文中将这些数据仅还称为“测量数据”而无关于所述数据是通过物理测量还是通过模拟所获得的。The concept of measurement data here includes very generally data which have been observed by means of physical measurement processes and/or by partly or fully simulating such measurement processes and/or by partly or fully simulating with such measurement processes obtained from the technical system. Measurement data are therefore always data which characterize a process and/or a physical observation in a technical system. For better readability and in view of the fact that in many applications simulations are an almost equally valuable alternative to physical experiments, these data are hereinafter referred to only as "measurement data" without regard to whether the data are Obtained through physical measurements or through simulations.
具有测量数据的数据集可以例如包括如下图像,这些图像已通过利用一个或多个摄像机来观察车辆的环境所获得。然而,这些数据集也可以例如包括雷达反射的点云,其已利用一个或多个雷达传感器通过观察车辆的环境所获得。A data set with measurement data may, for example, include images that have been obtained by observing the environment of the vehicle with one or more cameras. However, these datasets may also include, for example, radar-reflected point clouds, which have been obtained by observing the environment of the vehicle using one or more radar sensors.
这些域A和B可以例如代表情形的不同类型或类别,这些情形影响测量数据的物理上的记录(Aufnahme)或模拟的记录。如果这些测量数据例如包括图像,则这些域A和B可以例如代表不同的季节、白天时间(Tageszeit)、照明情形和/或天气情况。每个域的这些图像于是具有如下风格(Stil),该风格通过相应的情形而共同施加(aufprägen)于这些图像。例如:These fields A and B can, for example, represent different types or categories of situations that affect the physical or simulated recording of the measurement data. If the measurement data comprise images, for example, the fields A and B can represent, for example, different seasons, times of day, lighting situations and/or weather situations. The images of each domain then have the following style (Stil), which is collectively applied (aufprägen) to the images through the corresponding situation. E.g:
• 在白天、在黄昏或在夜间所记录的图像,• Images recorded during the day, at dusk or at night,
• 在日照情况下或在阴雨天气情况下所记录的图像,以及• Images recorded in sunny conditions or in rainy weather conditions, and
• 在春天、夏天、秋天和冬天所记录的图像• Images recorded in spring, summer, autumn and winter
分别具有各自的风格。Each has its own style.
这些大量的可能的风格提高了在能训练的模块的训练情况下的耗费,其中这些能训练的模块应该从图像中得出用于控制或操控车辆的推论。因此必须例如保证:始终正确识别在图像中的包括在图像中出现的交通标志和其他交通参与者在内的确定的交通情形,而无关于哪个风格恰好被施加给这些图像。这意味着,与该交通情形的语义内容无关的图像风格不允许影响到该语义内容的识别。为了保证这点,通常以如下图像来训练能训练的模块,所述图像的可变性包括非常多的可能图像风格。These large number of possible styles increase the cost in the case of training of trainable modules that should draw inferences from the images for controlling or steering the vehicle. It must therefore be ensured, for example, that certain traffic situations, including traffic signs and other traffic participants present in the images, are always correctly recognized in the images, irrespective of which style is precisely applied to these images. This means that image styles that are not related to the semantic content of the traffic situation are not allowed to influence the recognition of the semantic content. To ensure this, trainable modules are typically trained on images whose variability includes a very large number of possible image styles.
能训练的模块尤其是视为如下模块,该模块以用于概括的大力度体现了(verkörpern):以能适配的参数来参数化的功能(Funktion)。这些参数可以在对能训练的模块进行训练时尤其是如此适配,使得在将学习输入参量输入到模块中时使所属的学习输出参量的值尽可能良好地被再现。能训练的模块可以尤其包含人工神经网络,KNN;和/或可以是KNN。Trainable modules are in particular considered modules that are embodied (verkörpern) with great power for generalization: a function (Funktion) that is parameterized with adaptable parameters. These parameters can be adapted, in particular, during the training of the trainable module in such a way that the values of the associated learned output variables are reproduced as well as possible when the learned input variables are input into the module. The trainable module may comprise, inter alia, an artificial neural network, KNN; and/or may be a KNN.
关于训练数据的不足可能尤其是如下地出现,在收集真实的用于训练的图像时,确定的交通情形并非非常常见地与确定的图像风格相结合地出现。例如,在确定的位置可能仅仅十分少见地发生降雪,从而仅仅有少量的如下图像可供使用,这些图像示出在积雪状态下的该位置。也可能在真实的行驶运行中原则上少见地发生例如确定的危险情形(“corner cases(极端情况)”),在这些危险情形中明显提高了事故风险。于是,获得如下图像是越发困难的,在这些图像中,这些情形与许多不同的图像风格相结合(gepaart)。Inadequacies with regard to the training data can arise, in particular, in that, when collecting real images for training, certain traffic situations do not often occur in combination with certain image styles. For example, snowfall may occur only very infrequently at a certain location, so that only a small number of images are available, which show the location in snow-covered conditions. In actual driving operation, certain hazardous situations (“corner cases”), for example, may in principle also occur infrequently, in which the risk of an accident is significantly increased. Thus, it is more and more difficult to obtain images in which these situations are combined (gepaart) with many different image styles.
在这些情形中,使用到用于域转换(Domänenübersetzung)的生成器。例如,可以使在夏天记录的图像属于域A,并且可以使在冬天记录的图像属于域B。生成器于是可以将任意的在夏天所记录的图像这样转换,使得该图像看起来就像是在冬天所记录的那样。因此在确定的交通情形的理想情况下,仅还需要一个具有任意风格的图像并且可以于是将该图像转换成所有对于能训练的模块的训练所需的其他风格。In these cases, generators for domain transformations (Domänenübersetzung) are used. For example, images recorded in summer can be made to belong to domain A, and images recorded in winter can be made to belong to domain B. The generator can then transform any image recorded in summer such that the image appears to be recorded in winter. In the ideal case of a certain traffic situation, therefore, only one image with any style is required and this image can then be converted into all other styles required for the training of the trainable modules.
生成器的最终实际应用因此是:改善能训练的模块的训练,这些能训练的模块又被构造用于控制和/或监控技术系统。因此也间接地改善了所述控制和/或监控。The final practical application of the generator is therefore to improve the training of trainable modules, which in turn are designed to control and/or monitor technical systems. The control and/or monitoring is thus also improved indirectly.
在该方法的范畴内在其方面训练该生成器。为此,属于域A的学习数据集的第一集合和属于域B的学习数据集的第二集合被使用。在此,并不需要使在域A和B中的学习数据集分别具有相同的语义内容。这意味着,该训练也可以以不成对(ungepaart)的学习数据集来执行。The generator is trained in its aspects within the scope of the method. For this purpose, a first set of learning datasets belonging to domain A and a second set of learning datasets belonging to domain B are used. Here, it is not necessary that the learning datasets in domains A and B respectively have the same semantic content. This means that the training can also be performed with unpaired (ungepaart) learning datasets.
生成器的行为通过能适配的参数来表征。这些参数在训练的范畴内逐步被适配,以便优化预给定的成本函数的值。该成本函数包含可信度贡献(Plausibilitäts-Beitrag)。该可信度贡献为此是用于如下的度量,以何种程度:The behavior of the generator is characterized by adaptable parameters. These parameters are gradually adapted within the scope of the training in order to optimize the values of the predetermined cost function. This cost function contains the credibility contribution (Plausibilitäts-Beitrag). To what extent this confidence contribution is used for the following measures:
• 在属于域A的至少一个学习数据集中体现的至少一个特性在将该学习数据集转换到域B的情况下保持不变;和/或• At least one characteristic embodied in at least one learning dataset belonging to domain A remains unchanged when transforming that learning dataset to domain B; and/or
• 在属于域A的至少一个学习数据集中体现的至少一个特性在转换到域B之后类似于属于域B的至少一个学习数据集的与之对应的特性。• At least one characteristic embodied in at least one learning dataset belonging to domain A is similar to the corresponding characteristic of at least one learning dataset belonging to domain B after transformation to domain B.
以这种方式,在训练生成器时可以考虑关于域A和B的、关于物理或模拟过程的以及关于测量数据的语义内容的附加信息,其中在学习数据集中的测量数据属于所述域A和B,测量数据是利用所述物理或模拟过程所获得的。已认识到:能够以这种方式使生成器的训练变得更稳定,从而使该生成器在训练结束之后以更高概率是针对将具有测量数据的数据集从域A转换到域B而言的可用的(brauchbar)工具。In this way, additional information about the domains A and B, about the physical or simulated process, and about the semantic content of the measurement data to which the measurement data in the learning dataset belong can be taken into account when training the generator. B, Measured data were obtained using the physical or simulated process. It has been recognized that the training of the generator can be made more stable in such a way that the generator has a higher probability of being able to convert a dataset with measurement data from domain A to domain B after training has ended available (brauchbar) tools.
尤其是,可以例如减小如下概率:在从域A转换到域B的情况下无意地改变这些测量数据的对于相应应用而言重要的语义内容。如果例如视觉上良好地达到的从风格“夏天”到风格“冬天”的图像转换将小的伪迹(Artefakt)引入到该图像,则所述伪迹导致:将停车标牌误解作为速度70标牌,那么这可以在用于成本函数的可信度贡献中表现出来(niederschlagen)。该生成器的训练可以例如以这种方式对其进行反应:使经转换的图像看起来视觉上更不“漂亮”,但是为此语义内容却正确地被传递。In particular, it is possible, for example, to reduce the probability of unintentionally changing the semantic content of these measurement data, which is relevant for the respective application, in the event of a transition from domain A to domain B. If, for example, a visually well-achieved image transition from style "summer" to style "winter" introduces a small artefact into the image, which leads to misinterpretation of a stop sign as a speed 70 sign, This can then be manifested in the confidence contribution used for the cost function (niederschlagen). The training of the generator can, for example, react to it in such a way that the transformed image looks less visually "pretty", but for this the semantic content is correctly conveyed.
用于生成器的训练的成本函数因此具有总共至少两种贡献。存在如下贡献,这些贡献涉及域转换本身并且取决于其具体的式样(Machart)(例如Generative AdversarialNetwork(生成对抗网络),GAN)。这些贡献评价了:图像从一风格到另一风格的改写(Übertragung)例如以何种程度“达成(gelingen)”。与之伴随有(hierzu gesellt sich)可信度贡献,该可信度贡献评价了:经转换的图像是否也还可用于自身的有意的其他应用。当已从域A转换到域B的数据集接下来应被使用用于能训练的模块、例如人工神经网络的训练时,那么这尤其是重要的。这样的能训练的模块的性能和可靠性决定性地取决于在训练时所使用的数据的质量。The cost function used for the training of the generator thus has at least two contributions in total. There are contributions that involve the domain transformation itself and depend on its specific modality (Macart) (eg Generative Adversarial Network, GAN). These contributions evaluate: to what extent, for example, the rewriting (Übertragung) of an image from one style to another is "achieved (gelingen)". This is accompanied by a credibility contribution (hierzu gesellt sich) which evaluates whether the transformed image can also be used for its own intended other applications. This is especially important when the dataset that has been transformed from domain A to domain B should then be used for training of trainable modules, eg artificial neural networks. The performance and reliability of such trainable modules depend decisively on the quality of the data used in training.
在一种特别有利的构型方案中,该成本函数附加地包含至少一个循环论证贡献。该循环论证贡献为此是如下度量:属于域A的至少一个学习数据集以何种程度在利用生成器从域A转换到域B之后并且在接下来从域B转换回域A之后一致地再现。该循环论证贡献因此属于如下贡献,这些贡献涉及域转换本身。In a particularly advantageous configuration, the cost function additionally contains at least one circular argument contribution. The circular argument contributes to this by a measure of the extent to which at least one learning dataset belonging to domain A is consistently reproduced after transformation from domain A to domain B and subsequent transformation from domain B back to domain A using the generator . The circular argument contributions therefore belong to the following contributions, which involve the domain transformation itself.
例如,该生成器可以在CycleGAN(循环GAN)方法的范畴内被训练。在这样的方法情况下,可以例如训练总共四个能训练的模块、例如神经网络。第一生成器鉴于如下方面被训练:将数据集这样从域A转换到域B,使得这些数据集能够与在物理上或模拟地直接在域B中所记录的数据集区分。第二生成器鉴于如下方面被训练,将数据集在相反方向上这样从域B转换到域A,使得这些数据集能够与在物理上或模拟地直接在域A中所记录的数据集区分。此外,第一鉴别器(Diskriminator)鉴于如下方面被训练,将物理上或模拟地直接在域B中所记录的数据集与通过第一生成器转换到域B的数据集区分。第二鉴别器鉴于如下方面被训练,将物理上或模拟地直接在域A中所记录的数据集与通过第二生成器转换到域A的数据集区分。For example, the generator can be trained in the category of CycleGAN (Cyclic GAN) method. In the case of such a method, a total of four trainable modules, eg neural networks, can be trained, for example. The first generator is trained in view of transforming the datasets from domain A to domain B in such a way that these datasets can be distinguished from datasets recorded directly in domain B, either physically or analogously. The second generator is trained to transform the datasets in the opposite direction from domain B to domain A in such a way that these datasets can be distinguished from those recorded directly in domain A, either physically or analogously. Furthermore, the first discriminator (Diskriminator) is trained to distinguish the datasets recorded directly in domain B, physically or analogously, from the datasets transformed into domain B by the first generator. The second discriminator is trained to distinguish between datasets recorded directly in domain A, physically or analogically, from datasets transformed into domain A by the second generator.
在这样的CycleGAN方法的情况下,成本函数可以例如包含两个循环论证贡献。该第一循环论证贡献是用于如下的度量:属于域A的至少一个学习数据集在利用第一生成器从域A转换到域B之后并且在接下来利用第二生成器从域B转换回域A之后以何种程度被一致地再现。该第二循环论证贡献是用于如下的度量:属于域B的至少一个学习数据集在利用第二生成器转换到域A之后并且在接下来利用第一生成器从域A转换回域B之后以何种程度被一致地再现。In the case of such a CycleGAN approach, the cost function may, for example, contain two circular argument contributions. This first circular argument contribution is a measure for at least one learning dataset belonging to domain A after being transformed from domain A to domain B with the first generator and then transformed back from domain B with the second generator To what extent domain A is subsequently reproduced consistently. This second circular argument contribution is a measure for at least one learning dataset belonging to domain B after being transformed to domain A with the second generator and after being subsequently transformed from domain A back to domain B with the first generator To what extent are they reproduced consistently.
已认识到:在根据该方法训练时,这两个生成器可以学会(erlernen)对这些数据集的歪曲(Verfälschung);这些歪曲在该循环论证的完整(komplett)运行中彼此抵消并且因此使得用于成本函数的这些循环论证贡献不变。例如,该第一生成器可以在颜色到不同对象类型的分配中学会交换(Vertauschung),并且第二生成器可以学会相反的交换。该完整的循环论证于是可以例如准确地再次对所输入的图像进行再现。如果例如一方面分配给道路的并且另一方面分配给天空的颜色在域之间的转换时被相互交换,或者甚至如果该图像的颜色在转换时被完全地颠倒(invertieren),则这因此被用于成本函数的循环论证贡献完全地忽略(entgehen)。以这种方式歪曲的图像例如不再可用于对能训练的模块进行训练。It has been recognized that, when trained according to the method, the two generators can learn (erlernen) distortions (Verfälschung) of these datasets; these distortions cancel each other out in a full (komplett) run of the circular argument and thus make the use of These circular contributions to the cost function do not change. For example, the first generator can learn to exchange (Vertauschung) in the assignment of colors to different object types, and the second generator can learn the opposite exchange. This complete circular argument can then, for example, reproduce the input image exactly again. If, for example, the colors assigned to the road on the one hand and the sky on the other hand are exchanged during the transition between domains, or even if the colors of the image are completely inverted during the transition, this is therefore The circular argument contribution for the cost function is completely ignored (entgehen). Images distorted in this way are, for example, no longer usable for training trainable modules.
该可信度贡献现在可以例如此外监视(wachen):在从域A转换到域B的情况下使基础色调保持不变和/或仅以可信的方式改变。因此,在大多情形中道路的色调例如是灰调。该色调可以在转换到域“冬天”时通过以白色的雪来覆盖而改变或者在转换到域“秋天”时通过以棕色调的落叶来覆盖而改变。然而,难以想象如下真实动机(Anlass),出于这些动机,道路的色调例如变换成蓝色、绿色或红色。同样地,可以例如使天空的颜色根据天气情况而定地从蓝色改变成灰色或白色,或者使天空的颜色在日出或日落时变换成红色调。然而难以想象的是:出于何种真实动机而应将天空的颜色例如变换成绿色。This plausibility contribution can now be monitored, for example, in addition: in the case of a transition from domain A to domain B, the base color tone remains unchanged and/or only changes in a plausible manner. Therefore, the color tone of the road is, for example, a gray tone in most cases. The hue can be changed by covering with white snow when switching to the field "Winter" or by covering with brown-toned fallen leaves when switching to the field "Autumn". However, it is difficult to imagine the real motives (Anlass) for which the hue of the road is changed, for example, to blue, green or red. Likewise, it is possible, for example, to change the color of the sky from blue to gray or white depending on the weather, or to change the color of the sky to a red hue at sunrise or sunset. However, it is hard to imagine for what real motive the color of the sky should be changed to green, for example.
因此,例如所述颜色交换或颜色颠倒在该生成器的训练中不再保持不受注意,而是在所述成本函数中“受到惩罚(bestrafen)”,使得该生成器最终再次从该错误行为移开(abrücken)。Thus, for example, the color swap or color reversal no longer remains unnoticed in the training of the generator, but is "bestrafened" in the cost function, so that the generator eventually recovers from this misbehavior again to move away (abrücken).
以这种方式,该生成器的训练总体变得更能够再现。典型地,表征该生成器的行为的参数在训练开始时被随机地初始化。在迄今为止的利用没有可信度贡献的成本函数的试验中,其因此取决于如下偶然性:这些生成器是否学会了所描述的歪曲,这些歪曲在循环论证中彼此抵消。在不利的情况下,该训练必须多于十次地被重新开始,以便获得可用的生成器。利用该可信度贡献,所描述的歪曲无关于生成器的参数的初始配置地在训练的过程中被生成器“戒除(aberziehen)”。与此关联的是对用于训练的时间和资金的明显节省,因为完整的训练可以鉴于强度的图形处理器(GPU)而需要多天的计算时间,并且无论是通过提供自身的硬件还是通过在云中的租用,该计算时间都必须以任一形式被付出。In this way, the training of the generator becomes more reproducible overall. Typically, the parameters characterizing the behavior of the generator are randomly initialized at the beginning of training. In experiments so far with cost functions with no credibility contribution, it therefore depends on chance that these generators learn the described distortions, which cancel each other out in a circular argument. In the unfavorable case, the training must be restarted more than ten times in order to obtain a usable generator. With this confidence contribution, the described distortions are "aberziehen" by the generator during training, irrespective of the initial configuration of the generator's parameters. Associated with this is a significant saving in time and money for training, as a full training can require multiple days of computing time given the strength of the graphics processing unit (GPU), and is either provided by own hardware or by in For leases in the cloud, this computing time must be paid in either form.
成本函数可以例如包含可选地也加权的、由可信度贡献和循环论证贡献组成的总和。The cost function may, for example, comprise an optionally also weighted sum consisting of the plausibility contribution and the circular argument contribution.
在另一特别有利的构型方案中,响应于该成本函数的可信度贡献的曲线走向和/或值满足预给定的标准地,该生成器的训练利用如下成本函数来继续进行,在该成本函数中,可信度贡献被更小地加权或移除。已认识到:对在完整的循环论证中相互抵消的、所描述的歪曲的学会优选地在该训练开始时从参数的随机初始化出发地出现。该训练越进一步地进展(fortgeschritten),该生成器还对用于所描述的歪曲的趋势进行发展的概率就越小。In a further particularly advantageous configuration, the training of the generator is continued with the cost function in response to the course of the curve and/or the value of the plausibility contribution of the cost function satisfying predetermined criteria: In this cost function, the confidence contribution is weighted or removed less. It has been recognized that the learning of the described distortions, which cancel each other out in a complete circular argument, preferably occurs at the beginning of the training starting from a random initialization of the parameters. The further the training progresses, the less likely the generator will also develop a trend for the described distortion.
如之前阐述的那样,在一种特别有利的构型方案中,域A和B在至少一个物理条件和/或模拟边界条件方面区分,其中对于域A和B的所属的学习数据集分别已在所述物理条件下和/或所述模拟边界条件下所检测。这些条件可以例如包括:白天时间、季节、天气条件或照明条件。As explained above, in a particularly advantageous configuration, domains A and B are differentiated with respect to at least one physical condition and/or a simulation boundary condition, wherein the associated learning data sets for domains A and B are each already in the Detected under the physical conditions and/or the simulated boundary conditions. These conditions may include, for example: time of day, season, weather conditions or lighting conditions.
尤其是,可以例如使用可信度贡献,以便在终究考虑用于成本函数的循环论证贡献之前预先训练该生成器。但是例如也可以在仅针对于可信度贡献的优化的训练和仅针对于循环论证贡献的优化的训练之间交替。In particular, the credibility contribution can be used, for example, to pre-train the generator before finally considering the circular argument contribution for the cost function. But it is also possible, for example, to alternate between training optimized only for plausibility contributions and training optimized only for circular argument contributions.
在另一特别有利的构型方案中,选择如下物理特性来作为在将学习数据集从域A转换到域B的情况下应保持不变的特性:在域A和B之间的在模拟边界条件和/或物理条件方面的区别并不影响到该物理特性或仅以直至预给定的最大度量(Höchstmaß)来影响到该物理特性。如之前阐述的那样,可以在天气条件和/或照明条件改变时例如仅以既定的极限而使确定的在图像中可见的对象的色调变化。例如照明条件的单纯改变也可以并非根本地改变例如树冠或道路的纹理。In another particularly advantageous configuration, the following physical properties are chosen as properties that should remain unchanged when the learning dataset is transferred from domain A to domain B: the simulation boundary between domains A and B Differences in conditions and/or physical conditions do not affect this physical property or only up to a predetermined maximum measure (Höchstmaß). As explained above, the color tone of certain objects visible in the image can be changed, for example only within predetermined limits, when the weather and/or lighting conditions change. Simple changes such as lighting conditions may also not radically change the texture of eg tree canopies or roads.
在另一有利的构型方案中,学习数据集分别包括至少一个物理上能观察的测量参量的在二维或三维的空间区域中所检测的分布。该测量参量可以在此情况下具有任意的维度。该分布将测量参量的任意维度的值分配至如下位置,这些位置又通过在空间区域内的二维的或三维的坐标来表征。对于这种的分布的示例是二维的或三维的图像。因此,利用图像传感器所记录的二维的图像例如体现了:经图像传感器的区(Fläche)的光强度的和/或颜色的位置分辨的分布。对于分布的另一示例是雷达数据的点云,该点云给例如距离和一个或多个角分配由通过该距离和所述一个或多个角所表征的位置所入射的强度。In a further advantageous configuration, the learning data sets each comprise the detected distribution of at least one physically observable measurement variable in a two-dimensional or three-dimensional spatial region. In this case, the measured variable can have any dimensions. This distribution assigns values of any dimension of the measurement variable to positions which are in turn characterized by two-dimensional or three-dimensional coordinates within the spatial region. Examples for such distributions are two-dimensional or three-dimensional images. Thus, the two-dimensional image recorded with the image sensor represents, for example, the spatially resolved distribution of the light intensity and/or color of the region via the image sensor. Another example for a distribution is a point cloud of radar data that assigns, for example, a distance and one or more corners to intensities incident through a location characterized by the distance and the one or more corners.
术语“物理上能观察的测量参量”并不应在该意义上限制性地理解为:这些测量参量的值必须强制性地通过物理测量来检验。类似于术语“测量数据”地,仅仅意味着:这种物理检测的测量参量可用。然而也可以作为对于物理检测的替代方案而使用到模拟,而并不对该测量参量的接下来的应用略微进行改变。The term "physically observable measured variables" should not be interpreted restrictively in the sense that the values of these measured variables must be checked compulsorily by physical measurements. Similar to the term "measurement data", it simply means that such physically detected measurement variables are available. However, it is also possible to use simulations as an alternative to physical detection without slightly changing the subsequent application of the measured variable.
在另一特别有利的构型方案中,在其处已检测到物理上能观察的测量参量的至少一个位置到至少一个物理对象的所属性被选择作为在将学习数据集从域A转换到域B的情况下应保持不变的特性。为此目的,可以例如利用任意方法来对在学习数据集中的测量数据进行语义分割。进行该分割的精确度仅仅是次要的;决定性的只是:该分割的结果是否在学习数据集转换到域B之后改变。该语义分割也无需强制性地全自动地进行,而是可以例如也保持从图像中手动选择如下图像区域,这些图像区域属于这两个域A和B。In a further particularly advantageous configuration, at least one location at which the physically observable measurement variable has been detected, at least one attribute of the at least one physical object is selected as a function of the transfer of the learning data set from the domain A to the domain Case B should maintain the same characteristics. For this purpose, the measurement data in the learning dataset can be semantically segmented, for example, using any method. The accuracy with which this segmentation is made is only secondary; what is decisive is whether the result of this segmentation changes after the transformation of the learning dataset to domain B. The semantic segmentation also does not have to be performed fully automatically, for example, but the image regions which belong to the two domains A and B can, for example, also remain manually selected from the image.
如之前所阐述的,被施加到图像的例如取决于季节、白天时间、天气条件和/或照明条件的风格基本上无关于该图像的语义内容。如果因此进行到另一风格的单纯转换,那么该图像的语义内容应并不改变。As previously stated, styles applied to an image that depend, for example, on season, time of day, weather conditions and/or lighting conditions are substantially irrelevant to the semantic content of the image. If a mere transition to another style is thus made, the semantic content of the image should not change.
该语义分割的结果也可以鉴于图像中的小的改变而敏感地进行反应。对此的范例(Paradebeispiel)是所谓的“对抗示例(Adversarial Example)”。这是在图像中有意引入的、视觉上不显眼的或者对于人类而言根本以裸眼不能识别出的改变,而所述改变则剧烈地改变该图像的语义分割的结果或者该图像的其他分类的结果。以相同方式,该语义分割的结果也可能通过在域转换中无意地产生的伪迹而被影响。因此,对于从位置到对象的分配以何种程度保持不变的监控是有意义的。The results of this semantic segmentation can also react sensitively to small changes in the image. An example of this (Paradebeispiel) is the so-called "Adversarial Example". This is a change in an image that is intentionally introduced, is visually inconspicuous, or is not discernible to humans at all with the naked eye, and that drastically alters the results of semantic segmentation of the image or other classification of the image result. In the same way, the results of this semantic segmentation may also be affected by artifacts that are inadvertently generated in the domain transformation. Therefore, it makes sense to monitor to what extent the assignment from locations to objects remains constant.
如果该语义分割的结果在从域A转换到域B的情况下改变,则存在不同的可能性:这如何能够在可信度贡献中被考虑。If the result of this semantic segmentation changes in the case of switching from domain A to domain B, there are different possibilities: how this can be taken into account in the confidence contribution.
例如,成本函数的可信度贡献可以取决于如下位置的数目和/或维度(Ausdehnung),这些位置到至少一个物理对象的分配在学习数据集从域A转换到域B的情况下改变。可信度贡献于是可以例如是用于如下的度量:语义分割的改变涉及图像的哪个部分。For example, the confidence contribution of the cost function may depend on the number and/or dimension (Ausdehnung) of locations whose assignment to at least one physical object changes when the learning dataset is transformed from domain A to domain B. The confidence contribution may then be, for example, a measure for which part of the image the change in semantic segmentation relates to.
可替代地或者也与此相结合地,可以将如下物理对象划分成多个类别,其中分别给这些物理对象分配位置。成本函数的可信度贡献于是可以取决于,在域A中的至少一个位置被分配给哪个类别的对象并且该分配在转换到域B的情况下变换到哪个类别。以这种方式可以例如将如下改变在可信度贡献中更高加权(Übergewichten),该改变例如在能训练的模块的训练中在进一步处理经转换的数据集时特别不利地产生影响。在至少部分自动化驾驶的上下文中例如特别危急的是,其他交通参与者或者其他对象在转换到域B之后被分类为能自由通行的区。Alternatively or also in combination with this, the physical objects can be divided into classes, to which positions are respectively assigned to these physical objects. The confidence contribution of the cost function can then depend on which class of objects the at least one position in domain A is assigned to and to which class the assignment is transformed in the case of a transition to domain B. In this way, for example, changes which have a particularly disadvantageous effect on the further processing of the transformed data set, for example in the training of the trainable module, can be given a higher weight in the plausibility contribution. In the context of at least partially automated driving, for example, it is particularly critical that other traffic participants or other objects are classified as freely traversable zones after the transition to domain B.
只要是对于在从域A转换到域B的情况下应保持不变的特性的改变而言存在标量的(skalar)或矢量的度量,就可以使该成本函数的可信度贡献例如包括经该二维或三维的空间区域的所述度量的按数值的总和或平方总和,其中在所述二维或三维的空间区域上检测所述物理上能观察的测量参量。该可信度贡献于是不仅考虑该改变的强度而且也考虑该改变的相应的空间上的程度(Ausmaß)。As long as there is a skalar or vectorial measure for a change in a property that should remain unchanged in the transition from domain A to domain B, the confidence contribution of the cost function can be made to include, for example, via the The numerical sum or the sum of squares of the measure of the two- or three-dimensional spatial region over which the physically observable measurement variable is detected. The plausibility contribution then takes into account not only the magnitude of the change but also the corresponding spatial extent (Ausmaß) of the change.
在另一特别有利的构型方案中,该物理上能观察的测量参量的经二维或三维的空间区域的预给定的部分区域聚合的(aggregieren)值被选择为如下特性,该特性在学习数据集从域A转换到域B的情况下应保持不变。In a further particularly advantageous configuration, the aggregated value of the physically observable measurement variable over a predetermined subregion of a two- or three-dimensional spatial region is selected as a property which is The case where the learning dataset is transformed from domain A to domain B should remain unchanged.
如果该学习数据集例如包含图像,则可以例如将在图像的至少一个部分区域内的颜色平均值选择为如下特性,该特性是在将学习数据集从域A转换到域B的情况下应保持不变的特性或者该特性应该在该转换之后类似于属于域B的至少一个学习数据集的与之对应的特性。If the learning data set contains images, for example, the mean value of the colors in at least a subregion of the image can be selected, for example, as a characteristic which is to be preserved when the learning data set is converted from domain A to domain B The invariant feature or the feature should be similar to its corresponding feature of at least one learning dataset belonging to domain B after the transformation.
例如,交通信号灯的三个灯和壳体分别具有所规定的颜色,所述颜色在过渡到其他的白天时间、季节、天气条件和/或照明条件时并不改变或者仅不重要地改变。同样地,在交通标志上的饱和的颜色、例如黑色、红色或蓝色在这样的域变换情况下并不改变或者仅仅不重要地改变。相反,例如天空的着色(Farbgebung)以限定的方式在从中午时间到日出或日落的变换中改变。在交通标志上的标定(nominell)白色的区域也可以例如随着太阳位置(Sonnenstand)而改变自身的在图像中可见的颜色。For example, the three lamps and the housing of a traffic signal each have a specified color that does not change or only changes insignificantly when transitioning to other daylight hours, seasons, weather conditions and/or lighting conditions. Likewise, saturated colors on traffic signs, such as black, red or blue, do not change or only change insignificantly with such a domain change. Instead, the shading (Farbgebung) of the sky, for example, changes in a defined way in the transition from noon time to sunrise or sunset. A nominally white area on a traffic sign can also change its own color visible in the image, eg depending on the position of the sun.
颜色平均值与至少一个属于该域B的学习数据集的相适应可以例如分开地根据对象类型来被测量,其中这些对象类型又能够在这两个域A和B中通过语义分割从相应的图像中被确定。对此,例如可以将确定的对象类型的所有像素的在从域A转换到域B之后出现的颜色平均值与属于域B的学习数据集的所有像素的颜色平均值比较,其中这些像素被分配给相同的对象类型。例如,因此可以将转换到域B的图像的被分配给对象类型“道路”的所有像素的颜色平均值与从一开始(vornherein)属于域B的学习数据集中的图像的同样被分配给对象类型“道路”的所有像素的颜色平均值比较。该比较可以例如以在RGB颜色空间(Farbraum)中的适合的基准(Norm)来进行。如果在转换到域B的图像中以及在从一开始就属于域B的图像中被分配给相同对象类型的区域是颜色上非常相似的,则所述基准接近于零(Null)。相反,被比较的图像区域在色调方面和/或在亮度方面越大地区别,该基准就可以具有(annehmen)越大的值。但是,针对该相似性的所使用的包括到可信度贡献中的度量也可以例如在其他颜色空间中解释为RGB,仅取决于选择性的颜色通道(Farbkanal)和/或使用其他基准定义(Normdefinition)。用于成本函数的可信度贡献可以例如与该相似性度量成比例。但是用于成本函数的该可信度贡献也可以以任意的其他函数而取决于该相似性度量。如果除了用于颜色平均值的相似性度量以外该可信度贡献还测量一个或多个其他标准,那么这尤其是有意义的。The adaptation of the color mean value to at least one learning dataset belonging to the domain B can be measured, for example, separately according to the object types, which in turn can be derived from the corresponding images in the two domains A and B by means of semantic segmentation was determined in. For this purpose, for example, the color mean value of all pixels of the determined object type, which occurs after the conversion from domain A to domain B, can be compared with the color mean value of all pixels of the learning data set belonging to domain B, wherein these pixels are assigned to the same object type. For example, the color mean of all pixels of an image converted to domain B that is assigned to the object type "road" can thus be assigned to the object type the same as the images in the learning dataset belonging to domain B from the beginning (vornherein) Color average comparison of all pixels of "road". The comparison can take place, for example, with a suitable reference (Norm) in the RGB color space (Farbraum). The reference is close to zero (Null) if the regions assigned to the same object type are very similar in color in the image converted to domain B as well as in the image that belonged to domain B from the beginning. Conversely, the greater the difference in hue and/or in brightness between the image areas being compared, the greater the value the reference may have. However, the metric used for this similarity included into the confidence contribution can also be interpreted as RGB in other color spaces, for example, depending only on the selective color channel (Farbkanal) and/or using other fiducial definitions ( Normdefinition). The confidence contribution for the cost function may eg be proportional to this similarity measure. But the confidence contribution for the cost function can also depend on the similarity measure in any other function. This is especially interesting if the confidence contribution measures one or more other criteria in addition to the similarity measure for the color mean.
在另一特别有利的构型方案中,选择如下学习数据集,这些学习数据集包含测量数据的时间序列。以这种方式,可以例如利用该域转换的原理,以便使得用于对车辆的发动机或其他机组的行为进行预测的、能训练的模块的学习数据集多样化(vervielfältigen)。In another particularly advantageous configuration, learning data sets are selected which contain time series of measurement data. In this way, the principle of this domain transformation can be exploited, for example, in order to diversify the learning data set of the trainable modules for predicting the behavior of the engine or other components of the vehicle.
因此,例如在发动机开发中期望的是,预测在真实行驶条件下发动机的废气行为(真实驾驶排放(Real Driving Emissions),RDE)。因此,发动机还可以在开发期间必要时被适配,从而使该最终产品以高概率通过RDE废气测试。为了预测又可以使用能训练的模块(例如人工神经网络),这些能训练的模块将作为时间程序(Zeitprogramm)存在的行驶周期作为输入来获得并且这些能训练的模块将一个或多个有害物质的总体所排放的量作为输出来输出。在此,用于获得学习数据集的测试行驶的执行是比较时间耗费的并且存在如下需求,例如将针对在夏天所执行的测试行驶的学习数据集转换到针对在冬天所执行的测试行驶的数据集。以这种方式,能够减小实际要执行的测试行驶的数目。It is therefore desirable, for example, in engine development to predict the exhaust gas behavior of the engine under real driving conditions (Real Driving Emissions (RDE)). Therefore, the engine can also be adapted during development if necessary, so that the final product passes the RDE exhaust gas test with a high probability. For prediction, it is possible to use trainable modules (eg artificial neural networks), which take as input the driving cycles that exist as time programs (Zeitprogramm) and which combine one or more harmful substances The total emitted amount is output as an output. Here, the execution of the test drive for obtaining the learning data set is relatively time-consuming and there is a need to convert, for example, the learning data set for the test drive performed in summer to the data for the test drive performed in the winter set. In this way, the number of test runs actually to be performed can be reduced.
尽管时间序列和二维或三维图像是用于利用生成器从域A转换到域B的测量数据的最突出的示例,这并不因此包含:将测量数据的维度限于时间序列和图像的维度。更高维度的学习数据集可以例如通过将不同数据类型联合(Vereinigung)到一个并且同一个学习数据集中而产生。之前作为示例提及的行驶周期可以例如通过一方面由时间程序并且另一方面由图像构成的结合来表征,其中该图像例如被利用,以便表征如下的白天时间、天气条件和/或季节,其中该时间程序曾经在所述白天时间、天气条件和/或季节出发(abgefahren)。Although time series and 2D or 3D images are the most prominent examples of measurement data used to transform from domain A to domain B using generators, this does not therefore include limiting the dimensions of measurement data to those of time series and images. Higher dimensional learning datasets can be produced, for example, by combining different data types into one and the same learning dataset. The driving cycle mentioned above as an example can be characterized, for example, by a combination of a time sequence on the one hand and an image on the other hand, wherein the image is used, for example, in order to characterize the time of day, weather conditions and/or seasons, where The time program has departed (abgefahren) at said daytime, weather conditions and/or season.
非常一般而言地,优选选择如下学习数据集,所述学习数据集的测量数据已通过观察和/或模拟车辆的环境和/或通过观察和/或模拟该车辆的机组和/或结构组合件的至少一个状态所获得。Very generally speaking, it is preferred to select a learning dataset whose measurement data has been obtained by observing and/or simulating the environment of the vehicle and/or by observing and/or simulating the crew and/or structural assemblies of the vehicle at least one state of .
对生成器进行训练的实体(Entität)无需强制性地是使用该生成器的实体。相反,训练完成的生成器是独立的产品。例如,可以利用来自大量情形的图像通用地鉴于在季节、白天时间和天气条件和/或照明条件之间的转换方面来训练生成器,其中这些情形并不限于道路交通。该生成器于是可以例如由第一企业来使用用于与观察车辆环境相关联的域转换并且由第二企业来使用用于与监控运营地区(Betriebsgelände)相结合的域转换。The entity that trains the generator (Entität) need not necessarily be the entity that uses the generator. Instead, the trained generator is a standalone product. For example, the generator may be trained with images from a large number of situations, which are not limited to road traffic, generically in view of transitions between seasons, time of day and weather conditions and/or lighting conditions. The generator can then be used, for example, by the first enterprise for the domain transformation associated with the observation of the vehicle environment and by the second enterprise for the domain transformation in conjunction with monitoring the operating area.
因此,本发明一般而言也涉及用于将数据集从域A转换到域B的生成器和/或涉及具有能适配的参数的数据集,这些参数表征该生成器。该生成器或该数据集利用之前所描述的方法来获得。Accordingly, the invention generally also relates to a generator for transforming a data set from domain A to domain B and/or to a data set with adaptable parameters which characterize the generator. The generator or the dataset is obtained using the methods previously described.
如在之前所阐述的,根据之前描述的方法所训练的生成器的重要应用是:将用于能训练的模块的学习数据集转换并且因此特别地转换到如下域,在所述域中学习数据集是不足的,以用于缓解该不足。因此,本发明也涉及一种用于对能训练的模块进行训练的方法,该方法将一个或多个输入参量转换成一个或多个输出参量。该能训练的模块的行为通过其他能适配的参数来表征。所述其他能适配的参数被逐渐地适配,使得用于输入参量的学习值平均地映射到用于输出参量的所属学习值。As explained before, an important application of the generator trained according to the previously described method is to transform the learning data set for the trainable module and thus in particular to the domain in which the learning data is The set is insufficient for alleviating the deficiency. Accordingly, the invention also relates to a method for training a trainable module, which method converts one or more input parameters into one or more output parameters. The behavior of the trainable module is characterized by other adaptable parameters. The other adaptable parameters are gradually adapted so that the learned values for the input variables are mapped on average to the associated learned values for the output variables.
例如,这些输入参量可以是图像的像素值并且所述输出参量于是可以例如代表在图像中可见的对象的分类。For example, these input parameters may be pixel values of the image and the output parameters may then represent, for example, the classification of objects visible in the image.
在该方法中,利用之前所描述的生成器来将具有用于输入参量的学习值的至少一个学习数据集从域A转换到域B。在能训练的模块的训练的范畴内将用于输入参量的被转换到域B的学习值输送给该能训练的模块。In this method, at least one learning dataset with learned values for input parameters is transformed from domain A to domain B using the generator described previously. Within the scope of the training of the trainable module, the learned values for the input variables, which are converted to the domain B, are supplied to the trainable module.
以这种方式,用于输入参量的属于域B的学习值可以被提供,而无需使这些学习值都物理上或模拟地直接记录在域B中。尤其是,可以将针对其仅在域A(例如“夏天”)中记录了测量数据的情形这样呈现给能训练的模块,就好像这些情形在域B(例如“冬天”)中出现一样。In this way, the learned values belonging to domain B for the input parameters can be provided without having these learned values all recorded directly in domain B, either physically or analogously. In particular, situations for which measurement data were recorded only in domain A (eg "summer") can be presented to a trainable module as if these situations occurred in domain B (eg "winter").
在另一特别有利的构型方案中,用于所述输入参量的如下学习值被选择,所述学习值在域A之内基于至少一个在所述学习值中所体现的特性而以至少一个用于输出参量的学习值来加标签,其中生成器在转换的情况下使所述特性不变和/或使所述特性与在所述域B中的对应的特性相适应。根据在机器学习的领域中常见的语言惯用法,“加标签(Gelabelt)”就此而论意味着:已将用于输出参量的学习值作为附加信息分配给该学习数据集。因此,可以用信息例如给示出不同对象的图像加标签:其分别涉及哪些对象。In a further particularly advantageous configuration, a learned value for the input variable is selected which, within the range A, is based on at least one characteristic embodied in the learned value with at least one The learned values for the output parameters are used for labeling, wherein the generator leaves the properties unchanged and/or adapts the properties to the corresponding properties in the domain B in the case of transformation. According to a common language idiom in the field of machine learning, "Gelabelt" in this context means that the learned value for the output parameter has been assigned as additional information to the learning dataset. Thus, images showing different objects, for example, can be tagged with information: which objects are involved in each case.
通过使基于自身来给学习数据集加了标签的特性在域转换的情况下保持不变和/或与域B相适应,确保:标签至学习数据集的分配在转换到域B之后还在内容上适用(zutreffend)。如果该标签例如说明在图像中在域A中包含确定的对象,那么也在转换到域B的图像中还良好地识别出这些对象。能训练的模块因此可以根据适用的信息来学习:在该图像中哪些特征分别指出根据标签而存在的对象。相反,如果在被转换到域B的图像中不再识别出这些对象,能训练的模块可能使该图像的根本与根据标签而存在的对象无关的某些特征具有如下特性,所述特性恰好指出这些对象。由此,可能通过能训练的模块而使该对象识别恶化而并非改善。By making the features that label the learning dataset based on itself invariant in case of domain transition and/or adapting to domain B, ensuring that the assignment of labels to the learning dataset is still in content after transition to domain B above applies (zutreffend). If, for example, the label indicates that certain objects are contained in the image in the field A, these objects are also well recognized in the image converted to the field B. The trainable module can thus learn from the applicable information which features in the image respectively indicate the presence of an object according to the label. Conversely, if these objects are no longer recognized in the image converted to domain B, the trainable module may have some features of the image that are not at all relevant to the objects present in terms of labels with properties that just indicate that these objects. Thus, the object recognition may be degraded rather than improved by the trainable module.
如开头提及的那样,能训练的模块的重要应用是:车辆的控制或操控,其中针对这些模块的训练又使用所描述的生成器。因此,本发明也涉及其他方法。As mentioned at the outset, an important application of trainable modules is the control or manipulation of vehicles, for which training of these modules in turn uses the described generator. Therefore, the present invention also relates to other methods.
在该方法中,利用之前描述的用于训练生成器的方法来训练生成器。在利用该生成器的情况下,利用用于能训练的模块的训练的方法来训练能训练的模块。该能训练的模块被运行,其方式为,将测量数据输送给该模块来作为输入参量,这些测量数据已通过观察车辆的环境和/或通过观察该车辆的机组和/或结构组合件的至少一个状态所获得。根据由能训练的模块所提供的输出参量,利用操控信号来操控该车辆和/或该车辆的机组或结构组合件。In this method, the generator is trained using the method described previously for training the generator. In the case of using the generator, the trainable module is trained using the method for training of the trainable module. The trainable module is operated in such a way that measurement data are supplied to the module as input variables, which measurement data have been obtained by observing the environment of the vehicle and/or by observing at least parts of the components and/or structural components of the vehicle. obtained by a state. The vehicle and/or the components or structural components of the vehicle are actuated by means of actuating signals according to the output variables provided by the trainable module.
所描述的方法可以完全地或者部分地以计算机来实施。因此,这些方法可以例如以软件的方式来体现。因此,本发明也涉及一种具有机器可读的指令的计算机程序,当所述指令在计算机上被执行时,所述指令促使所述计算机,执行所描述的方法之一。The described method may be implemented entirely or partly by computer. Thus, these methods can be embodied, for example, in software. Accordingly, the invention also relates to a computer program having machine-readable instructions which, when executed on a computer, cause the computer to perform one of the described methods.
同样地,本发明也涉及一种机器可读的数据载体或下载产品,所述数据载体和/或下载产品具有计算机程序。下载产品是通过数据网络能传输的、也即由数据网络的用户能下载的、数字产品,所述数字产品例如能够在网上商店出售以用于立即下载。Likewise, the invention also relates to a machine-readable data carrier or download product having a computer program. A download product is a digital product that can be transmitted over a data network, ie can be downloaded by a user of the data network, which can be sold, for example, in an online store for immediate download.
此外,能够使计算机装备有所述计算机程序、所述机器可读的数据载体或下载产品。Furthermore, a computer can be equipped with the computer program, the machine-readable data carrier or the download product.
附图说明Description of drawings
在下文中与本发明优选实施例的描述共同地根据附图来进一步示出对本发明进行改进的其他措施。其中:Further measures for improving the invention are further illustrated in the following in conjunction with the description of preferred embodiments of the invention on the basis of the drawings. in:
图1示出用于训练生成器1的方法100的实施例;Figure 1 shows an embodiment of a
图2示出用于训练能训练的模块2的方法200的实施例;Figure 2 illustrates an embodiment of a
图3 示出用于训练生成器1的、用于能训练的模块2的训练和用于该能训练的模块2的接下来的运行的方法300的实施例;FIG. 3 shows an embodiment of a
图4示出在利用方法100训练生成器1之后作为学习数据集11a的图像的示例性的域转换(图4a)和没有方法100的情况下训练生成器1之后作为学习数据集11a的图像的示例性域转换(图4b)。FIG. 4 shows an exemplary domain transformation ( FIG. 4 a ) after
具体实施方式Detailed ways
根据图1,在方法100的步骤110中,在要训练的生成器1中将学习数据集11a从域A转换到域B。对于该转换的结果11a’附加地,在此情况下,提供成本函数13的值,利用该成本函数来评价该结果11a'。According to FIG. 1 , in
该成本函数13包含可信度贡献13a。该可信度贡献13a可以测量:在学习数据集11a中体现的特性14a在该学习数据集11a转换到域B的情况下以何种程度保持不变(invariant),也即在域B中生存的(leben)结果11a’ 以何种程度如之前那样存在。可替代地或与其相结合地,该可信度贡献13a也测量:在学习数据集11a中体现的特性14b在该学习数据集11a转换到域B之后以何种程度类似于至少一个在域B中生存的学习数据集11b的与之对应的特性14b*。The cost function 13 contains a confidence contribution 13a. The confidence contribution 13a may measure to what extent the characteristic 14a embodied in the
该成本函数13此外包含循环论证贡献13b。该循环论证贡献13b测量:当该转换的在域B中生存的结果11a’又被转换回到域A中时,在域A中的原始的学习数据集11a又以何种程度被一致地再现。该转换回尤其可以利用第二生成器来进行,该第二生成器类似于生成器1地利用与方法100对应的方法来被训练。This cost function 13 also contains a circular argument contribution 13b. The circular argument contribution 13b measures: the extent to which the original learning data set 11a in domain A is consistently reproduced when the transformed surviving
在步骤120中,基于成本函数13的值而确定用于能适配的参数12的新的值,这些新的值表征该生成器1的行为。这可以例如利用梯度下降法来进行。In
在步骤130中检验:该成本函数13的可信度贡献13a的曲线走向和/或值是否满足预给定的标准13c。如果这是该情况(真实值1),则在步骤140中以经修改的成本函数13’来继续进行该训练,在该经修改的成本函数中,该可信度贡献13a更小地被加权或者被移除。相反,如果该标准13c并不被满足(真实值0),则针对进一步训练,该成本函数13因此保持并不改变。可信度贡献13a的移除或较低加权(Untergewichten)尤其是可以考虑如下情况:生成器1的训练正好在开始时容易有这样的转换错误,这些转换错误在从域B转换回域A的情况下再次被补偿。In
该训练可以尤其是例如被继续进行,直至满足针对该成本函数13的值和/或曲线走向的预给定的中断条件(Abbruchbedingung)。该相应检验在图1中出于一目了然的原因而未描绘出。In particular, the training can be continued, for example, until a predetermined interruption condition is fulfilled for the value of the cost function 13 and/or the course of the curve. This corresponding check is not depicted in FIG. 1 for reasons of clarity.
根据块102,尤其是可以选择包含图像的学习数据集11a、11b。可替代地或与此相结合地,可以根据块103来选择包含测量数据的时间序列(Zeitreihe)的学习数据集11a、11b。一般而言,根据块104可以尤其是选择如下学习数据集11a、11b,这些学习数据集的测量数据已通过观察车辆50的环境51和/或通过观察该车辆50的机组52和/或结构组合件的至少一个状态所获得。According to block 102, in particular the learning
根据块105,可以选择如下物理特性来作为在将学习数据集11a转换到域B的情况下应保持不变的特性14a:其中在域A和B之间的模拟边界条件和/或至少一个物理条件方面的区别并不影响到所述物理特性或者仅以直至预给定的最大度量的方式影响到所述物理特性。这可以例如是在相应的应用的上下文中的学习数据集11a的语义意义。因此,如果例如停止标牌已从域“夏天”转换到域“冬天”并且被积雪,则该停止标牌本身也必须还能识别。According to block 105, the following physical properties may be selected as
因此,例如可以根据块106来将至少一个位置到至少一个对象的所属性选择为在域转换的情况下应保持不变的特性14a,其中在所述至少一个位置已检测了在学习数据集11a中所记录的物理上能观察的测量参量。Thus, for example, a
根据块107,可以将物理上能观察的测量参量的通过空间区域的预给定的部分区域聚合的值选择作为在所述域转换的情况下应保持不变的特性14a,其中在该空间区域内已检测了在学习数据集11a中所记录的物理上能观察的测量参量。在这方面可以出现如下表达(Ausdruck):在所述域转换的情况下,以物理上能观察的测量参量应主要检测的条件并不根本地改变。According to block 107 , the value of the physically observable measurement variable aggregated over a predetermined subregion of the spatial region can be selected as the characteristic 14 a that should remain unchanged in the case of the field conversion, in which the spatial region The physically observable measurement parameters recorded in the learning
例如,根据块108,可以将在图像的至少一个部分区域内的颜色平均值选择为特性14a、14b,所述特性在域转换的情况下应保持不变或者适应于域B。例如,可以规定:在以信号传达禁令(Verbot)的交通标志(诸如禁止超车或速度限制)上,围绕禁令的更详细的标记(Bezeichnung)的被保持在红色调的外部的环在域转换之后也应保持红色调。例如,可以规定:在以信号传达命令(Gebot)的交通标志上,在其上更详细标记该命令的、保持为蓝色调的背景在所述域转换之后也应保持为蓝色调。For example, according to block 108 , the color mean value in at least a partial area of the image can be selected as the characteristic 14a, 14b, which should remain unchanged in the case of domain conversion or be adapted to domain B. For example, it can be provided that on a traffic sign signaling a prohibition (Verbot), such as no overtaking or speed limit, the ring around the more detailed marking (Bezeichnung) surrounding the prohibition is kept outside the red tone after the domain switch The red tint should also be maintained. For example, it can be provided that, on a traffic sign signaling a command (Gebot), the background on which the command is marked in more detail, which remains blue, should also remain blue after the field switch.
图2示出用于能训练的模块2的训练的方法200的实施例,该模块将一个或多个输入参量21转换成一个或多个输出参量23。能训练的模块的行为通过能适配的参数22来表征。FIG. 2 shows an embodiment of a
在步骤210中,具有用于输入参量21的学习值21a的至少一个学习数据集利用之前描述的、训练完成的生成器1从域A转换到域B。在该模块2的训练220的范畴内,将转换到域B的学习值21a’输送给模块2。原本在域A中存在的学习值21a因此可以被利用,以便缓解在域B中的学习值的不足。能训练的模块2可以此外附加地还包含在域A中生存的学习值21a。因此,对图像的内容进行分类的例如能训练的模块2可以不仅使用在域A“夏天”中所记录的学习图像也可以使用由此利用生成器1所生成的在域B“冬天”中生存的学习图像。In
在训练220的范畴内检验:用于输入参量21的学习值21a以何种程度通过能训练的模块2而被映射到用于输出参量23的所属的学习值23a。利用成本函数24来评价该一致性。在步骤230中,能训练的模块22的能适配的参数22随着改善成本函数24的值的目标而改变。In the context of the
该训练可以尤其是例如被继续进行,直至满足用于成本函数24的值和/或曲线走向的预给定的中断条件。相应的检验在图2中出于一目了然的原因而没有被描绘。In particular, the training can be continued, for example, until predetermined interruption conditions are met for the value of the
根据块205,例如用于所述输入参量的这样的学习值21a可以被选择,其中所述学习值在域A之内基于至少一个在所述学习值中所体现的如下特性而以至少一个用于输出参量23的学习值23a来加标签,其中生成器1在转换的情况下使所述特性保持不变和/或使所述特性与在所述域B中的对应的特性相适应。以这种方式,这些标签也可以在转换到域B之后继续被利用。这意味着,由在域A中生存的经标签的学习值21a而变成在域B中生存的经标签的学习值21a’,而并无需进行重新标签。According to block 205, for example such a learned
在图3中示例性示出的方法300将利用生成器1和能训练的模块2所形成的效应链(Wirkkette)合并。在步骤310中,生成器1利用方法100来被训练。在利用该生成器的情况下,在步骤200中,训练能训练的模块2。在步骤330中,能训练的模块2被运行,其方式为,将测量数据输送给该模块作为输入参量21,所述测量数据已通过观察车辆(50)的环境51和/或通过观察该车辆50的机组51和/或结构组合件的至少一个状态所获得。在步骤340中,根据由能训练的模块2所提供的输出参量23利用操控信号3来操控该车辆50和/或该车辆50的机组52或结构组合件。The
图4a示意性地示出属于域A的图像11a到属于域B的结果11a’的示例性的域转换。该图像11a包含天空61、树62、草地63和道路64。因为在训练在域转换的情况下所使用的生成器1时已预给定了:在域转换的情况下位置到语义对象61、62、63、64的分配应该是不变的特性14a, 在示出这些对象61、62、63、64其中的每个时,图像风格分别改变,但是在结果11a’中应在正确的位置处再次识别出每个对象61、62、63、64。Figure 4a schematically shows an exemplary domain transformation of an
为了比较,图4b示出了利用并未根据方法100所训练的生成器1来对相同图像11a进行的示例性的域转换。在此,在结果11a中,在其中示出对象61、62、63、64的图像风格并不仅仅分别已被转化(transformieren)到域B,而是也已经在这些对象61、62、63和64之间进行了交换。天空61和树62的图像风格已彼此互换。同样地,草地63和道路64的图像风格已彼此互换。交换在附图标记中得以反映,利用这些附图标记来在图4b中标记在结果11a’中的对象。通过交换,该结果11a’以如下程度不同于在域B中的真实情况:其不再可用作为用于能训练的模块2的训练材料。For comparison, FIG. 4b shows an exemplary domain transformation on the
Claims (22)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE102019206045.5 | 2019-04-26 | ||
| DE102019206045.5A DE102019206045A1 (en) | 2019-04-26 | 2019-04-26 | Training a generator for the domain transfer |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN111860760A true CN111860760A (en) | 2020-10-30 |
Family
ID=72839704
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202010331313.0A Pending CN111860760A (en) | 2019-04-26 | 2020-04-24 | Training of generators for domain transformation |
Country Status (2)
| Country | Link |
|---|---|
| CN (1) | CN111860760A (en) |
| DE (1) | DE102019206045A1 (en) |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107220929A (en) * | 2017-06-23 | 2017-09-29 | 深圳市唯特视科技有限公司 | A kind of non-paired image method for transformation using the consistent confrontation network of circulation |
| CN107464210A (en) * | 2017-07-06 | 2017-12-12 | 浙江工业大学 | A kind of image Style Transfer method based on production confrontation network |
| CN108256439A (en) * | 2017-12-26 | 2018-07-06 | 北京大学 | A kind of pedestrian image generation method and system based on cycle production confrontation network |
| US20180307947A1 (en) * | 2017-04-25 | 2018-10-25 | Nec Laboratories America, Inc. | Cyclic generative adversarial network for unsupervised cross-domain image generation |
-
2019
- 2019-04-26 DE DE102019206045.5A patent/DE102019206045A1/en active Pending
-
2020
- 2020-04-24 CN CN202010331313.0A patent/CN111860760A/en active Pending
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20180307947A1 (en) * | 2017-04-25 | 2018-10-25 | Nec Laboratories America, Inc. | Cyclic generative adversarial network for unsupervised cross-domain image generation |
| CN107220929A (en) * | 2017-06-23 | 2017-09-29 | 深圳市唯特视科技有限公司 | A kind of non-paired image method for transformation using the consistent confrontation network of circulation |
| CN107464210A (en) * | 2017-07-06 | 2017-12-12 | 浙江工业大学 | A kind of image Style Transfer method based on production confrontation network |
| CN108256439A (en) * | 2017-12-26 | 2018-07-06 | 北京大学 | A kind of pedestrian image generation method and system based on cycle production confrontation network |
Also Published As
| Publication number | Publication date |
|---|---|
| DE102019206045A1 (en) | 2020-10-29 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP7436281B2 (en) | Training system for training generative neural networks | |
| Xiong et al. | Panicle-SEG: a robust image segmentation method for rice panicles in the field based on deep learning and superpixel optimization | |
| Chen et al. | Bidirectional sim-to-real transfer for gelsight tactile sensors with cyclegan | |
| CN107016415B (en) | A Color Image Semantic Classification Method Based on Fully Convolutional Networks | |
| CN107392019A (en) | A kind of training of malicious code family and detection method and device | |
| CN110807485B (en) | Method for fusing two-classification semantic segmentation maps into multi-classification semantic map based on high-resolution remote sensing image | |
| CN111859674A (en) | A semantic-based method for constructing test images for autonomous driving | |
| CN106815826A (en) | Night vision image Color Fusion based on scene Recognition | |
| CN113392930B (en) | Traffic sign target detection method based on multi-level division control network | |
| CN112883991A (en) | Object classification method, object classification circuit and motor vehicle | |
| CN115019218B (en) | Image processing method and processor | |
| CN110826411B (en) | Vehicle target rapid identification method based on unmanned aerial vehicle image | |
| CN116894799A (en) | Data augmentation for domain generalization | |
| CN111881030B (en) | Intelligent traffic data test sample generation method based on understandable characteristic variation | |
| CN116958639A (en) | A method for detecting and enhancing wrong behavior of traffic light recognition models | |
| CN112712098B (en) | Image data processing method and device | |
| CN119832439B (en) | A multi-scale cultivated land change detection system based on frequency domain transformation | |
| Suryanto et al. | Cityscape-Adverse: Benchmarking Robustness of Semantic Segmentation with Realistic Scene Modifications via Diffusion-Based Image Editing | |
| CN111860760A (en) | Training of generators for domain transformation | |
| CN119131354A (en) | Energy storage power station target detection optimization method and system based on YOLOv8 | |
| CN117010457A (en) | Training neural networks that require less labeled training data | |
| Yu et al. | Data-driven parameterized corner synthesis for efficient validation of perception systems for autonomous driving | |
| WO2023035263A1 (en) | Method and device for determining image signal processing parameters, and perception system | |
| Połap et al. | Dual-Encoding Y-ResNet for generating a lens flare effect in images | |
| Zhang et al. | AptSim2Real: Approximately-paired sim-to-real image translation |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination |