CN111784788A - 一种基于深度学习的pet快速成像方法和系统 - Google Patents
一种基于深度学习的pet快速成像方法和系统 Download PDFInfo
- Publication number
- CN111784788A CN111784788A CN202010501497.0A CN202010501497A CN111784788A CN 111784788 A CN111784788 A CN 111784788A CN 202010501497 A CN202010501497 A CN 202010501497A CN 111784788 A CN111784788 A CN 111784788A
- Authority
- CN
- China
- Prior art keywords
- image
- nuclear medicine
- pet
- acquired
- network
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
- G06T11/003—Reconstruction from projections, e.g. tomography
- G06T11/005—Specific pre-processing for tomographic reconstruction, e.g. calibration, source positioning, rebinning, scatter correction, retrospective gating
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
- G06T11/003—Reconstruction from projections, e.g. tomography
- G06T11/006—Inverse problem, transformation from projection-space into object-space, e.g. transform methods, back-projection, algebraic methods
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2211/00—Image generation
- G06T2211/40—Computed tomography
- G06T2211/424—Iterative
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Biomedical Technology (AREA)
- Artificial Intelligence (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Biophysics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Algebra (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Nuclear Medicine (AREA)
Abstract
Description
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202010501497.0A CN111784788A (zh) | 2020-06-04 | 2020-06-04 | 一种基于深度学习的pet快速成像方法和系统 |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202010501497.0A CN111784788A (zh) | 2020-06-04 | 2020-06-04 | 一种基于深度学习的pet快速成像方法和系统 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN111784788A true CN111784788A (zh) | 2020-10-16 |
Family
ID=72754644
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202010501497.0A Pending CN111784788A (zh) | 2020-06-04 | 2020-06-04 | 一种基于深度学习的pet快速成像方法和系统 |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN111784788A (zh) |
Cited By (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN112927318A (zh) * | 2021-02-22 | 2021-06-08 | 明峰医疗系统股份有限公司 | 低剂量pet图像的降噪重建方法及计算机可读存储介质 |
| CN113012252A (zh) * | 2021-03-24 | 2021-06-22 | 苏州深透智能科技有限公司 | 一种spect成像预测模型创建方法、装置、设备及存储介质 |
| CN113344876A (zh) * | 2021-06-08 | 2021-09-03 | 安徽大学 | 一种ct和cbct间可变形配准方法 |
| CN113538251A (zh) * | 2021-09-16 | 2021-10-22 | 浙江太美医疗科技股份有限公司 | 确定医学影像拼接异常的方法及装置 |
| CN113808106A (zh) * | 2021-09-17 | 2021-12-17 | 浙江大学 | 一种基于深度学习的超低剂量pet图像重建系统及方法 |
| CN114120406A (zh) * | 2021-11-22 | 2022-03-01 | 四川轻化工大学 | 基于卷积神经网络的人脸特征提取分类方法 |
| CN114331921A (zh) * | 2022-03-09 | 2022-04-12 | 南昌睿度医疗科技有限公司 | 一种低剂量ct图像降噪方法及装置 |
| CN114581333A (zh) * | 2022-03-15 | 2022-06-03 | 南昌睿度医疗科技有限公司 | 一种pet图像处理方法、装置、设备及存储介质 |
| WO2022120737A1 (zh) * | 2020-12-10 | 2022-06-16 | 深圳先进技术研究院 | 用于低剂量pet重建的多任务学习型生成式对抗网络生成方法及系统 |
| CN114648529A (zh) * | 2022-05-19 | 2022-06-21 | 深圳市中科先见医疗科技有限公司 | 一种基于cnn网络的dpcr液滴荧光检测方法 |
| WO2022183988A1 (en) * | 2021-03-03 | 2022-09-09 | The University Of Hong Kong | Systems and methods for magnetic resonance image reconstruction with denoising |
| CN119251211A (zh) * | 2024-12-02 | 2025-01-03 | 北京大学第三医院(北京大学第三临床医学院) | 基于医学影像的肿瘤疗效评价方法及系统 |
Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104931904A (zh) * | 2015-01-27 | 2015-09-23 | 浙江德尚韵兴图像科技有限公司 | 一种ppi的多对比度磁共振图像的联合重构方法 |
| CN108257134A (zh) * | 2017-12-21 | 2018-07-06 | 深圳大学 | 基于深度学习的鼻咽癌病灶自动分割方法和系统 |
| US20180197317A1 (en) * | 2017-01-06 | 2018-07-12 | General Electric Company | Deep learning based acceleration for iterative tomographic reconstruction |
| CN109102550A (zh) * | 2018-06-08 | 2018-12-28 | 东南大学 | 基于卷积残差网络的全网络低剂量ct成像方法及装置 |
| CN109285200A (zh) * | 2018-08-23 | 2019-01-29 | 上海连叶智能科技有限公司 | 一种基于人工智能的多模态医学影像的转换方法 |
| US20190101605A1 (en) * | 2017-09-29 | 2019-04-04 | Yonsei University, University - Industry Foundation (UIF) | Apparatus and method for reconstructing magnetic resonance image using learning, and under-sampling apparatus method and recording medium thereof |
| CN109938764A (zh) * | 2019-02-28 | 2019-06-28 | 佛山原子医疗设备有限公司 | 一种基于深度学习的自适应多部位扫描成像方法及其系统 |
| CN110753935A (zh) * | 2017-04-25 | 2020-02-04 | 小利兰·斯坦福大学托管委员会 | 用于医学成像的使用深度卷积神经网络的剂量减少 |
| CN111047524A (zh) * | 2019-11-13 | 2020-04-21 | 浙江工业大学 | 基于深度卷积神经网络的低剂量ct肺部图像的去噪方法 |
-
2020
- 2020-06-04 CN CN202010501497.0A patent/CN111784788A/zh active Pending
Patent Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104931904A (zh) * | 2015-01-27 | 2015-09-23 | 浙江德尚韵兴图像科技有限公司 | 一种ppi的多对比度磁共振图像的联合重构方法 |
| US20180197317A1 (en) * | 2017-01-06 | 2018-07-12 | General Electric Company | Deep learning based acceleration for iterative tomographic reconstruction |
| CN110753935A (zh) * | 2017-04-25 | 2020-02-04 | 小利兰·斯坦福大学托管委员会 | 用于医学成像的使用深度卷积神经网络的剂量减少 |
| US20190101605A1 (en) * | 2017-09-29 | 2019-04-04 | Yonsei University, University - Industry Foundation (UIF) | Apparatus and method for reconstructing magnetic resonance image using learning, and under-sampling apparatus method and recording medium thereof |
| CN108257134A (zh) * | 2017-12-21 | 2018-07-06 | 深圳大学 | 基于深度学习的鼻咽癌病灶自动分割方法和系统 |
| CN109102550A (zh) * | 2018-06-08 | 2018-12-28 | 东南大学 | 基于卷积残差网络的全网络低剂量ct成像方法及装置 |
| CN109285200A (zh) * | 2018-08-23 | 2019-01-29 | 上海连叶智能科技有限公司 | 一种基于人工智能的多模态医学影像的转换方法 |
| CN109938764A (zh) * | 2019-02-28 | 2019-06-28 | 佛山原子医疗设备有限公司 | 一种基于深度学习的自适应多部位扫描成像方法及其系统 |
| CN111047524A (zh) * | 2019-11-13 | 2020-04-21 | 浙江工业大学 | 基于深度卷积神经网络的低剂量ct肺部图像的去噪方法 |
Non-Patent Citations (2)
| Title |
|---|
| 杨卫华主编: "医学影像深度学习主要步骤和流程", 《智能眼科概论》 * |
| 潘丹等: "生成式对抗网络在医学图像处理中的应用", 《生物医学工程学杂志》 * |
Cited By (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2022120737A1 (zh) * | 2020-12-10 | 2022-06-16 | 深圳先进技术研究院 | 用于低剂量pet重建的多任务学习型生成式对抗网络生成方法及系统 |
| CN112927318A (zh) * | 2021-02-22 | 2021-06-08 | 明峰医疗系统股份有限公司 | 低剂量pet图像的降噪重建方法及计算机可读存储介质 |
| CN117223028A (zh) * | 2021-03-03 | 2023-12-12 | 香港大学 | 用于带去噪磁共振图像重建的系统和方法 |
| WO2022183988A1 (en) * | 2021-03-03 | 2022-09-09 | The University Of Hong Kong | Systems and methods for magnetic resonance image reconstruction with denoising |
| CN113012252A (zh) * | 2021-03-24 | 2021-06-22 | 苏州深透智能科技有限公司 | 一种spect成像预测模型创建方法、装置、设备及存储介质 |
| CN113344876A (zh) * | 2021-06-08 | 2021-09-03 | 安徽大学 | 一种ct和cbct间可变形配准方法 |
| CN113538251A (zh) * | 2021-09-16 | 2021-10-22 | 浙江太美医疗科技股份有限公司 | 确定医学影像拼接异常的方法及装置 |
| CN113538251B (zh) * | 2021-09-16 | 2021-12-28 | 浙江太美医疗科技股份有限公司 | 确定医学影像拼接异常的方法及装置 |
| CN113808106A (zh) * | 2021-09-17 | 2021-12-17 | 浙江大学 | 一种基于深度学习的超低剂量pet图像重建系统及方法 |
| CN114120406A (zh) * | 2021-11-22 | 2022-03-01 | 四川轻化工大学 | 基于卷积神经网络的人脸特征提取分类方法 |
| CN114120406B (zh) * | 2021-11-22 | 2024-06-07 | 四川轻化工大学 | 基于卷积神经网络的人脸特征提取分类方法 |
| CN114331921A (zh) * | 2022-03-09 | 2022-04-12 | 南昌睿度医疗科技有限公司 | 一种低剂量ct图像降噪方法及装置 |
| CN114581333A (zh) * | 2022-03-15 | 2022-06-03 | 南昌睿度医疗科技有限公司 | 一种pet图像处理方法、装置、设备及存储介质 |
| CN114581333B (zh) * | 2022-03-15 | 2025-03-21 | 南昌睿度医疗科技有限公司 | 一种pet图像处理方法、装置、设备及存储介质 |
| CN114648529A (zh) * | 2022-05-19 | 2022-06-21 | 深圳市中科先见医疗科技有限公司 | 一种基于cnn网络的dpcr液滴荧光检测方法 |
| CN119251211A (zh) * | 2024-12-02 | 2025-01-03 | 北京大学第三医院(北京大学第三临床医学院) | 基于医学影像的肿瘤疗效评价方法及系统 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN111784788A (zh) | 一种基于深度学习的pet快速成像方法和系统 | |
| JP7539954B2 (ja) | ディープ畳み込みニューラルネットワークを使用した医用画像化のための線量低減 | |
| EP3600026B1 (en) | Improving quality of medical images using multi-contrast and deep learning | |
| JP2023540910A (ja) | 病変検出のための共同訓練を伴う接続機械学習モデル | |
| CN112258642B (zh) | 基于深度学习的低剂量pet数据三维迭代更新重建方法 | |
| US20200381096A1 (en) | Methods of Predicting Disorder Progression for Control Arms Within an Experimental Trial | |
| US20230059132A1 (en) | System and method for deep learning for inverse problems without training data | |
| JP2023540950A (ja) | 病変セグメンテーションのためのアテンションを伴うマルチアーム機械学習モデル | |
| CN110310244A (zh) | 一种基于残差编码解码的医学图像降噪方法 | |
| Arai et al. | Significant dimension reduction of 3D brain MRI using 3D convolutional autoencoders | |
| CN113838105B (zh) | 基于深度学习的弥散微循环模型驱动参数估计方法、装置及介质 | |
| Xue et al. | Pet synthesis via self-supervised adaptive residual estimation generative adversarial network | |
| US20250272889A1 (en) | Deep learning based image reconstruction | |
| CN110335327A (zh) | 一种直接解决逆问题的医学图像重建方法 | |
| CN116630386B (zh) | Cta扫描图像处理方法及其系统 | |
| Garehdaghi et al. | Positron emission tomography image enhancement using magnetic resonance images and U-net structure | |
| CN118941718A (zh) | 一种基于扩散多尺度生成对抗网络的三维pet图像重建方法、系统及存储介质 | |
| CN118898547A (zh) | 基于Unet网络-扩散模型的肝脏MRI图像增强方法 | |
| Li et al. | A multi-pronged evaluation for image normalization techniques | |
| Xinrui et al. | Enhancing Low-Dose Pet Imaging: A Novel Contrastive Learning Method for Perceptual Loss and an Organ-Aware Loss | |
| CN113066145B (zh) | 基于深度学习的快速全身弥散加权成像方法及相关设备 | |
| Santos et al. | The identification of cancer lesions in mammography images with missing pixels: analysis of morphology | |
| Azimi et al. | Deep supervised transformer-based noise-aware network for low-dose PET denoising across varying count levels | |
| CN117332707B (zh) | 基于流模型的动态增强对比磁共振成像中药代动力学参数分布估计方法及装置和应用 | |
| Brusokas et al. | Analysis of deep neural network architectures and similarity metrics for low-dose CT Reconstruction |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20201016 Assignee: Changsha Shentou Medical Technology Co.,Ltd. Assignor: Shenzhen Shentou Medical Technology Co.,Ltd. Contract record no.: X2021980003580 Denomination of invention: A fast PET imaging method and system based on deep learning License type: Exclusive License Record date: 20210514 |
|
| EE01 | Entry into force of recordation of patent licensing contract | ||
| TA01 | Transfer of patent application right |
Effective date of registration: 20221008 Address after: 215101 1111, Building 4, No. 209, Zhuyuan Road, High tech Zone, Suzhou, Jiangsu Applicant after: Suzhou Yingdong Medical Technology Co.,Ltd. Address before: A102-001, Building 12, Songshan Industrial Zone, Dangang Community, Shajing Street, Bao'an District, Shenzhen, Guangdong 518000 Applicant before: Shenzhen Shentou Medical Technology Co.,Ltd. |
|
| TA01 | Transfer of patent application right | ||
| RJ01 | Rejection of invention patent application after publication |
Application publication date: 20201016 |
|
| RJ01 | Rejection of invention patent application after publication |