CN111784633A - 一种面向电力巡检视频的绝缘子缺损自动检测算法 - Google Patents
一种面向电力巡检视频的绝缘子缺损自动检测算法 Download PDFInfo
- Publication number
- CN111784633A CN111784633A CN202010452724.5A CN202010452724A CN111784633A CN 111784633 A CN111784633 A CN 111784633A CN 202010452724 A CN202010452724 A CN 202010452724A CN 111784633 A CN111784633 A CN 111784633A
- Authority
- CN
- China
- Prior art keywords
- image
- data
- insulator
- layer
- loss
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8851—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/044—Recurrent networks, e.g. Hopfield networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/50—Extraction of image or video features by performing operations within image blocks; by using histograms, e.g. histogram of oriented gradients [HoG]; by summing image-intensity values; Projection analysis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8851—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
- G01N2021/8883—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges involving the calculation of gauges, generating models
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8851—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
- G01N2021/8887—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges based on image processing techniques
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/50—Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- General Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Software Systems (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Mathematical Physics (AREA)
- Computing Systems (AREA)
- Analytical Chemistry (AREA)
- Signal Processing (AREA)
- Quality & Reliability (AREA)
- Chemical & Material Sciences (AREA)
- Biochemistry (AREA)
- Multimedia (AREA)
- Pathology (AREA)
- Immunology (AREA)
- Image Analysis (AREA)
Abstract
Description
Claims (8)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202010452724.5A CN111784633B (zh) | 2020-05-26 | 2020-05-26 | 一种面向电力巡检视频的绝缘子缺损自动检测算法 |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202010452724.5A CN111784633B (zh) | 2020-05-26 | 2020-05-26 | 一种面向电力巡检视频的绝缘子缺损自动检测算法 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN111784633A true CN111784633A (zh) | 2020-10-16 |
| CN111784633B CN111784633B (zh) | 2024-02-06 |
Family
ID=72754214
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202010452724.5A Active CN111784633B (zh) | 2020-05-26 | 2020-05-26 | 一种面向电力巡检视频的绝缘子缺损自动检测算法 |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN111784633B (zh) |
Cited By (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN112348744A (zh) * | 2020-11-24 | 2021-02-09 | 电子科技大学 | 一种基于缩略图的数据增强方法 |
| CN112837315A (zh) * | 2021-03-05 | 2021-05-25 | 云南电网有限责任公司电力科学研究院 | 一种基于深度学习的输电线路绝缘子缺陷检测方法 |
| CN113009416A (zh) * | 2021-04-08 | 2021-06-22 | 国网江苏省电力有限公司检修分公司 | 一种基于激光传感器阵列的绝缘子检测定位方法 |
| CN113077525A (zh) * | 2021-02-06 | 2021-07-06 | 西南交通大学 | 一种基于频域对比学习的图像分类方法 |
| CN113361631A (zh) * | 2021-06-25 | 2021-09-07 | 海南电网有限责任公司电力科学研究院 | 基于迁移学习的绝缘子老化光谱分类方法 |
| CN113538382A (zh) * | 2021-07-19 | 2021-10-22 | 安徽炬视科技有限公司 | 一种基于非深度网络语义分割的绝缘子检测算法 |
| CN113538411A (zh) * | 2021-08-06 | 2021-10-22 | 广东电网有限责任公司 | 一种绝缘子缺陷检测方法及装置 |
| CN113536989A (zh) * | 2021-06-29 | 2021-10-22 | 广州博通信息技术有限公司 | 基于摄像视频逐帧分析的制冷机结霜监控方法及系统 |
| CN113538412A (zh) * | 2021-08-06 | 2021-10-22 | 广东电网有限责任公司 | 一种航拍图像的绝缘子缺陷检测方法及装置 |
| CN113807194A (zh) * | 2021-08-24 | 2021-12-17 | 哈尔滨工程大学 | 一种增强性电力传输线故障图像识别方法 |
| CN114708267A (zh) * | 2022-06-07 | 2022-07-05 | 浙江大学 | 一种输电线路上杆塔拉线腐蚀缺陷图像检测处理方法 |
| CN114821366A (zh) * | 2022-04-06 | 2022-07-29 | 国网浙江省电力有限公司宁波供电公司 | 一种基于轻量级卷积网络模型的图片异常检测方法 |
| CN114820466A (zh) * | 2022-04-06 | 2022-07-29 | 国网浙江省电力有限公司宁波供电公司 | 一种输电设备图像异常检测方法 |
| CN115147300A (zh) * | 2022-06-21 | 2022-10-04 | 太原理工大学 | 基于渐进式特征感知循环深度网络的低照度图像增强方法 |
| CN117853923A (zh) * | 2024-01-17 | 2024-04-09 | 山东盛然电力科技有限公司 | 一种电网电力基础设施安全性评估分析方法以及装置 |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106504233A (zh) * | 2016-10-18 | 2017-03-15 | 国网山东省电力公司电力科学研究院 | 基于Faster R‑CNN的无人机巡检图像电力小部件识别方法及系统 |
| WO2018171109A1 (zh) * | 2017-03-23 | 2018-09-27 | 北京大学深圳研究生院 | 基于卷积神经网络的视频动作检测方法 |
| CN109166094A (zh) * | 2018-07-11 | 2019-01-08 | 华南理工大学 | 一种基于深度学习的绝缘子故障定位识别方法 |
| CN109255776A (zh) * | 2018-07-23 | 2019-01-22 | 中国电力科学研究院有限公司 | 一种输电线路开口销缺损自动识别方法 |
-
2020
- 2020-05-26 CN CN202010452724.5A patent/CN111784633B/zh active Active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106504233A (zh) * | 2016-10-18 | 2017-03-15 | 国网山东省电力公司电力科学研究院 | 基于Faster R‑CNN的无人机巡检图像电力小部件识别方法及系统 |
| WO2018171109A1 (zh) * | 2017-03-23 | 2018-09-27 | 北京大学深圳研究生院 | 基于卷积神经网络的视频动作检测方法 |
| CN109166094A (zh) * | 2018-07-11 | 2019-01-08 | 华南理工大学 | 一种基于深度学习的绝缘子故障定位识别方法 |
| CN109255776A (zh) * | 2018-07-23 | 2019-01-22 | 中国电力科学研究院有限公司 | 一种输电线路开口销缺损自动识别方法 |
Non-Patent Citations (2)
| Title |
|---|
| 杨晓旭;温招洋;: "深度学习在输电线路绝缘子故障检测中的研究与应用", 中国新通信, no. 10 * |
| 陈俊杰;叶东华;产焰萍;陈凌睿;: "基于Faster R-CNN模型的绝缘子故障检测", 电工电气, no. 04 * |
Cited By (20)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN112348744A (zh) * | 2020-11-24 | 2021-02-09 | 电子科技大学 | 一种基于缩略图的数据增强方法 |
| CN113077525A (zh) * | 2021-02-06 | 2021-07-06 | 西南交通大学 | 一种基于频域对比学习的图像分类方法 |
| CN112837315A (zh) * | 2021-03-05 | 2021-05-25 | 云南电网有限责任公司电力科学研究院 | 一种基于深度学习的输电线路绝缘子缺陷检测方法 |
| CN112837315B (zh) * | 2021-03-05 | 2023-11-21 | 云南电网有限责任公司电力科学研究院 | 一种基于深度学习的输电线路绝缘子缺陷检测方法 |
| CN113009416A (zh) * | 2021-04-08 | 2021-06-22 | 国网江苏省电力有限公司检修分公司 | 一种基于激光传感器阵列的绝缘子检测定位方法 |
| CN113009416B (zh) * | 2021-04-08 | 2024-03-12 | 国网江苏省电力有限公司检修分公司 | 一种基于激光传感器阵列的绝缘子检测定位方法 |
| CN113361631A (zh) * | 2021-06-25 | 2021-09-07 | 海南电网有限责任公司电力科学研究院 | 基于迁移学习的绝缘子老化光谱分类方法 |
| CN113536989A (zh) * | 2021-06-29 | 2021-10-22 | 广州博通信息技术有限公司 | 基于摄像视频逐帧分析的制冷机结霜监控方法及系统 |
| CN113538382B (zh) * | 2021-07-19 | 2023-11-14 | 安徽炬视科技有限公司 | 一种基于非深度网络语义分割的绝缘子检测算法 |
| CN113538382A (zh) * | 2021-07-19 | 2021-10-22 | 安徽炬视科技有限公司 | 一种基于非深度网络语义分割的绝缘子检测算法 |
| CN113538412A (zh) * | 2021-08-06 | 2021-10-22 | 广东电网有限责任公司 | 一种航拍图像的绝缘子缺陷检测方法及装置 |
| CN113538411A (zh) * | 2021-08-06 | 2021-10-22 | 广东电网有限责任公司 | 一种绝缘子缺陷检测方法及装置 |
| CN113807194A (zh) * | 2021-08-24 | 2021-12-17 | 哈尔滨工程大学 | 一种增强性电力传输线故障图像识别方法 |
| CN113807194B (zh) * | 2021-08-24 | 2023-10-10 | 哈尔滨工程大学 | 一种增强性电力传输线故障图像识别方法 |
| CN114821366A (zh) * | 2022-04-06 | 2022-07-29 | 国网浙江省电力有限公司宁波供电公司 | 一种基于轻量级卷积网络模型的图片异常检测方法 |
| CN114820466A (zh) * | 2022-04-06 | 2022-07-29 | 国网浙江省电力有限公司宁波供电公司 | 一种输电设备图像异常检测方法 |
| CN114708267A (zh) * | 2022-06-07 | 2022-07-05 | 浙江大学 | 一种输电线路上杆塔拉线腐蚀缺陷图像检测处理方法 |
| CN115147300A (zh) * | 2022-06-21 | 2022-10-04 | 太原理工大学 | 基于渐进式特征感知循环深度网络的低照度图像增强方法 |
| CN115147300B (zh) * | 2022-06-21 | 2024-11-15 | 太原理工大学 | 基于渐进式特征感知循环深度网络的低照度图像增强方法 |
| CN117853923A (zh) * | 2024-01-17 | 2024-04-09 | 山东盛然电力科技有限公司 | 一种电网电力基础设施安全性评估分析方法以及装置 |
Also Published As
| Publication number | Publication date |
|---|---|
| CN111784633B (zh) | 2024-02-06 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN111784633A (zh) | 一种面向电力巡检视频的绝缘子缺损自动检测算法 | |
| CN112233073B (zh) | 一种变电设备红外热成像异常实时检测方法 | |
| CN115908354B (zh) | 一种基于双尺度策略和改进的yolov5网络的光伏面板缺陷检测方法 | |
| CN108765412B (zh) | 一种带钢表面缺陷分类方法 | |
| CN109712127B (zh) | 一种用于机巡视频流的输电线路故障检测方法 | |
| CN111383209A (zh) | 一种基于全卷积自编码器网络的无监督瑕疵检测方法 | |
| CN109191421B (zh) | 柱形锂电池圆周面凹坑视觉检测方法 | |
| CN111325721A (zh) | 一种基于红外热成像的气体泄漏检测方法及系统 | |
| CN107133943A (zh) | 一种防震锤缺陷检测的视觉检测方法 | |
| Chen et al. | An intelligent sewer defect detection method based on convolutional neural network | |
| CN112862744A (zh) | 一种基于超声图像的电容内部缺陷智能检测方法 | |
| CN111667475A (zh) | 一种基于机器视觉的大枣分级检测方法 | |
| CN111046728A (zh) | 一种基于特征金字塔网络的秸秆燃烧检测方法 | |
| CN115861210B (zh) | 一种基于孪生网络的变电站设备异常检测方法和系统 | |
| CN111738931B (zh) | 光伏阵列无人机航拍图像的阴影去除算法 | |
| CN118392875A (zh) | 一种轴类零件表面无损检测系统及方法 | |
| Su et al. | A new local-main-gradient-orientation HOG and contour differences based algorithm for object classification | |
| CN117197097B (zh) | 一种基于红外图像的电力设备组件检测方法 | |
| CN110175650A (zh) | 一种电力设备自动识别方法和装置 | |
| Tao et al. | Electric insulator detection of UAV images based on depth learning | |
| CN116109849A (zh) | 基于surf特征匹配的高压隔离开关定位与状态识别方法 | |
| CN112164024B (zh) | 一种基于领域自适应的混凝土表面裂缝检测方法及系统 | |
| CN114494040A (zh) | 一种基于多目标检测的图像数据处理方法及装置 | |
| CN113962935A (zh) | 一种电力设备锈蚀识别方法 | |
| CN119559584A (zh) | 一种基于改进YOLOv10模型的输电线路异物识别方法及系统 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| TR01 | Transfer of patent right |
Effective date of registration: 20251022 Address after: No. 704, 7th Floor, Unit 1, Building 5, No. 388 Xishun Street, Huazhaobi, Jinniu District, Chengdu City, Sichuan Province 610000 Patentee after: Chengdu Mingyue Information Technology Co.,Ltd. Country or region after: China Address before: 710048 Shaanxi province Xi'an Beilin District Jinhua Road No. 5 Patentee before: XI'AN University OF TECHNOLOGY Country or region before: China |
|
| TR01 | Transfer of patent right | ||
| TR01 | Transfer of patent right |
Effective date of registration: 20251024 Address after: 311000 Zhejiang Province Hangzhou City Shangcheng District Caihe Street Caihe Road 41.NO Building 7 5th Floor 528 Patentee after: Kangge Yunzhi Technology (Hangzhou) Co.,Ltd. Country or region after: China Address before: No. 704, 7th Floor, Unit 1, Building 5, No. 388 Xishun Street, Huazhaobi, Jinniu District, Chengdu City, Sichuan Province 610000 Patentee before: Chengdu Mingyue Information Technology Co.,Ltd. Country or region before: China |
|
| TR01 | Transfer of patent right |