[go: up one dir, main page]

CN111753977A - Optical neural network convolution layer chip, convolution computing method and electronic device - Google Patents

Optical neural network convolution layer chip, convolution computing method and electronic device Download PDF

Info

Publication number
CN111753977A
CN111753977A CN202010616219.XA CN202010616219A CN111753977A CN 111753977 A CN111753977 A CN 111753977A CN 202010616219 A CN202010616219 A CN 202010616219A CN 111753977 A CN111753977 A CN 111753977A
Authority
CN
China
Prior art keywords
optical
convolution
input data
optical signal
modulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010616219.XA
Other languages
Chinese (zh)
Other versions
CN111753977B (en
Inventor
王瑞廷
王鹏飞
罗光振
张冶金
周旭亮
潘教青
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Semiconductors of CAS
Original Assignee
Institute of Semiconductors of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Semiconductors of CAS filed Critical Institute of Semiconductors of CAS
Priority to CN202010616219.XA priority Critical patent/CN111753977B/en
Publication of CN111753977A publication Critical patent/CN111753977A/en
Application granted granted Critical
Publication of CN111753977B publication Critical patent/CN111753977B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/06Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
    • G06N3/067Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using optical means
    • G06N3/0675Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using optical means using electro-optical, acousto-optical or opto-electronic means
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/15Correlation function computation including computation of convolution operations

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Databases & Information Systems (AREA)
  • Algebra (AREA)
  • Neurology (AREA)
  • Artificial Intelligence (AREA)
  • Computational Linguistics (AREA)
  • Evolutionary Computation (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

一种光学神经网络卷积层芯片,应用于人工智能领域,包括依次连接的第一耦合器、第一分束器、多个光子计算模块和卷积求和模块;该第一耦合器,用于将接收到的光信号耦合至第一分束器中;该第一分束器包括多个输出端口,该分束器用于将耦合后的光信号进行分束,得到多束光信号,多束该光信号一一通过各该输出端口输入至各该光子计算模块;该光子计算模块,用于对每束该光信号进行幅度调制和相位调制,以通过每束调制的光信号表示一个输入数据和一个卷积核参数,并将所有调制后的光信号转化为电信号;该卷积求和模块,用于对所有该电信号进行卷积求和,完成所有输入数据和卷积核参数的光子卷积运算。光子具有高速度、高带宽、低功耗的特点,利用光子实现卷积计算,可以大幅度提高计算速度并降低计算能耗。

Figure 202010616219

An optical neural network convolution layer chip, which is applied to the field of artificial intelligence, includes a first coupler, a first beam splitter, a plurality of photon calculation modules and a convolution summation module connected in sequence; is used to couple the received optical signal into the first beam splitter; the first beam splitter includes a plurality of output ports, and the beam splitter is used to split the coupled optical signal to obtain multiple beams of optical signals. The optical signals are input to each of the photon calculation modules through each of the output ports; the photon calculation module is used to perform amplitude modulation and phase modulation on each beam of the optical signal, so that each beam of modulated optical signal represents an input data and a convolution kernel parameter, and convert all modulated optical signals into electrical signals; the convolution summation module is used to convolve and sum all the electrical signals to complete all input data and convolution kernel parameters The photon convolution operation. Photons have the characteristics of high speed, high bandwidth and low power consumption. Using photons to realize convolution computing can greatly improve the computing speed and reduce computing energy consumption.

Figure 202010616219

Description

光学神经网络卷积层芯片、卷积计算方法和电子设备Optical neural network convolution layer chip, convolution computing method and electronic device

技术领域technical field

本申请涉及人工智能领域,尤其涉及一种光学神经网络卷积层芯片、卷积计算方法和电子设备。The present application relates to the field of artificial intelligence, and in particular, to an optical neural network convolution layer chip, a convolution computing method and an electronic device.

背景技术Background technique

神经网络是指一系列受生物学启发而构建的数学模型。近年来,神经网络技术已成为人工智能技术发展的重要推动力,被广泛的应用于图像处理、语音识别、自然语言处理等领域。卷积运算是神经网络中一类重要的计算,尤其在卷积神经网络中大量存在。A neural network refers to a series of mathematical models that are inspired by biology. In recent years, neural network technology has become an important driving force for the development of artificial intelligence technology, and is widely used in image processing, speech recognition, natural language processing and other fields. Convolution operation is an important type of computation in neural networks, especially in convolutional neural networks.

芯片技术为神经网络提供强大的算力进行智能化处理,支撑着神经网络技术的发展。随着所需处理数据量的急剧增加与神经网络模型愈加复杂化,传统电芯片技术的冯·诺依曼架构瓶颈和CMOS工艺与器件瓶颈愈加凸显,所带来的芯片功耗问题与性能提升问题等制约着神经网络技术的应用和普及。光学神经网络芯片提供了一种新的专用神经网络加速器芯片方案,与电子相比,光子具有高速度、高带宽、低功耗的优势,所以光学神经网络芯片可比传统电芯片速度快十倍以上,功耗约为十分之一以下,有着良好的应用前景。通过设计光学神经网络卷积层芯片,可以实现高速、低功耗的卷积运算,推动神经网络技术的应用与发展。Chip technology provides powerful computing power for neural networks for intelligent processing, supporting the development of neural network technology. With the sharp increase in the amount of data to be processed and the more complex neural network models, the bottleneck of the von Neumann architecture of traditional electronic chip technology and the bottleneck of CMOS technology and devices have become more prominent, resulting in chip power consumption and performance improvement. Problems and so on restrict the application and popularization of neural network technology. Optical neural network chips provide a new solution for dedicated neural network accelerator chips. Compared with electrons, photons have the advantages of high speed, high bandwidth and low power consumption, so optical neural network chips can be more than ten times faster than traditional electrical chips. , the power consumption is about one tenth or less, and it has a good application prospect. By designing the optical neural network convolution layer chip, high-speed, low-power convolution operations can be realized, and the application and development of neural network technology can be promoted.

发明内容SUMMARY OF THE INVENTION

本申请的主要目的在于提供一种光学神经网络卷积层芯片、卷积计算方法和电子设备。The main purpose of this application is to provide an optical neural network convolution layer chip, a convolution calculation method and an electronic device.

为实现上述目的,本申请实施例第一方面提供一种光学神经网络卷积层芯片,包括依次连接的第一耦合器、第一分束器、多个光子计算模块和卷积求和模块;In order to achieve the above purpose, a first aspect of the embodiments of the present application provides an optical neural network convolution layer chip, including a first coupler, a first beam splitter, a plurality of photon calculation modules and a convolution summation module connected in sequence;

所述第一耦合器,用于将接收到的光信号耦合至第一分束器中;the first coupler for coupling the received optical signal into the first beam splitter;

所述第一分束器包括多个输出端口,所述分束器用于将耦合后的光信号进行分束,得到多束光信号,多束所述光信号一一通过各所述输出端口输入至各所述光子计算模块;The first beam splitter includes a plurality of output ports, and the beam splitter is used for splitting the coupled optical signals to obtain multiple beams of optical signals, and the multiple beams of the optical signals are input through each of the output ports one by one to each of the photon computing modules;

所述光子计算模块,用于对每束所述光信号进行幅度调制和相位调制,以通过每束调制的光信号表示一个输入数据和一个卷积核参数,并将所有调制后的光信号转化为电信号;The photon calculation module is used to perform amplitude modulation and phase modulation on each beam of the optical signal, so as to represent an input data and a convolution kernel parameter through each beam of modulated optical signal, and convert all the modulated optical signals into is an electrical signal;

所述卷积求和模块,用于对所有所述电信号进行卷积求和,完成所有输入数据和卷积核参数的光子卷积运算。The convolution and summation module is configured to perform convolution and summation on all the electrical signals, and complete the photon convolution operation of all input data and convolution kernel parameters.

可选的,所述光子计算模块包括依次连接的第二分束器、输入数据调制模块、卷积核参数调制模块、第二耦合器和平衡光电探测器;Optionally, the photon calculation module includes a second beam splitter, an input data modulation module, a convolution kernel parameter modulation module, a second coupler and a balanced photodetector connected in sequence;

所述第二分束器,用于将输入的光信号分为两束光信号,所述第二分束器包括两个输出端口,一个输出端口与所述输入数据调制模块相连,用于将一个所述光信号传输给所述输入数据调制模块,另一个输出端口与所述卷积核参数调制模块相连,用于将另一个所述光信号传输给所述卷积核参数调制模块;The second beam splitter is used to divide the input optical signal into two beams of optical signals, the second beam splitter includes two output ports, one output port is connected to the input data modulation module, and is used to convert the input data into two beams. One of the optical signals is transmitted to the input data modulation module, and the other output port is connected to the convolution kernel parameter modulation module for transmitting the other optical signal to the convolution kernel parameter modulation module;

所述输入数据调制模块,用于根据一个输入数据,对所述两束光信号中的一束进行幅度调制和相位调制,通过调制的光信号表示所述一个输入数据;The input data modulation module is configured to perform amplitude modulation and phase modulation on one of the two beams of optical signals according to one input data, and represent the one input data by the modulated optical signal;

所述卷积核参数调制模块,用于根据一个卷积核参数,对所述两束光信号中的另一束所述光信号进行幅度调制和相位调制,通过调制的光信号表示所述一个卷积核参数;The convolution kernel parameter modulation module is configured to perform amplitude modulation and phase modulation on the other one of the two optical signals according to one convolution kernel parameter, and the modulated optical signal represents the one convolution kernel parameters;

所述第二耦合器,用于将经过所述输入数据调制模块调制的光信号和经过所述卷积核参数调制模块调制的光信号进行耦合,输出两束光信号;the second coupler, configured to couple the optical signal modulated by the input data modulation module and the optical signal modulated by the convolution kernel parameter modulation module, and output two beams of optical signals;

所述平衡光电探测器,用于对所述两束光信号进行平衡探测,得到所述电信号。The balanced photodetector is used for balanced detection of the two optical signals to obtain the electrical signal.

可选的,所述输入数据调制模块包括P1个光幅度调制单元与Q1个光相位调制单元;所述卷积核参数调制模块包括P2个光幅度调制单元与Q2个光相位调制单元;Optionally, the input data modulation module includes P1 optical amplitude modulation units and Q1 optical phase modulation units; the convolution kernel parameter modulation module includes P2 optical amplitude modulation units and Q2 optical phase modulation units;

其中,P1、Q1、P2、Q2为非负整数。Among them, P1, Q1, P2, Q2 are non-negative integers.

所述光幅度调制单元,用于对接收到的光信号进行幅度调制;所述光相位调制单元,用于对接收到的光信号进行相位调制。The optical amplitude modulation unit is used for amplitude modulation on the received optical signal; the optical phase modulation unit is used for phase modulation on the received optical signal.

可选的,所述光信号由激光器光源发射;Optionally, the optical signal is emitted by a laser light source;

所述第一耦合器为端面耦合器或光栅耦合器;The first coupler is an end face coupler or a grating coupler;

所述第二耦合器为2*2耦合器;The second coupler is a 2*2 coupler;

所述第一分束器为定向耦合器或多模干涉耦合器。The first beam splitter is a directional coupler or a multimode interference coupler.

可选的,所述光幅度调制单元为马赫曾德干涉仪、微环谐振器或沉积相变材料的光波导;Optionally, the optical amplitude modulation unit is a Mach-Zehnder interferometer, a micro-ring resonator or an optical waveguide deposited with a phase-change material;

所述光相位调制单元为电光调相器或热光调相器。The optical phase modulation unit is an electro-optic phase modulator or a thermo-optic phase modulator.

本申请实施例第二方面提供一种光学神经网络卷积计算方法,包括:A second aspect of the embodiments of the present application provides an optical neural network convolution calculation method, including:

对接收到的光信号进行耦合;Coupling the received optical signal;

将耦合后的光信号进行分束,得到多束光信号;Splitting the coupled optical signals to obtain multiple optical signals;

对每束所述光信号进行幅度调制和相位调制,以通过每束调制的光信号表示一个输入数据和一个卷积核参数;performing amplitude modulation and phase modulation on each beam of the optical signal, so that one input data and one convolution kernel parameter are represented by each beam of the modulated optical signal;

对所有调制后的光信号转化为电信号;Convert all modulated optical signals into electrical signals;

对所有所述电信号进行卷积求和,完成所有输入数据和卷积核参数的光子卷积运算。Perform convolution and summation on all the electrical signals to complete the photon convolution operation of all input data and convolution kernel parameters.

可选的,所述对每束所述光信号进行幅度调制和相位调制,以通过每束调制的光信号表示一个输入数据和一个卷积核参数包括:Optionally, performing amplitude modulation and phase modulation on each beam of the optical signal to represent one input data and one convolution kernel parameter by each beam of modulated optical signal includes:

将每束所述光信号分为两束光信号,得到多组两束光信号;Dividing each beam of the optical signal into two beams of optical signals to obtain multiple groups of two beams of optical signals;

在每组两束光信号内,根据一个输入数据,对所述两束光信号中的一束进行幅度调制和相位调制,通过调制的光信号表示所述一个输入数据,以及,根据一个卷积核参数,对所述两束光信号中的另一束进行幅度调制和相位调制,通过调制的光信号表示所述一个卷积核参数。In each group of two optical signals, amplitude modulation and phase modulation are performed on one of the two optical signals according to one input data, and the one input data is represented by the modulated optical signal, and, according to a convolution For the kernel parameter, amplitude modulation and phase modulation are performed on the other beam of the two optical signals, and the one convolution kernel parameter is represented by the modulated optical signal.

可选的,所述将所有调制后的光信号转化为电信号之前,包括:Optionally, before converting all modulated optical signals into electrical signals, the steps include:

将每组进行幅度调制和相位调制后的两束光信号进行耦合,输出两束光信号。The two beams of optical signals after amplitude modulation and phase modulation in each group are coupled to output two beams of optical signals.

可选的,所述将所有调制后的光信号转化为电信号包括:Optionally, the converting all modulated optical signals into electrical signals includes:

对每组内的所述两束光信号进行平衡探测,得到所述电信号。Balance detection is performed on the two optical signals in each group to obtain the electrical signals.

本中请实施例第三方面提供了一种电子设备,包括本申请实施例第一方面提供一种光学神经网络卷积层芯片。A third aspect of an embodiment of the present application provides an electronic device, including an optical neural network convolution layer chip provided in the first aspect of an embodiment of the present application.

从上述本申请实施例可知,本申请提供的光学神经网络卷积层芯片、卷积计算方法和电子设备,包括依次连接的第一耦合器、第一分束器、多个光子计算模块和卷积求和模块,第一耦合器,用于将接收到的光信号耦合至第一分束器中,第一分束器包括多个输出端口,该分束器用于将耦合后的光信号进行分束,得到多束光信号,多束该光信号一一通过各该输出端口输入至各该光子计算模块,光子计算模块,用于对每束该光信号进行幅度调制和相位调制,以通过每束调制的光信号表示一个输入数据和一个卷积核参数,并将所有调制后的光信号转化为电信号,卷积求和模块,用于对所有该电信号进行卷积求和,完成所有输入数据和卷积核参数的光子卷积运算。光子具有高速度、高带宽、低功耗的特点,利用光子实现卷积计算,可以大幅度提高计算速度并降低计算能耗。It can be seen from the above-mentioned embodiments of the present application that the optical neural network convolution layer chip, the convolution calculation method and the electronic device provided by the present application include a first coupler, a first beam splitter, a plurality of photon calculation modules and a volume connected in sequence. The product-summation module, the first coupler, is used for coupling the received optical signal into the first beam splitter, the first beam splitter includes a plurality of output ports, and the beam splitter is used for the coupled optical signal. Split beams to obtain multiple beams of optical signals, and the multiple beams of the optical signals are input to each of the photon calculation modules through each of the output ports, and the photon calculation module is used to perform amplitude modulation and phase modulation on each beam of the optical signal to pass Each modulated optical signal represents an input data and a convolution kernel parameter, and converts all modulated optical signals into electrical signals. The convolution and summation module is used to convolve and sum all the electrical signals, and complete Photon convolution operation for all input data and convolution kernel parameters. Photons have the characteristics of high speed, high bandwidth and low power consumption. Using photons to realize convolution computing can greatly improve the computing speed and reduce computing energy consumption.

附图说明Description of drawings

为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present application or the technical solutions in the prior art, the following briefly introduces the accompanying drawings required for the description of the embodiments or the prior art. Obviously, the drawings in the following description are only These are some embodiments of the present application, and for those skilled in the art, other drawings can also be obtained from these drawings without creative effort.

图1为本申请一实施例提供的光学神经网络卷积层芯片的结构示意图;FIG. 1 is a schematic structural diagram of an optical neural network convolution layer chip provided by an embodiment of the application;

图2为本申请一实施例提供的光学神经网络卷积层芯片的光子计算模块结构示意图;2 is a schematic structural diagram of a photonic computing module of an optical neural network convolutional layer chip provided by an embodiment of the application;

图3为本申请一实施例提供的光子计算模块运行卷积运算时的输出示意图;3 is a schematic diagram of the output of a photon computing module provided by an embodiment of the application when a convolution operation is performed;

图4为本申请一实施例提供的光学神经网络卷积计算方法的流程示意图。FIG. 4 is a schematic flowchart of an optical neural network convolution calculation method provided by an embodiment of the present application.

具体实施方式Detailed ways

为使得本申请的申请目的、特征、优点能够更加的明显和易懂,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而非全部实施例。基于本申请中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。In order to make the application purpose, features and advantages of the present application more obvious and understandable, the technical solutions in the embodiments of the present application will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present application. The embodiments described above are only a part of the embodiments of the present application, but not all of the embodiments. Based on the embodiments in this application, all other embodiments obtained by those skilled in the art without creative efforts shall fall within the protection scope of this application.

卷积运算在卷积神经网络中大量存在,是输入数据与卷积核参数的乘加运算,可表示为

Figure BDA0002562025490000051
其中,Wuv为卷积核参数,Xi-u+1,j-v+1为输入数据,Yij为输出数据。Convolution operations exist in large numbers in convolutional neural networks, which are the multiplication and addition operations of input data and convolution kernel parameters, which can be expressed as
Figure BDA0002562025490000051
Among them, W uv is the convolution kernel parameter, X i-u+1, j-v+1 is the input data, and Y ij is the output data.

请参阅图1,图1为本申请一实施例提供的光学神经网络卷积层芯片的结构示意图,通过光源1发射出光信号到该光学神经网络卷积层芯片,以实现卷积运算。该芯片包括依次连接的第一耦合器2、第一分束器3、多个光子计算模块4和卷积求和模块5;第一耦合器2,用于将光信号耦合至第一分束器中;第一分束器3包括多个输出端口,分束器用于将耦合后的光信号进行分束,得到多束光信号,多束光信号一一通过各输出端口输入至各光子计算模块4;光子计算模块4,用于对每束光信号进行幅度调制和相位调制,以通过每束调制的光信号表示一个输入数据和一个卷积核参数,并将所有调制后的光信号转化为电信号;卷积求和模块5,用于对所有电信号进行卷积求和,完成所有输入数据和卷积核参数的光子卷积运算。Please refer to FIG. 1. FIG. 1 is a schematic structural diagram of an optical neural network convolution layer chip provided by an embodiment of the present application. A light source 1 emits an optical signal to the optical neural network convolution layer chip to realize convolution operation. The chip includes a first coupler 2, a first beam splitter 3, a plurality of photon calculation modules 4 and a convolution summation module 5 connected in sequence; the first coupler 2 is used to couple the optical signal to the first split beam The first beam splitter 3 includes a plurality of output ports, and the beam splitter is used to split the coupled optical signal to obtain multiple beams of optical signals, and the multiple beams of optical signals are input to each photon calculation through each output port one by one. Module 4; Photon calculation module 4, for performing amplitude modulation and phase modulation on each beam of optical signal, so as to represent an input data and a convolution kernel parameter through each beam of modulated optical signal, and convert all modulated optical signals into is an electrical signal; the convolution and summation module 5 is used for convolution and summation of all electrical signals to complete the photon convolution operation of all input data and convolution kernel parameters.

在本实施例中,光源1发出的光经过第一耦合器2耦合进入第一分束器3中,分束器有多个输出端口,与多个光子计算模块4一一对应相连,第一分束器3将输入的光分为多束,并分别输入至每一个光子计算模块4中,在光子计算模块4中完成一个输入数据与一个卷积核参数的光子乘积运算,通过相邻的不同光子计算模块4的输出求和,进而完成输入数据与卷积核参数的光子卷积运算,光子具有高速度、高带宽、低功耗的特点,利用光子实现卷积计算,可以大幅度提高计算速度并降低计算能耗。In this embodiment, the light emitted by the light source 1 is coupled into the first beam splitter 3 through the first coupler 2. The beam splitter has multiple output ports, which are connected to the multiple photon calculation modules 4 in one-to-one correspondence. The beam splitter 3 divides the input light into multiple beams, which are respectively input to each photon calculation module 4, and the photon product operation of an input data and a convolution kernel parameter is completed in the photon calculation module 4. The outputs of different photon calculation modules 4 are summed, and then the photon convolution operation between the input data and the convolution kernel parameters is completed. Photons have the characteristics of high speed, high bandwidth and low power consumption. Using photons to realize convolution calculation can greatly improve the Computing speed and reducing computing power consumption.

在本申请其中一个实施例中,如图2所示,图2为本申请一实施例提供的光学神经网络卷积层芯片的光子计算模块4结构示意图,光子计算模块4包括依次连接的第二分束器41、输入数据调制模块42、卷积核参数调制模块43、第二耦合器44和平衡光电探测器45;第二分束器41,用于将输入的光信号分为两束光信号,第二分束器41包括两个输出端口,一个输出端口与输入数据调制模块42相连,用于将一个光信号传输给输入数据调制模块42,另一个输出端口与卷积核参数调制模块43相连,用于将另一个光信号传输给卷积核参数调制模块43;输入数据调制模块42,用于根据一个输入数据,对两束光信号中的一束进行幅度调制和相位调制,通过调制的光信号表示一个输入数据;卷积核参数调制模块43,用于根据一个卷积核参数,对两束光信号中的另一束光信号进行幅度调制和相位调制,通过调制的光信号表示一个卷积核参数;第二耦合器44,用于将经过输入数据调制模块42调制的光信号和经过卷积核参数调制模块43调制的光信号进行耦合,输出两束光信号;平衡光电探测器45,用于对两束光信号进行平衡探测,得到所述电信号。In one embodiment of the present application, as shown in FIG. 2 , FIG. 2 is a schematic structural diagram of a photonic computing module 4 of an optical neural network convolutional layer chip provided by an embodiment of the present application. The photonic computing module 4 includes a second A beam splitter 41, an input data modulation module 42, a convolution kernel parameter modulation module 43, a second coupler 44 and a balanced photodetector 45; the second beam splitter 41 is used to divide the input optical signal into two beams of light signal, the second beam splitter 41 includes two output ports, one output port is connected to the input data modulation module 42 for transmitting an optical signal to the input data modulation module 42, and the other output port is connected to the convolution kernel parameter modulation module 43 are connected, and are used to transmit another optical signal to the convolution kernel parameter modulation module 43; the input data modulation module 42 is used to perform amplitude modulation and phase modulation on one of the two beams of optical signals according to an input data. The modulated optical signal represents one input data; the convolution kernel parameter modulation module 43 is used to perform amplitude modulation and phase modulation on the other of the two optical signals according to a convolution kernel parameter, and the modulated optical signal Represents a convolution kernel parameter; the second coupler 44 is used to couple the optical signal modulated by the input data modulation module 42 and the optical signal modulated by the convolution kernel parameter modulation module 43, and output two beams of optical signals; balance photoelectric The detector 45 is used to perform balanced detection on the two beams of optical signals to obtain the electrical signals.

具体的,第二分束器41将输入的光信号分成两束光信号,一束光信号经过输入数据调制模块42,输入数据调制模块42中的光幅度调制单元和光相位调制单元对光束进行幅度调制与相位调制,通过光学信息表示输入数据Xi的正负与数值大小,另一束光信号经过卷积核参数调制模块43,卷积核参数调制模块43中的光幅度调制单元和光相位调制单元对光束进行幅度调制与相位调制,通过光学信息表示卷积核参数Wi的正负与数值大小,经过调制的两束光信号在第二耦合器44中进行耦合,输出两束光信号,平衡光电探测器45对两束光信号进行平衡探测,得到该电信号,所得电信号与输出光束的幅度信息和相位信息相关,进而完成输入数据与卷积核参数的乘积运算Wi*Xi并进行输出。Specifically, the second beam splitter 41 divides the input optical signal into two beams of optical signals, one beam of optical signal passes through the input data modulation module 42, and the optical amplitude modulation unit and the optical phase modulation unit in the input data modulation module 42 perform amplitude modulation on the beam. Modulation and phase modulation, the positive and negative and the numerical value of the input data X i are represented by optical information, and another beam of optical signal passes through the convolution kernel parameter modulation module 43, the optical amplitude modulation unit and the optical phase modulation in the convolution kernel parameter modulation module 43. The unit performs amplitude modulation and phase modulation on the light beam, and the positive and negative values and the numerical value of the convolution kernel parameter Wi are represented by optical information. The modulated two beams of optical signals are coupled in the second coupler 44 to output two beams of optical signals, The balanced photodetector 45 performs balanced detection on the two beams of light signals to obtain the electrical signal, and the obtained electrical signal is related to the amplitude information and phase information of the output beam, and then completes the product operation W i *X i of the input data and the convolution kernel parameter and output.

在卷积神经网络中有着不同大小的卷积核,如1*1卷积核和3*3卷积核。在本申请实施例提供的光学神经网络卷积层芯片中,可以通过相邻的光子计算模块4的不同组合实现不同大小的卷积核计算,可以通过空间复用方式一次完成多个卷积核的计算,提高计算效率。There are convolution kernels of different sizes in convolutional neural networks, such as 1*1 convolution kernel and 3*3 convolution kernel. In the optical neural network convolution layer chip provided in the embodiment of the present application, different sizes of convolution kernel calculations can be realized through different combinations of adjacent photon computing modules 4, and multiple convolution kernels can be completed at one time through spatial multiplexing. calculation to improve computational efficiency.

示例性的,请参阅图3,图3为本申请实施例提供的一种光子计算模块4运行卷积运算时的输出示意图。如图3所示,本申请实施例提供的一种光子计算模块4,其数量为9的倍数,相邻的9个光子计算模块4的计算结果进行求和输出,完成3*3卷积核与输入数据的卷积运算,通过空间复用,一次可以完成N/9个3*3卷积核的卷积运算,提高计算效率。Exemplarily, please refer to FIG. 3 , which is a schematic diagram of the output of a photon computing module 4 according to an embodiment of the present application when a convolution operation is performed. As shown in FIG. 3 , a photon calculation module 4 provided in the embodiment of the present application is a multiple of 9, and the calculation results of the adjacent 9 photon calculation modules 4 are summed and output to complete a 3*3 convolution kernel. For the convolution operation with the input data, through spatial multiplexing, the convolution operation of N/9 3*3 convolution kernels can be completed at one time, which improves the computational efficiency.

在本申请其中一个实施例中,输入数据调制模块42包括P1个光幅度调制单元与Q1个光相位调制单元;卷积核参数调制模块43包括P2个光幅度调制单元与Q2个光相位调制单元;光幅度调制单元,用于对接收到的光信号进行幅度调制;光相位调制单元,用于对接收到的光信号进行相位调制。In one of the embodiments of the present application, the input data modulation module 42 includes P1 optical amplitude modulation units and Q1 optical phase modulation units; the convolution kernel parameter modulation module 43 includes P2 optical amplitude modulation units and Q2 optical phase modulation units an optical amplitude modulation unit for amplitude modulation of the received optical signal; an optical phase modulation unit for phase modulation of the received optical signal.

其中,P1、Q1、P2、Q2均为非负整数。Among them, P1, Q1, P2, Q2 are all non-negative integers.

在本申请其中一个实施例中,光源1为激光器光源;第一耦合器2为端面耦合器或光栅耦合器;第二耦合器为2*2耦合器;第一分束器3为定向耦合器或多模干涉耦合器。In one of the embodiments of the present application, the light source 1 is a laser light source; the first coupler 2 is an end face coupler or a grating coupler; the second coupler is a 2*2 coupler; the first beam splitter 3 is a directional coupler or multimode interference couplers.

在本申请其中一个实施例中,光幅度调制单元为马赫曾德干涉仪、微环谐振器或沉积相变材料的光波导;光相位调制单元为电光调相器或热光调相器。In one of the embodiments of the present application, the optical amplitude modulation unit is a Mach-Zehnder interferometer, a micro-ring resonator or an optical waveguide deposited with phase change material; the optical phase modulation unit is an electro-optical phase modulator or a thermo-optical phase modulator.

请参阅图4,图4为本申请一实施例提供的光学神经网络卷积计算方法的流程示意图,该方法可由如上述图1至3所示的光学神经网络卷积层芯片执行,该方法主要包括以下步骤:Please refer to FIG. 4. FIG. 4 is a schematic flowchart of an optical neural network convolution calculation method provided by an embodiment of the present application. The method can be performed by the optical neural network convolution layer chip shown in the above-mentioned FIGS. 1 to 3. The method is mainly Include the following steps:

S101、对接收到的光信号进行耦合;S101. Coupling the received optical signal;

S102、对耦合后的光信号进行分束,得到多束光信号;S102, splitting the coupled optical signals to obtain multiple optical signals;

S103、对每束该光信号进行幅度调制和相位调制,以通过每束调制的光信号表示一个输入数据和一个卷积核参数;S103, performing amplitude modulation and phase modulation on each beam of the optical signal, so that an input data and a convolution kernel parameter are represented by each beam of the modulated optical signal;

S104、将所有调制后的光信号转化为电信号;S104, converting all modulated optical signals into electrical signals;

S105、对所有该电信号进行卷积求和,完成所有输入数据和卷积核参数的光子卷积运算。S105, perform convolution and summation on all the electrical signals, and complete the photon convolution operation of all input data and convolution kernel parameters.

其中,可理解的,步骤S101由第一耦合器2执行,步骤S102由第一分束器3执行,步骤S103由光子计算模块4执行,步骤S105由卷积求和模块5执行。It can be understood that step S101 is performed by the first coupler 2 , step S102 is performed by the first beam splitter 3 , step S103 is performed by the photon calculation module 4 , and step S105 is performed by the convolution and summation module 5 .

在本申请其中一个实施例中,步骤S104包括:将每束该光信号分为两束光信号,得到多组两束光信号;在每组两束光信号内,根据一个输入数据,对该两束光信号中的一束进行幅度调制和相位调制,通过调制的光信号表示该一个输入数据,以及,根据一个卷积核参数,对该两束光信号中的另一束进行幅度调制和相位调制,通过调制的光信号表示该一个卷积核参数。In one of the embodiments of the present application, step S104 includes: dividing each beam of the optical signal into two beams of optical signals to obtain multiple groups of two beams of optical signals; in each group of two beams of optical signals, according to an input data, for the One of the two optical signals is amplitude-modulated and phase-modulated, the one input data is represented by the modulated optical signal, and, according to a convolution kernel parameter, the other of the two optical signals is amplitude-modulated and summed. Phase modulation, the one convolution kernel parameter is represented by the modulated optical signal.

在本申请其中一个实施例中,步骤S105之前,包括:将每组进行幅度调制和相位调制后的两束光信号进行耦合,输出两束光信号。In one of the embodiments of the present application, before step S105 , the method includes: coupling each group of two optical signals after amplitude modulation and phase modulation, and outputting two optical signals.

在本申请其中一个实施例中,该步骤S105包括:对每组内的该两束光信号进行平衡探测,得到所述电信号。In one of the embodiments of the present application, the step S105 includes: performing balanced detection on the two optical signals in each group to obtain the electrical signals.

其中,光信号由光源发出,选择合适波长与合适功率的光源,通过第一耦合器将光输至第一分束器中。Wherein, the optical signal is emitted by a light source, a light source with a suitable wavelength and a suitable power is selected, and the light is output to the first beam splitter through the first coupler.

其中,对输入数据进行预处理,利用光的幅度信息和相位信息对预处理后的输入数据进行表示,结合光幅度调制单元与光相位调制单元的特性,计算出输入数据调制模块所需设置的参数并进行输入数据调制模块参数设置。Among them, the input data is preprocessed, the amplitude information and phase information of the light are used to represent the preprocessed input data, and the characteristics of the optical amplitude modulation unit and the optical phase modulation unit are used to calculate the required setting of the input data modulation module. parameters and set the parameters of the input data modulation module.

其中,根据应用场景,选择合适的卷积神经网络模型并完成神经网络训练,利用光的幅度信息和相位信息对训练好的神经网络中的卷积核参数进行表示,结合光幅度调制单元与光相位调制单元的特性,计算出卷积核参数调制模块所需设置的参数并进行卷积核参数调制模块参数设置。Among them, according to the application scenario, select the appropriate convolutional neural network model and complete the neural network training, use the amplitude information and phase information of the light to represent the parameters of the convolution kernel in the trained neural network, combine the optical amplitude modulation unit with the light The characteristics of the phase modulation unit are calculated, the parameters required to be set in the convolution kernel parameter modulation module are calculated and the parameters of the convolution kernel parameter modulation module are set.

更多的,可通过随机梯度下降法、粒子群优化算法或其他优化算法,调整卷积核参数调制模块的参数设置,优化光学神经网络卷积层芯片的输出结果,提高光学神经网络卷积层芯片的计算准确率。More, through the stochastic gradient descent method, particle swarm optimization algorithm or other optimization algorithms, the parameter settings of the convolution kernel parameter modulation module can be adjusted, the output results of the optical neural network convolution layer chip can be optimized, and the optical neural network convolution layer can be improved. The calculation accuracy of the chip.

本公开实施例还提供了一种电子设备,其包括了上述光学神经网络卷积层芯片。Embodiments of the present disclosure also provide an electronic device, which includes the above-mentioned optical neural network convolution layer chip.

该电子设备包括数据处理装置、机器人、电脑、打印机、扫描仪、平板电脑、智能终端、手机、行车记录仪、导航仪、传感器、摄像头、服务器、云端服务器、相机、摄像机、投影仪、手表、耳机、移动存储器、可穿戴设备、交通工具、家用电器和/或医疗设备。所述交通工具包括飞机、轮船和/或车辆;所述家用电器包括电视、空调、微波炉、冰箱、电饭煲、加湿器、洗衣机、电灯、燃气灶、油烟机;所述医疗设备包括核磁共振仪、B超仪和/或心电图仪。The electronic equipment includes data processing devices, robots, computers, printers, scanners, tablet computers, smart terminals, mobile phones, driving recorders, navigators, sensors, cameras, servers, cloud servers, cameras, video cameras, projectors, watches, Headphones, mobile storage, wearable devices, vehicles, home appliances and/or medical equipment. The vehicles include airplanes, ships and/or vehicles; the household appliances include televisions, air conditioners, microwave ovens, refrigerators, rice cookers, humidifiers, washing machines, electric lamps, gas stoves, and range hoods; the medical equipment includes nuclear magnetic resonance instruments, B-ultrasound and/or electrocardiograph.

需要说明的是,在本公开各个实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。It should be noted that each functional module in each embodiment of the present disclosure may be integrated into one processing module, or each module may exist physically alone, or two or more modules may be integrated into one module. The above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules.

该集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来。If the integrated modules are implemented in the form of software functional modules and sold or used as independent products, they can be stored in a computer-readable storage medium. Based on such understanding, the technical solutions of the present invention can be embodied in the form of software products in essence or in part that contributes to the prior art, or all or part of the technical solutions.

需要说明的是,对于前述的各方法实施例,为了简便描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某些步骤可以采用其它顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定都是本发明所必须的。It should be noted that, for the convenience of description, the foregoing method embodiments are all expressed as a series of action combinations, but those skilled in the art should know that the present invention is not limited by the described action sequence. As in accordance with the present invention, certain steps may be performed in other orders or simultaneously. Secondly, those skilled in the art should also know that the embodiments described in the specification are all preferred embodiments, and the actions and modules involved are not necessarily all necessary to the present invention.

在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其它实施例的相关描述。In the above-mentioned embodiments, the description of each embodiment has its own emphasis. For parts that are not described in detail in a certain embodiment, reference may be made to the relevant descriptions of other embodiments.

以上为对本发明所提供的一种光学神经网络卷积层芯片、卷积计算方法和电子设备的描述,对于本领域的技术人员,依据本发明实施例的思想,在具体实施方式及应用范围上均会有改变之处,综上,本说明书内容不应理解为对本发明的限制。The above is a description of an optical neural network convolution layer chip, a convolution calculation method and an electronic device provided by the present invention. For those skilled in the art, according to the idea of the embodiment of the present invention, in terms of specific implementation and application scope There will be changes. In conclusion, the content of this specification should not be construed as a limitation to the present invention.

Claims (10)

1.一种光学神经网络卷积层芯片,其特征在于,包括依次连接的第一耦合器、第一分束器、多个光子计算模块和卷积求和模块;1. an optical neural network convolution layer chip, is characterized in that, comprises the first coupler, the first beam splitter, a plurality of photon calculation modules and convolution summation modules connected in turn; 所述第一耦合器,用于将接收到的光信号耦合至第一分束器中;the first coupler for coupling the received optical signal into the first beam splitter; 所述第一分束器包括多个输出端口,所述分束器用于将耦合后的光信号进行分束,得到多束光信号,多束所述光信号一一通过各所述输出端口输入至各所述光子计算模块;The first beam splitter includes a plurality of output ports, and the beam splitter is used for splitting the coupled optical signals to obtain multiple beams of optical signals, and the multiple beams of the optical signals are input through each of the output ports one by one to each of the photon computing modules; 所述光子计算模块,用于对每束所述光信号进行幅度调制和相位调制,以通过每束调制的光信号表示一个输入数据和一个卷积核参数,并将所有调制后的光信号转化为电信号;The photon calculation module is used to perform amplitude modulation and phase modulation on each beam of the optical signal, so as to represent an input data and a convolution kernel parameter through each beam of modulated optical signal, and convert all the modulated optical signals into is an electrical signal; 所述卷积求和模块,用于对所有所述电信号进行卷积求和,完成所有输入数据和卷积核参数的光子卷积运算。The convolution and summation module is configured to perform convolution and summation on all the electrical signals, and complete the photon convolution operation of all input data and convolution kernel parameters. 2.根据权利要求1所述的光学神经网络卷积层芯片,其特征在于,所述光子计算模块包括依次连接的第二分束器、输入数据调制模块、卷积核参数调制模块、第二耦合器和平衡光电探测器;2. The optical neural network convolution layer chip according to claim 1, wherein the photon calculation module comprises a second beam splitter, an input data modulation module, a convolution kernel parameter modulation module, a second beam splitter connected in sequence, and a second Couplers and balanced photodetectors; 所述第二分束器,用于将输入的光信号分为两束光信号,所述第二分束器包括两个输出端口,一个输出端口与所述输入数据调制模块相连,用于将一个所述光信号传输给所述输入数据调制模块,另一个输出端口与所述卷积核参数调制模块相连,用于将另一个所述光信号传输给所述卷积核参数调制模块;The second beam splitter is used to divide the input optical signal into two beams of optical signals, the second beam splitter includes two output ports, one output port is connected to the input data modulation module, and is used to convert the input data into two beams. One of the optical signals is transmitted to the input data modulation module, and the other output port is connected to the convolution kernel parameter modulation module for transmitting the other optical signal to the convolution kernel parameter modulation module; 所述输入数据调制模块,用于根据一个输入数据,对所述两束光信号中的一束进行幅度调制和相位调制,通过调制的光信号表示所述一个输入数据;The input data modulation module is configured to perform amplitude modulation and phase modulation on one of the two beams of optical signals according to one input data, and represent the one input data by the modulated optical signal; 所述卷积核参数调制模块,用于根据一个卷积核参数,对所述两束光信号中的另一束所述光信号进行幅度调制和相位调制,通过调制的光信号表示所述一个卷积核参数;The convolution kernel parameter modulation module is configured to perform amplitude modulation and phase modulation on the other one of the two optical signals according to one convolution kernel parameter, and the modulated optical signal represents the one convolution kernel parameters; 所述第二耦合器,用于将经过所述输入数据调制模块调制的光信号和经过所述卷积核参数调制模块调制的光信号进行耦合,输出两束光信号;the second coupler, configured to couple the optical signal modulated by the input data modulation module and the optical signal modulated by the convolution kernel parameter modulation module, and output two beams of optical signals; 所述平衡光电探测器,用于对所述两束光信号进行平衡探测,得到所述电信号。The balanced photodetector is used for balanced detection of the two optical signals to obtain the electrical signal. 3.根据权利要求2所述的光学神经网络卷积层芯片,其特征在于,所述输入数据调制模块包括P1个光幅度调制单元与Q1个光相位调制单元;所述卷积核参数调制模块包括P2个光幅度调制单元与Q2个光相位调制单元;3. The optical neural network convolution layer chip according to claim 2, wherein the input data modulation module comprises P1 optical amplitude modulation units and Q1 optical phase modulation units; the convolution kernel parameter modulation module Including P2 optical amplitude modulation units and Q2 optical phase modulation units; 其中,P1、Q1、P2、Q2为非负整数。Among them, P1, Q1, P2, Q2 are non-negative integers. 所述光幅度调制单元,用于对接收到的光信号进行幅度调制;所述光相位调制单元,用于对接收到的光信号进行相位调制。The optical amplitude modulation unit is used for amplitude modulation on the received optical signal; the optical phase modulation unit is used for phase modulation on the received optical signal. 4.根据权利要求1至3任意一项所述的光学神经网络卷积层芯片,其特征在于,所述光信号由激光器光源发射;4. The optical neural network convolution layer chip according to any one of claims 1 to 3, wherein the optical signal is emitted by a laser light source; 所述第一耦合器为端面耦合器或光栅耦合器;The first coupler is an end face coupler or a grating coupler; 所述第二耦合器为2*2耦合器;The second coupler is a 2*2 coupler; 所述第一分束器为定向耦合器或多模干涉耦合器。The first beam splitter is a directional coupler or a multimode interference coupler. 5.根据权利要求3所述的光学神经网络卷积层芯片,其特征在于,所述光幅度调制单元为马赫曾德干涉仪、微环谐振器或沉积相变材料的光波导;5. The optical neural network convolution layer chip according to claim 3, wherein the optical amplitude modulation unit is a Mach-Zehnder interferometer, a micro-ring resonator or an optical waveguide deposited with phase change materials; 所述光相位调制单元为电光调相器或热光调相器。The optical phase modulation unit is an electro-optic phase modulator or a thermo-optic phase modulator. 6.一种光学神经网络卷积计算方法,其特征在于,包括:6. An optical neural network convolution calculation method, characterized in that, comprising: 对接收到的光信号进行耦合;Coupling the received optical signal; 对耦合后的光信号进行分束,得到多束光信号;Splitting the coupled optical signals to obtain multiple optical signals; 对每束所述光信号进行幅度调制和相位调制,以通过每束调制的光信号表示一个输入数据和一个卷积核参数;performing amplitude modulation and phase modulation on each beam of the optical signal, so that one input data and one convolution kernel parameter are represented by each beam of the modulated optical signal; 将所有调制后的光信号转化为电信号;Convert all modulated optical signals into electrical signals; 对所有所述电信号进行卷积求和,完成所有输入数据和卷积核参数的光子卷积运算。Perform convolution and summation on all the electrical signals to complete the photon convolution operation of all input data and convolution kernel parameters. 7.根据权利要求6所述的方法,其特征在于,所述对每束所述光信号进行幅度调制和相位调制,以通过每束调制的光信号表示一个输入数据和一个卷积核参数包括:7 . The method according to claim 6 , wherein, performing amplitude modulation and phase modulation on each beam of the optical signal, so that each beam of modulated optical signal represents an input data and a convolution kernel parameter comprising: 8 . : 将每束所述光信号分为两束光信号,得到多组两束光信号;Dividing each beam of the optical signal into two beams of optical signals to obtain multiple groups of two beams of optical signals; 在每组两束光信号内,根据一个输入数据,对所述两束光信号中的一束进行幅度调制和相位调制,通过调制的光信号表示所述一个输入数据,以及,根据一个卷积核参数,对所述两束光信号中的另一束进行幅度调制和相位调制,通过调制的光信号表示所述一个卷积核参数。In each group of two optical signals, amplitude modulation and phase modulation are performed on one of the two optical signals according to one input data, and the one input data is represented by the modulated optical signal, and, according to a convolution For the kernel parameter, amplitude modulation and phase modulation are performed on the other beam of the two optical signals, and the one convolution kernel parameter is represented by the modulated optical signal. 8.根据权利要求7所述的方法,其特征在于,所述将所有调制后的光信号转化为电信号之前,包括:8. The method according to claim 7, wherein before converting all modulated optical signals into electrical signals, the method comprises: 将每组进行幅度调制和相位调制后的两束光信号进行耦合,输出两束光信号。The two beams of optical signals after amplitude modulation and phase modulation in each group are coupled to output two beams of optical signals. 9.根据权利要求8所述的方法,其特征在于,所述将所有调制后的光信号转化为电信号包括:9. The method according to claim 8, wherein the converting all modulated optical signals into electrical signals comprises: 对每组内的所述两束光信号进行平衡探测,得到所述电信号。Balance detection is performed on the two optical signals in each group to obtain the electrical signals. 10.一种电子设备,其特征在于,包括如权利要求1至5所述的光学神经网络卷积层芯片。10. An electronic device, characterized by comprising the optical neural network convolution layer chip according to claims 1 to 5.
CN202010616219.XA 2020-06-30 2020-06-30 Optical neural network convolution layer chip, convolution calculation method and electronic equipment Active CN111753977B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010616219.XA CN111753977B (en) 2020-06-30 2020-06-30 Optical neural network convolution layer chip, convolution calculation method and electronic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010616219.XA CN111753977B (en) 2020-06-30 2020-06-30 Optical neural network convolution layer chip, convolution calculation method and electronic equipment

Publications (2)

Publication Number Publication Date
CN111753977A true CN111753977A (en) 2020-10-09
CN111753977B CN111753977B (en) 2024-01-02

Family

ID=72676776

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010616219.XA Active CN111753977B (en) 2020-06-30 2020-06-30 Optical neural network convolution layer chip, convolution calculation method and electronic equipment

Country Status (1)

Country Link
CN (1) CN111753977B (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112101540A (en) * 2020-10-19 2020-12-18 中国科学院半导体研究所 Optical neural network chip and calculation method thereof
CN112712162A (en) * 2020-12-11 2021-04-27 北京信息科技大学 Thermo-optic modulation voice conversion system based on photonic crystal nano beam
CN113033797A (en) * 2021-05-08 2021-06-25 电子科技大学 Pattern recognition method of real number domain optical neural network based on positive and negative separation
CN114723016A (en) * 2022-04-26 2022-07-08 中南大学 On-chip photon convolution neural network and construction method thereof
CN114819089A (en) * 2022-04-28 2022-07-29 华中科技大学 Photon convolution accelerator based on mode multiplexing
CN115033052A (en) * 2022-05-31 2022-09-09 武汉邮电科学研究院有限公司 Calculation method and system for photoelectric mixed tensor convolution
CN115222035A (en) * 2022-09-20 2022-10-21 之江实验室 Photon neural network convolution acceleration chip
CN115481723A (en) * 2021-05-31 2022-12-16 中国科学院半导体研究所 Optical convolution accelerating device and method based on time domain Talbot effect
CN115481712A (en) * 2021-05-31 2022-12-16 中国科学院半导体研究所 Photoelectric fusion convolutional neural network system based on time domain Talbot effect
CN115508958A (en) * 2022-10-08 2022-12-23 深圳中科天鹰科技有限公司 Photon chip based on optical neural network
CN115640839A (en) * 2021-07-20 2023-01-24 华为技术有限公司 A storage and calculation integrated circuit, computing system and computing method
CN116029350A (en) * 2023-03-29 2023-04-28 之江实验室 Two-dimensional photonic coherent convolution acceleration chip and its application system based on time interleaving
CN116266771A (en) * 2021-12-17 2023-06-20 中国科学院半导体研究所 Convolution operation device and convolution operation method based on multi-mode interference
CN116306858A (en) * 2021-12-17 2023-06-23 中国科学院半导体研究所 Neural network device and its operation method based on multi-mode interference
CN116384459A (en) * 2021-12-17 2023-07-04 中国科学院半导体研究所 Object recognition device and object recognition method
CN119781697A (en) * 2025-03-10 2025-04-08 深圳市源微创新实业有限公司 Data processing method and system of storage device and storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102349246A (en) * 2009-03-10 2012-02-08 泰科电子海底通信有限责任公司 Data pattern dependent distortion compensation in a coherent optical signal receiver
US20170351293A1 (en) * 2016-06-02 2017-12-07 Jacques Johannes Carolan Apparatus and Methods for Optical Neural Network
CN108599865A (en) * 2018-04-13 2018-09-28 北京邮电大学 Based on the format modulation signal recognition methods of photon neural network, device
WO2020098256A1 (en) * 2018-11-14 2020-05-22 平安科技(深圳)有限公司 Speech enhancement method based on fully convolutional neural network, device, and storage medium
CN111324858A (en) * 2020-03-20 2020-06-23 光子算数(北京)科技有限责任公司 Convolution calculation method and convolution operation circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102349246A (en) * 2009-03-10 2012-02-08 泰科电子海底通信有限责任公司 Data pattern dependent distortion compensation in a coherent optical signal receiver
US20170351293A1 (en) * 2016-06-02 2017-12-07 Jacques Johannes Carolan Apparatus and Methods for Optical Neural Network
CN108599865A (en) * 2018-04-13 2018-09-28 北京邮电大学 Based on the format modulation signal recognition methods of photon neural network, device
WO2020098256A1 (en) * 2018-11-14 2020-05-22 平安科技(深圳)有限公司 Speech enhancement method based on fully convolutional neural network, device, and storage medium
CN111324858A (en) * 2020-03-20 2020-06-23 光子算数(北京)科技有限责任公司 Convolution calculation method and convolution operation circuit

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112101540B (en) * 2020-10-19 2023-09-22 中国科学院半导体研究所 Optical neural network chip and its calculation method
CN112101540A (en) * 2020-10-19 2020-12-18 中国科学院半导体研究所 Optical neural network chip and calculation method thereof
CN112712162A (en) * 2020-12-11 2021-04-27 北京信息科技大学 Thermo-optic modulation voice conversion system based on photonic crystal nano beam
CN113033797A (en) * 2021-05-08 2021-06-25 电子科技大学 Pattern recognition method of real number domain optical neural network based on positive and negative separation
CN113033797B (en) * 2021-05-08 2022-04-12 电子科技大学 Pattern recognition method of real number domain optical neural network based on positive and negative separation
CN115481712A (en) * 2021-05-31 2022-12-16 中国科学院半导体研究所 Photoelectric fusion convolutional neural network system based on time domain Talbot effect
CN115481712B (en) * 2021-05-31 2025-05-27 中国科学院半导体研究所 Convolutional neural network system based on photoelectric fusion of time-domain Talbot effect
CN115481723B (en) * 2021-05-31 2025-06-03 中国科学院半导体研究所 Optical convolution acceleration device and method based on time-domain Talbot effect
CN115481723A (en) * 2021-05-31 2022-12-16 中国科学院半导体研究所 Optical convolution accelerating device and method based on time domain Talbot effect
CN115640839A (en) * 2021-07-20 2023-01-24 华为技术有限公司 A storage and calculation integrated circuit, computing system and computing method
CN116384459A (en) * 2021-12-17 2023-07-04 中国科学院半导体研究所 Object recognition device and object recognition method
CN116266771A (en) * 2021-12-17 2023-06-20 中国科学院半导体研究所 Convolution operation device and convolution operation method based on multi-mode interference
CN116306858A (en) * 2021-12-17 2023-06-23 中国科学院半导体研究所 Neural network device and its operation method based on multi-mode interference
CN114723016A (en) * 2022-04-26 2022-07-08 中南大学 On-chip photon convolution neural network and construction method thereof
CN114819089A (en) * 2022-04-28 2022-07-29 华中科技大学 Photon convolution accelerator based on mode multiplexing
CN114819089B (en) * 2022-04-28 2024-09-06 华中科技大学 A photon convolution accelerator based on mode multiplexing
CN115033052A (en) * 2022-05-31 2022-09-09 武汉邮电科学研究院有限公司 Calculation method and system for photoelectric mixed tensor convolution
CN115222035B (en) * 2022-09-20 2022-12-30 之江实验室 Photon neural network convolution acceleration chip
CN115222035A (en) * 2022-09-20 2022-10-21 之江实验室 Photon neural network convolution acceleration chip
CN115508958B (en) * 2022-10-08 2024-05-24 深圳中科天鹰科技有限公司 Photonic chip based on optical neural network
CN115508958A (en) * 2022-10-08 2022-12-23 深圳中科天鹰科技有限公司 Photon chip based on optical neural network
CN116029350A (en) * 2023-03-29 2023-04-28 之江实验室 Two-dimensional photonic coherent convolution acceleration chip and its application system based on time interleaving
CN119781697A (en) * 2025-03-10 2025-04-08 深圳市源微创新实业有限公司 Data processing method and system of storage device and storage medium
CN119781697B (en) * 2025-03-10 2025-06-20 深圳市源微创新实业有限公司 Data processing method and system of storage device and storage medium

Also Published As

Publication number Publication date
CN111753977B (en) 2024-01-02

Similar Documents

Publication Publication Date Title
CN111753977B (en) Optical neural network convolution layer chip, convolution calculation method and electronic equipment
Lin et al. 120 GOPS Photonic tensor core in thin-film lithium niobate for inference and in situ training
CN114520694A (en) Computing chip, system and data processing method
CN112232503B (en) Computing device, computing method, and computing system
CN112101540B (en) Optical neural network chip and its calculation method
WO2020092899A1 (en) Matrix multiplication using optical processing
CN114519403B (en) Optical diagram neural classification network and method based on-chip diffraction neural network
CN113298246B (en) Data processing method, device and computer readable storage medium
CN113627605B (en) Optical interference unit configuration method, device and storage medium for photonic neural network
Zhong et al. Lightning: A reconfigurable photonic-electronic smartnic for fast and energy-efficient inference
CN115641494B (en) Neural network image processing system based on micro-ring modulator
WO2021104535A1 (en) Optical calculation device and optical signal processing method
CN108805278A (en) A kind of feature extracting method and system applied to deep learning
CN117077750B (en) Parallel photon convolution operation chip and system
WO2023174072A1 (en) Data processing method and system
Dang et al. BPLight-CNN: A photonics-based backpropagation accelerator for deep learning
CN113569506B (en) Optical chip design method, system, equipment and computer storage medium
CN117233960A (en) Optical system on-line design method and device based on intelligent light calculation
CN113705774B (en) Optical circuit construction method, optical circuit, optical signal processing method and device
CN114706161A (en) An On-Chip Optical Matrix Vector Processor Based on Frequency Coding
WO2023138585A1 (en) Optical computing apparatus and optical computing method
CN116704319A (en) A method for face recognition and an optoelectronic hybrid system composed of an MZI cascaded array optical computing chip and an FPGA
CN113592084B (en) Photon neural network on chip based on reverse optimization superstructure convolution kernel
CN120338011A (en) Optical neural network and implementation method thereof, optical neural network chip
CN112232487B (en) Optical neural network chip and calculation method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant