CN111755067A - A screening method for tumor neoantigens - Google Patents
A screening method for tumor neoantigens Download PDFInfo
- Publication number
- CN111755067A CN111755067A CN201910242904.8A CN201910242904A CN111755067A CN 111755067 A CN111755067 A CN 111755067A CN 201910242904 A CN201910242904 A CN 201910242904A CN 111755067 A CN111755067 A CN 111755067A
- Authority
- CN
- China
- Prior art keywords
- tumor
- mutation
- somatic cells
- neoantigens
- analysis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B20/00—ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
- G16B20/20—Allele or variant detection, e.g. single nucleotide polymorphism [SNP] detection
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B30/00—ICT specially adapted for sequence analysis involving nucleotides or amino acids
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Analytical Chemistry (AREA)
- Bioinformatics & Computational Biology (AREA)
- Chemical & Material Sciences (AREA)
- Evolutionary Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Medical Informatics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Theoretical Computer Science (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
Description
技术领域technical field
本发明涉及肿瘤免疫领域,具体是一种肿瘤新生抗原的筛选方法。The invention relates to the field of tumor immunity, in particular to a screening method for tumor neoantigens.
背景技术Background technique
肿瘤特异性抗原(tumor-specific antigens ,缩写TSAs)是指肿瘤细胞所特有的抗原,又称新生抗原(neoantigens)。肿瘤特异性抗原被提出于上世纪前半叶,之后随着分子生物学发展及对主要组织相容性复合体(major histocompatibility complex,缩写MHC)分子功能的深入认识,Boon等人首先发现在肿瘤中,有肿瘤产生的特异性肽段与MHC分子复合物可以被CD8+或者是CD4+等T细胞识别。随后的研究认识到这些能被T细胞识别的抗原来自于肿瘤的基因组变异表达成肿瘤特有的肽段(neo-epitopes),被定义为新生抗原(neoantigens)。与肿瘤相关性抗原不同,肿瘤特异性抗原只存在于肿瘤细胞中。Tumor-specific antigens (tumor-specific antigens, abbreviated TSAs) refers to antigens specific to tumor cells, also known as neoantigens. Tumor-specific antigens were proposed in the first half of the last century. Later, with the development of molecular biology and the in-depth understanding of the molecular function of major histocompatibility complex (MHC), Boon et al. , The complex of specific peptides produced by tumors and MHC molecules can be recognized by T cells such as CD8+ or CD4+. Subsequent studies have recognized that these antigens that can be recognized by T cells are derived from the genomic variation of tumors and expressed as tumor-specific peptides (neo-epitopes), which are defined as neoantigens. Unlike tumor-associated antigens, tumor-specific antigens are only present in tumor cells.
2017年7月,英国科学杂志《Nature》同期发表两项独立临床I期试验结果,通过对肿瘤细胞进行DNA和RNA测序,寻找肿瘤细胞因基因突变而特异表达的新抗原(neoantigen),然后构建个性化的肿瘤疫苗,回输到体内激活免疫细胞,并杀死带有上述抗原的肿瘤细胞。这是首次在临床试验中取得成功的癌症疫苗研究。In July 2017, the British scientific journal "Nature" published the results of two independent clinical phase I trials at the same time. By sequencing the DNA and RNA of tumor cells, we searched for neoantigens (neoantigens) specifically expressed by tumor cells due to gene mutations, and then constructed Personalized tumor vaccines are injected back into the body to activate immune cells and kill tumor cells with the above-mentioned antigens. This is the first cancer vaccine study to be successful in clinical trials.
目前已公布的肿瘤新生抗原的预测方法主要包括EpiToolKit和Epi-Seq。但是,EpiToolKit只是从突变出发,并没有考虑测序数据的深度和覆盖度,没有从数据质量上考虑突变的质量情况,从而无法判断所获得的新生抗原的质量。此外,EpiToolKit没有考虑表达丰度,没有考虑新生抗原的表达情况,会造成预测假阳性,无法筛选高质量新生抗原。很多DNA层面的突变是不表达的,平均可能有50%的突变是不表达的,因此可能造成预测新生抗原的假阳性。而且突变的表达有高有低,表达越高,总体上产生的免疫原性越强。另外,EpiToolKit也没有考虑突变肽和正常肽的比较,高质量的新生抗原一般是突变肽的亲和力比正常肽的亲和力要高,而EpiToolKit缺乏这样的比较,也会造成高质量新生抗原的筛选有假阳性。The prediction methods of tumor neoantigens that have been published so far mainly include EpiToolKit and Epi-Seq. However, EpiToolKit only starts from mutations, does not consider the depth and coverage of sequencing data, and does not consider the quality of mutations in terms of data quality, so it cannot judge the quality of the obtained neoantigens. In addition, EpiToolKit does not consider the expression abundance and the expression of neoantigens, which will cause false positive predictions and cannot screen high-quality neoantigens. Many mutations at the DNA level are not expressed, and on average, 50% of the mutations may not be expressed, which may cause false positives in predicting neoantigens. Moreover, the expression of the mutation can be high or low, and the higher the expression, the stronger the overall immunogenicity. In addition, EpiToolKit does not consider the comparison between mutant peptides and normal peptides. For high-quality neoantigens, the affinity of mutant peptides is generally higher than that of normal peptides. The lack of such comparison in EpiToolKit will also result in high-quality neoantigen screening. false positive.
Epi-Seq只是从肿瘤的表达数据出发预测肿瘤特异性抗原,从表达数据预测新生抗原,同样会造成假阳性。一方面,受RNA编辑的影响,容易造成假阳性;另一方面,因为RNA测序是从cDNA反转录后再测序的,这个过程也会引入很大的假阳性;再一方面,就是tumorcDNA VS germline DNA在检测方法上会有很多的假阳性。以上因素导致Epi-Seq获得的新66生抗原存在较多的假阳性。Epi-Seq only predicts tumor-specific antigens from tumor expression data, and predicts neoantigens from expression data, which will also cause false positives. On the one hand, it is easy to cause false positives due to the influence of RNA editing; on the other hand, because RNA sequencing is reverse-transcribed from cDNA and then sequenced, this process will also introduce a large number of false positives; on the other hand, tumorcDNA VS There are many false positives in germline DNA detection methods. The above factors lead to more false positives for the new 66 antigens obtained by Epi-Seq.
因此,目前还没有能够直接从测序比对结果出发,从多个角度筛选高质量的肿瘤新生抗原的方法,人们一直在进行相关研究。Therefore, there is currently no method that can directly screen high-quality tumor neoantigens from multiple perspectives based on the results of sequencing comparisons, and people have been conducting related research.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种肿瘤新生抗原的筛选方法,以解决上述背景技术中提出的问题。The purpose of the present invention is to provide a screening method for tumor neoantigens to solve the problems raised in the above background art.
为实现上述目的,本发明提供如下技术方案:To achieve the above object, the present invention provides the following technical solutions:
一种肿瘤新生抗原的筛选方法,具体步骤如下:A screening method for tumor neoantigens, the specific steps are as follows:
步骤一,选择肿瘤体细胞的变异类型;
步骤二,对肿瘤体细胞进行RNA变异分析;
步骤三,分别对正常血液和肿瘤体细胞进行主要组织相容性复合体(MHC)分子分析;Step 3: Perform major histocompatibility complex (MHC) molecular analysis on normal blood and tumor somatic cells respectively;
步骤四,对肿瘤体细胞进行RNA表达分析;Step 4: Perform RNA expression analysis on tumor somatic cells;
步骤五,对肿瘤体细胞进行变异注释;Step 5: Variation annotation on tumor somatic cells;
步骤六,对肿瘤体细胞的变异驱动基因进行分析;Step 6, analyze the mutation driving genes of tumor somatic cells;
步骤七,对肿瘤体细胞进行人类白细胞抗原(HLA)分子结合亲和力预测;Step 7: Predict the binding affinity of human leukocyte antigen (HLA) molecules on tumor cells;
步骤八,对肿瘤体细胞进行突变频率的分析;Step 8, analyze the mutation frequency of tumor somatic cells;
步骤九,对候选肿瘤新生抗原进行综合打分排序;Step 9, comprehensively score and sort the candidate tumor neoantigens;
步骤十,对候选肿瘤新生抗原的合成难易度进行分析;Step ten, analyze the synthesis difficulty of candidate tumor neoantigens;
步骤十一,综合步骤九和步骤十的结果选择最终的肿瘤新抗原。Step 11: Select the final tumor neoantigen based on the results of Step 9 and
作为本发明进一步的方案:步骤一中肿瘤体细胞的变异类型包括肿瘤体细胞的DNA点突变、插入缺失突变以及移码突变。As a further solution of the present invention: the mutation types of the tumor somatic cells in
作为本发明进一步的方案:步骤三中采用Optitype、xHLA和seq2HLA软件对正常血液和肿瘤体细胞进行分子分析,综合三者的结果确定肿瘤体细胞的HLA分型结果。As a further scheme of the present invention: in
作为本发明进一步的方案:步骤五中变异注释包括肿瘤体细胞变异中的点突变的变异注释、插入缺失突变的变异注释以及移码突变的变异注释。As a further solution of the present invention: the variation annotation in
作为本发明进一步的方案:步骤六中为对肿瘤体细胞中的点突变、插入缺失突变以及移码突变进行变异驱动基因的分析。As a further scheme of the present invention: step 6 is to analyze the point mutation, indel mutation and frameshift mutation in the tumor somatic cells to analyze the mutation-driven gene.
作为本发明进一步的方案:步骤七中为依据肿瘤体细胞的HLA分子类型、突变肽段预测步骤获得的突变预测肽段以及突变预测肽段对应的野生型肽段序列对肿瘤体细胞进行HLA分子结合亲和力预测。As a further scheme of the present invention: in step 7, the HLA molecule of the tumor somatic cells is subjected to HLA molecular analysis according to the HLA molecule type of the tumor somatic cells, the predicted mutant peptide obtained in the mutant peptide prediction step, and the wild-type peptide sequence corresponding to the predicted mutant peptide. Binding affinity prediction.
作为本发明进一步的方案:步骤九中打分排序的依据为肿瘤体细胞的MHC亲和力、肿瘤体细胞抗原表达丰度和野生型肽对比程度、肿瘤体细胞的突变频率、肿瘤体细胞是否为RNA突变以及是否是肿瘤驱动基因。As a further scheme of the present invention: in step 9, the scoring and ranking are based on the MHC affinity of tumor somatic cells, the expression abundance of tumor somatic cells and the degree of contrast of wild-type peptides, the mutation frequency of tumor somatic cells, and whether the tumor somatic cells are RNA mutations and whether it is a tumor driver gene.
作为本发明进一步的方案:步骤十中依据分子量、等电点、PH值为7时的静电荷、平均亲水性以及亲水残基比对候选肿瘤新生抗原的合成难易度进行分析。As a further scheme of the present invention: in step ten, the synthesis difficulty of candidate tumor neoantigens is analyzed according to molecular weight, isoelectric point, electrostatic charge at pH 7, average hydrophilicity and hydrophilic residue ratio.
与现有技术相比,本发明的有益效果是:Compared with the prior art, the beneficial effects of the present invention are:
本发明将肿瘤突变分析以及肿瘤表达预测肿瘤特异性抗原进行了优化结合,使得分析过程更加的高效、精准;The invention optimizes the combination of tumor mutation analysis and tumor expression prediction tumor specific antigen, so that the analysis process is more efficient and accurate;
本发明不仅针对人源基因数据,而且加入了鼠源分析模块,使得新生抗原预测分析应用范围更广泛;The invention is not only aimed at human gene data, but also adds a mouse analysis module, so that the application range of neoantigen prediction analysis is wider;
本发明从读取fastq文件开始,一键自动生成结果,优化了大数据处理中的中间文件合并的联合调用,采用多任务的分布式处理大大提高分析效率,降低了生物大数据分析硬件的要求,使得肿瘤突变分析结果更加准确,进一步提高后续治疗的精准性,具有积极的使用前景。The invention starts from reading the fastq file, automatically generates the result with one key, optimizes the joint call of the intermediate file merging in the big data processing, adopts the multi-task distributed processing to greatly improve the analysis efficiency, and reduces the requirement of the biological big data analysis hardware , which makes the tumor mutation analysis results more accurate, further improves the accuracy of subsequent treatment, and has a positive application prospect.
附图说明Description of drawings
图1为肿瘤新生抗原的筛选方法的实施例2中假设为3时的曲线图。Fig. 1 is the hypothesis in Example 2 of the screening method for tumor neoantigens The graph when it is 3.
图2为肿瘤新生抗原的筛选方法的实施例2中Expression_TMP为4.4中生成的转录组表达量图。FIG. 2 is a graph of transcriptome expression levels generated when Expression_TMP is set to 4.4 in Example 2 of the screening method for tumor neoantigens.
图3为肿瘤新生抗原的筛选方法的实施例2中Normal_score为7.6中计算的野生型肽链亲和力分值图。FIG. 3 is a graph of the wild-type peptide chain affinity score calculated when the Normal_score is 7.6 in Example 2 of the screening method for tumor neoantigens.
具体实施方式Detailed ways
下面结合具体实施方式对本专利的技术方案作进一步详细地说明。The technical solution of the present patent will be described in further detail below in conjunction with specific embodiments.
实施例1Example 1
一种肿瘤新生抗原的筛选方法,具体步骤如下:A screening method for tumor neoantigens, the specific steps are as follows:
1,肿瘤体细胞变异选择步骤1. Steps of tumor somatic mutation selection
采用国际公认的GATK肿瘤细胞体细胞突变检测软件和商业软件对肿瘤体细胞样本和正常血液样本的全外显子二代测序结果进行肿瘤体细胞的DNA点突变、插入缺失突变以及移码突变进行检测,取多种检测软件检出的突变频率都高的变异作为候选突变;同时,对肿瘤体细胞转录组测序结果进行突变分析;The internationally recognized GATK tumor cell somatic mutation detection software and commercial software were used to conduct DNA point mutations, indel mutations and frameshift mutations in tumor somatic cells from the whole-exon next-generation sequencing results of tumor somatic cell samples and normal blood samples. For detection, mutations with a high mutation frequency detected by various detection software are selected as candidate mutations; at the same time, mutation analysis is performed on the results of tumor somatic cell transcriptome sequencing;
2,肿瘤体细胞RNA变异分析步骤2. Steps of tumor somatic RNA variation analysis
结合肿瘤体细胞DNA的体细胞突变和肿瘤体细胞RNA突变,最后确定肿瘤体细胞变异。Combining the somatic mutation of tumor somatic DNA and tumor somatic RNA mutation, the tumor somatic mutation is finally determined.
3,MHC分子分析步骤3. MHC molecular analysis steps
用HLA分型软件Optitype分别对肿瘤体细胞样本和正常血液样本的全外显子二代测序结果进行HLA I类分子进行分析;用HLA分型软件xHLA分别对肿瘤体细胞样本和正常血液样本的全外显子二代测序结果HLA I类分子和HLA II类分子进行分析;用HLA分型软件seq2HLA对肿瘤体细胞转录组测序结果进行HLA I类分子和HLA II类分子分析;结合3者的结果最终确定HLA分型结果,从3者结果确认样本的一致性。The HLA class I molecules of the whole-exon next-generation sequencing of tumor somatic cell samples and normal blood samples were analyzed by HLA typing software Optitype; the HLA typing software xHLA was used to analyze tumor somatic cell samples and normal blood samples, respectively. Whole-exome next-generation sequencing results were analyzed for HLA class I molecules and HLA class II molecules; the HLA typing software seq2HLA was used to analyze the HLA class I molecules and HLA class II molecules of the tumor somatic transcriptome sequencing results; Results The HLA typing results were finally determined, and the consistency of the samples was confirmed from the three results.
4,肿瘤体细胞RNA表达分析4. Tumor Somatic RNA Expression Analysis
对肿瘤体细胞转录组测序结果进行转录组表达量分析,确定基因以及转录TPM(Transcripts Per Million)值。Transcriptome expression analysis was performed on the results of tumor somatic transcriptome sequencing to determine genes and transcriptional TPM (Transcripts Per Million) values.
5,变异注释步骤5. Variation annotation steps
对肿瘤体细胞变异中的点突变、插入缺失突变以及移码突变进行基因组突变到转录组对应再到氨基酸突变的注释;对肿瘤体细胞变异进行TMB(肿瘤负荷)分析;Annotation of point mutations, indels, and frameshift mutations in tumor somatic mutations from genome mutation to transcriptome correspondence to amino acid mutations; TMB (tumor burden) analysis of tumor somatic mutations;
6,肿瘤体细胞驱动基因分析步骤6. Steps of tumor somatic driver gene analysis
对肿瘤体细胞变异中的点突变、插入缺失突变以及移码突变参考COSMIC肿瘤数据库进行肿瘤体细胞突变驱动基因分析。The tumor somatic mutation-driven gene analysis was performed with reference to the COSMIC tumor database for point mutations, indel mutations, and frameshift mutations in tumor somatic variants.
7,HLA分子亲和力预测步骤7. HLA molecular affinity prediction steps
包括将MHC分子鉴定步骤得到的肿瘤体细胞样本的HLA分子类型、突变肽段预测步骤获得的突变预测肽段,以及突变预测肽段对应的野生型肽段序列作为MHC I型和MHC II型亲和力预测软件的输入,分别预测突变肽段与MHC I型和MHC II型基因的亲和力水平。利用计算机神经网络NNAlign算法结合亲和力和MS洗脱配体数据预测MHC I型分子的突变肽段。Including the HLA molecular type of the tumor somatic cell sample obtained in the MHC molecular identification step, the mutant predicted peptide obtained in the mutant peptide prediction step, and the wild-type peptide sequence corresponding to the mutant predicted peptide as the MHC type I and MHC type II affinity The input of the prediction software predicts the affinity level of the mutant peptide with the MHC type I and MHC type II genes, respectively. Using computer neural network NNAlign algorithm binding affinity and MS elution ligand data to predict the mutated peptides of MHC class I molecules.
8,肿瘤体细胞突变频率分析步骤8. Analysis steps of tumor somatic mutation frequency
包括采用肿瘤突变频率分析软件检测肿瘤体细胞的突变占所有的DNA中这个基因位点的频率,突变频率越高,表明肿瘤体细胞占的百分比就越大。Including the use of tumor mutation frequency analysis software to detect the frequency of the mutation of tumor somatic cells accounting for this gene locus in all DNA, the higher the mutation frequency, the greater the percentage of tumor somatic cells.
9,候选肿瘤新生抗原综合打分排序步骤9. Comprehensive scoring and sorting steps for candidate tumor neoantigens
包括按照MHC亲和力、抗原表达丰度和野生型肽对比、肿瘤体细胞突变频率、是否RNA突变、是否是肿瘤体细胞驱动基因等影响因子对所述候选肿瘤新生抗原中各突变预测肽段进行打分,按照分值由高到低排序,选取分值高者作为肿瘤新生抗原。Including the score of each mutation predicted peptide in the candidate tumor neoantigen according to the influence factors such as MHC affinity, antigen expression abundance and wild-type peptide comparison, tumor somatic mutation frequency, whether RNA mutation, whether it is tumor somatic driver gene, etc. , according to the score from high to low, and select the one with the highest score as the tumor neoantigen.
10,多肽合成难易度分析步骤10. Analysis steps of the difficulty of peptide synthesis
以预测的突变肽段为中心向左右分别补齐共30位长度的肽链,根据多肽合成难易度分析软件,从分子量、等电点、PH值为7时的静电荷、平均亲水性以及亲水残基比角度分析肿瘤候选新抗原合成难易度。With the predicted mutant peptide as the center, the peptide chains with a total length of 30 positions were filled to the left and right. According to the analysis software for the difficulty of peptide synthesis, the molecular weight, isoelectric point, electrostatic charge at pH 7, average hydrophilicity were calculated from the analysis software. And the ratio of hydrophilic residues to analyze the difficulty of tumor candidate neoantigen synthesis.
11,候选肿瘤新抗最终选择步骤11. Final selection steps for candidate tumor neoantibodies
根据第9步骤的打分以及第10步骤的多肽合成难易度选择最终合成肿瘤新抗原。The final synthetic tumor neoantigen was selected according to the score in the ninth step and the difficulty of peptide synthesis in the tenth step.
实施例2Example 2
一种肿瘤新生抗原的筛选方法,具体步骤如下:A screening method for tumor neoantigens, the specific steps are as follows:
1,肿瘤体细胞变异选择步骤1. Steps of tumor somatic mutation selection
1.1.采用相关试剂对样本的肿瘤组织和血液进行全外显子二代测序,测序深度分别为200X和100X;1.1. Use relevant reagents to perform whole-exon next-generation sequencing on the tumor tissue and blood of the sample, and the sequencing depth is 200X and 100X respectively;
1.2.采用OpenGene的fastp软件对1.1中的测序数据进行综合质量分析,如果Q20小于98%或者Q30小于90%或者GC比率不正常均认为测序数据质量不合格,并停止新抗原分析。过滤掉reads质量太低、太短或者太多N的reads。1.2. Use OpenGene's fastp software to perform comprehensive quality analysis on the sequencing data in 1.1. If the Q20 is less than 98% or the Q30 is less than 90% or the GC ratio is abnormal, the quality of the sequencing data is considered unqualified, and the neoantigen analysis is stopped. Filters out reads whose quality is too low, too short, or with too many Ns.
1.3.对fastq clean data进行BWA-MEM比对。判断样本类型,如果是人类样本,则选择GRCh38人类参考基因组对肿瘤组织测序数据和血液测序数据进行比对;如果是老鼠样本,则选择GRCm38参考基因组对肿瘤组织测序数据和血液测序数据进行比对。1.3. Perform BWA-MEM alignment on fastq clean data. Determine the sample type. If it is a human sample, select the GRCh38 human reference genome to compare the tumor tissue sequencing data and blood sequencing data; if it is a mouse sample, select the GRCm38 reference genome to compare the tumor tissue sequencing data and blood sequencing data. .
1.4.对测序质量进一步的统计。分别统计1.3后的肿瘤组织和血液数据中每个测序循环的Phred打分,要求每个测序循环的Q值都在30以上,否则停止新抗原分析。分别计算1.3步骤后肿瘤组织和血液数据的测序深度,如果测序深度分别低于200X和100X则停止新抗原分析。1.4. Further statistics on sequencing quality. The Phred score of each sequencing cycle in the tumor tissue and blood data after 1.3 was calculated separately, and the Q value of each sequencing cycle was required to be above 30, otherwise the neoantigen analysis was stopped. Calculate the sequencing depth of tumor tissue and blood data after step 1.3, respectively, and stop the neoantigen analysis if the sequencing depth is lower than 200X and 100X, respectively.
1.5.对1.3步骤后的剔除重复的度数。1.5. The degree of repetition of the culling after step 1.3.
1.6.根据1000G中已知的indel信息对1.5步骤后的数据进行realignment。1.6. Realign the data after step 1.5 according to the known indel information in 1000G.
1.7.利用已有的变异数据库,建立模型从而产生重校准表。根据这个模型再对碱基的质量分数进行校正。1.7. Using the existing mutation database, build a model to generate a recalibration table. The quality scores of the bases are then corrected according to this model.
1.8.利用MuTect,Mutect2进行肿瘤体细胞突变分析。合并两者变异的结果。1.8. Using MuTect, Mutect2 for tumor somatic mutation analysis. Combine the results of the two variants.
2,肿瘤组织RNA变异分析2. Analysis of RNA Variation in Tumor Tissue
2.1. 对肿瘤组织进行RNA-seq,测序cluster为60M2.1. Perform RNA-seq on tumor tissue, and the sequencing cluster is 60M
2.2. 利用FastQC软件对RNA-seq数据进行质量验证。如质量不合格则停止新抗原分析。2.2. Use FastQC software to verify the quality of RNA-seq data. If the quality is unqualified, the neoantigen analysis will be stopped.
2.3. 利用STAR软件进行比对。判断样本类型,如果为人类样本,则选择GRCh38人类参考基因组对肿瘤组织测序数据和血液测序数据进行比对。如果是老鼠则选择GRCm38参考基因组对肿瘤组织测序数据和血液测序数据进行比对。2.3. Alignment using STAR software. Determine the sample type. If it is a human sample, select the GRCh38 human reference genome to compare the tumor tissue sequencing data with the blood sequencing data. If it is a mouse, select the GRCm38 reference genome to compare the tumor tissue sequencing data with the blood sequencing data.
2.4. 对测序质量进一步的统计。分别统计2.3后的肿瘤组织和血液数据中每个测序循环的Phred打分,要求每个测序循环的Q值都在30以上,否则停止新抗原分析。2.4. Further statistics on sequencing quality. The Phred score of each sequencing cycle in the tumor tissue and blood data after 2.3 was calculated separately, and the Q value of each sequencing cycle was required to be above 30, otherwise the neoantigen analysis was stopped.
2.5. 对2.3步骤后的剔除重复的度数。2.5. The degree of repetition for the rejection after step 2.3.
2.6. 利用split reads策略来发现新的junction。2.6. Use the split reads strategy to discover new junctions.
2.7. 根据1000G中已知的indel信息对2.6步骤后的数据进行realignment。2.7. Realign the data after step 2.6 according to the known indel information in 1000G.
2.8. 利用已有的变异数据库,建立模型从而产生重校准表。根据这个模型再对碱基的质量分数进行校正。2.8. Using the existing variant database, build a model to generate a recalibration table. The quality scores of the bases are then corrected according to this model.
2.9. 利用HaplotypeCaller进行变异分析。HaplotypeCaller命令中emit_conf参数设置为30,call_conf参数设置为25,ploidy 传参数设置为4。2.9. Variation analysis using HaplotypeCaller. In the HaplotypeCaller command, the emit_conf parameter is set to 30, the call_conf parameter is set to 25, and the ploidy transfer parameter is set to 4.
3,MHC分子分析步骤3. MHC molecular analysis steps
3.1. 用HLA分型软件Optitype分别对样本肿瘤组织和正常血液的全外显子二代测序结果进行HLA I类分子进行分析;3.1. Use the HLA typing software Optitype to analyze the HLA class I molecules of the whole-exome next-generation sequencing results of the sample tumor tissue and normal blood respectively;
3.2. 用HLA分型软件xHLA分别对样本肿瘤组织和正常血液的全外显子二代测序结果HLA I类分子和HLA II类分子进行分析;3.2. Use the HLA typing software xHLA to analyze the HLA class I molecules and HLA class II molecules of the sample tumor tissue and normal blood by whole-exome next-generation sequencing;
3.3. 用HLA分型软件seq2HLA对肿瘤组织转录组测序结果进行HLA I类分子和HLA II类分子分析;3.3. Use the HLA typing software seq2HLA to analyze the HLA class I molecules and HLA class II molecules of the tumor tissue transcriptome sequencing results;
3.4. 结合3.1,3.2和3.3的结果最终确定HLA分型结果。如果3者结果差距很大报警退出,停止新抗原分析。3.4. Combine the results of 3.1, 3.2 and 3.3 to finally determine the HLA typing results. If the difference between the results of the three is very large, the alarm will be withdrawn and the neoantigen analysis will be stopped.
4,肿瘤组织RNA表达分析4. Tumor Tissue RNA Expression Analysis
4.1. 对肿瘤组织转录组测序结果比对,判断样本类型,如果为人类样本,则选择grch38_tran人类参考基因组对肿瘤组织测序数据和血液测序数据进行比对。如果是老鼠则选择grcm38_tran参考基因组对肿瘤组织测序数据和血液测序数据进行比对。4.1. Compare the tumor tissue transcriptome sequencing results to determine the sample type. If it is a human sample, select the grch38_tran human reference genome to compare the tumor tissue sequencing data and blood sequencing data. If it is a mouse, select the grcm38_tran reference genome to compare the tumor tissue sequencing data with the blood sequencing data.
4.2. 用samtools 对4.1.输出的bam文件进行排序。4.2. Sort the bam file output from 4.1. with samtools.
4.3. 用stringtie计算转录组表达量。4.3. Use stringtie to calculate transcriptome expression.
4.4. 从4.3.生成的gtf文件提取转录组的TMP(Transcripts Per Million)值。4.4. Extract the TMP (Transcripts Per Million) value of the transcriptome from the gtf file generated in 4.3.
5,变异注释步骤5. Variation annotation steps
5.1. 用VEP软件对肿瘤体细胞变异中的点突变、插入缺失突变以及移码突变进行基因组突变的注释。判断样本类型,如果是人类样本,则选择GRCh38人类参考基因组对肿瘤组织测序数据和血液测序数据进行比对;如果是老鼠样本,则选择GRCm38参考基因组对肿瘤组织测序数据和血液测序数据进行比对。5.1. Use VEP software to annotate point mutations, indel mutations, and frameshift mutations in tumor somatic variants. Determine the sample type. If it is a human sample, select the GRCh38 human reference genome to compare the tumor tissue sequencing data and blood sequencing data; if it is a mouse sample, select the GRCm38 reference genome to compare the tumor tissue sequencing data and blood sequencing data. .
5.2. 用vcf2maf软件把vcf格式转换为maf格式。5.2. Use vcf2maf software to convert vcf format to maf format.
5.2. 对肿瘤体细胞变异进行筛选剔除Intron、5'UTR、3'UTR、IGR、5'Flank、3'Flank、RNA、以及lincRNA类型的变异,且为非dbsnp里的变异,计算TMB(肿瘤负荷)分析。5.2. Screening tumor somatic mutations to exclude Intron, 5'UTR, 3'UTR, IGR, 5'Flank, 3'Flank, RNA, and lincRNA types of mutations, and non-dbsnp mutations, calculate TMB (tumor load) analysis.
6,肿瘤驱动基因分析步骤6. Tumor driver gene analysis steps
对肿瘤体细胞变异中的点突变、插入缺失突变以及移码突变参考COSMIC肿瘤数据库进行肿瘤体细胞突变驱动基因分析。The tumor somatic mutation-driven gene analysis was performed with reference to the COSMIC tumor database for point mutations, indel mutations, and frameshift mutations in tumor somatic variants.
7,HLA分子亲和力预测步骤7. HLA molecular affinity prediction steps
包括将MHC分子鉴定步骤得到的肿瘤样本的HLA分子类型、突变肽段预测步骤获得的突变预测肽段,以及突变预测肽段对应的野生型肽段序列作为MHC I型和MHC II型亲和力预测软件的输入,分别预测突变肽段与MHC I型和MHC II型基因的亲和力水平。利用计算机神经网络NNAlign算法结合亲和力和MS洗脱配体数据预测MHC I型分子的突变肽段。Including the HLA molecular type of tumor samples obtained in the MHC molecular identification step, the mutant predicted peptide obtained in the mutant peptide prediction step, and the wild-type peptide sequence corresponding to the mutant predicted peptide as the MHC type I and MHC type II affinity prediction software input to predict the affinity level of mutant peptides to MHC type I and MHC type II genes, respectively. Using computer neural network NNAlign algorithm binding affinity and MS elution ligand data to predict the mutated peptides of MHC class I molecules.
7.1. 判断样本类型,如果为人类样本,则选择GRCh38的cDNA参考序列和GRCh38的肽序列;如果为老鼠样本,则选择GRCm38的cDNA参考序列和GRCm38的肽序列。 利用5.2中vcf2maf的结果,对于SNP突变、插入以及缺失类型的突变查询对应预测长度的野生型肽链和突变型肽链;对于移码突变根据cDNA序列以及肽链参考序列查询对应预测长度的野生型肽链和突变型肽链。7.1. Determine the sample type. If it is a human sample, select the cDNA reference sequence of GRCh38 and the peptide sequence of GRCh38; if it is a mouse sample, select the cDNA reference sequence of GRCm38 and the peptide sequence of GRCm38. Using the results of vcf2maf in 5.2, for SNP mutation, insertion and deletion type mutations, the wild-type peptide chain and mutant peptide chain corresponding to the predicted length are searched; for frameshift mutations, the wild-type peptide chain corresponding to the predicted length is searched according to the cDNA sequence and the peptide chain reference sequence. peptide chains and mutant peptide chains.
7.2. 对步骤3中生成的HLA-I类分子采用netMHCpan-4.0分析。 对netMHCpan-4.0开启,整合亲和力(binding affinity,BA)和质谱数据(MS)参数,从两个不同的角度获得更多的信息。首先利用IEDB数据库的一类MHC数据,进行必要的筛选,模型训练是利用亲和力(BA)和质谱洗脱配体(MS eluted ligand)的数据,通过人工神经网络的方法整合两种数据的信息,基于NNAlign框架增加了预测特定MHC分子结合肽段的亲和力值和肽段的长度。NetMHCpan-4.0的方法提高了在肿瘤新抗原,验证的洗脱配体(ELs),T细胞免疫表位的预测准确性。利用netMHCpan-4.0预测HLA I类分子与7.1中生成的8-15位长的野生型肽链以及8-15位长突变型肽链的亲和进行预测打分。7.2. Use netMHCpan-4.0 to analyze the HLA-I molecules generated in
7.3. 对步骤3中生成的HLA-II类分子采用netMHCIIpan-3.2分析。预测HLA I类分子与7.1中生成的8-15位长的野生型肽链以及8-15位长突变型肽链的亲和进行预测打分。7.3. Use netMHCIIpan-3.2 to analyze the HLA-II molecules generated in
7.4. 对步骤3中生成的HLA-I,II类分子采用netMHC分析,亲和力阈值设定在500nm。预测HLA I类分子与7.1中生成的8-15位长的野生型肽链以及8-15位长突变型肽链的亲和进行预测打分。7.4. The HLA-I and class II molecules generated in
7.5. 对步骤3中生成的HLA-I,II类分子采用NetMHCcons分析,亲和力阈值设定在500nm。预测HLA I类分子与7.1中生成的8-15位长的野生型肽链以及8-15位长突变型肽链的亲和进行预测打分。7.5. The HLA-I and class II molecules generated in
7.6. 对以上3种软件的HLA-I类分子的亲和力打分取中位值,以中文值为最终亲和力打分。7.6. Take the median of the affinity scores for the HLA-I molecules of the above three softwares, and use the Chinese value to score the final affinity.
8,肿瘤突变频率分析步骤8. Tumor mutation frequency analysis steps
包括采用肿瘤突变频率分析软件检测肿瘤的突变占所有的DNA中这个基因位点的频率,突变频率越高,表明肿瘤细胞占的百分比就越大。从VCF文件读取突变频率,如果是Mutect软件分析结果,则读取VCF文件中FA字段,如果是Mutect2则读取VCF文件中AF字段。Including the use of tumor mutation frequency analysis software to detect the frequency of tumor mutation in this gene locus in all DNA, the higher the mutation frequency, the greater the percentage of tumor cells. Read the mutation frequency from the VCF file. If it is the analysis result of Mutect software, read the FA field in the VCF file, and if it is Mutect2, read the AF field in the VCF file.
9,候选肿瘤新生抗原综合打分排序步骤 9. Comprehensive scoring and sorting steps for candidate tumor neoantigens
包括按照MHC亲和力、抗原表达丰度和野生型肽对比、肿瘤突变频率、是否RNA突变、是否是肿瘤驱动基因等影响因子对所述候选肿瘤新生抗原中各突变预测肽段进行打分,按照分值由高到低排序,选取分值高者作为肿瘤新生抗原。It includes scoring each mutation predicted peptide in the candidate tumor neoantigen according to the influence factors such as MHC affinity, antigen expression abundance and wild-type peptide comparison, tumor mutation frequency, whether it is RNA mutation, whether it is a tumor driver gene, etc., according to the score Sort from high to low, and select those with higher scores as tumor neoantigens.
9.1. 公式一 9.1.
新生抗原分值 = Neoantigen Score =
分别计算7.6中的8-15位肽链的新生抗原分值,对所有新生抗原按分值倒序排序。 Calculate the neoantigen scores of the 8-15 peptide chains in 7.6, and sort all neoantigens in reverse order of scores.
9.2. 公式二 9.2.
Mutant_affinity_score计算公式:Mutant_affinity_score calculation formula:
Mutant_affinity_score =Δ*(1+emutant_score*10-5)Mutant_affinity_score =Δ*(1+e mutant_score*10-5 )
Mutant_score为7.6中计算的突变型肽链亲和力分值,以该亲和力为指数转化为自然对数进行运算。其中为肿瘤变异数量,如果为snp变异,则为1;如果为插入或者删除变异,则为具体的插入或者删除变异数量;如为移码变异则为具体的移码数量。图1为假设为3时的曲线。Mutant_score is the affinity score of the mutant peptide chain calculated in 7.6, which is converted into a natural logarithm with the affinity as an index. in is the number of tumor mutations, if it is a snp mutation, then is 1; if it is an insertion or deletion mutation, then is the specific number of insertion or deletion variants; if it is a frameshift variant, then is the specific number of code shifts. Figure 1 is a hypothetical curve at 3.
9.3. 公式三9.3.
Expression_score计算公式:Expression_score calculation formula:
Expression_score=tanh(expression_TMP) Expression_score=tanh(expression_TMP)
图2为Expression_TMP为4.4中生成的转录组表达量,当转录组表达量到达一定水平时expression_score 的数值为1。Figure 2 shows the transcriptome expression level generated in Expression_TMP 4.4. When the transcriptome expression level reaches a certain level, the value of expression_score is 1.
9.4. 公式四 9.4. Equation 4
Normal_affinity_score计算公式:Normal_affinity_score calculation formula:
Normal_affinity_score =1/(1+enormal_*10-5)Normal_affinity_score =1/(1+e normal_*10-5 )
图3为Normal_score为7.6中计算的野生型肽链亲和力分值,以该亲和力为指数转化为自然对数并取其倒数进行运算。Figure 3 shows the wild-type peptide chain affinity score calculated when the Normal_score is 7.6, which is converted into a natural logarithm with the affinity as an index and its reciprocal is used for calculation.
9.5. 公式五 9.5.
α=0.99*allele_frequency+0.9*TBM+0.1*in_RNA_mutant+α=0.99* allele_frequency +0.9*TBM+0.1* in_RNA_mutant +
0.1*is_cancer_driven_genne 0.1* is_cancer_driven_genne
Allele_frequecy:8步骤中计算的肿瘤突变频率。Allele_frequecy: Tumor mutation frequency calculated in 8 steps.
TBM:5.2中计算的肿瘤负荷。TBM: Tumor burden calculated in 5.2.
In_RNA_mutant: 2.9步骤中该肿瘤变异是否在RNA变异中。In_RNA_mutant: Whether the tumor mutation is in RNA mutation in step 2.9.
Is_cancer_driven_gene:第6步骤中是否是肿瘤驱动基因。Is_cancer_driven_gene: Whether it is a tumor-driven gene in step 6.
10,多肽合成难易度分析步骤 10. Analysis steps of the difficulty of peptide synthesis
以预测的突变肽段为中心向左右分别补齐共25-30位长度的肽链,根据多肽合成难易度分析软件,从分子量、等电点、PH值为7时的静电荷、平均亲水性以及亲水残基比角度分析肿瘤候选新抗原合成难易度。With the predicted mutant peptide as the center, the peptide chains with a total length of 25-30 positions are respectively filled out. The ease of synthesis of tumor candidate neoantigens was analyzed from the ratio of water and hydrophilic residues.
11,候选肿瘤新抗最终选择步骤11. Final selection of candidate tumor neoantibodies
根据第9步骤的打分以及第10步骤的多肽合成难易度选择最终合成肿瘤新抗原Select the final synthetic tumor neoantigen according to the score in step 9 and the difficulty of peptide synthesis in
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included in the scope of the present invention. within the scope of protection. Any reference signs in the claims shall not be construed as limiting the involved claim.
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。In addition, it should be understood that although this specification is described in terms of embodiments, not each embodiment only includes an independent technical solution, and this description in the specification is only for the sake of clarity, and those skilled in the art should take the specification as a whole , the technical solutions in each embodiment can also be appropriately combined to form other implementations that can be understood by those skilled in the art.
Claims (7)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910242904.8A CN111755067A (en) | 2019-03-28 | 2019-03-28 | A screening method for tumor neoantigens |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910242904.8A CN111755067A (en) | 2019-03-28 | 2019-03-28 | A screening method for tumor neoantigens |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN111755067A true CN111755067A (en) | 2020-10-09 |
Family
ID=72671533
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201910242904.8A Pending CN111755067A (en) | 2019-03-28 | 2019-03-28 | A screening method for tumor neoantigens |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN111755067A (en) |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN112309502A (en) * | 2020-10-14 | 2021-02-02 | 深圳市新合生物医疗科技有限公司 | Method and system for calculating tumor neoantigen load |
| CN112466396A (en) * | 2020-12-04 | 2021-03-09 | 中山大学附属第一医院 | Screening method of tumor high-affinity new antigen and application of tumor high-affinity new antigen in indication of treatment prognosis curative effect of PD-1 of liver cancer patient |
| CN113322233A (en) * | 2021-04-19 | 2021-08-31 | 格源致善(上海)生物科技有限公司 | Improved preparation method and application of reactive T cells based on neoantigens |
| CN113517021A (en) * | 2021-06-09 | 2021-10-19 | 海南精准医疗科技有限公司 | Cancer driver gene prediction method |
| CN114446389A (en) * | 2022-02-08 | 2022-05-06 | 上海科技大学 | A tumor neoantigen feature analysis and immunogenicity prediction tool and its application |
| CN114882951A (en) * | 2022-05-27 | 2022-08-09 | 深圳裕泰抗原科技有限公司 | Method and device for detecting MHC II tumor neoantigen based on next generation sequencing data |
| CN117174166A (en) * | 2023-10-26 | 2023-12-05 | 北京基石京准诊断科技有限公司 | Tumor neoantigen prediction method and system based on third-generation sequencing data |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104662171A (en) * | 2012-07-12 | 2015-05-27 | 普瑟姆尼股份有限公司 | Personalized cancer vaccines and adoptive immune cell therapies |
| EP3323070A1 (en) * | 2015-07-14 | 2018-05-23 | Personal Genome Diagnostics Inc. | Neoantigen analysis |
| CN108796055A (en) * | 2018-06-12 | 2018-11-13 | 深圳裕策生物科技有限公司 | Tumor neogenetic antigen detection method, device and storage medium based on the sequencing of two generations |
| WO2019008365A1 (en) * | 2017-07-05 | 2019-01-10 | The Francis Crick Institute Limited | Method for treating cancer by targeting a frameshift indel neoantigen |
-
2019
- 2019-03-28 CN CN201910242904.8A patent/CN111755067A/en active Pending
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104662171A (en) * | 2012-07-12 | 2015-05-27 | 普瑟姆尼股份有限公司 | Personalized cancer vaccines and adoptive immune cell therapies |
| EP3323070A1 (en) * | 2015-07-14 | 2018-05-23 | Personal Genome Diagnostics Inc. | Neoantigen analysis |
| CN108351916A (en) * | 2015-07-14 | 2018-07-31 | 个人基因组诊断公司 | Neoantigen is analyzed |
| WO2019008365A1 (en) * | 2017-07-05 | 2019-01-10 | The Francis Crick Institute Limited | Method for treating cancer by targeting a frameshift indel neoantigen |
| CN108796055A (en) * | 2018-06-12 | 2018-11-13 | 深圳裕策生物科技有限公司 | Tumor neogenetic antigen detection method, device and storage medium based on the sequencing of two generations |
Cited By (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN112309502A (en) * | 2020-10-14 | 2021-02-02 | 深圳市新合生物医疗科技有限公司 | Method and system for calculating tumor neoantigen load |
| CN112309502B (en) * | 2020-10-14 | 2024-09-20 | 深圳市新合生物医疗科技有限公司 | Method and system for calculating tumor neoantigen load |
| CN112466396A (en) * | 2020-12-04 | 2021-03-09 | 中山大学附属第一医院 | Screening method of tumor high-affinity new antigen and application of tumor high-affinity new antigen in indication of treatment prognosis curative effect of PD-1 of liver cancer patient |
| CN113322233A (en) * | 2021-04-19 | 2021-08-31 | 格源致善(上海)生物科技有限公司 | Improved preparation method and application of reactive T cells based on neoantigens |
| CN113517021A (en) * | 2021-06-09 | 2021-10-19 | 海南精准医疗科技有限公司 | Cancer driver gene prediction method |
| CN113517021B (en) * | 2021-06-09 | 2022-09-06 | 海南精准医疗科技有限公司 | Cancer driver gene prediction method |
| CN114446389A (en) * | 2022-02-08 | 2022-05-06 | 上海科技大学 | A tumor neoantigen feature analysis and immunogenicity prediction tool and its application |
| CN114446389B (en) * | 2022-02-08 | 2024-05-14 | 上海科技大学 | Tumor neoantigen feature analysis and immunogenicity prediction tool and application thereof |
| CN114882951A (en) * | 2022-05-27 | 2022-08-09 | 深圳裕泰抗原科技有限公司 | Method and device for detecting MHC II tumor neoantigen based on next generation sequencing data |
| CN114882951B (en) * | 2022-05-27 | 2022-12-27 | 深圳裕泰抗原科技有限公司 | Method and device for detecting MHC II tumor neoantigen based on next generation sequencing data |
| CN117174166A (en) * | 2023-10-26 | 2023-12-05 | 北京基石京准诊断科技有限公司 | Tumor neoantigen prediction method and system based on third-generation sequencing data |
| CN117174166B (en) * | 2023-10-26 | 2024-03-26 | 北京基石生命科技有限公司 | Tumor neoantigen prediction method and system based on third-generation sequencing data |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN111755067A (en) | A screening method for tumor neoantigens | |
| CN108796055B (en) | Method, device and storage medium for detecting tumor neoantigen based on second-generation sequencing | |
| CN109801678B (en) | Tumor antigen prediction method based on complete transcriptome and application thereof | |
| KR101950395B1 (en) | Method for deep learning-based biomarker discovery with conversion data of genome sequences | |
| CN108388773B (en) | A kind of identification method of tumor neogenetic antigen | |
| Zhu et al. | Proteogenomics produces comprehensive and highly accurate protein-coding gene annotation in a complete genome assembly of Malassezia sympodialis | |
| CN114446389B (en) | Tumor neoantigen feature analysis and immunogenicity prediction tool and application thereof | |
| CN111415707B (en) | Prediction method of clinical individualized tumor neoantigen | |
| CN113168886A (en) | Systems and methods for germline and somatic variant calling using neural networks | |
| US20230154563A1 (en) | Detection of Human Leukocyte Antigen Loss of Heterozygosity | |
| CN110752041A (en) | Method, device and storage medium for predicting neoantigen based on next generation sequencing | |
| CN114333999A (en) | A method and system for detection and screening of tumor neoantigens using molecular omics and computational architecture | |
| CN111192632B (en) | Method and device for extracting gene fusion immunotherapy new antigen by integrating DNA and RNA deep sequencing data | |
| CN117746988A (en) | A detection method for fusion genes based on DNA or RNA sequencing technology | |
| CN113053460A (en) | Systems and methods for genomic and genetic analysis | |
| CN114882951B (en) | Method and device for detecting MHC II tumor neoantigen based on next generation sequencing data | |
| CN118685530A (en) | A screening method for atypical new antigens | |
| CN120015120A (en) | HLA typing method and electronic device | |
| CN111696628A (en) | Methods for the identification of neoantigens | |
| CN112210596B (en) | Tumor neoantigen prediction method based on gene fusion event and application thereof | |
| CN103547681A (en) | Method for capturing target region and method and system for processing bioinformatics thereof | |
| EP4363616A1 (en) | Detection of human leukocyte antigen loss of heterozygosity | |
| WO2018209704A1 (en) | Sample source detection method, device, and storage medium based on dna sequencing data | |
| CN118866076A (en) | A method for screening personalized tumor neoantigens by integrating multi-omics data and its application | |
| EP4569514A1 (en) | Methods and systems for cancer-enriched motif discovery from splicing variations in tumours |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| WD01 | Invention patent application deemed withdrawn after publication | ||
| WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20201009 |