CN111723909A - Optimization method and system of fuzzy neural network model - Google Patents
Optimization method and system of fuzzy neural network model Download PDFInfo
- Publication number
- CN111723909A CN111723909A CN202010545619.6A CN202010545619A CN111723909A CN 111723909 A CN111723909 A CN 111723909A CN 202010545619 A CN202010545619 A CN 202010545619A CN 111723909 A CN111723909 A CN 111723909A
- Authority
- CN
- China
- Prior art keywords
- position information
- fitness value
- information
- neural network
- population
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/043—Architecture, e.g. interconnection topology based on fuzzy logic, fuzzy membership or fuzzy inference, e.g. adaptive neuro-fuzzy inference systems [ANFIS]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/004—Artificial life, i.e. computing arrangements simulating life
- G06N3/006—Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Software Systems (AREA)
- General Health & Medical Sciences (AREA)
- Data Mining & Analysis (AREA)
- Mathematical Physics (AREA)
- General Engineering & Computer Science (AREA)
- Computing Systems (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Molecular Biology (AREA)
- Evolutionary Computation (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- Fuzzy Systems (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Optimization (AREA)
- Automation & Control Theory (AREA)
- Image Analysis (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明涉及计算机技术领域,公开了一种模糊神经网络模型的优化方法及系统,所述方法包括:获取模糊神经网络模型的待优化参数,基于待优化参数生成预设灰狼种群中每个种群个体的初始位置信息,根据初始位置信息计算每个种群个体对应的第一适应度值,对所述初始位置信息进行更新,获得更新后的初始位置信息,并将更新后的所述初始位置信息作为目标位置信息,根据目标位置信息计算每个种群个体对应的第二适应度值,基于第一适应度值和第二适应度值对目标位置信息进行迭代处理,判断迭代处理后的目标位置信息是否满足预设迭代停止条件,若满足,则根据迭代处理后的目标位置信息输出优化后的模糊神经网络模型以减少模型训练时间,提高模型收敛精度。
The invention relates to the field of computer technology, and discloses a method and system for optimizing a fuzzy neural network model. The method includes: acquiring parameters to be optimized of a fuzzy neural network model, and generating each population in a preset gray wolf population based on the parameters to be optimized The initial position information of the individual, calculate the first fitness value corresponding to each population individual according to the initial position information, update the initial position information, obtain the updated initial position information, and use the updated initial position information As the target location information, the second fitness value corresponding to each individual population is calculated according to the target location information, the target location information is iteratively processed based on the first fitness value and the second fitness value, and the iteratively processed target location information is determined Whether the preset iteration stop condition is met, if so, output the optimized fuzzy neural network model according to the iteratively processed target position information to reduce the model training time and improve the model convergence accuracy.
Description
技术领域technical field
本发明涉及计算机技术领域,尤其涉及一种模糊神经网络模型的优化方法及系统。The invention relates to the field of computer technology, in particular to a method and system for optimizing a fuzzy neural network model.
背景技术Background technique
模糊理论和神经网络技术是近几年来人工智能研究较为活跃的两个领域,而模糊神经网络的就是将模糊理论与神经网络进行结合的产物,它是一种多层前向网络,具有强大的自学习能力与映射能力。该网络主要有五层,输入层、模糊化层、模糊规则层、模糊决策层、输出层,其中模糊化层中隶属度函数的中心点、宽度向量以及输出层的权值是可以使用群体智能优化算法进行优化的。在具体应用中,根据不同的实际需求,会建立不同的模糊神经网络模型,但仍可通过群体智能优化算法对模糊化层中隶属度函数的中心点、宽度向量以及输出层的权值进行训练以提高模糊神经网络模型的模型精度,现有技术多是通过蚁群算法,粒子群算法,人工蜂群算法,鸡群算法等群体智能优化算法对所述模糊神经网络模型进行优化,较少通过灰狼算法(Grey Wolf Optimizer)对所述模糊神经网络模型进行优化,然而灰狼算法在解决目标优化问题时,与早期提出的遗传算法、粒子群算法等相比,已被证明具有更高的收敛精度与更快的收敛速度,因此,如何基于灰狼算法对所述模糊神经网络模型进行模型优化以减少模型训练时间,提高模型收敛精度成为一个亟待解决的问题。Fuzzy theory and neural network technology are two active areas of artificial intelligence research in recent years, and fuzzy neural network is the product of combining fuzzy theory and neural network. Self-learning ability and mapping ability. The network mainly has five layers, input layer, fuzzy layer, fuzzy rule layer, fuzzy decision layer and output layer. The center point, width vector and weight of output layer of membership function in fuzzy layer can use swarm intelligence The optimization algorithm is optimized. In specific applications, according to different actual needs, different fuzzy neural network models will be established, but the center point of the membership function in the fuzzy layer, the width vector and the weight of the output layer can still be trained through the swarm intelligence optimization algorithm. In order to improve the model accuracy of the fuzzy neural network model, the existing technologies mostly optimize the fuzzy neural network model through swarm intelligence optimization algorithms such as ant colony algorithm, particle swarm algorithm, artificial bee colony algorithm, chicken swarm algorithm, etc. The Grey Wolf Optimizer optimizes the fuzzy neural network model. However, compared with the genetic algorithm and particle swarm optimization proposed earlier, the Grey Wolf algorithm has been proved to have higher performance in solving the target optimization problem. Convergence accuracy and faster convergence speed. Therefore, how to optimize the fuzzy neural network model based on the gray wolf algorithm to reduce the model training time and improve the model convergence accuracy has become an urgent problem to be solved.
上述内容仅用于辅助理解本发明的技术方案,并不代表承认上述内容是现有技术。The above content is only used to assist the understanding of the technical solutions of the present invention, and does not mean that the above content is the prior art.
发明内容SUMMARY OF THE INVENTION
本发明的主要目的在于提供了一种模糊神经网络模型的优化方法及系统,旨在解决如何基于灰狼算法对所述模糊神经网络模型进行模型优化以减少模型训练时间,提高模型收敛精度的技术问题。The main purpose of the present invention is to provide an optimization method and system for a fuzzy neural network model, aiming at solving the technology of how to optimize the fuzzy neural network model based on the gray wolf algorithm to reduce the model training time and improve the model convergence accuracy question.
为实现上述目的,本发明提供了一种模糊神经网络模型的优化方法,所述方法包括以下步骤:To achieve the above object, the present invention provides a method for optimizing a fuzzy neural network model, the method comprising the following steps:
获取模糊神经网络模型的待优化参数,基于所述待优化参数生成预设灰狼种群中每个种群个体的初始位置信息;Obtaining parameters to be optimized of the fuzzy neural network model, and generating initial position information of each individual in the preset gray wolf population based on the parameters to be optimized;
根据所述初始位置信息计算每个种群个体对应的第一适应度值;Calculate the first fitness value corresponding to each population individual according to the initial position information;
对所述初始位置信息进行更新,获得更新后的初始位置信息,并将更新后的所述初始位置信息作为目标位置信息;The initial position information is updated, the updated initial position information is obtained, and the updated initial position information is used as the target position information;
根据所述目标位置信息计算每个种群个体对应的第二适应度值,并基于所述第一适应度值和所述第二适应度值对所述目标位置信息进行迭代处理;Calculate the second fitness value corresponding to each population individual according to the target location information, and perform iterative processing on the target location information based on the first fitness value and the second fitness value;
判断迭代处理后的目标位置信息是否满足预设迭代停止条件,若满足,则根据迭代处理后的所述目标位置信息输出优化后的模糊神经网络模型。It is judged whether the iteratively processed target position information satisfies a preset iterative stop condition, and if so, an optimized fuzzy neural network model is output according to the iteratively processed target position information.
优选地,所述获取模糊神经网络模型的待优化参数,基于所述待优化参数生成预设灰狼种群中每个种群个体的初始位置信息的步骤之前,还包括:Preferably, before the step of obtaining the parameters to be optimized of the fuzzy neural network model, based on the parameters to be optimized, the step of generating the initial position information of each individual in the preset gray wolf population further includes:
获取待测指标的属性信息和类别信息,并将所述属性信息和所述类别信息作为模糊神经网络模型的输出指标;Obtain attribute information and category information of the indicator to be measured, and use the attribute information and the category information as output indicators of the fuzzy neural network model;
对所述输出指标进行相关性分析,获得所述输出指标的关联指标及所述关联指标对应的相关度;performing a correlation analysis on the output index to obtain a correlation index of the output index and a correlation degree corresponding to the correlation index;
选取所述相关度大于预设相关度的关联指标作为所述模糊神经网络模型的输入指标;Select the correlation index whose correlation degree is greater than the preset correlation degree as the input index of the fuzzy neural network model;
对所述输入指标对应的指标信息进行归一化处理,获得待测指标信息;Normalize the index information corresponding to the input index to obtain the index information to be measured;
所述判断迭代处理后的目标位置信息是否满足预设迭代停止条件,若满足,则根据迭代处理后的所述目标位置信息输出优化后的模糊神经网络模型的步骤之后,所述方法还包括:After the step of judging whether the iteratively processed target position information satisfies a preset iterative stop condition, and if so, outputting an optimized fuzzy neural network model according to the iteratively processed target position information, the method further includes:
将所述待测指标信息输入至所述优化后的模糊神经网络模型中,以获得所述待测指标信息对应的预测值。Inputting the index information to be measured into the optimized fuzzy neural network model to obtain a predicted value corresponding to the index information to be measured.
优选地,所述对所述初始位置信息进行更新,获得更新后的初始位置信息,并将更新后的所述初始位置信息作为目标位置信息的步骤,具体包括:Preferably, the step of updating the initial location information, obtaining the updated initial location information, and using the updated initial location information as the target location information specifically includes:
将所述第一适应度值按照从大到小的顺序进行排序,获得排序集合;Sorting the first fitness values in descending order to obtain a sorted set;
根据预设筛选规则从所述排序集合中选取目标适应度值集合;Selecting a target fitness value set from the sorting set according to a preset screening rule;
根据所述目标适应度值集合中包含的第一适应度值对所述初始位置信息进行更新,获得更新后的初始位置信息;Update the initial position information according to the first fitness value included in the target fitness value set to obtain the updated initial position information;
将更新后的所述初始位置信息作为目标位置信息。The updated initial position information is used as target position information.
优选地,所述根据所述目标位置信息计算每个种群个体对应的第二适应度值,并基于所述第一适应度值和所述第二适应度值对所述目标位置信息进行迭代处理的步骤,具体包括:Preferably, the second fitness value corresponding to each population individual is calculated according to the target position information, and the target position information is iteratively processed based on the first fitness value and the second fitness value steps, including:
根据所述目标位置信息计算每个种群个体对应的第二适应度值,并将所述第一适应度值大于所述第二适应度值的种群个体作为扰动种群个体;Calculate the second fitness value corresponding to each population individual according to the target location information, and use the population individual whose first fitness value is greater than the second fitness value as a disturbed population individual;
根据预设概率公式计算所述扰动种群个体对应的中心扰动概率;Calculate the center disturbance probability corresponding to the disturbance population individual according to the preset probability formula;
根据所述中心扰动概率判断是否需要对所述扰动种群个体对应的目标位置信息进行中心位置扰动处理;According to the center disturbance probability, it is judged whether it is necessary to perform center location disturbance processing on the target location information corresponding to the disturbance population individual;
若是,则根据预设扰动公式对所述扰动种群个体的目标位置信息进行迭代处理。If yes, iteratively process the target position information of the disturbed population individuals according to the preset disturbance formula.
优选地,所述判断迭代处理后的目标位置信息是否满足预设迭代停止条件,若满足,则根据迭代处理后的所述目标位置信息输出优化后的模糊神经网络模型的步骤,具体包括:Preferably, the step of judging whether the iteratively processed target position information satisfies a preset iterative stop condition, and if so, outputting an optimized fuzzy neural network model according to the iteratively processed target position information, specifically includes:
根据迭代处理后的目标位置信息计算每个种群个体对应的第三适应度值;Calculate the third fitness value corresponding to each population individual according to the iteratively processed target position information;
选取所述种群中第三适应度值最大的种群个体作为最优种群个体并获取当前迭代处理次数;Selecting the population individual with the largest third fitness value in the population as the optimal population individual and obtaining the current iteration processing times;
根据所述最优种群个体的适应度值和所述当前迭代处理次数判断是否满足预设迭代停止条件;Judging whether a preset iteration stop condition is met according to the fitness value of the optimal population individual and the current iteration processing times;
在所述最优种群个体的所述适应度值大于等于预设适应度值或所述当前迭代次数达到预设迭代次数时,判定迭代处理后的所述目标位置信息满足预设迭代条件,并输出优化后的模糊神经网络模型。When the fitness value of the optimal population individual is greater than or equal to a preset fitness value or the current number of iterations reaches a preset number of iterations, it is determined that the target location information after iterative processing satisfies a preset iteration condition, and Output the optimized fuzzy neural network model.
此外,为实现上述目的,本发明还提出一种模糊神经网络模型的优化系统,所述系统包括:In addition, in order to achieve the above purpose, the present invention also proposes an optimization system for a fuzzy neural network model, the system comprising:
信息获取模块,用于获取模糊神经网络模型的待优化参数,基于所述待优化参数生成预设灰狼种群中每个种群个体的初始位置信息;an information acquisition module, used for acquiring parameters to be optimized of the fuzzy neural network model, and generating initial position information of each individual in the preset gray wolf population based on the parameters to be optimized;
适应度计算模块,用于根据所述初始位置信息计算每个种群个体对应的第一适应度值;a fitness calculation module, configured to calculate the first fitness value corresponding to each population individual according to the initial position information;
位置更新模块,用于对所述初始位置信息进行更新,获得更新后的初始位置信息,并将更新后的所述初始位置信息作为目标位置信息;a location update module, configured to update the initial location information, obtain updated initial location information, and use the updated initial location information as target location information;
迭代处理模块,用于根据所述目标位置信息计算每个种群个体对应的第二适应度值,并基于所述第一适应度值和所述第二适应度值对所述目标位置信息进行迭代处理;an iterative processing module, configured to calculate a second fitness value corresponding to each population individual according to the target position information, and to iterate the target position information based on the first fitness value and the second fitness value deal with;
模型输出模块,用于判断迭代处理后的目标位置信息是否满足预设迭代停止条件,在满足所述预设迭代停止条件时,根据迭代处理后的所述目标位置信息输出优化后的模糊神经网络模型。The model output module is used for judging whether the iteratively processed target position information satisfies a preset iterative stop condition, and when the preset iterative stop condition is met, outputs an optimized fuzzy neural network according to the iteratively processed target position information Model.
优选地,所述系统还包括:Preferably, the system further includes:
信息预测模块,用于获取待测指标的属性信息和类别信息,并将所述属性信息和所述类别信息作为模糊神经网络模型的输出指标;an information prediction module, used to obtain attribute information and category information of the indicator to be measured, and use the attribute information and the category information as output indicators of the fuzzy neural network model;
所述信息预测模块,还用于对所述输出指标进行相关性分析,获得所述输出指标的关联指标及所述关联指标对应的相关度;The information prediction module is further configured to perform a correlation analysis on the output index, and obtain a correlation index of the output index and a correlation degree corresponding to the correlation index;
所述信息预测模块,还用于选取所述相关度大于预设相关度的关联指标作为所述模糊神经网络模型的输入指标;The information prediction module is further configured to select the correlation index whose correlation degree is greater than the preset correlation degree as the input index of the fuzzy neural network model;
所述信息预测模块,还用于对所述输入指标对应的指标信息进行归一化处理,获得待测指标信息;The information prediction module is further configured to perform normalization processing on the index information corresponding to the input index to obtain the index information to be measured;
所述信息预测模块,还用于将所述待测指标信息输入至所述优化后的模糊神经网络模型中,以获得所述待测指标信息对应的预测值。The information prediction module is further configured to input the index information to be measured into the optimized fuzzy neural network model, so as to obtain the predicted value corresponding to the index information to be measured.
优选地,所述位置更新模块,还用于将所述第一适应度值按照从大到小的顺序进行排序,获得排序集合;Preferably, the position update module is further configured to sort the first fitness values in descending order to obtain a sorted set;
所述位置更新模块,还用于根据预设筛选规则从所述排序集合中选取目标适应度值集合;The location update module is further configured to select a target fitness value set from the sorting set according to a preset screening rule;
所述位置更新模块,还用于根据所述目标适应度值集合中包含的第一适应度值对所述初始位置信息进行更新,获得更新后的初始位置信息;The position update module is further configured to update the initial position information according to the first fitness value included in the target fitness value set, to obtain the updated initial position information;
所述位置更新模块,还用于将更新后的所述初始位置信息作为目标位置信息。The location update module is further configured to use the updated initial location information as target location information.
优选地,所述迭代处理模块,还用于根据所述目标位置信息计算每个种群个体对应的第二适应度值;Preferably, the iterative processing module is further configured to calculate the second fitness value corresponding to each population individual according to the target location information;
所述迭代处理模块,还用于将所述第一适应度值大于所述第二适应度值的种群个体作为扰动种群个体;The iterative processing module is further configured to use a population individual whose first fitness value is greater than the second fitness value as a disturbed population individual;
所述迭代处理模块,还用于根据预设概率公式计算所述扰动种群个体对应的中心扰动概率;The iterative processing module is further configured to calculate the center disturbance probability corresponding to the disturbance population individual according to a preset probability formula;
所述迭代处理模块,还用于根据所述中心扰动概率判断是否需要对所述扰动种群个体对应的目标位置信息进行中心位置扰动处理;The iterative processing module is further configured to determine, according to the center disturbance probability, whether it is necessary to perform center location disturbance processing on the target location information corresponding to the disturbance population individuals;
所述迭代处理模块,还用于在需要对所述扰动种群个体对应的目标位置信息进行中心位置扰动处理时,根据预设扰动公式对所述扰动种群个体的目标位置信息进行迭代处理。The iterative processing module is further configured to perform iterative processing on the target position information of the disturbed population individuals according to a preset disturbance formula when the center position disturbance processing needs to be performed on the target position information corresponding to the disturbed population individuals.
优选地,所述模型输出模块,还用于根据迭代处理后的目标位置信息计算每个种群个体对应的第三适应度值;Preferably, the model output module is further configured to calculate the third fitness value corresponding to each population individual according to the iteratively processed target position information;
所述模型输出模块,还用于选取所述种群中第三适应度值最大的种群个体作为最优种群个体并获取当前迭代处理次数;The model output module is also used to select the population individual with the largest third fitness value in the population as the optimal population individual and obtain the current iteration processing times;
所述模型输出模块,还用于根据所述最优种群个体的适应度值和所述当前迭代处理次数判断是否满足预设迭代停止条件;The model output module is further configured to judge whether a preset iteration stop condition is met according to the fitness value of the optimal population individual and the current iteration processing times;
所述模型输出模块,还用于在所述最优种群个体的所述适应度值大于等于预设适应度值或所述当前迭代次数达到预设迭代次数时,判定迭代处理后的所述目标位置信息满足预设迭代条件,并输出优化后的模糊神经网络模型。The model output module is further configured to determine the target after iterative processing when the fitness value of the optimal population individual is greater than or equal to a preset fitness value or the current number of iterations reaches a preset number of iterations The location information satisfies the preset iterative conditions, and the optimized fuzzy neural network model is output.
本发明通过获取模糊神经网络模型的待优化参数,基于所述待优化参数生成预设灰狼种群中每个种群个体的初始位置信息,根据所述初始位置信息计算每个种群个体对应的第一适应度值,对所述初始位置信息进行更新,获得更新后的初始位置信息,并将更新后的所述初始位置信息作为目标位置信息,根据所述目标位置信息计算每个种群个体对应的第二适应度值,并基于所述第一适应度值和所述第二适应度值对所述目标位置信息进行迭代处理,判断迭代处理后的目标位置信息是否满足预设迭代停止条件,若满足,则根据迭代处理后的所述目标位置信息输出优化后的模糊神经网络模型以完成对所述模糊神经网络模型的训练,通过采用改进后的灰狼算法对所述模糊神经网络模型进行训练,减少了所述模糊神经网络模型的训练时间,提高了所述模糊神经网络模型的收敛精度。In the present invention, the parameters to be optimized of the fuzzy neural network model are obtained, the initial position information of each population individual in the preset gray wolf population is generated based on the parameters to be optimized, and the first position corresponding to each population individual is calculated according to the initial position information. fitness value, update the initial position information, obtain the updated initial position information, and use the updated initial position information as the target position information, and calculate the first position corresponding to each population individual according to the target position information. Two fitness values, and based on the first fitness value and the second fitness value, the target location information is iteratively processed to determine whether the iteratively processed target location information satisfies the preset iteration stop condition, if so , then output the optimized fuzzy neural network model according to the iteratively processed target position information to complete the training of the fuzzy neural network model, and train the fuzzy neural network model by using the improved gray wolf algorithm, The training time of the fuzzy neural network model is reduced, and the convergence accuracy of the fuzzy neural network model is improved.
附图说明Description of drawings
图1为本发明模糊神经网络模型的优化方法第一实施例的流程示意图;1 is a schematic flowchart of a first embodiment of an optimization method for a fuzzy neural network model of the present invention;
图2为本发明模糊神经网络模型的优化方法第二实施例的流程示意图;2 is a schematic flowchart of a second embodiment of an optimization method for a fuzzy neural network model of the present invention;
图3为本发明模糊神经网络模型的优化系统第一实施例的结构框图。FIG. 3 is a structural block diagram of the first embodiment of the optimization system of the fuzzy neural network model of the present invention.
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。The realization, functional characteristics and advantages of the present invention will be further described with reference to the accompanying drawings in conjunction with the embodiments.
具体实施方式Detailed ways
应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention.
本发明实施例提供了一种模糊神经网络模型的优化方法,参照图1,图1为本发明模糊神经网络模型的优化方法第一实施例的流程示意图。An embodiment of the present invention provides a method for optimizing a fuzzy neural network model. Referring to FIG. 1 , FIG. 1 is a schematic flowchart of the first embodiment of the method for optimizing a fuzzy neural network model of the present invention.
本实施例中,所述模糊神经网络模型的优化方法包括以下步骤:In this embodiment, the optimization method of the fuzzy neural network model includes the following steps:
步骤S10:获取模糊神经网络模型的待优化参数,基于所述待优化参数生成预设灰狼种群中每个种群个体的初始位置信息;Step S10: obtaining the parameters to be optimized of the fuzzy neural network model, and generating initial position information of each population individual in the preset gray wolf population based on the parameters to be optimized;
易于理解的是,本实施例所述的模糊神经网络模型基于模糊神经网络构建,所述模糊神经网络模型可根据不同的实际需求进行进一步细化,本实施例主要对所述模糊神经网络模型的模糊化层中隶属度函数的中心点、宽度向量以及输出层的权值进行训练,即将模糊化层中隶属度函数的中心点、宽度向量以及输出层的权值作为所述模糊神经网络模型的待优化参数,再通过改进后的灰狼算法对所述模糊神经网络模型的待优化参数进行迭代处理以完成对所述模糊神经网络模型进行训练,在具体实现中,可基于所述待优化参数生成灰狼种群中每个种群个体的初始位置信息,所述灰狼种群为改进后的灰狼算法中所对应的种群,其大小由所述模糊神经网络的结构决定,在具体应用中,可根据所述模糊神经网络模型的输入数据进行进一步限定,所述输入数据可为待测指标的具体指标信息,本实施例将所述待测指标的具体指标信息作为待测指标信息,所述待测指标信息可通过以下方式获得:It is easy to understand that the fuzzy neural network model described in this embodiment is constructed based on a fuzzy neural network, and the fuzzy neural network model can be further refined according to different actual needs. This embodiment mainly focuses on the fuzzy neural network model. The center point, the width vector and the weight of the output layer of the membership function in the fuzzy layer are trained, that is, the center point, the width vector and the weight of the output layer of the membership function in the fuzzy layer are used as the weights of the fuzzy neural network model. The parameters to be optimized are then iteratively processed by the improved gray wolf algorithm to the parameters to be optimized of the fuzzy neural network model to complete the training of the fuzzy neural network model. In specific implementation, the parameters to be optimized can be based on the Generate the initial position information of each population individual in the gray wolf population. The gray wolf population is the population corresponding to the improved gray wolf algorithm, and its size is determined by the structure of the fuzzy neural network. In specific applications, it can be It is further defined according to the input data of the fuzzy neural network model. The input data may be specific index information of the index to be measured. In this embodiment, the specific index information of the index to be measured is used as the Metric information can be obtained in the following ways:
获取待测指标的属性信息和类别信息,并将所述属性信息和所述类别信息作为模糊神经网络模型的输出指标,对所述输出指标进行相关性分析,获得所述输出指标的关联指标及所述关联指标对应的相关度,选取所述相关度大于预设相关度的关联指标作为所述模糊神经网络模型的输入指标,对所述输入指标对应的指标信息进行归一化处理,获得待测指标信息,如在测量土壤重金属含量时,所述待测指标为土壤的重金属含量,其属性信息可为重金属含量,其类别信息可为土壤种类,然后对所述重金属含量和所述土壤种类进行相关性分析,获得所述重金属含量和所述土壤种类的关联指标,如土壤采样点的坐标、土壤采样点的海拔、土壤采样点的功能类型、土壤采样点的有机物含量、土壤采样点的微生物含量、土壤采样点的水分含量等,然后获取上述关联指标所对应的相关度,选取所述相关度大于预设相关度的关联指标作为所述模糊神经网络模型的输入指标,对所述输入指标对应的指标信息进行归一化处理,获得待测指标信息。Obtain attribute information and category information of the indicator to be measured, and use the attribute information and the category information as output indicators of the fuzzy neural network model, perform correlation analysis on the output indicators, and obtain the correlation indicators of the output indicators and The correlation degree corresponding to the correlation index, select the correlation index whose correlation degree is greater than the preset correlation degree as the input index of the fuzzy neural network model, perform normalization processing on the index information corresponding to the input index, and obtain the desired correlation index. For example, when measuring soil heavy metal content, the to-be-measured index is soil heavy metal content, its attribute information can be heavy metal content, and its category information can be soil type, and then the heavy metal content and the soil type are determined. Correlation analysis is performed to obtain the correlation index between the heavy metal content and the soil type, such as the coordinates of the soil sampling point, the altitude of the soil sampling point, the functional type of the soil sampling point, the organic matter content of the soil sampling point, and the soil sampling point. microbial content, moisture content of soil sampling points, etc., and then obtain the correlation degree corresponding to the above correlation index, select the correlation index with the correlation degree greater than the preset correlation degree as the input index of the fuzzy neural network model, and analyze the input The index information corresponding to the index is normalized to obtain the index information to be measured.
步骤S20:根据所述初始位置信息计算每个种群个体对应的第一适应度值;Step S20: Calculate the first fitness value corresponding to each population individual according to the initial position information;
需要说明的是,在获得所述初始位置信息时,可根据所述初始位置信息计算每个种群个体对应的第一适应度值,具体可先将所述初始位置信息分别作为模糊神经网络模型中模糊化层的隶属度函数的中心点、宽度向量以及输出层的权值,再将所述待测指标信息依次输入至模糊神经网络模型的输入层、模糊化层、模糊规则层、模糊决策层、输出层进行计算,获得指标输出值,再将所述指标输出值与预设目标值之间的均方误差值作为每个种群个体对应的第一适应度值。It should be noted that, when the initial position information is obtained, the first fitness value corresponding to each population individual can be calculated according to the initial position information. Specifically, the initial position information can be used as the fuzzy neural network model. The center point of the membership function of the fuzzy layer, the width vector and the weight of the output layer, and then the indicator information to be measured is input to the input layer, fuzzy layer, fuzzy rule layer and fuzzy decision layer of the fuzzy neural network model in turn. , the output layer performs calculation to obtain the index output value, and then uses the mean square error value between the index output value and the preset target value as the first fitness value corresponding to each population individual.
步骤S30:对所述初始位置信息进行更新,获得更新后的初始位置信息,并将更新后的所述初始位置信息作为目标位置信息;Step S30: Update the initial position information, obtain the updated initial position information, and use the updated initial position information as target position information;
在具体实现中,在对所述初始位置信息进行更新时,可先将所述第一适应度值按照从大到小的顺序进行排序,获得排序集合,再根据预设筛选规则从所述排序集合中选取目标适应度值集合,然后根据所述目标适应度值集合中包含的第一适应度值对所述初始位置信息进行更新,获得更新后的初始位置信息,再将更新后的所述初始位置信息作为目标位置信息。所述预设筛选规则可为筛选出所述排序集合中第一适应度值排序顺位前三的种群个体,然后根据排序顺位前三的种群个体所对应的第一适应度值对所述初始位置信息进行更新,获得更新后的初始位置信息,再将更新后的所述初始位置信息作为目标位置信息,在具体实现中,可获取位置信息更新的当前迭代次数和总迭代次数,并通过以下公式对所述初始位置信息进行更新,In a specific implementation, when the initial position information is updated, the first fitness values may be sorted in descending order to obtain a sorting set, and then the sorting is performed from the sorting according to a preset filtering rule. Select a target fitness value set from the set, then update the initial position information according to the first fitness value included in the target fitness value set, obtain the updated initial position information, and then update the updated initial position information. The initial position information is used as target position information. The preset screening rule may be to screen out the top three population individuals with the first fitness value in the sorted set, and then select the first fitness value corresponding to the top three population individuals in the sorting order. The initial position information is updated, the updated initial position information is obtained, and then the updated initial position information is used as the target position information. The following formula updates the initial position information,
xinew=(w1*x1+w2*x2+w3*x3)/(w1+w2+w3)x inew =(w 1 *x 1 +w 2 *x 2 +w 3 *x 3 )/(w 1 +w 2 +w 3 )
式中,xalpha、xbeta、xdelta分别为第一适应度值排序顺位前三的种群个体的初始位置信息,xi为待更新的种群个体的初始位置信息,fxalpha、fxbeta、fxdelta分别为第一适应度值排序顺位前三的种群个体的第一适应度值,fxi为待更新的种群个体的第一适应度值,i为当前迭代次数,imax为总迭代次数,amax为最大线性因子,c为在每次计算时随机生成的0到1之间的实数,x1、x2、x3分别为第一适应度值排序顺位前三的种群个体对待更新的种群个体的位置吸引度,w1、w2、w3分别为第一适应度值排序顺位前三的种群个体对待更新的种群个体的吸引度比值,xinew为目标位置信息。In the formula, x alpha , x beta , x delta are the initial position information of the top three population individuals in the first fitness value ranking respectively, x i is the initial position information of the population individual to be updated, f xalpha , f xbeta , f xdelta are the first fitness values of the top three population individuals in the order of the first fitness value respectively, f xi is the first fitness value of the population individuals to be updated, i is the current number of iterations, and i max is the total number of iterations times, a max is the maximum linear factor, c is a real number between 0 and 1 randomly generated in each calculation, x 1 , x 2 , and x 3 are the top three population individuals in the first fitness value ranking respectively The location attractiveness of the population individuals to be updated, w 1 , w 2 , and w 3 are respectively the attractiveness ratios of the population individuals with the top three rankings of the first fitness value to the population individuals to be updated, and x inew is the target location information.
步骤S40:根据所述目标位置信息计算每个种群个体对应的第二适应度值,并基于所述第一适应度值和所述第二适应度值对所述目标位置信息进行迭代处理;Step S40: Calculate the second fitness value corresponding to each population individual according to the target location information, and perform iterative processing on the target location information based on the first fitness value and the second fitness value;
易于理解的是,在获得所述目标位置信息后,可根据所述目标位置信息计算每个种群个体对应的第二适应度值,具体可先将所述目标位置信息分别作为模糊神经网络模型中模糊化层的隶属度函数的中心点、宽度向量以及输出层的权值,再将所述待测指标信息依次输入至模糊神经网络模型的输入层、模糊化层、模糊规则层、模糊决策层、输出层进行计算,获得指标输出值,再将所述指标输出值与预设目标值之间的均方误差值作为每个种群个体对应的第二适应度值,再基于所述第一适应度值和所述第二适应度值对所述目标位置信息进行迭代处理。It is easy to understand that, after obtaining the target position information, the second fitness value corresponding to each individual population can be calculated according to the target position information. Specifically, the target position information can be used as the fuzzy neural network model. The center point of the membership function of the fuzzy layer, the width vector and the weight of the output layer, and then the indicator information to be measured is input to the input layer, fuzzy layer, fuzzy rule layer and fuzzy decision layer of the fuzzy neural network model in turn. , the output layer performs calculations to obtain the index output value, and then the mean square error value between the index output value and the preset target value is used as the second fitness value corresponding to each population individual, and then based on the first fitness value The target location information is iteratively processed by the degree value and the second fitness value.
步骤S50:判断迭代处理后的目标位置信息是否满足预设迭代停止条件,若满足,则根据迭代处理后的所述目标位置信息输出优化后的模糊神经网络模型。Step S50: Determine whether the iteratively processed target position information satisfies a preset iteration stop condition, and if so, output an optimized fuzzy neural network model according to the iteratively processed target position information.
需要说明的是,在对所述目标位置信息进行迭代处理后,可根据迭代处理后的目标位置信息计算每个种群个体对应的第三适应度值,具体可先将迭代处理后的目标位置信息分别作为模糊神经网络模型中模糊化层的隶属度函数的中心点、宽度向量以及输出层的权值,再将所述待测指标信息依次输入至模糊神经网络模型的输入层、模糊化层、模糊规则层、模糊决策层、输出层进行计算,获得指标输出值,再将所述指标输出值与预设目标值之间的均方误差值作为每个种群个体对应的第三适应度值,然后选取所述种群中第三适应度值最大的种群个体作为最优种群个体并获取当前迭代处理次数,根据所述最优种群个体的适应度值和所述当前迭代处理次数判断是否满足预设迭代停止条件,在所述最优种群个体的所述适应度值大于等于预设适应度值或所述当前迭代次数达到预设迭代次数时,判定迭代处理后的所述目标位置信息满足预设迭代条件,并输出优化后的模糊神经网络模型,然后将所述待测指标信息输入至所述优化后的模糊神经网络模型中,以获得所述待测指标信息对应的预测值,如上述对土壤重金属含量进行预测时,所述待测指标信息对应的预测值则为基于所述属性信息和所述类别信息生成的土壤重金属含量的预测值。It should be noted that, after the iterative processing is performed on the target location information, the third fitness value corresponding to each population individual can be calculated according to the iteratively processed target location information. Specifically, the iteratively processed target location information can be calculated first. They are respectively used as the center point, the width vector and the weight of the output layer of the membership function of the fuzzy layer in the fuzzy neural network model, and then the indicator information to be measured is input into the input layer, the fuzzy layer, the fuzzy neural network model in turn. The fuzzy rule layer, the fuzzy decision layer, and the output layer perform calculations to obtain the index output value, and then use the mean square error value between the index output value and the preset target value as the third fitness value corresponding to each population individual, Then select the population individual with the third largest fitness value in the population as the optimal population individual and obtain the current iteration processing times, and judge whether the preset number is satisfied according to the fitness value of the optimal population individual and the current iteration processing times. Iterative stop condition, when the fitness value of the optimal population individual is greater than or equal to the preset fitness value or the current iteration number reaches the preset iteration number, it is determined that the target location information after iterative processing satisfies the preset number of iterations Iterative conditions, and output the optimized fuzzy neural network model, and then input the indicator information to be measured into the optimized fuzzy neural network model to obtain the predicted value corresponding to the indicator information to be measured. When the soil heavy metal content is predicted, the predicted value corresponding to the indicator information to be measured is the predicted value of the soil heavy metal content generated based on the attribute information and the category information.
本实施例通过获取模糊神经网络模型的待优化参数,基于所述待优化参数生成预设灰狼种群中每个种群个体的初始位置信息,根据所述初始位置信息计算每个种群个体对应的第一适应度值,对所述初始位置信息进行更新,获得更新后的初始位置信息,并将更新后的所述初始位置信息作为目标位置信息,根据所述目标位置信息计算每个种群个体对应的第二适应度值,并基于所述第一适应度值和所述第二适应度值对所述目标位置信息进行迭代处理,判断迭代处理后的目标位置信息是否满足预设迭代停止条件,若满足,则根据迭代处理后的所述目标位置信息输出优化后的模糊神经网络模型以完成对所述模糊神经网络模型的训练,通过采用改进后的灰狼算法对所述模糊神经网络模型进行训练,减少了所述模糊神经网络模型的训练时间,提高了所述模糊神经网络模型的收敛精度。In this embodiment, the parameters to be optimized of the fuzzy neural network model are obtained, the initial position information of each population individual in the preset gray wolf population is generated based on the parameters to be optimized, and the first position corresponding to each population individual is calculated according to the initial position information. a fitness value, update the initial position information, obtain the updated initial position information, use the updated initial position information as the target position information, and calculate the corresponding second fitness value, and iteratively process the target position information based on the first fitness value and the second fitness value, and determine whether the iteratively processed target position information satisfies the preset iteration stop condition, if Satisfaction, then output the optimized fuzzy neural network model according to the iteratively processed target position information to complete the training of the fuzzy neural network model, and train the fuzzy neural network model by using the improved gray wolf algorithm , reducing the training time of the fuzzy neural network model and improving the convergence accuracy of the fuzzy neural network model.
参考图2,图2为本发明模糊神经网络模型的优化方法第二实施例的流程示意图。Referring to FIG. 2 , FIG. 2 is a schematic flowchart of a second embodiment of a method for optimizing a fuzzy neural network model according to the present invention.
基于上述第一实施例,在本实施例中,所述步骤S40包括:Based on the above-mentioned first embodiment, in this embodiment, the step S40 includes:
步骤S401:根据所述目标位置信息计算每个种群个体对应的第二适应度值,并将所述第一适应度值大于所述第二适应度值的种群个体作为扰动种群个体;Step S401: Calculate the second fitness value corresponding to each population individual according to the target location information, and use the population individual whose first fitness value is greater than the second fitness value as a disturbed population individual;
易于理解的是,在获得所述目标位置信息后,可根据所述目标位置信息计算每个种群个体对应的第二适应度值,具体可先将所述目标位置信息分别作为模糊神经网络模型中模糊化层的隶属度函数的中心点、宽度向量以及输出层的权值,再将所述待测指标信息依次输入至模糊神经网络模型的输入层、模糊化层、模糊规则层、模糊决策层、输出层进行计算,获得指标输出值,再将所述指标输出值与预设目标值之间的均方误差值作为每个种群个体对应的第二适应度值,然后比较每个种群个体的所述第一适应度值和所述第二适应度值的大小,并将所述第一适应度值大于所述第二适应度值的种群个体作为扰动种群个体。It is easy to understand that, after obtaining the target position information, the second fitness value corresponding to each individual population can be calculated according to the target position information. Specifically, the target position information can be used as the fuzzy neural network model. The center point of the membership function of the fuzzy layer, the width vector and the weight of the output layer, and then the indicator information to be measured is input to the input layer, fuzzy layer, fuzzy rule layer and fuzzy decision layer of the fuzzy neural network model in turn. , the output layer is calculated to obtain the index output value, and then the mean square error value between the index output value and the preset target value is used as the second fitness value corresponding to each population individual, and then the The size of the first fitness value and the second fitness value, and a population individual whose first fitness value is greater than the second fitness value is used as a disturbance population individual.
步骤S402:根据预设概率公式计算所述扰动种群个体对应的中心扰动概率;Step S402: Calculate the center disturbance probability corresponding to the disturbance population individual according to a preset probability formula;
在具体实现中,所述扰动种群个体在进行位置信息更新后对应的适应度值降低,则可统计所述扰动种群个体的适应度值降低次数,所述适应度值降低次数初始设置为0,在适应度值连续降低时,则实时增加所述适应度值降低次数,当适应度值未出现连续降低的情况或对种群个体进行了中心位置扰动处理时,将所述适应度值降低次数重置为0,并根据所述适应度值降低次数计算中心扰动概率,其中,所述预设概率公式为,In a specific implementation, if the corresponding fitness value of the disturbed population individuals decreases after the location information is updated, the number of times the fitness value decreases of the disturbed population individual can be counted, and the number of times the fitness value decreases is initially set to 0, When the fitness value decreases continuously, the number of times of reducing the fitness value is increased in real time. When the fitness value does not continuously decrease or the center position perturbation processing is performed on the population individuals, the number of times of reducing the fitness value is repeated. is set to 0, and the center disturbance probability is calculated according to the reduction times of the fitness value, wherein the preset probability formula is,
式中,pi为扰动种群个体对应的中心扰动概率,T为扰动种群个体的适应度值降低次数。In the formula, pi is the center disturbance probability corresponding to the disturbance population individual, and T is the number of times the fitness value of the disturbance population individual decreases.
步骤S403:根据所述中心扰动概率判断是否需要对所述扰动种群个体对应的目标位置信息进行中心位置扰动处理;Step S403: Judging, according to the center disturbance probability, whether it is necessary to perform center location disturbance processing on the target location information corresponding to the disturbance population individual;
需要说明的是,在根据所述中心扰动概率判断是否需要对所述扰动种群个体对应的目标位置信息进行中心位置扰动处理时,可随机生成一个0到1之间的实数,若该数小于中心扰动概率,则对所述扰动种群个体的目标位置信息进行中心位置扰动处理。It should be noted that when judging whether the target position information corresponding to the disturbed population individual needs to be subjected to center position disturbance processing according to the center disturbance probability, a real number between 0 and 1 can be randomly generated, if the number is smaller than the center If the perturbation probability is determined, the center position perturbation processing is performed on the target position information of the perturbed population individuals.
步骤S404:若是,则根据预设扰动公式对所述扰动种群个体的目标位置信息进行迭代处理。Step S404: If yes, perform iterative processing on the target position information of the disturbed population individuals according to a preset disturbance formula.
在具体实现中,在需要对所述扰动种群个体的目标位置信息进行中心位置扰动处理时,可获取所述灰狼种群中心点的位置信息,所述灰狼种群中心点的位置信息为灰狼种群中所有种群个体的位置信息的均值,以及所述扰动种群个体的目标位置信息迭代处理的当前迭代次数和总迭代次数,并根据预设扰动公式对所述扰动种群个体的目标位置信息进行迭代处理,其中,所述预设扰动公式为,In a specific implementation, when it is necessary to perform center position perturbation processing on the target position information of the perturbed population individuals, the position information of the center point of the gray wolf population can be obtained, and the location information of the center point of the gray wolf population is the gray wolf The mean value of the position information of all individuals in the population, and the current iteration number and the total number of iterations of the iterative processing of the target position information of the disturbed population individuals, and the target position information of the disturbed population individuals is iterated according to the preset disturbance formula processing, wherein the preset disturbance formula is,
式中,xinew为迭代处理后的扰动种群个体的目标位置信息,xmean为灰狼种群中心点的位置信息,xi为扰动种群个体的目标位置信息,i为当前迭代次数,imax为总迭代次数,amax为最大线性因子,c为在每次计算时随机生成的0到1之间的实数。In the formula, x inew is the target position information of the disturbed population individual after iterative processing, x mean is the position information of the center point of the gray wolf population, x i is the target position information of the disturbed population individual, i is the current iteration number, and i max is The total number of iterations, a max is the maximum linear factor, and c is a real number between 0 and 1 randomly generated at each calculation.
本实施例通过根据所述目标位置信息计算每个种群个体对应的第二适应度值,并将所述第一适应度值大于所述第二适应度值的种群个体作为扰动种群个体,根据预设概率公式计算所述扰动种群个体对应的中心扰动概率值,根据所述中心扰动概率值判断是否需要对所述扰动种群个体对应的目标位置信息进行中心位置扰动处理,若是,则根据预设扰动公式对所述扰动种群个体的目标位置信息进行迭代处理以便于所述模糊神经网络方便快捷得获得全局最优解,从而进一步地缩短所述模糊神经网络模型的训练时间,提高所述模型神经网络模型的决策精度。In this embodiment, the second fitness value corresponding to each population individual is calculated according to the target location information, and the population individual whose first fitness value is greater than the second fitness value is regarded as a disturbed population individual. Set the probability formula to calculate the center disturbance probability value corresponding to the disturbance population individual, and judge whether it is necessary to perform center location disturbance processing on the target position information corresponding to the disturbance population individual according to the center disturbance probability value, and if so, according to the preset disturbance The formula iteratively processes the target position information of the disturbed population individuals, so that the fuzzy neural network can easily and quickly obtain the global optimal solution, thereby further shortening the training time of the fuzzy neural network model and improving the model neural network. The decision accuracy of the model.
参照图3,图3为本发明模糊神经网络模型的优化系统第一实施例的结构框图。Referring to FIG. 3 , FIG. 3 is a structural block diagram of a first embodiment of an optimization system for a fuzzy neural network model of the present invention.
如图3所示,本发明实施例提出的模糊神经网络模型的优化系统包括:As shown in FIG. 3 , the optimization system of the fuzzy neural network model proposed by the embodiment of the present invention includes:
信息获取模块10,用于获取模糊神经网络模型的待优化参数,基于所述待优化参数生成预设灰狼种群中每个种群个体的初始位置信息;An
适应度计算模块20,用于根据所述初始位置信息计算每个种群个体对应的第一适应度值;a
位置更新模块30,用于对所述初始位置信息进行更新,获得更新后的初始位置信息,并将更新后的所述初始位置信息作为目标位置信息;a
迭代处理模块40,用于根据所述目标位置信息计算每个种群个体对应的第二适应度值,并基于所述第一适应度值和所述第二适应度值对所述目标位置信息进行迭代处理;The
模型输出模块50,用于判断迭代处理后的目标位置信息是否满足预设迭代停止条件,在满足所述预设迭代停止条件时,根据迭代处理后的所述目标位置信息输出优化后的模糊神经网络模型。The
本实施例通过获取模糊神经网络模型的待优化参数,基于所述待优化参数生成预设灰狼种群中每个种群个体的初始位置信息,根据所述初始位置信息计算每个种群个体对应的第一适应度值,对所述初始位置信息进行更新,获得更新后的初始位置信息,并将更新后的所述初始位置信息作为目标位置信息,根据所述目标位置信息计算每个种群个体对应的第二适应度值,并基于所述第一适应度值和所述第二适应度值对所述目标位置信息进行迭代处理,判断迭代处理后的目标位置信息是否满足预设迭代停止条件,若满足,则根据迭代处理后的所述目标位置信息输出优化后的模糊神经网络模型以完成对所述模糊神经网络模型的训练,通过采用改进后的灰狼算法对所述模糊神经网络模型进行训练,减少了所述模糊神经网络模型的训练时间,提高了所述模糊神经网络模型的收敛精度。In this embodiment, the parameters to be optimized of the fuzzy neural network model are obtained, the initial position information of each population individual in the preset gray wolf population is generated based on the parameters to be optimized, and the first position corresponding to each population individual is calculated according to the initial position information. a fitness value, update the initial position information, obtain the updated initial position information, use the updated initial position information as the target position information, and calculate the corresponding second fitness value, and iteratively process the target position information based on the first fitness value and the second fitness value, and determine whether the iteratively processed target position information satisfies the preset iteration stop condition, if Satisfaction, then output the optimized fuzzy neural network model according to the iteratively processed target position information to complete the training of the fuzzy neural network model, and train the fuzzy neural network model by using the improved gray wolf algorithm , reducing the training time of the fuzzy neural network model and improving the convergence accuracy of the fuzzy neural network model.
基于本发明上述模糊神经网络模型的优化系统第一实施例,提出本发明模糊神经网络模型的优化系统的第二实施例。Based on the above-mentioned first embodiment of the optimization system of the fuzzy neural network model of the present invention, a second embodiment of the optimization system of the fuzzy neural network model of the present invention is proposed.
在本实施例中,所述系统还包括:In this embodiment, the system further includes:
信息预测模块60,用于获取待测指标的属性信息和类别信息,并将所述属性信息和所述类别信息作为模糊神经网络模型的输出指标;an information prediction module 60, configured to obtain attribute information and category information of the indicator to be measured, and use the attribute information and the category information as output indicators of the fuzzy neural network model;
所述信息预测模块60,还用于对所述输出指标进行相关性分析,获得所述输出指标的关联指标及所述关联指标对应的相关度;The information prediction module 60 is further configured to perform a correlation analysis on the output index, and obtain a correlation index of the output index and a correlation degree corresponding to the correlation index;
所述信息预测模块60,还用于选取所述相关度大于预设相关度的关联指标作为所述模糊神经网络模型的输入指标;The information prediction module 60 is further configured to select the correlation index whose correlation degree is greater than the preset correlation degree as the input index of the fuzzy neural network model;
所述信息预测模块60,还用于对所述输入指标对应的指标信息进行归一化处理,获得待测指标信息;The information prediction module 60 is further configured to perform normalization processing on the index information corresponding to the input index to obtain the index information to be measured;
所述信息预测模块60,还用于将所述待测指标信息输入至所述优化后的模糊神经网络模型中,以获得所述待测指标信息对应的预测值。The information prediction module 60 is further configured to input the indicator information to be measured into the optimized fuzzy neural network model to obtain the predicted value corresponding to the indicator information to be measured.
所述位置更新模块30,还用于将所述第一适应度值按照从大到小的顺序进行排序,获得排序集合;The
所述位置更新模块30,还用于根据预设筛选规则从所述排序集合中选取目标适应度值集合;The
所述位置更新模块30,还用于根据所述目标适应度值集合中包含的第一适应度值对所述初始位置信息进行更新,获得更新后的初始位置信息;The
所述位置更新模块30,还用于将更新后的所述初始位置信息作为目标位置信息。The
所述迭代处理模块40,还用于根据所述目标位置信息计算每个种群个体对应的第二适应度值;The
所述迭代处理模块40,还用于将所述第一适应度值大于所述第二适应度值的种群个体作为扰动种群个体;The
所述迭代处理模块40,还用于根据预设概率公式计算所述扰动种群个体对应的中心扰动概率值;The
所述迭代处理模块40,还用于根据所述中心扰动概率值判断是否需要对所述扰动种群个体对应的目标位置信息进行中心位置扰动处理;The
所述迭代处理模块40,还用于在需要对所述扰动种群个体对应的目标位置信息进行中心位置扰动处理时,根据预设扰动公式对所述扰动种群个体的目标位置信息进行迭代处理。The
所述模型输出模块,还用于根据迭代处理后的目标位置信息计算每个种群个体对应的第三适应度值;The model output module is further configured to calculate the third fitness value corresponding to each population individual according to the iteratively processed target position information;
所述模型输出模块50,还用于选取所述种群中第三适应度值最大的种群个体作为最优种群个体并获取当前迭代处理次数;The
所述模型输出模块50,还用于根据所述最优种群个体的适应度值和所述当前迭代处理次数判断是否满足预设迭代停止条件;The
所述模型输出模块50,还用于在所述最优种群个体的所述适应度值大于等于预设适应度值或所述当前迭代次数达到预设迭代次数时,判定迭代处理后的所述目标位置信息满足预设迭代条件,并输出优化后的模糊神经网络模型。The
本发明模糊神经网络模型的优化系统的其他实施例或具体实现方式可参照上述各方法实施例,此处不再赘述。For other embodiments or specific implementations of the system for optimizing the fuzzy neural network model of the present invention, reference may be made to the above method embodiments, which will not be repeated here.
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者系统中还存在另外的相同要素。It should be noted that, herein, the terms "comprising", "comprising" or any other variation thereof are intended to encompass non-exclusive inclusion, such that a process, method, article or system comprising a series of elements includes not only those elements, It also includes other elements not expressly listed or inherent to such a process, method, article or system. Without further limitation, an element qualified by the phrase "comprising a..." does not preclude the presence of additional identical elements in the process, method, article or system that includes the element.
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。The above-mentioned serial numbers of the embodiments of the present invention are only for description, and do not represent the advantages or disadvantages of the embodiments.
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如只读存储器/随机存取存储器、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本发明各个实施例所述的方法。From the description of the above embodiments, those skilled in the art can clearly understand that the method of the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course can also be implemented by hardware, but in many cases the former is better implementation. Based on this understanding, the technical solutions of the present invention can be embodied in the form of software products that are essentially or contribute to the prior art, and the computer software products are stored in a storage medium (such as read-only memory/random access). memory, magnetic disk, optical disc), including several instructions to make a terminal device (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of the present invention.
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。The above are only preferred embodiments of the present invention, and are not intended to limit the scope of the present invention. Any equivalent structure or equivalent process transformation made by using the contents of the description and drawings of the present invention, or directly or indirectly applied in other related technical fields , are similarly included in the scope of patent protection of the present invention.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202010545619.6A CN111723909A (en) | 2020-06-15 | 2020-06-15 | Optimization method and system of fuzzy neural network model |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202010545619.6A CN111723909A (en) | 2020-06-15 | 2020-06-15 | Optimization method and system of fuzzy neural network model |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN111723909A true CN111723909A (en) | 2020-09-29 |
Family
ID=72566977
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202010545619.6A Pending CN111723909A (en) | 2020-06-15 | 2020-06-15 | Optimization method and system of fuzzy neural network model |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN111723909A (en) |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN113076698A (en) * | 2021-04-20 | 2021-07-06 | 广西大学 | Dynamic multi-target collaborative optimization method and system based on workshop big data |
| CN113553270A (en) * | 2021-07-28 | 2021-10-26 | 浙江网商银行股份有限公司 | Target object determination method and device |
| CN114998583A (en) * | 2022-05-11 | 2022-09-02 | 平安科技(深圳)有限公司 | Image processing method, image processing apparatus, device, and storage medium |
| WO2023272987A1 (en) * | 2021-06-29 | 2023-01-05 | 深圳市商汤科技有限公司 | Model recommendation method and apparatus, and device and computer storage medium |
| CN117198416A (en) * | 2023-09-19 | 2023-12-08 | 国家能源集团宁夏煤业有限责任公司 | Prediction method and device for formaldehyde conversion rate in polyformaldehyde process |
| CN118395207A (en) * | 2024-06-25 | 2024-07-26 | 中国人民解放军国防科技大学 | AIS and passive sonar information matching-based target identification method and device |
| CN119204309A (en) * | 2024-09-09 | 2024-12-27 | 深圳市雅安精密连接器有限公司 | Production process optimization method of electronic equipment safety interface based on fuzzy logic |
| CN119361169A (en) * | 2024-10-21 | 2025-01-24 | 南通市康复医院(南通市第二人民医院) | A postoperative nursing information management method, system and storage medium based on neural network |
-
2020
- 2020-06-15 CN CN202010545619.6A patent/CN111723909A/en active Pending
Cited By (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN113076698A (en) * | 2021-04-20 | 2021-07-06 | 广西大学 | Dynamic multi-target collaborative optimization method and system based on workshop big data |
| WO2023272987A1 (en) * | 2021-06-29 | 2023-01-05 | 深圳市商汤科技有限公司 | Model recommendation method and apparatus, and device and computer storage medium |
| CN113553270A (en) * | 2021-07-28 | 2021-10-26 | 浙江网商银行股份有限公司 | Target object determination method and device |
| CN113553270B (en) * | 2021-07-28 | 2024-07-26 | 浙江网商银行股份有限公司 | Target object determining method and device |
| CN114998583A (en) * | 2022-05-11 | 2022-09-02 | 平安科技(深圳)有限公司 | Image processing method, image processing apparatus, device, and storage medium |
| CN117198416A (en) * | 2023-09-19 | 2023-12-08 | 国家能源集团宁夏煤业有限责任公司 | Prediction method and device for formaldehyde conversion rate in polyformaldehyde process |
| CN118395207A (en) * | 2024-06-25 | 2024-07-26 | 中国人民解放军国防科技大学 | AIS and passive sonar information matching-based target identification method and device |
| CN119204309A (en) * | 2024-09-09 | 2024-12-27 | 深圳市雅安精密连接器有限公司 | Production process optimization method of electronic equipment safety interface based on fuzzy logic |
| CN119204309B (en) * | 2024-09-09 | 2025-06-10 | 深圳市雅安精密连接器有限公司 | Production process optimization method of electronic equipment safety interface based on fuzzy logic |
| CN119361169A (en) * | 2024-10-21 | 2025-01-24 | 南通市康复医院(南通市第二人民医院) | A postoperative nursing information management method, system and storage medium based on neural network |
| CN119361169B (en) * | 2024-10-21 | 2025-08-22 | 南通市康复医院(南通市第二人民医院) | A postoperative nursing information management method, system and storage medium based on neural network |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN111723909A (en) | Optimization method and system of fuzzy neural network model | |
| CN110503531B (en) | Dynamic social scene recommendation method based on time sequence perception | |
| CN112581263A (en) | Credit evaluation method for optimizing generalized regression neural network based on wolf algorithm | |
| CN112037012A (en) | Internet financial credit evaluation method based on PSO-BP neural network | |
| CN111754044B (en) | Employee behavior auditing method, device, equipment and readable storage medium | |
| CN113239638A (en) | Overdue risk prediction method for optimizing multi-core support vector machine based on dragonfly algorithm | |
| CN113257425B (en) | Influenza prediction system, storage medium and device for optimizing LSTM and LightGBM parameters | |
| CN106022517A (en) | Risk prediction method and device based on nucleus limit learning machine | |
| Xue et al. | A self-adaptive fireworks algorithm for classification problems | |
| CN115829097A (en) | A method of ultra-short-term load forecasting for air conditioners based on VMD and KELM | |
| CN111598460A (en) | Monitoring method, device, equipment and storage medium for heavy metal content in soil | |
| CN110263860A (en) | A kind of freeway traffic flow prediction technique and device | |
| CN114117787A (en) | Short-term wind power prediction method based on SSA (simple sequence analysis) optimization BP (back propagation) neural network | |
| CN115237878A (en) | Process database construction method and medium based on additive manufacturing | |
| CN112258223A (en) | Marketing advertisement click prediction method based on decision tree | |
| CN110232444A (en) | Optimization method, device, equipment and the storage medium of geology monitoring BP neural network | |
| CN116415177A (en) | A Classifier Parameter Identification Method Based on Extreme Learning Machine | |
| Gupta et al. | Optimizing deep neural network architecture: A Tabu search based approach | |
| CN116304518B (en) | Heterogeneous graph convolutional neural network model construction method and system for information recommendation | |
| Abas et al. | Analysis of Covid-19 Growth Trends Through Data Mining Approach As Decision Support | |
| CN114219522B (en) | Customer consumption behavior prediction method, device, electronic device and storage medium | |
| CN111523258A (en) | MS-Net network-based microseism effective signal first arrival pickup method and system | |
| CN108960406B (en) | MEMS gyroscope random error prediction method based on BFO wavelet neural network | |
| CN107665244B (en) | Method and device for acquiring relationship between grain yield and fertilizer usage amount | |
| Hussain et al. | Parameters estimation of the Gompertz-Makeham process in non-homogeneous Poisson processes: Using modified maximum likelihood estimation and artificial intelligence methods |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200929 |
|
| RJ01 | Rejection of invention patent application after publication |