[go: up one dir, main page]

CN111709336A - 一种高速公路行人检测方法、设备及可读存储介质 - Google Patents

一种高速公路行人检测方法、设备及可读存储介质 Download PDF

Info

Publication number
CN111709336A
CN111709336A CN202010510212.XA CN202010510212A CN111709336A CN 111709336 A CN111709336 A CN 111709336A CN 202010510212 A CN202010510212 A CN 202010510212A CN 111709336 A CN111709336 A CN 111709336A
Authority
CN
China
Prior art keywords
pedestrian
network
representing
ith
loss function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010510212.XA
Other languages
English (en)
Other versions
CN111709336B (zh
Inventor
李晓春
邵奇可
吴迪娟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Pixel Technology Co ltd
Original Assignee
Hangzhou Pixel Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Pixel Technology Co ltd filed Critical Hangzhou Pixel Technology Co ltd
Priority to CN202010510212.XA priority Critical patent/CN111709336B/zh
Publication of CN111709336A publication Critical patent/CN111709336A/zh
Application granted granted Critical
Publication of CN111709336B publication Critical patent/CN111709336B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/52Surveillance or monitoring of activities, e.g. for recognising suspicious objects
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computational Linguistics (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Multimedia (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Human Computer Interaction (AREA)
  • Image Analysis (AREA)

Abstract

本发明公开了一种高速公路行人检测方法、设备及可读存储介质,包括如下步骤:构建参数自适应的损失函数
Figure DDA0002528073960000011
Figure DDA0002528073960000012
构建一阶段目标检测算法模型的损失函数LOSS;采用梯度下降法对一阶段目标检测算法模型的权值进行更新,直到模型收敛为止;将训练好的模型在实际系统中完成对高速公路中的行人进行实时检测,在线计算高速公路行人情况。本发明提出的焦点损失函数能够提高目标检测模型的参数自适应性,大幅提高了目标检测的准确率。

Description

一种高速公路行人检测方法、设备及可读存储介质
技术领域
本发明涉及图像识别与计算机视觉技术领域,具体来说,涉及一种高速公路行人检测方法、设备及可读存储介质。
背景技术
高速公路是国家交通运输的重要环节,是国民经济发展的命脉,它的平稳运行维系着人民财产安全与国家经济发展。随着我国经济的高速发展,高速公路里程和交通工具数量随之急剧增加,给高速公路的管理运营带来极大挑战。
传统智能交通系统主要采用计算机视觉和机器学习领域目标检测、目标识别、目标追踪等相关技术,针对监控视频实现道路车辆、行人检测,从而分析道路交通状况和交通事件,这类智能交通系统大多是作为人工的辅助工具进行使用,但是受限于技术格局所取得的效果并不好,尤其是在2014年以前的目标检测等相关技术并不成熟,如DPM等技术难以满足实时、准确、精细的检测要求,同时智能交通系统大多都要全天候24小时运行,此类技术鲁棒性、对复杂环境适应性较差,难以满足实际需求。
随着近年来深度学习算法的逐步演进,人工智能关键技术得到长足发展。在计算机视觉及视频结构化等领域,深度学习带来了前所未有的性能提升,在多个单一视觉任务,如视频分类,人脸识别等,已经取得了超越人类的判别能力。
基于深度学习的智能交通系统迎来了新的发展机遇,智能交通所依赖的目标检测、目标追踪、目标识别等技术都得到了长足进步,尤其是目标检测、细分类等技术在通用领域已经取得巨大成功,在Pascal VOC、MS COCO、KITTI等数据集上得到了优异的成绩。传统的目标检测技术即是采用传统机器学习和计算机视觉进行检测的目标检测算法,这类算法大多需要构建复杂的特征提取过程来获取目标特征对目标进行定位和分类,流程复杂,提取的特征表达能力不强,造成模型鲁棒性较差,这是当时目标检测算法难以实际应用到工业生产中的一个原因。基于深度神经网络的目标检测算法,从特征提取、候选框生成、候选框特征提取、 NMS算法等方面对CNN目标检测算法做出了诸多优化。Faster R-CNN算法提出的时候使用了 VGGNet[5]提取特征,它只有16层结构,再加深就容易出现特征弥散问题,影响模型训练。到2017年RFCN算法使用ResNet作为骨干网络,解决了梯度弥散的问题,具有较强的语义表达能力,但是容易忽略目标的细节信息,尤其是在小目标方面,因此Lin T Y提出了FPN网络,利用特征金字塔同时获得细节化特征和高语义特征。
但是,由于高速公路场景复杂,需要涵盖主线、支线、收费广场、服务区等不同场景,同时需要应对雨天、雪天、雾天、台风、夜晚等不同天气、不同光照条件,行人、非机动车和周围的机动车辆目标行驶速度过快,容易造成拖影,影响检测,对算法的要求很高;同时通用检测算法大多为了追求准确度牺牲检测速度,难以满足实时检测的要求,而一些能够实时检测的算法在实际应用中的检测准确度比较低。
发明内容
本发明的目的在于提出一种高速公路行人检测方法、设备及可读存储介质,以克服现有技术中存在的上述不足。
为实现上述技术目的,本发明的技术方案是这样实现的:
一种高速公路行人检测方法,所述方法包括以下步骤:
1)构建高速公路数据集M,训练数据集T,验证数据集V,标注行人类别数C,训练数据批次大小batch,训练批次数batches,学习率l_rate,训练数据集T与验证数据集V之间的比例系数ζ,
Figure BDA0002528073940000021
Figure BDA0002528073940000022
其中:V T=M,C∈N+,ζ∈(0,1),batches∈N+,l_rate∈N+,batch∈N+
Figure BDA0002528073940000023
表示图像的高和宽,r表示图像的通道数;
2)确定待训练的一阶段目标检测模型,设卷积神经网络深度为L,网络卷积层卷积核集合G,网络输出层采用全连接方式,其卷积核集合A,网络特征图集合U,
Figure BDA0002528073940000024
表示第l层网络中第k个特征图
Figure BDA0002528073940000025
对应的网格数量,锚点集合M,具体定义如下:
Figure BDA0002528073940000026
Figure BDA0002528073940000027
Figure BDA0002528073940000028
Figure BDA0002528073940000031
Figure BDA0002528073940000032
其中:
Figure BDA0002528073940000033
分别表示第l层网络对应的卷积核、特征图和锚点的高、宽、维度,
Figure BDA0002528073940000034
表示第l层网络卷积核的填充大小,
Figure BDA0002528073940000035
表示第l层网络卷积步长,f表示卷积神经元的激励函数,Θ表示选取的输入特征,Λ∈N+表示第l层网络的锚点总数,Ξ∈N+表示输出层节点总数,Φ∈N+表示第l层网络特征图总数,Δ∈N+表示第l层卷积核的总数;
3)设计参数自适应的焦点损失函数如下:
Figure BDA0002528073940000036
其中:
Figure BDA0002528073940000037
Figure 100002_2
Figure BDA0002528073940000039
Figure BDA00025280739400000310
表示第l层网络上第i个网格中第j个锚点在图像tk的行人样本与道路背景样本置信度的损失函数,
Figure 100002_1
表示行人预测框的损失函数,
Figure BDA00025280739400000312
表示行人类别的损失函数,λ∈Q为损失函数
Figure BDA00025280739400000313
参数,
Figure BDA00025280739400000314
Figure BDA00025280739400000315
分别表示行人目标和道路背景目标的损失函数,具体如下所示:
Figure BDA00025280739400000316
Figure 3
Figure BDA00025280739400000318
表示第l层网络上第i个网格中第j个锚点预测的前景行人概率值,
Figure BDA0002528073940000041
表示相对应的道路背景概率值,
Figure BDA0002528073940000042
分别表示第l层网络上第i个网格中第j个锚点的预测框中心点横坐标和纵坐标,
Figure BDA0002528073940000043
分别表示行人样本标定框的中心点横坐标与纵坐标;
Figure BDA0002528073940000044
分别表示第l层网络上第i个网格中第j个锚点的预测框中心点到该框边界的最短欧式距离,
Figure BDA0002528073940000045
分别表示行人样本标定框的中心点到该框边界的最短欧式距离;
Figure BDA0002528073940000046
表示第l层网络上第i个网格中第j个锚点预测的行人类别预测值,
Figure BDA0002528073940000047
表示行人类别的标定状态,
Figure BDA0002528073940000048
表示行人样本进行预测,
Figure BDA0002528073940000049
表示是否对道路背景样本进行预测,具体计算如下:
Figure BDA00025280739400000410
Figure BDA00025280739400000411
Figure BDA00025280739400000412
其中,参数α∈(0,1);iouj表示锚点mj在第i个网格中锚点框与行人标定框的交叠率, miou表示最大交叠率;
4)利用步骤3)中的一阶段目标检测算法模型的损失函数,对模型进行梯度下降法训练,直至模型收敛,在系统运行阶段,利用一阶目标检测模型提取图像特征值,并基于K-means 聚类方法确定锚点,输出当前视频监测区域的目标检测行人数num∈N+,判断是否存在行人。
一种电子设备,包括:存储器和处理器,所述存储器和所述处理器之间互相通信连接,所述存储器中存储有计算机指令,所述处理器通过执行所述计算机指令,从而执行如上所述的高速公路行人检测方法。
一种计算机可读存储介质,所述计算机可读存储介质存储有计算机指令,所述计算机指令用于使所述计算机执行如上所述的高速公路行人检测方法。
本发明的有益效果:本发明针对焦点损失函数在训练过程中需要手动调节超参数,训练过程中的参数不具备自适应性的问题,提出了一种基于半监督学习的深度学习损失函数,该损失函数使用加权法对超参进行改进,使得网络在梯度下降过程中,能够自适应的调节网络超参数,进而提高网络学习效率。
附图说明
图1是卷积神经网络的网络结构图;
图2是卷积神经网络中损失函数结构图;
图3是本发明所述方法的部署流程图。
具体实施方式
下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
损失函数作为卷积神经网络中梯度下降过程的目标函数,直接影响着卷积神经网络的训练结果。而卷积神经网络训练的结果好坏直接关系着目标检测的识别精度,因此对损失函数的设计显现的尤为重要。在一阶段目标检测算法模型训练过程中,网络在图像检测目标时含有大量的高速公路背景对象,高速公路背景对象的损失值虽然很小,但是数量远远超过行人目标,因此在计算损失值时,概率值小的高速公路背景损失值压倒了行人的目标损失值,导致模型精度下降很多,因此在一阶段目标检测算法模型中嵌入焦点损失函数来提高训练精度。而在焦点损失函数中有超参数需要依据经验值去设置,无法依据预测出的类别概率值,自动调节自身的超参大小。
因此,本发明针对焦点损失函数在训练过程中需要手动调节超参数,训练过程中的参数不具备自适应性的问题,公开了一种高速公路行人检测方法,所述方法包括:
步骤1:采集大量的高空摄像头拍摄的图像数据,构建高速公路数据集M的数量为10000,训练数据集T的数量为8000,验证数据集V的数量为2000,标注行人类别数C取值为3,分别为普通行人、路政人员和环卫人员,训练数据批次大小batch取值为4,训练批次数batches 取值为1000,学习率l_rate取值为0.001,训练数据集T与验证数据集V之间的比例系数ζ取值为0.25,图像的高hk=416,wk=416,r=3且满足所有图像的高、宽、通道数设置一致。
步骤2:确定一阶段目标检测模型为Yolov3,卷积神经网络深度L设置为139,其中卷积核的高、宽和维度设置具体如图1所示,卷积核的填充大小
Figure BDA0002528073940000061
默认为1,卷积步长
Figure BDA0002528073940000062
默认为1,卷积神经元的激励函数f默认为leakly_relu激励函数;锚点在每一层网络中都共享,锚点集合M取值为{(10,13),(30,61),(156,198)},Λ=3;网络输出层采用全连接方式,其卷积核集合A取值为{(1,1,30),(1,1,30),(1,1,30)},Ξ=3。
步骤3:如图2所示,构建参数自适应的焦点损失函数LOSS,参数α取值为0.25,参数λ取值为0.5。
步骤4:利用步骤3中的一阶段目标检测算法模型的损失函数,对模型进行梯度下降法训练,直至模型收敛。如图3所示,利用高速公路安放的摄像头的视频流进行实时检测,输出当前视频监测区域的目标检测行人数,判断高速公路是否存在行人。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (3)

1.一种高速公路行人检测方法,其特征在于,所述方法包括以下步骤:
1)构建高速公路数据集M,训练数据集T,验证数据集V,标注行人类别数C,训练数据批次大小batch,训练批次数batches,学习率l_rate,训练数据集T与验证数据集V之间的比例系数ζ,
Figure FDA0002528073930000011
Figure FDA0002528073930000012
ζ=Card(V)/Card(T),
其中:V T=M,C∈N+,ζ∈(0,1),batches∈N+,l_rate∈N+,batch∈N+
Figure FDA0002528073930000013
表示图像的高和宽,r表示图像的通道数;
2)确定待训练的一阶段目标检测模型,设卷积神经网络深度为L,网络卷积层卷积核集合G,网络输出层采用全连接方式,其卷积核集合A,网络特征图集合U,
Figure FDA0002528073930000014
表示第l层网络中第k个特征图
Figure FDA0002528073930000015
对应的网格数量,锚点集合M,具体定义如下:
Figure FDA0002528073930000016
Figure FDA0002528073930000017
Figure FDA0002528073930000018
Figure FDA0002528073930000019
Figure FDA00025280739300000110
其中:
Figure FDA00025280739300000111
分别表示第l层网络对应的卷积核、特征图和锚点的高、宽、维度,
Figure FDA00025280739300000112
表示第l层网络卷积核的填充大小,
Figure FDA00025280739300000113
表示第l层网络卷积步长,f表示卷积神经元的激励函数,Θ表示选取的输入特征,Λ∈N+表示第l层网络的锚点总数,Ξ∈N+表示输出层节点总数,Φ∈N+表示第l层网络特征图总数,Δ∈N+表示第l层卷积核的总数;
3)设计参数自适应的焦点损失函数如下:
Figure 1
其中:
Figure 2
Figure 5
Figure FDA0002528073930000024
Figure FDA0002528073930000025
表示第l层网络上第i个网格中第j个锚点在图像tk的行人样本与道路背景样本置信度的损失函数,
Figure FDA0002528073930000026
表示行人预测框的损失函数,
Figure FDA0002528073930000027
表示行人类别的损失函数,λ∈Q为损失函数
Figure FDA0002528073930000028
参数,
Figure FDA0002528073930000029
Figure FDA00025280739300000210
分别表示行人目标和道路背景目标的损失函数,具体如下所示:
Figure FDA00025280739300000211
Figure FDA00025280739300000212
Figure FDA00025280739300000213
表示第l层网络上第i个网格中第j个锚点预测的前景行人概率值,
Figure FDA00025280739300000214
表示相对应的道路背景概率值,
Figure FDA00025280739300000215
分别表示第l层网络上第i个网格中第j个锚点的预测框中心点横坐标和纵坐标,
Figure FDA00025280739300000216
分别表示行人样本标定框的中心点横坐标与纵坐标;
Figure FDA00025280739300000217
分别表示第l层网络上第i个网格中第j个锚点的预测框中心点到该框边界的最短欧式距离,
Figure FDA00025280739300000218
分别表示行人样本标定框的中心点到该框边界的最短欧式距离;
Figure FDA00025280739300000219
表示第l层网络上第i个网格中第j个锚点预测的行人类别预测值,
Figure FDA00025280739300000220
表示行人类别的标定状态,
Figure FDA0002528073930000031
表示行人样本进行预测,
Figure FDA0002528073930000032
表示是否对道路背景样本进行预测,具体计算如下:
Figure FDA0002528073930000033
Figure FDA0002528073930000034
Figure FDA0002528073930000035
其中,参数α∈(0,1);iouj表示锚点mj在第i个网格中锚点框与行人标定框的交叠率,miou表示最大交叠率;
4)利用步骤3)中的一阶段目标检测算法模型的损失函数,对模型进行梯度下降法训练,直至模型收敛,在系统运行阶段,利用一阶目标检测模型提取图像特征值,并基于K-means聚类方法确定锚点,输出当前视频监测区域的目标检测行人数num∈N+,判断是否存在行人。
2.一种电子设备,其特征在于,包括:存储器和处理器,所述存储器和所述处理器之间互相通信连接,所述存储器中存储有计算机指令,所述处理器通过执行所述计算机指令,从而执行权利要求1所述的高速公路行人检测方法。
3.一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机指令,所述计算机指令用于使所述计算机执行权利要求1所述的高速公路行人检测方法。
CN202010510212.XA 2020-06-08 2020-06-08 一种高速公路行人检测方法、设备及可读存储介质 Active CN111709336B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010510212.XA CN111709336B (zh) 2020-06-08 2020-06-08 一种高速公路行人检测方法、设备及可读存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010510212.XA CN111709336B (zh) 2020-06-08 2020-06-08 一种高速公路行人检测方法、设备及可读存储介质

Publications (2)

Publication Number Publication Date
CN111709336A true CN111709336A (zh) 2020-09-25
CN111709336B CN111709336B (zh) 2024-04-26

Family

ID=72539333

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010510212.XA Active CN111709336B (zh) 2020-06-08 2020-06-08 一种高速公路行人检测方法、设备及可读存储介质

Country Status (1)

Country Link
CN (1) CN111709336B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112395961A (zh) * 2020-10-31 2021-02-23 太原理工大学 一种洒水车的视觉主动行人避让及水压自适应控制方法
CN112507998A (zh) * 2021-02-08 2021-03-16 南京信息工程大学 基于机器视觉的屏蔽门行人等待提醒系统及其方法
CN113128444A (zh) * 2021-04-28 2021-07-16 奇瑞汽车股份有限公司 一种损失函数获取方法、计算机可读存储介质及电子设备
CN113158891A (zh) * 2021-04-20 2021-07-23 杭州像素元科技有限公司 一种基于全局特征匹配的跨摄像头行人重识别方法
TWI797527B (zh) * 2020-12-28 2023-04-01 國家中山科學研究院 物體再識別偵測系統與方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018107760A1 (zh) * 2016-12-16 2018-06-21 北京大学深圳研究生院 一种用于行人检测的协同式深度网络模型方法
CN108376235A (zh) * 2018-01-15 2018-08-07 深圳市易成自动驾驶技术有限公司 图像检测方法、装置及计算机可读存储介质
CN109685152A (zh) * 2018-12-29 2019-04-26 北京化工大学 一种基于dc-spp-yolo的图像目标检测方法
WO2019144575A1 (zh) * 2018-01-24 2019-08-01 中山大学 一种快速行人检测方法及装置
CN110443208A (zh) * 2019-08-08 2019-11-12 南京工业大学 一种基于YOLOv2的车辆目标检测方法、系统及设备
WO2019232894A1 (zh) * 2018-06-05 2019-12-12 中国石油大学(华东) 一种基于复杂场景下的人体关键点检测系统及方法
CN110674714A (zh) * 2019-09-13 2020-01-10 东南大学 基于迁移学习的人脸和人脸关键点联合检测方法
CN110827253A (zh) * 2019-10-30 2020-02-21 北京达佳互联信息技术有限公司 一种目标检测模型的训练方法、装置及电子设备
CN111027372A (zh) * 2019-10-10 2020-04-17 山东工业职业学院 一种基于单目视觉与深度学习的行人目标检测识别方法
CN111062413A (zh) * 2019-11-08 2020-04-24 深兰科技(上海)有限公司 一种道路目标检测方法、装置、电子设备及存储介质
US20200134442A1 (en) * 2018-10-29 2020-04-30 Microsoft Technology Licensing, Llc Task detection in communications using domain adaptation

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018107760A1 (zh) * 2016-12-16 2018-06-21 北京大学深圳研究生院 一种用于行人检测的协同式深度网络模型方法
CN108376235A (zh) * 2018-01-15 2018-08-07 深圳市易成自动驾驶技术有限公司 图像检测方法、装置及计算机可读存储介质
WO2019144575A1 (zh) * 2018-01-24 2019-08-01 中山大学 一种快速行人检测方法及装置
WO2019232894A1 (zh) * 2018-06-05 2019-12-12 中国石油大学(华东) 一种基于复杂场景下的人体关键点检测系统及方法
US20200134442A1 (en) * 2018-10-29 2020-04-30 Microsoft Technology Licensing, Llc Task detection in communications using domain adaptation
CN109685152A (zh) * 2018-12-29 2019-04-26 北京化工大学 一种基于dc-spp-yolo的图像目标检测方法
CN110443208A (zh) * 2019-08-08 2019-11-12 南京工业大学 一种基于YOLOv2的车辆目标检测方法、系统及设备
CN110674714A (zh) * 2019-09-13 2020-01-10 东南大学 基于迁移学习的人脸和人脸关键点联合检测方法
CN111027372A (zh) * 2019-10-10 2020-04-17 山东工业职业学院 一种基于单目视觉与深度学习的行人目标检测识别方法
CN110827253A (zh) * 2019-10-30 2020-02-21 北京达佳互联信息技术有限公司 一种目标检测模型的训练方法、装置及电子设备
CN111062413A (zh) * 2019-11-08 2020-04-24 深兰科技(上海)有限公司 一种道路目标检测方法、装置、电子设备及存储介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
吴志洋;卓勇;廖生辉;: "改进的多目标回归实时人脸检测算法", 计算机工程与应用, no. 11 *
江晓林;彭波;项羽;: "YOLO的行人检测改进算法", 黑龙江科技大学学报, no. 03 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112395961A (zh) * 2020-10-31 2021-02-23 太原理工大学 一种洒水车的视觉主动行人避让及水压自适应控制方法
TWI797527B (zh) * 2020-12-28 2023-04-01 國家中山科學研究院 物體再識別偵測系統與方法
CN112507998A (zh) * 2021-02-08 2021-03-16 南京信息工程大学 基于机器视觉的屏蔽门行人等待提醒系统及其方法
CN112507998B (zh) * 2021-02-08 2021-04-27 南京信息工程大学 基于机器视觉的屏蔽门行人等待提醒系统及其方法
CN113158891A (zh) * 2021-04-20 2021-07-23 杭州像素元科技有限公司 一种基于全局特征匹配的跨摄像头行人重识别方法
CN113128444A (zh) * 2021-04-28 2021-07-16 奇瑞汽车股份有限公司 一种损失函数获取方法、计算机可读存储介质及电子设备
CN113128444B (zh) * 2021-04-28 2023-02-03 奇瑞汽车股份有限公司 一种损失函数获取方法、计算机可读存储介质及电子设备

Also Published As

Publication number Publication date
CN111709336B (zh) 2024-04-26

Similar Documents

Publication Publication Date Title
CN111709336A (zh) 一种高速公路行人检测方法、设备及可读存储介质
CN107563372B (zh) 一种基于深度学习ssd框架的车牌定位方法
CN110866593B (zh) 一种基于人工智能的高速公路恶劣天气识别方法
CN107247956B (zh) 一种基于网格判断的快速目标检测方法
KR102320985B1 (ko) 멀티 카메라 시스템 내의 더블 임베딩 구성을 이용하여 도로 이용자 이벤트를 검출하기 위해 이용될 세그먼테이션 성능 향상을 위한 학습 방법 및 학습 장치 그리고 이를 이용한 테스팅 방법 및 테스팅 장치
CN111723854B (zh) 一种高速公路交通拥堵检测方法、设备及可读存储介质
CN104156734A (zh) 一种基于随机蕨分类器的全自主在线学习方法
CN111950498A (zh) 一种基于端到端实例分割的车道线检测方法及装置
CN103279738B (zh) 车标自动识别方法及系统
CN115909276B (zh) 基于改进YOLOv5的复杂天气下小交通标志目标检测方法
CN111008639A (zh) 一种基于注意力机制的车牌字符识别方法
Sayeed et al. Bangladeshi traffic sign recognition and classification using cnn with different kinds of transfer learning through a new (btsrb) dataset
Shyan et al. Real time road traffic sign detection and recognition systems using Convolution Neural Network on a GPU platform
Amon et al. Philippine license plate character recognition using faster R-CNN with InceptionV2
CN113850112B (zh) 基于孪生神经网络的路况识别方法和系统
CN115129886A (zh) 驾驶场景的识别方法、装置及车辆
Yu et al. An improved faster R-CNN method for car front detection
Wu et al. A Pavement Distress Detection Method Based on Yolov5 Model
Dongtao et al. Traffic sign detection method of improved ssd based on deep learning
CN112509321A (zh) 一种基于无人机的城市复杂交通情景的驾驶控制方法、系统及可读存储介质
CN116503664A (zh) 一种区分高相似度目标物体的分类方法
CN117830739A (zh) 目标对象的识别方法、系统和电子设备及存储介质
KR20250065594A (ko) 도메인 적응을 위한 뉴럴 네트워크 프로세싱을 일반화하기 위한 증강들에 의한 메타-프리-트레이닝
CN116229512A (zh) 基于跨摄像头自蒸馏的行人重识别模型建立方法及其应用
CN116977975A (zh) 一种基于深度学习的交通标志检测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Li Xiaochun

Inventor after: Shao Qike

Inventor after: Wu Dijuan

Inventor before: Li Xiaochun

Inventor before: Shao Qike

Inventor before: Wu Dijuan

GR01 Patent grant
GR01 Patent grant