CN111656369A - Neural-like circuits and methods of operation - Google Patents
Neural-like circuits and methods of operation Download PDFInfo
- Publication number
- CN111656369A CN111656369A CN201980008012.XA CN201980008012A CN111656369A CN 111656369 A CN111656369 A CN 111656369A CN 201980008012 A CN201980008012 A CN 201980008012A CN 111656369 A CN111656369 A CN 111656369A
- Authority
- CN
- China
- Prior art keywords
- circuit
- signal
- control
- control signal
- neuron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/06—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
- G06N3/063—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/54—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using elements simulating biological cells, e.g. neuron
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/049—Temporal neural networks, e.g. delay elements, oscillating neurons or pulsed inputs
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/06—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
- G06N3/061—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using biological neurons, e.g. biological neurons connected to an integrated circuit
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/06—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
- G06N3/063—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
- G06N3/065—Analogue means
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
- G11C13/0004—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising amorphous/crystalline phase transition cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D10/00—Energy efficient computing, e.g. low power processors, power management or thermal management
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Theoretical Computer Science (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Neurology (AREA)
- Mathematical Physics (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computational Linguistics (AREA)
- Software Systems (AREA)
- Data Mining & Analysis (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Image Analysis (AREA)
- Networks Using Active Elements (AREA)
- Pulse Circuits (AREA)
- Semiconductor Memories (AREA)
Abstract
Description
技术领域technical field
本揭示中所述实施例内容是有关于一种电路技术,特别关于一种类神经电路与运作方法。Embodiments described in the present disclosure relate to a circuit technology, particularly a neural-like circuit and an operation method.
背景技术Background technique
生物体中包含神经网络系统。神经网络系统包含许多神经元(neuron)。神经元是由Heinrich Wilhelm Gottfried von Waldeyer-Hartz在1891年提出。神经元是取得大脑离散信息的处理单位。在1897年,Charles Sherrington将两个神经元之间的交界(junction)称作“突触”(synapse)。大脑离散信息沿着一个方向流过突触。根据此方向,区分为“突触前(presynaptic)神经元”和“突触后(postsynaptic)神经元”。神经元在接收到足够的输入而启动时,会发出“尖峰(spike)”。Living organisms contain neural network systems. A neural network system contains many neurons. Neurons were proposed by Heinrich Wilhelm Gottfried von Waldeyer-Hartz in 1891. Neurons are processing units that capture discrete information in the brain. In 1897, Charles Sherrington called the junction between two neurons a "synapse". The brain's discrete information flows through synapses in one direction. According to this direction, a distinction is made between "presynaptic neurons" and "postsynaptic neurons". Neurons fire "spikes" when they receive enough input to fire.
理论上,被捕获的经验化作大脑中突触的传导(conductance)。根据突触前神经元和突触后神经元的相对尖峰时间,突触传导会随时间变化。如果突触后神经元在突触前神经元激发(fire)之前激发,突触电导会增加。如果两个激发的顺序相反,突触电导会降低。另外,这种变化会取决于两个事件之间的延迟。延迟越多,变化的幅度越小。In theory, the captured experience is turned into conductance at synapses in the brain. Synaptic conduction varies over time according to the relative spike times of presynaptic and postsynaptic neurons. If the postsynaptic neuron fires before the presynaptic neuron fires, the synaptic conductance increases. If the order of the two firings is reversed, the synaptic conductance decreases. Also, this change will depend on the delay between the two events. The more delay, the smaller the magnitude of the change.
人造神经网络允许电子系统以类似于生物大脑方式运作。神经元系统可以包括对生物神经元进行建模的各种电子电路。Artificial neural networks allow electronic systems to function in ways similar to biological brains. Neuronal systems can include various electronic circuits that model biological neurons.
神经网络系统会影响到生物体的感知、选择、决定或其他各种行为,因此神经网络系统在生物体中扮演相当重要的角色。倘若可利用电路建造出类似生物体中的神经网络系统,将会对许多领域产生关键性的影响。The neural network system will affect the perception, choice, decision or other behaviors of the organism, so the neural network system plays a very important role in the organism. If circuits could be used to build neural network systems similar to those found in living organisms, it would have a critical impact on many fields.
举例而言,美国专利9,830,981或中国专利107111783中提及可利用相变化元件以及其他元件建构出类神经网络系统。For example, US Patent No. 9,830,981 or Chinese Patent No. 107111783 mentioned that phase change elements and other elements can be used to construct a neural network-like system.
发明内容SUMMARY OF THE INVENTION
本揭示的一些实施方式是关于一种类神经电路包含一突触电路以及一后神经元电路。突触电路包含一相变化元件且用以接收一第一脉冲信号以及一第二脉冲信号。后神经元电路耦接突触电路。后神经元电路包含一输入端、一输出端与一积电端。积电端依据第一脉冲信号充电至一膜电位。后神经元电路还包含一第一控制电路、一第二控制电路、一第一延迟电路以及一第二延迟电路。第一控制电路耦接于积电端以及输出端之间。第一控制电路用以依据膜电位于输出端产生一激发信号。第二控制电路耦接输出端且用以依据激发信号产生一第一控制信号。第一延迟电路用以延迟激发信号以产生一第二控制信号。第二延迟电路用以延迟第二控制信号以产生一第三控制信号。第一控制信号与第三控制信号用以控制积电端的电压位准,以及维持积电端在一固定电压的期间。第二控制信号用以协同第二脉冲信号以控制相变化元件的状态,进而决定类神经电路的一权重。Some embodiments of the present disclosure relate to a neural-like circuit comprising a synaptic circuit and a postneuronal circuit. The synapse circuit includes a phase change element and is used for receiving a first pulse signal and a second pulse signal. The postneuronal circuit is coupled to the synaptic circuit. The post-neuron circuit includes an input terminal, an output terminal and an accumulation terminal. The integrated terminal is charged to a membrane potential according to the first pulse signal. The post-neuron circuit further includes a first control circuit, a second control circuit, a first delay circuit and a second delay circuit. The first control circuit is coupled between the power accumulation terminal and the output terminal. The first control circuit is used for generating an excitation signal at the output end according to the film electric potential. The second control circuit is coupled to the output end and used for generating a first control signal according to the excitation signal. The first delay circuit is used for delaying the excitation signal to generate a second control signal. The second delay circuit is used for delaying the second control signal to generate a third control signal. The first control signal and the third control signal are used to control the voltage level of the power accumulation terminal and maintain the power accumulation terminal at a fixed voltage period. The second control signal is used to control the state of the phase change element in cooperation with the second pulse signal, thereby determining a weight of the neural-like circuit.
在一些实施例中,类神经电路还包含一前神经元电路。前神经元电路耦接突触电路。前神经元电路用以产生第一脉冲信号以及第二脉冲信号,并传送第一脉冲信号以及第二脉冲信号至突触电路。In some embodiments, the neuron-like circuit further includes a preneuron circuit. The preneuronal circuit is coupled to the synaptic circuit. The pre-neuron circuit is used for generating the first pulse signal and the second pulse signal, and transmitting the first pulse signal and the second pulse signal to the synapse circuit.
在一些实施例中,第一控制电路包含一比较器以及一整波电路。比较器用以比较膜电位与一电压门槛值,以产生一比较信号。整波电路用以依据比较信号产生激发信号。In some embodiments, the first control circuit includes a comparator and an entire wave circuit. The comparator is used for comparing the membrane potential with a voltage threshold to generate a comparison signal. The wave shaping circuit is used for generating the excitation signal according to the comparison signal.
在一些实施例中,后神经元电路还包含一第一开关。第一开关耦接于第二控制电路、一电源电压与积电端之间。第一开关受第一控制信号控制。In some embodiments, the post-neuron circuit further includes a first switch. The first switch is coupled between the second control circuit, a power supply voltage and the accumulation terminal. The first switch is controlled by the first control signal.
在一些实施例中,后神经元电路还包含一第二开关以及一第三开关。第二开关耦接于积电端与一接地端之间。第三开关耦接于输出端与接地端之间。第二开关以及第三开关受第三控制信号控制。In some embodiments, the post-neuron circuit further includes a second switch and a third switch. The second switch is coupled between the accumulation terminal and a ground terminal. The third switch is coupled between the output terminal and the ground terminal. The second switch and the third switch are controlled by the third control signal.
在一些实施例中,第二控制电路包含一反相器。反相器用以接收激发信号,以产生第一控制信号。In some embodiments, the second control circuit includes an inverter. The inverter is used for receiving the excitation signal to generate the first control signal.
在一些实施例中,第二控制电路包含一滤波电路。滤波电路用以接收激发信号,以产生第一控制信号。In some embodiments, the second control circuit includes a filter circuit. The filter circuit is used for receiving the excitation signal to generate the first control signal.
在一些实施例中,第二控制电路包含一反相器以及一滤波电路。反相器用以接收激发信号,以产生一反相信号。滤波电路用以依据反相信号产生第一控制信号。In some embodiments, the second control circuit includes an inverter and a filter circuit. The inverter is used for receiving the excitation signal to generate an inverted signal. The filter circuit is used for generating the first control signal according to the inverted signal.
在一些实施例中,突触电路还包含一轴突脉冲开关以及一轴突塑性开关。轴突脉冲开关的一第一端用以接收第一脉冲信号。轴突塑性开关的一第一端用以接收一第二脉冲信号。轴突脉冲开关的一第二端与轴突塑性开关的一第二端耦接于相变化元件。相变化元件耦接后神经元电路。In some embodiments, the synaptic circuit further includes an axonal impulse switch and an axonal plasticity switch. A first end of the axon pulse switch is used for receiving the first pulse signal. A first end of the axon plastic switch is used for receiving a second pulse signal. A second end of the axonal pulse switch and a second end of the axonal plasticity switch are coupled to the phase change element. The phase change element is coupled to the post-neuron circuit.
本揭示的一些实施方式是关于一种类神经电路的运作方法。运作方法包含:通过一突触电路接收一第一脉冲信号以及一第二脉冲信号;通过一后神经元电路依据第一脉冲信号产生一激发信号,且依据激发信号产生一第一控制信号,其中第一控制信号用以控制后神经元电路的一积电端的电压位准;通过后神经元电路延迟激发信号以产生一第二控制信号;以及通过后神经元电路延迟第二控制信号以产生一第三控制信号,其中第三控制信号用以控制后神经元电路的积电端的电压位准,其中第二控制信号用以协同第二脉冲信号以控制相变化元件的状态,进而决定类神经电路的一权重。Some embodiments of the present disclosure relate to a method of operation of a neural-like circuit. The operation method includes: receiving a first pulse signal and a second pulse signal through a synaptic circuit; generating an excitation signal according to the first pulse signal through a post-neuron circuit, and generating a first control signal according to the excitation signal, wherein The first control signal is used to control the voltage level of an accumulation terminal of the post-neuron circuit; the post-neuron circuit delays the excitation signal to generate a second control signal; and the post-neuron circuit delays the second control signal to generate a The third control signal, wherein the third control signal is used to control the voltage level of the accumulation terminal of the post-neuron circuit, wherein the second control signal is used to control the state of the phase change element in conjunction with the second pulse signal, thereby determining the neuron-like circuit of a weight.
在一些实施例中,后神经元电路包含一第一控制电路,且产生激发信号包含:通过第一控制电路的一比较器比较积电端的电压位准与一电压门槛值,以产生一比较信号;以及通过第一控制电路的一整波电路依据比较信号产生激发信号。In some embodiments, the post-neuron circuit includes a first control circuit, and generating the excitation signal includes: comparing the voltage level of the integrated terminal with a voltage threshold through a comparator of the first control circuit to generate a comparison signal ; and generating the excitation signal according to the comparison signal through a wave-forming circuit of the first control circuit.
在一些实施例中,后神经元电路包含一第二控制电路,运作方法还包含:通过第二控制电路依据激发信号产生第一控制信号;以及依据第一控制信号控制后神经元电路的一开关。In some embodiments, the post-neuron circuit includes a second control circuit, and the operation method further includes: generating a first control signal according to the excitation signal through the second control circuit; and controlling a switch of the post-neuron circuit according to the first control signal .
在一些实施例中,产生第一控制信号包含:通过第二控制电路的一滤波电路接收激发信号,以产生第一控制信号。In some embodiments, generating the first control signal includes: receiving the excitation signal through a filter circuit of the second control circuit to generate the first control signal.
在一些实施例中,产生第一控制信号包含:通过第二控制电路的一反相器接收激发信号,以产生第一控制信号。In some embodiments, generating the first control signal includes: receiving the excitation signal through an inverter of the second control circuit to generate the first control signal.
在一些实施例中,产生第一控制信号包含:通过第二控制电路的一反相器接收激发信号;以及通过第二控制电路的一滤波电路依据反相后的激发信号产生第一控制信号。In some embodiments, generating the first control signal includes: receiving the excitation signal through an inverter of the second control circuit; and generating the first control signal according to the inverted excitation signal through a filter circuit of the second control circuit.
在一些实施例中,产生第二控制信号以及第三控制信号包含:通过后神经元电路的一第一延迟电路延迟激发信号以产生第二控制信号;以及通过后神经元电路的一第二延迟电路延迟第二控制信号以产生第三控制信号。In some embodiments, generating the second control signal and the third control signal includes: delaying the excitation signal through a first delay circuit of the post-neuron circuit to generate the second control signal; and passing a second delay of the post-neuron circuit The circuit delays the second control signal to generate the third control signal.
综上所述,本揭示的类神经电路与运作方法,可利用电路建造出类神经网络系统。To sum up, the neural-like circuit and operation method disclosed in the present disclosure can construct a neural network-like system by using the circuit.
附图说明Description of drawings
为让本揭示的上述和其他目的、特征、优点与实施例能够更明显易懂,所附附图的说明如下:In order to make the above and other objects, features, advantages and embodiments of the present disclosure more clearly understood, the accompanying drawings are described as follows:
图1是依照本揭示一些实施例所绘示的一类神经电路的示意图;FIG. 1 is a schematic diagram of a type of neural circuit according to some embodiments of the present disclosure;
图2A是依照本揭示一些实施例所绘示的一类神经电路的示意图;2A is a schematic diagram of a type of neural circuit according to some embodiments of the present disclosure;
图2B是依照本揭示一些实施例所绘示的一类神经电路的示意图;2B is a schematic diagram of a type of neural circuit according to some embodiments of the present disclosure;
图3A是依照本揭示一些实施例所绘示的一类神经电路的突触电路的长期增强的时序图;3A is a timing diagram of long-term enhancement of synaptic circuits of a class of neural circuits depicted in accordance with some embodiments of the present disclosure;
图3B是依照本揭示一些实施例所绘示的一类神经电路的突触电路的长期抑制的时序图;3B is a timing diagram of long-term inhibition of synaptic circuits of a class of neural circuits depicted in accordance with some embodiments of the present disclosure;
图4是依照本揭示一些实施例所绘示的一类神经电路的示意图;4 is a schematic diagram of a type of neural circuit according to some embodiments of the present disclosure;
图5是依照本揭示一些实施例所绘示的一类神经电路的示意图;5 is a schematic diagram of a type of neural circuit according to some embodiments of the present disclosure;
图6是依照本揭示一些实施例所绘示的一类神经电路的示意图;6 is a schematic diagram of a type of neural circuit according to some embodiments of the present disclosure;
图7是依照本揭示一些实施例所绘示的一类神经电路的示意图;以及FIG. 7 is a schematic diagram of a type of neural circuit according to some embodiments of the present disclosure; and
图8是依照本揭示一些实施例所绘示的一类神经电路的运作方法的流程图。FIG. 8 is a flowchart of an operation method of a type of neural circuit according to some embodiments of the present disclosure.
具体实施方式Detailed ways
在本文中所使用的用词“耦接”亦可指“电性耦接”,且用词“连接”亦可指“电性连接”。“耦接”及“连接”亦可指二个或多个元件相互配合或相互互动。As used herein, the word "coupled" may also mean "electrically coupled," and the word "connected" may also mean "electrically connected." "Coupled" and "connected" may also mean that two or more elements cooperate or interact with each other.
请参考图1。图1是依照本揭示一些实施例所绘示的类神经电路1000的示意图。Please refer to Figure 1. FIG. 1 is a schematic diagram of a neural-
以图1示例而言,类神经电路1000包含突触电路(synapse circuit)1200、突触前神经元电路(pre-synaptic neuron circuit)1300(以下简称“前神经元”1300)以及突触后神经元电路(post-synaptic neuron circuit)1400(以下简称“后神经元”1400)。前神经元1300包含轴突驱动(axon driver)1310。轴突驱动1310包含脉冲产生器G1以及脉冲信号产生器G2。后神经元1400包含有树突(dendrite)且用以接收信号。在一些实施例中,前神经元1300的轴突驱动1310发送尖峰信号(spike),经由突触电路1200传送给后神经元1400的树突(dendrite),以刺激后神经元1400。如此,可达到类似于神经网络系统中信号传递的功效。Taking the example of FIG. 1 as an example, the neuron-
突触电路1200包含相变化元件PCM、开关(轴突脉冲开关)D1以及开关(轴突塑性开关)SW2。相变化元件PCM包含相变材料。相变材料基于电流大小而具有不同相。讯息可储存在对应的相中。举例而言,当相变化元件PCM为晶相(crystal)或多晶相(poly crystal)时,其电阻值较小。当相变化元件PCM为非晶相(amorphous)时,其电阻值较大。基于相变化元件PCM的电阻值的大小,相变化元件PCM可储存逻辑值1或0。The
开关D1是以二极管实现。开关SW2是以晶体管实现。在一些其他的实施例中,开关D1亦可采用晶体管实现。开关D1包含第一端以及第二端。第一端为阳极端且第二端为阴极端。开关D1的第一端耦接脉冲产生器G1以接收脉冲信号PS1。开关SW2的第一端耦接脉冲产生器G2以接收脉冲信号PS2。开关D1的第二端以及开关SW2的第二端耦接相变化元件PCM的第一端。相变化元件PCM的第二端耦接后神经元1400。开关SW2的控制端耦接后神经元1400,以接收来自后神经元1400的控制信号CS2。Switch D1 is implemented as a diode. The switch SW2 is implemented with a transistor. In some other embodiments, the switch D1 can also be implemented by a transistor. The switch D1 includes a first terminal and a second terminal. The first end is the anode end and the second end is the cathode end. The first terminal of the switch D1 is coupled to the pulse generator G1 to receive the pulse signal PS1. The first end of the switch SW2 is coupled to the pulse generator G2 to receive the pulse signal PS2. The second end of the switch D1 and the second end of the switch SW2 are coupled to the first end of the phase change element PCM. The second end of the phase change element PCM is coupled to the
后神经元1400包含输入端、积电端CP、输出端OUT、电容C1、电阻R1、控制电路CTR1-CTR3、延迟电路TD1-TD2以及开关S1-S3。电容C1的第一端、电阻R1的第一端以及开关S2的第一端耦接接地端GND。相变化元件PCM的第二端、电容C1的第二端、电阻R1的第二端以及开关S2的第二端耦接于积电端CP。控制电路CTR1耦接于积电端CP与输出端OUT之间。控制电路CTR2耦接于输出端OUT与开关S1之间。控制电路CTR3耦接于输入端IN与积电端CP之间。开关S1耦接于控制电路CTR2、电源电压VDD与积电端CP之间。延迟电路TD1耦接于输出端OUT与开关SW2的控制端之间。延迟电路TD2耦接延迟电路TD1的输出端与开关S2以及开关S3的控制端之间。开关S3耦接于输出端OUT与接地端GND之间。The
后神经元1400中的电容C1是模拟神经元细胞膜电位,神经元细胞膜内外有多种带电离子。因为细胞膜内外带电离子的种类与电荷量的差异,会在电容C1反映出细胞膜内外的电压差Vp(也称膜电位Vp)。神经元细胞膜上有大小不一而且可以控制带电离子进出的通道(channel)。细胞膜内外的带电离子可通过这些通道而造成膜电位Vp的值的改变。电阻R1就是模拟带电离子来回穿越通道的电性效应。从突触前神经元的轴突(axon)发送的脉冲信号,被后神经元的树突(dendrite)接收而改变后神经元细胞膜的膜电位Vp,其对应到后神经元1400的行为效应就是对电容C1充电。The capacitance C1 in the
如果上述的脉冲信号的强度够大,电容C1上的膜电位Vp超过电压门槛值Vth时,后神经元1400就会输出激发信号FIRE。反之,若脉冲信号的强度不够大,电容C1上的电压虽然升高,但是没有超过电压门槛值Vth,后神经元1400不会输出激发信号FIRE。另外,升高的膜电位Vp会逐渐经由电阻R1的漏电而降低。其在神经元细胞上的行为就是后神经元因前神经元的激发信号瞬间改变细胞膜内外的带电离子的浓度,然后带电离子又因经由细胞膜上的通道扩散平衡,使后神经元细胞膜的膜电位Vp恢复到平衡值。据此,由前神经元发送脉冲信号到后神经元的电容C1上的这条路径在电性上的行为称为泄漏积和与激发(leakyintegration and Fire,LIF)。神经元细胞膜电位Vp是泄漏积和与激发(LIF)的函数(Vp=F(LIF))。If the intensity of the above-mentioned pulse signal is large enough, when the membrane potential Vp on the capacitor C1 exceeds the voltage threshold value Vth , the
前神经元的激发信号经由突触(包含前神经元的轴突与后神经元的树突)影响后神经元1400的细胞膜电位。然而,即使是同样的激发信号,不同的前神经元对后神经元的细胞膜电位影响的大小不同。这可说是前后神经元之间突触权重(weighting:W)的大小不同。突触权重(W)是可塑性(或称可适应性)的。权重变化量(ΔW)的大小是前神经元激发时间点(tpre)与后神经元激发时间点(tpost)的时间差的函数:ΔW=F(tpost-tpre)。换言之,突触权重变化量(ΔW)的大小与时间点tpre与时间点tpost之间的时间差有关,而且依该时间差的值适应性地调整突触权重W。因此,突触权重W涉及神经元之间因果关系的指标。如此,定义了一个代表突触(synapse)因前后神经元激发时间的相对关系而改变权重(W)的特性指标,其称为“尖峰依时可塑性”(Spike timing dependent plasticity,STDP)。突触的尖峰依时可塑性(STDP)也间接与泄漏积和与激发(LIF)有关连。这是因为泄漏积和与激发(LIF)可决定后神经元的激发时间点(tpost)。在一实施例中,突触的尖峰依时可塑性(STDP)表示突触电流传导性的可塑性。更具体地说,在一些实施例中,突触的尖峰依时可塑性(STDP)表示突触电阻的大小。The firing signal of the anterior neuron affects the cell membrane potential of the
请参考图2A以及如图3A。图3A是依照本揭示一些实施例所绘示的类神经电路1000的突触电路1200的长期增强的时序图。在运作上,前神经元1300发送尖峰信号给后神经元1400。脉冲产生器G1会发送脉冲信号PS1。脉冲信号PS1的脉冲时间为时间点t1到时间点t2。在一些实施例中,脉冲信号PS1又称为“轴突脉冲LIF”,其脉冲宽度为0.1毫秒(ms),但本揭示不以此为限。在初始状态,后神经元1400的开关S1是截止状态,且积电端CP为浮接状态。在脉冲信号PS1的脉冲时间,开关D1导通。脉冲信号PS1会经由开关D1、相变化元件PCM以及控制电路CTR3对积电端CP充电,以于积电端CP产生电压位准(膜电位)Vp。在脉冲信号PS1结束后,控制电路CTR3会切断后神经1400元与突触电路1200的电性路径。在时间点t2时,前神经元1300发送脉冲信号PS2,脉冲信号PS2的脉冲时间是时间点t2到时间点t7,在一些实施例中,脉冲信号PS2又称为“轴突脉冲STDP”。脉冲信号PS2的脉冲时间分为前后两段相等时间的时间区间。前段时间区间(td)的脉冲由高电压逐渐降低,后段时间区间(td)的脉冲瞬间升高一电压值(未标示),然后再逐渐升高电压。在一些实施例,脉冲信号PS2期间(2td)为100毫秒(ms)。Please refer to FIG. 2A and FIG. 3A . 3A is a timing diagram of long-term enhancement of the
在此同时,由于其他前神经元(未绘示)的脉冲信号PS1(轴突脉冲LIF)对电容C1充电以及电阻R1放电的交错影响之下,后神经元1400的膜电位Vp震荡升高。当膜电位Vp在时间点t3达到电压门槛值Vth时,控制电路CTR1于输出端OUT产生激发信号FIRE。在一些实施例中,上述激发信号FIRE又称为“后神经元轴突激发”(Post-synaptic Neuron Axon Spike)。上述的激发信号FIRE立即经由控制电路CTR2产生控制信号CS1以导通开关S1,因此电源电压VDD将膜电位Vp充电至电源电压VDD。而激发信号FIRE经由延迟电路TD1与延迟电路TD2的时间延迟,产生控制信号CS3以导通开关S2与开关S3。此时膜电位Vp的电压在时间点t8又降低至接地值(接地端GND)。在一些实施例中,延迟电路TD1与延迟电路TD2的延迟时间均为td,因此膜电位Vp的电压会维持在电源电压VDD达2td时间(时间点t3至时间点t8),在这段时间(2td)内,后神经元1400无法接受其他神经元的激发。At the same time, the membrane potential Vp of the
接着,请同时参考图2B与3A图。图3A是依照本揭示一些实施例所绘示的类神经电路1000的突触电路1200的突触长期增强的时序图。当控制电路CTR1于输出端OUT产生激发信号FIRE时,激发信号FIRE经由延迟电路TD1产生控制信号CS2。控制信号CS2的脉冲时间为时间点t5到时间点t6。在一些实施例中,上述的控制信号CS2又称为“后神经元STDP触发”(Post-Synaptic Neuron STDP Trigger),其脉冲时间为0.1毫秒(ms)。控制信号CS2控制突触电路1200中开关SW2的栅极,使开关SW2导通。Next, please refer to FIGS. 2B and 3A at the same time. FIG. 3A is a timing diagram of long-term synaptic potentiation of the
在控制信号CS2的脉冲时间里,流经突触电路1200中相变化元件PCM的电流将由脉冲信号PS2(轴突脉冲STDP)与控制信号CS2(后神经元STDP触发)协同作用之下决定。换言之,脉冲信号PS2(轴突脉冲STDP)与控制信号CS2(后神经元STDP触发)能决定流经相变化元件PCM的电流大小。具体而言,在脉冲信号PS2(轴突脉冲STDP)的脉冲时间,控制电路CTR3有一电路路径连至电源电压VDD,且相变化元件PCM的第二端耦接电源电压VDD。此时开关D1不导通,因此电流只能流经开关SW2。当开关SW2导通时,开关SW2的第一端接收脉冲信号PS2(轴突脉冲STDP)。During the pulse time of the control signal CS2, the current flowing through the phase change element PCM in the
请参考图3A。控制信号CS2(后神经元STDP触发)的脉冲时间(时间点t5至时间点t6)是落在脉冲信号PS2(轴突脉冲STDP)的后段时间区间里,因此开关SW2的第一端与第二端之间的电压差较小。据此,瞬间流经开关SW2的电流较小。即,瞬间流经相变化元件PCM的电流较小。如此,相变化元件PCM具有较小的电阻值。换言之,突触电路1200具有较佳的传导性,因此称之为突触长期增强(Synapse Long Term Potentiation)。这也代表后神经元1400的激发(激发信号FIRE)与前神经元1300的脉冲信号PS1(轴突脉冲LIF)有关连。也就是说,后神经元1400的激发(激发信号FIRE)与前神经元1300的激发有因果关系。故,连接此两神经元之间的突触电路1200的权重W被调升了。Please refer to Figure 3A. The pulse time (time point t5 to time point t6) of the control signal CS2 (post-neuron STDP trigger) falls in the latter time interval of the pulse signal PS2 (axonal pulse STDP), so the first end of the switch SW2 is connected to the first end of the switch SW2. The voltage difference between the two terminals is small. Accordingly, the current flowing through the switch SW2 momentarily is small. That is, the current flowing through the phase change element PCM instantaneously is small. In this way, the phase change element PCM has a small resistance value. In other words, the
反之,请参同时参考图2A、图2B与图3B。图3B是依照本揭示一些实施例所绘示的类神经电路1000的突触电路1200的长期抑制的时序图。以下说明的运作原理与上述相似,以下仅说明差异的部分。请先参考见图3B。控制信号CS2(后神经元STDP触发)的脉冲时间(时间点t5至时间点t6)是落在脉冲信号PS2(轴突脉冲STDP)的前段时间区间里,因此开关SW2的第一端与第二端之间的电压差较大。据此,瞬间流经开关SW2的电流较大。即,瞬间流经相变化元件PCM的电流较大。如此,相变化元件PCM具有较高的电阻值。换言之,突触电路1200具有较差的传导性,因此称之为突触长期抑制(Synapse Long Term Depression)。由图3B可知,后神经元1400的激发(激发信号FIRE)并非由前神经元1300的脉冲信号PS1(轴突脉冲LIF)所造成。也就是说,后神经元1400的激发(激发信号FIRE)与前神经元1300的激发没有因果关系。故,连接此两神经元之间的突触电路1200的权重W被调降了。类神经电路1000可利用上述运作进行学习行为,以实现类似生物体中的神经网络系统。Otherwise, please refer to FIG. 2A , FIG. 2B and FIG. 3B simultaneously. 3B is a timing diagram of long-term inhibition of the
参考图4。图4是依照本揭示一些实施例所绘示的类神经电路4000的示意图。类神经电路4000包含前神经元4300、突触电路4200以及后神经元4400。以下仅针对图4的类神经电路4000与图1的类神经电路1000之间的主要差异进行描述。Refer to Figure 4. FIG. 4 is a schematic diagram of a neural-
以图4示例而言,如前所述,控制电路CTR1可由比较器COM以及整波电路SP实现。比较器COM比较积电端CP的电压位准与电压门槛值Vth,以产生比较信号。当膜电位Vp小于电压门槛值Vth时,比较信号具有低电压位准。当膜电位Vp大于电压门槛值Vth时,比较信号具有高电压位准。整波电路SP则依据比较信号产生激发信号FIRE。Taking the example of FIG. 4 as an example, as mentioned above, the control circuit CTR1 can be realized by the comparator COM and the wave rectifying circuit SP. The comparator COM compares the voltage level of the integration terminal CP with the voltage threshold V th to generate a comparison signal. When the membrane potential Vp is less than the voltage threshold value Vth , the comparison signal has a low voltage level. When the membrane potential Vp is greater than the voltage threshold value Vth , the comparison signal has a high voltage level. The wave rectifying circuit SP generates the excitation signal FIRE according to the comparison signal.
另外,如前所述,控制电路CTR2可由反相器INV1实现。以图4示例而言,控制电路CTR2还包含滤波电路FT2。滤波电路FT2包含电容C2以及电阻R2。反相器INV1接收激发信号FIRE以产生反相信号。滤波电路FT2对来自反相器INV1的反相信号进行滤波以产生控制信号CS1。在本实施例中,开关S1是P型金属氧化物半导体场效晶体管(PMOS)。在初始状态时,开关S1的栅极端耦接至电源电压VDD,开关S1关断,积电端CP呈浮接状态,控制电路CTR1发出正相的激发信号FIRE时,反相器INV1将激发信号FIRE反相。滤波电路FT2为高通滤波器(High Pass Filter),因此开关S1的控制端瞬间被拉至低电压,开关S1导通以拉高积电端CP的电压至电源电压VDD。滤波电路FT2的时间常数(time constant)(τ)被适当地设计,使开关S1控制端的电压缓慢地升高。可以在大约两倍的td时间,关闭开关S1。类神经电路4000的其余元件连接关系以及运作相似于图1的类神经电路1000,故于此不再赘述。In addition, as described above, the control circuit CTR2 can be realized by the inverter INV1. Taking the example of FIG. 4 as an example, the control circuit CTR2 further includes a filter circuit FT2. The filter circuit FT2 includes a capacitor C2 and a resistor R2. The inverter INV1 receives the firing signal FIRE to generate an inverted signal. The filter circuit FT2 filters the inverted signal from the inverter INV1 to generate the control signal CS1. In this embodiment, the switch S1 is a P-type metal oxide semiconductor field effect transistor (PMOS). In the initial state, the gate terminal of the switch S1 is coupled to the power supply voltage VDD, the switch S1 is turned off, the accumulation terminal CP is in a floating state, and when the control circuit CTR1 sends a positive-phase excitation signal FIRE, the inverter INV1 will activate the signal FIRE inverted. The filter circuit FT2 is a high pass filter, so the control terminal of the switch S1 is instantly pulled to a low voltage, and the switch S1 is turned on to raise the voltage of the power supply terminal CP to the power supply voltage VDD. The time constant (τ) of the filter circuit FT2 is appropriately designed so that the voltage at the control terminal of the switch S1 rises slowly. Switch S1 can be closed for approximately twice td time. The connection relationship and operation of other elements of the neural-
请参考图5。图5是依照本揭示一些实施例所绘示的类神经电路5000的示意图。类神经电路5000包含前神经元5300、突触电路5200以及后神经元5400。以下仅针对图5的类神经电路5000与图1的类神经电路1000之间的主要差异进行描述。Please refer to Figure 5. FIG. 5 is a schematic diagram of a neural-
以图5示例而言,控制电路CTR2包含反相器INV2以及反相器INV3。反相器INV2接收激发信号FIRE以产生反相信号。反相器INV3接收反相信号以产生控制信号CS1。在这个实施例中,当激发信号FIRE具有高电压位准时,控制信号CS1具有高电压位准。开关S1是N型晶体管且开关S1会依据具有高电压位准的控制信号CS1导通,进而控制(维持)积电端CP的电压位准。在本实施例中,开关S1是N型金属氧化物半导体场效晶体管(NMOS),在初始状态时,开关S1的栅极端连至接地端GND,开关S1关断,积电端CP呈浮接状态,控制电路CTR1发出正相的激发信号FIRE时,反相器INV2与反相器INV3协同将开关S1的控制端瞬间拉至高电压,开关S1导通以拉高积电端CP的电压至电源电压VDD。在脉冲信号FIRE结束之后,开关S1关断,积电端CP呈浮接状态。For example in FIG. 5 , the control circuit CTR2 includes an inverter INV2 and an inverter INV3 . The inverter INV2 receives the firing signal FIRE to generate an inverted signal. The inverter INV3 receives the inverted signal to generate the control signal CS1. In this embodiment, when the firing signal FIRE has a high voltage level, the control signal CS1 has a high voltage level. The switch S1 is an N-type transistor, and the switch S1 is turned on according to the control signal CS1 with a high voltage level, thereby controlling (maintaining) the voltage level of the accumulation terminal CP. In this embodiment, the switch S1 is an N-type metal oxide semiconductor field effect transistor (NMOS). In the initial state, the gate terminal of the switch S1 is connected to the ground terminal GND, the switch S1 is turned off, and the accumulation terminal CP is floating. state, when the control circuit CTR1 sends a positive-phase excitation signal FIRE, the inverter INV2 and the inverter INV3 cooperate to instantly pull the control terminal of the switch S1 to a high voltage, and the switch S1 is turned on to pull the voltage of the accumulation terminal CP to the power supply voltage VDD. After the pulse signal FIRE ends, the switch S1 is turned off, and the accumulation terminal CP is in a floating state.
类神经电路5000的其余元件连接关系以及运作相似于图1的类神经电路1000,故于此不再赘述。The connection relationship and operation of the other components of the neural-
请参考图6。图6是依照本揭示一些实施例所绘示的类神经电路6000的示意图。类神经电路6000包含前神经元6300、突触电路6200以及后神经元6400。以下仅针对图6的类神经电路6000与图5的类神经电路5000之间的主要差异进行描述。Please refer to Figure 6. FIG. 6 is a schematic diagram of a neural-
以图6示例而言,控制电路CTR2还包含滤波电路FT4。滤波电路FT4对反相器INV3的输出进行滤波以产生控制信号CS1。控制电路CTR1发出正相的激发信号FIRE时,因FT4为高通滤波器(High Pass Filter),因此开关S1的控制端瞬间被拉至高电压。开关S1导通以拉高积电端CP的电压至电源电压VDD。滤波电路FT4的时间常数(time constant)(τ)被适当地设计,使开关S1控制端的电压缓慢地降低,可以在大约两倍的td时间,关闭开关S1。Taking the example of FIG. 6 as an example, the control circuit CTR2 further includes a filter circuit FT4. Filter circuit FT4 filters the output of inverter INV3 to generate control signal CS1. When the control circuit CTR1 sends the positive-phase excitation signal FIRE, because the FT4 is a high pass filter (High Pass Filter), the control terminal of the switch S1 is instantly pulled to a high voltage. The switch S1 is turned on to pull up the voltage of the power supply terminal CP to the power supply voltage VDD. The time constant (τ) of the filter circuit FT4 is appropriately designed, so that the voltage at the control terminal of the switch S1 decreases slowly, and the switch S1 can be turned off at about twice the time td.
类神经电路6000的其余元件连接关系以及运作相似于图5的类神经电路5000,故于此不再赘述。The connection relationship and operation of the remaining components of the neural-
请参考图7。图7是依照本揭示一些实施例所绘示的类神经电路7000的示意图。类神经电路7000包含突触电路7200以及后神经元7400。以下仅针对图7的类神经电路7000与图1的类神经电路1000之间的主要差异进行描述。Please refer to Figure 7. FIG. 7 is a schematic diagram of a neural-
以图7示例而言,控制电路CTR2可由位准闩锁器LA1(Level Latch)以及延迟电路TD3实现,但本揭示亦不以此为限。For example in FIG. 7 , the control circuit CTR2 can be implemented by a level latch LA1 (Level Latch) and a delay circuit TD3, but the present disclosure is not limited to this.
类神经电路7000的其余元件连接关系以及运作相似于图6的类神经电路6000,故于此不再赘述。The connection relationship and operation of other components of the neural-
请参考图8。图8是依照本揭示一些实施例所绘示的一类神经电路的运作方法8000的流程图。以图8示例而言,运作方法8000包含操作S810、操作S820、操作S830、操作S840以及操作S850。在一些实施例中,运作方法8000是应用于图1的类神经电路1000,但本揭示不以此为限。为了易于理解,以下将搭配图1进行讨论。Please refer to Figure 8. FIG. 8 is a flowchart of a
在操作S810中,由前神经元1300发送轴突脉冲LIF(脉冲信号PS1)以及轴突脉冲STDP(脉冲信号PS2)至突触电路1200。在一些实施例中,突触电路1200扮演类似前神经元的轴突的角色,将轴突脉冲STDP(脉冲信号PS2)发射给后神经元1400。In operation S810 , the axonal pulse LIF (pulse signal PS1 ) and the axonal pulse STDP (pulse signal PS2 ) are sent by the
在操作S820中,通过后神经元1400依据轴突脉冲LIF(脉冲信号PS1)产生激发信号FIRE。在一些实施例中,后神经元1400扮演类似后神经元的树突的角色,以接收来自突触电路1200的信号。轴突脉冲LIF(脉冲信号PS1)对后神经元1400的积电端CP的电容充电,积电端CP上的膜电位与电压门槛值Vth比较后产生激发信号FIRE。In operation S820, an excitation signal FIRE is generated by the
在操作S830中,通过后神经元1400对激发信号FIRE引入延迟时间td,以产生后神经元STDP触发(控制信号CS2)。在一些实施例中,延迟电路TD1会引入延迟时间td至激发信号FIRE,以输出后神经元STDP触发(控制信号CS2)。In operation S830, a delay time td is introduced to the firing signal FIRE by the
在操作S840中,通过后神经元1400延迟后神经元STDP触发(控制信号CS2)以产生控制信号CS3。在一些实施例中,延迟电路TD2会引入延迟时间td至后神经元STDP触发(控制信号CS2),以输出控制信号CS3。控制信号CS3用以控制开关S2与开关S3,使积电端CP维持在高电压位准2倍的延迟时间td。In operation S840, the post-neuron STDP triggering (control signal CS2) is delayed by the
在操作S850中,通过后神经元STDP触发(控制信号CS2)协同轴突脉冲STDP(脉冲信号PS2)以控制开关SW2,进而控制相变元件PCM的状态以决定突触电路1200的权重。在一些实施例中,若后神经元STDP触发(控制信号CS2)的脉冲区间落在轴突脉冲STDP(脉冲信号PS2)的后段时间区间时,突触电路1200的相变化元件PCM的电阻变小,因此突触电路1200的权重被增强。在一些实施例中,若后神经元STDP触发(控制信号CS2)的脉冲区间落在轴突脉冲STDP(脉冲信号PS2)的前段时间区间时,突触电路1200的相变化元件PCM的电阻变大,因此突触电路1200的权重被抑制。In operation S850, the post-neuron STDP triggers (control signal CS2) in conjunction with axonal pulse STDP (pulse signal PS2) to control the switch SW2, thereby controlling the state of the phase change element PCM to determine the weight of the
上述运作方法8000的叙述包含示例性的操作,但运作方法8000的该些操作不必依所显示的顺序被执行。运作方法8000的该些操作的顺序得以被变更,或者该些操作得以在适当的情况下被同时执行、部分同时执行或部分省略,皆在本揭示的实施例的精神与范围内。The above description of method of
综上所述,本揭示的类神经电路与运作方法,可利用电路建造出类神经网络系统。To sum up, the neural-like circuit and operation method disclosed in the present disclosure can construct a neural network-like system by using the circuit.
虽然本揭示已以实施方式揭露如上,然其并非用以限定本揭示,任何本领域具通常知识者,在不脱离本揭示的精神和范围内,当可作各种的更动与润饰,因此本揭示的保护范围当视所附的权利要求书所界定的范围为准。Although the present disclosure has been disclosed as above in embodiments, it is not intended to limit the present disclosure. Anyone with ordinary knowledge in the art can make various changes and modifications without departing from the spirit and scope of the present disclosure. Therefore, The scope of protection of the present disclosure should be determined by the scope defined by the appended claims.
Claims (16)
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/CN2019/118793 WO2021092896A1 (en) | 2019-11-15 | 2019-11-15 | Neural-like circuit and operation method |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN111656369A true CN111656369A (en) | 2020-09-11 |
| CN111656369B CN111656369B (en) | 2023-09-01 |
Family
ID=72348585
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201980008012.XA Active CN111656369B (en) | 2019-11-15 | 2019-11-15 | Neural-like circuits and how they work |
Country Status (3)
| Country | Link |
|---|---|
| US (1) | US11580370B2 (en) |
| CN (1) | CN111656369B (en) |
| WO (1) | WO2021092896A1 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN115146770A (en) * | 2022-07-22 | 2022-10-04 | 北京大学深圳研究生院 | An electronic synaptic circuit and neural network based on ferroelectric tunneling junction |
| CN116523010A (en) * | 2023-05-10 | 2023-08-01 | 湘潭大学 | LIF neuron circuit |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN111630528B (en) * | 2019-11-15 | 2023-08-29 | 北京时代全芯存储技术股份有限公司 | Neural circuit and operation method |
| US20210224636A1 (en) * | 2020-01-21 | 2021-07-22 | Pegah AARABI | System and method for interfacing a biological neural network and an artificial neural network |
| JP7592567B2 (en) * | 2021-08-20 | 2024-12-02 | 株式会社東芝 | Synaptic circuits and neural network devices |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20160203400A1 (en) * | 2015-01-14 | 2016-07-14 | International Business Machines Corporation | Neuromorphic memory circuit |
| CN106470023A (en) * | 2015-08-18 | 2017-03-01 | 华为技术有限公司 | Neurn simulation circuit |
| US20170364801A1 (en) * | 2016-06-18 | 2017-12-21 | International Business Machines Corporation | Neuromorphic memory circuit |
| CN108921290A (en) * | 2018-06-29 | 2018-11-30 | 清华大学 | Nerve synapse element circuit, nerve network circuit and information processing system |
| CN109727678A (en) * | 2017-10-28 | 2019-05-07 | 徐志强 | Variable neuron, cynapse simulator and simulated substrate neural circuitry |
| CN210924661U (en) * | 2019-12-05 | 2020-07-03 | 江苏时代全芯存储科技股份有限公司 | Neural circuit |
Family Cites Families (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8447714B2 (en) | 2009-05-21 | 2013-05-21 | International Business Machines Corporation | System for electronic learning synapse with spike-timing dependent plasticity using phase change memory |
| US8311965B2 (en) | 2009-11-18 | 2012-11-13 | International Business Machines Corporation | Area efficient neuromorphic circuits using field effect transistors (FET) and variable resistance material |
| CN102543172B (en) | 2012-02-27 | 2014-09-24 | 北京大学 | A control method of resistive memristor suitable for neuron circuit |
| CN102610274B (en) | 2012-04-06 | 2014-10-15 | 电子科技大学 | Weight adjustment circuit for variable-resistance synapses |
| US20150278681A1 (en) | 2014-04-01 | 2015-10-01 | Boise State University | Memory controlled circuit system and apparatus |
| GB201419355D0 (en) | 2014-10-30 | 2014-12-17 | Ibm | Neuromorphic synapses |
| US10169701B2 (en) | 2015-05-26 | 2019-01-01 | International Business Machines Corporation | Neuron peripheral circuits for neuromorphic synaptic memory array based on neuron models |
| US10318861B2 (en) | 2015-06-17 | 2019-06-11 | International Business Machines Corporation | Artificial neuron apparatus |
| US10417559B2 (en) | 2015-06-22 | 2019-09-17 | International Business Machines Corporation | Communicating postsynaptic neuron fires to neuromorphic cores |
| US10217046B2 (en) | 2015-06-29 | 2019-02-26 | International Business Machines Corporation | Neuromorphic processing devices |
| US10268949B2 (en) | 2016-03-21 | 2019-04-23 | International Business Machines Corporation | Artificial neuron apparatus |
| US10528865B2 (en) | 2016-06-21 | 2020-01-07 | International Business Machines Corporation | System to duplicate neuromorphic core functionality |
| CN106447033B (en) | 2016-10-13 | 2023-07-25 | 中国科学院深圳先进技术研究院 | Neuron synapse circuit and neuron circuit |
| CN106815636B (en) | 2016-12-30 | 2019-03-05 | 华中科技大学 | A memristor-based neuron circuit |
| KR20190007642A (en) | 2017-07-13 | 2019-01-23 | 에스케이하이닉스 주식회사 | Neuromorphic Device Having a Plurality of Synapse Blocks |
| US11308382B2 (en) | 2017-08-25 | 2022-04-19 | International Business Machines Corporation | Neuromorphic synapses |
| CN110188873B (en) | 2019-07-08 | 2024-01-19 | 中国人民解放军陆军工程大学 | Feedforward network topology digital-analog hybrid neural network circuit |
| CN111630528B (en) * | 2019-11-15 | 2023-08-29 | 北京时代全芯存储技术股份有限公司 | Neural circuit and operation method |
-
2019
- 2019-11-15 CN CN201980008012.XA patent/CN111656369B/en active Active
- 2019-11-15 US US16/772,164 patent/US11580370B2/en active Active
- 2019-11-15 WO PCT/CN2019/118793 patent/WO2021092896A1/en not_active Ceased
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20160203400A1 (en) * | 2015-01-14 | 2016-07-14 | International Business Machines Corporation | Neuromorphic memory circuit |
| CN107111783A (en) * | 2015-01-14 | 2017-08-29 | 国际商业机器公司 | Neuron memory circuitry |
| CN106470023A (en) * | 2015-08-18 | 2017-03-01 | 华为技术有限公司 | Neurn simulation circuit |
| US20170364801A1 (en) * | 2016-06-18 | 2017-12-21 | International Business Machines Corporation | Neuromorphic memory circuit |
| CN109727678A (en) * | 2017-10-28 | 2019-05-07 | 徐志强 | Variable neuron, cynapse simulator and simulated substrate neural circuitry |
| CN108921290A (en) * | 2018-06-29 | 2018-11-30 | 清华大学 | Nerve synapse element circuit, nerve network circuit and information processing system |
| CN210924661U (en) * | 2019-12-05 | 2020-07-03 | 江苏时代全芯存储科技股份有限公司 | Neural circuit |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN115146770A (en) * | 2022-07-22 | 2022-10-04 | 北京大学深圳研究生院 | An electronic synaptic circuit and neural network based on ferroelectric tunneling junction |
| CN115146770B (en) * | 2022-07-22 | 2025-04-18 | 北京大学深圳研究生院 | An electronic synaptic circuit and neural network circuit based on ferroelectric tunneling junction |
| CN116523010A (en) * | 2023-05-10 | 2023-08-01 | 湘潭大学 | LIF neuron circuit |
Also Published As
| Publication number | Publication date |
|---|---|
| US11580370B2 (en) | 2023-02-14 |
| US20210406650A1 (en) | 2021-12-30 |
| CN111656369B (en) | 2023-09-01 |
| WO2021092896A1 (en) | 2021-05-20 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN111656369B (en) | Neural-like circuits and how they work | |
| US10078800B2 (en) | Artificial neuron comprising a resistive memory having a stochastic behavior | |
| CN102610274B (en) | Weight adjustment circuit for variable-resistance synapses | |
| Suri et al. | CBRAM devices as binary synapses for low-power stochastic neuromorphic systems: auditory (cochlea) and visual (retina) cognitive processing applications | |
| KR102230784B1 (en) | Synapse circuit for spike-timing dependent plasticity(stdp) operation and neuromorphic system | |
| US9208434B2 (en) | Neuromorphic system exploiting the intrinsic characteristics of memory cells | |
| CN106845634A (en) | A kind of neuron circuit based on memory resistor | |
| CN111967589B (en) | Neuron simulation circuit, driving method thereof and neural network device | |
| CN111630528B (en) | Neural circuit and operation method | |
| CN114528984B (en) | A multi-input neuron circuit for spiking neural networks | |
| US20100299297A1 (en) | System for electronic learning synapse with spike-timing dependent plasticity using phase change memory | |
| CN110428050B (en) | Synapse bionic circuit for realizing diversified STDP learning rules based on memristor | |
| CN112801284A (en) | Power-less neuron circuit using p-n-p-n diode | |
| JP6989552B2 (en) | Neural network device | |
| Mahalanabis et al. | Demonstration of spike timing dependent plasticity in CBRAM devices with silicon neurons | |
| CN111630529B (en) | Neural circuit and operation method | |
| CN108446762A (en) | A kind of hardware circuit of the analog pulse neuron based on MOS field-effect transistors and its application | |
| CN210924661U (en) | Neural circuit | |
| Singha et al. | Analog memristive time dependent learning using discrete nanoscale RRAM devices | |
| CN210924658U (en) | neural-like circuits | |
| CN116523010B (en) | LIF neuron circuit | |
| US11443177B2 (en) | Artificial neuromorphic circuit and operation method | |
| CN210924659U (en) | Neural circuit | |
| CN210924660U (en) | Neural circuit | |
| Shin et al. | Neuronal spike event generation by memristors |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| CB02 | Change of applicant information | ||
| CB02 | Change of applicant information |
Address after: 802, unit 4, floor 8, building 2, yard 9, FengHao East Road, Haidian District, Beijing Applicant after: Beijing times full core storage technology Co.,Ltd. Applicant after: QUANXIN TECHNOLOGY Co.,Ltd. Address before: 223300 No. 601 East Changjiang Road, Huaiyin District, Huaian City, Jiangsu Province Applicant before: JIANGSU ADVANCED MEMORY TECHNOLOGY Co.,Ltd. Applicant before: QUANXIN TECHNOLOGY Co.,Ltd. |
|
| TA01 | Transfer of patent application right | ||
| TA01 | Transfer of patent application right |
Effective date of registration: 20221123 Address after: 802, unit 4, floor 8, building 2, yard 9, FengHao East Road, Haidian District, Beijing Applicant after: Beijing times full core storage technology Co.,Ltd. Address before: Room 802, unit 4, floor 8, building 2, yard 9, FengHao East Road, Haidian District, Beijing 100094 Applicant before: Beijing times full core storage technology Co.,Ltd. Applicant before: QUANXIN TECHNOLOGY Co.,Ltd. |
|
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| TR01 | Transfer of patent right | ||
| TR01 | Transfer of patent right |
Effective date of registration: 20241209 Address after: Room 405, 4th Floor, Building 6, Courtyard 1, Xitucheng Road, Haidian District, Beijing 100088 Patentee after: Beijing Times Full Core Storage Technology Co.,Ltd. Country or region after: China Address before: 100094 802, building 2D, Zhongguancun integrated circuit design Park, yard 9, FengHao East Road, Haidian District, Beijing Patentee before: Beijing times full core storage technology Co.,Ltd. Country or region before: China |