CN111487611A - 一种作业位置与动作监测设备 - Google Patents
一种作业位置与动作监测设备 Download PDFInfo
- Publication number
- CN111487611A CN111487611A CN202010453753.3A CN202010453753A CN111487611A CN 111487611 A CN111487611 A CN 111487611A CN 202010453753 A CN202010453753 A CN 202010453753A CN 111487611 A CN111487611 A CN 111487611A
- Authority
- CN
- China
- Prior art keywords
- millimeter wave
- module
- monitoring
- signal
- processing unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000009471 action Effects 0.000 title claims abstract description 38
- 238000012544 monitoring process Methods 0.000 title claims description 33
- 238000012545 processing Methods 0.000 claims abstract description 75
- 238000004458 analytical method Methods 0.000 claims abstract description 20
- 238000012806 monitoring device Methods 0.000 claims abstract description 16
- 238000011156 evaluation Methods 0.000 claims abstract description 11
- 238000001514 detection method Methods 0.000 claims abstract description 5
- 230000033001 locomotion Effects 0.000 claims description 35
- 238000003860 storage Methods 0.000 claims description 12
- 230000003137 locomotive effect Effects 0.000 claims description 8
- 238000005259 measurement Methods 0.000 claims description 8
- 238000013135 deep learning Methods 0.000 claims description 7
- 230000005540 biological transmission Effects 0.000 claims description 6
- 238000013527 convolutional neural network Methods 0.000 claims description 6
- 238000000605 extraction Methods 0.000 claims description 6
- 238000001914 filtration Methods 0.000 claims description 6
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 claims description 6
- 238000000034 method Methods 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 5
- 230000003321 amplification Effects 0.000 claims description 4
- 238000003064 k means clustering Methods 0.000 claims description 4
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 4
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 230000010363 phase shift Effects 0.000 claims description 2
- 238000005070 sampling Methods 0.000 claims description 2
- 238000012360 testing method Methods 0.000 claims description 2
- 230000007613 environmental effect Effects 0.000 abstract description 9
- 238000010606 normalization Methods 0.000 abstract description 4
- 238000009434 installation Methods 0.000 abstract description 3
- 230000006870 function Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 239000013598 vector Substances 0.000 description 2
- 206010063385 Intellectualisation Diseases 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/02—Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
- G01S13/50—Systems of measurement based on relative movement of target
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/02—Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
- G01S13/50—Systems of measurement based on relative movement of target
- G01S13/58—Velocity or trajectory determination systems; Sense-of-movement determination systems
- G01S13/583—Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
本发明公开了一种作业位置与动作监测设备,包括有天线单元、毫米波雷达处理单元、作业位置与动作分析单元,天线单元接收自由空间中由目标反射回来的毫米波电磁信号并转换为毫米波电信号然后传输给毫米波雷达处理单元,毫米波雷达处理单元根据接收的毫米波信号检测出目标的移动轨迹、位置、3D点云数据并传输给作业位置与动作分析单元,作业位置与动作分析单元根据当前检测结果对目标的作业位置与动作进行准确性与规范性评估。本发明基于毫米波雷达对目标作业位置与动作的准确性、规范性进行评估,具有备体积小、安装便利、操作使用方便,不受白天黑夜、气温气候等环境条件影响,环境适应性强、可靠性高、准确性高的优点。
Description
技术领域
本发明属于作业人员位置与动作监测的技术领域,特别涉及用于铁路机车驾驶室作业人员位置与动作监测的设备。
背景技术
铁路机车因其特殊的安全生产要求,其全部作业动作都有系列规范性要求。其中,一部分作业需要作业人员走到驾驶室内确定位置按照相应规范完成。例如,铁路机车在工作中,需要作业人员按照相关要求,进入设备间门口检查设备状况;在进站停车时需要作业人员走到车门或者车窗按照相应规范与站台工作人员互动,等等。这些作业动作是否完成,以及完成得是否规范,直接关系到铁路机车的运输生产安全。为此,需要有技术手段对工作人员的作业位置与作业动作的规范性进行有效监测。目前,一些基于可见光视频、红外等技术手段虽然也有一定监测作用,但因这些技术手段难以准确定位,易受白天黑夜、光线明暗等环境因素影响,无法有效解决铁路机车驾驶室作业位置与动作监测需求。
发明内容
针对现有技术中的不足之处,本发明目的在于提供一种基于毫米波雷达对目标的作业位置与作业动作进行监测的设备。
本发明的另一目的在于,该设备基于毫米波雷达进行监测,不受白天黑夜、气温气候等环境条件影响,具有环境适应性强、操作使用方便、可靠性高、准确性高的优点。
为实现上述目的,本发明的技术方案为:
一种作业位置与动作监测设备,包括有天线单元、毫米波雷达处理单元、作业位置与动作分析单元,天线单元接收自由空间中由目标反射回来的毫米波电磁信号并转换为毫米波电信号然后传输给毫米波雷达处理单元,毫米波雷达处理单元根据接收的毫米波信号检测出目标的移动轨迹、位置、3D点云数据并传输给作业位置与动作分析单元,作业位置与动作分析单元根据当前检测结果对目标的作业位置与动作进行准确性与规范性评估。
所述天线单元包括有发射天线模块、接收天线模块。
进一步,所述天线单元将来自于毫米波雷达处理单元的毫米波电信号转换为毫米波电磁信号,并由所述发射天线模块发射到自由空间。
进一步,所述接收天线模块接收由目标反射回来的电磁波信号,并将电磁波信号转换为毫米波电信号,再将所述毫米波电信号输出给所述毫米波雷达处理单元。
所述毫米波雷达处理单元包括有接收机模块、发射机模块、信号产生模块、雷达信号处理模块、雷达数据处理模块。
进一步地,信号产生模块用以产生一定带宽、脉宽的线性调频连续毫米波信号给到发射机模块,由发射机模块转换成要发射的毫米波电信号输出到所述天线单元。
进一步地,所述发射机模块将所述线性调频连续毫米波信号移相、放大从而形成所述要发射的毫米波电信号。
进一步地,所述毫米波为60GHz及以上的线性调频连续毫米波,其具有更好的测量精度,进而确保所述作业位置与动作监测设备有更可信的分析结果。
更进一步地,所述信号产生模块为所述毫米波雷达处理单元中的其他模块提供工作所需的时钟和/或本振频率。
所述毫米波雷达处理单元对接收的毫米波电信号进行目标聚类、目标跟踪处理,从而获得目标的移动轨迹、位置、3D点云数据。
进一步地,所述毫米波雷达处理单元具体采用K均值聚类算法实施所述目标聚类。
进一步地,所述毫米波雷达处理单元具体采用基于卡尔曼滤波的群目标跟踪算法来实施所述目标跟踪。
具体而言,所述基于卡尔曼滤波的群目标跟踪算法具体是高斯混合概率假设密度滤波算法。
所述毫米波雷达处理单元包括有接收机模块、发射机模块、信号产生模块、雷达信号处理模块、雷达数据处理模块。
进一步地,接收机模块接收从天线单元输入的毫米波电信号并传输给雷达信号处理模块,雷达信号处理模块对毫米波电信号进行测距、测角、目标检测、多普勒信息提取、相位信息提取。
进一步地,所述接收机模块通过低噪声放大、下变频、中频滤波、A/D采样对所述毫米波电信号进行处理后再传输给雷达信号处理模块。
进一步地,所述雷达数据处理模块获取所述雷达信号处理模块的处理结果来检测出目标的移动轨迹、位置、3D点云数据并传输给作业位置与动作分析单元。
所述作业位置与动作分析单元包括有嵌入式AI模块、系统管理与控制模块。
进一步地,嵌入式AI模块采用深度学习算法对来自于毫米波雷达处理单元的移动轨迹、位置、3D点云数据进行分析,得出目标当前的作业位置与动作的准确性与规范性评估结果。
进一步地,监测设备包括有接口单元,所述嵌入式AI模块对实时评估结果进行本地存储,或经接口单元向外部设备输出实时评估结果。
进一步地,所述深度学习算法具体为Faster R-CNN卷积神经网络。
进一步地,系统管理与控制模块对所述作业位置与动作监测设备上的其他模块进行协同控制。
监测设备包括有存储单元,存储单元连接所述毫米波雷达处理单元、所述接口单元。
进一步地,所述存储单元存储来自于所述毫米波雷达处理单元对移动轨迹、位置、3D点云数据的实时测量结果,并将存储的雷达工作参数输出给所述毫米波雷达处理单元。
进一步地,所述存储单元存储通过所述接口单元接收的外部设备输入的工作参数、系统更新固件。
监测设备包括有电源单元,电源单元给监测设备中其他单元提供电源。
所述目标具体是铁路机车驾驶室的作业人员,针对铁路机车驾驶室结构特点,所述作业位置与动作监测设备安装在驾驶室内天花板中央。
本发明基于毫米波雷达对目标的移动轨迹、位置、作业时的3D点云进行监测,并在此基础上分析评估目标的作业位置与动作的准确性、规范性,具有备体积小、安装便利、操作使用方便,不受白天黑夜、气温气候等环境条件影响,环境适应性强、可靠性高、准确性高的优点。
附图说明
图1示出了本发明的监测设备的组成结构示意图。
图2示出了本发明的毫米波雷达处理单元的组成结构示意图。
图3示出了本发明的作业位置与动作分析单元的组成结构示意图。
图4a示出了在一个持续时间Tc内发射信号的频率变化情况。
图4b示出了按照图4a的调频方式所产生的线性调频连续毫米波发射信号。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
如图1所示,提供了一种作业位置与动作监测设备,包括天线单元1、毫米波雷达处理单元2、作业位置与动作分析单元3、存储单元5、接口单元4、电源单元6。
所述电源单元6用以给所述作业位置与动作监测设备中其他各单元供电。
所述接口单元4用以所述作业位置与动作监测设备与外部设备通信。
所述存储单元5用以存储系统程序代码、系统参数、作业人员移动轨迹/位置/3D点云数据、作业人员作业位置与动作分析评估结果数据、深度学习网络参数等数据。
所述天线单元1包含发射天线模块、接收天线模块。所述作业位置与动作监测设备工作时,所述天线单元1将来自于毫米波雷达处理单元2的毫米波电信号转换为毫米波电磁信号,并由所述发射天线模块发射到自由空间。毫米波电磁信号遇到目标后,目标会反射回部分毫米波电磁信号到所述天线单元1,所述天线单元1中的接收天线模块接收由目标反射回来的电磁波信号,并将电磁波信号转换为毫米波电信号,并将所述毫米波电信号输出给所述毫米波雷达处理单元2。
如图2所示,在其中一个实施例中,所述毫米波雷达处理单元2包括有接收机模块8、发射机模块7、信号产生模块9、雷达信号处理模块10、雷达数据处理模块11。
如图4a所示,在其中一个实施例中,所述信号产生模块9根据相应参数产生一定带宽、脉宽的线性调频连续波信号并输出到发射机模块7。
具体地说,图4a描述的是在一个持续时间Tc内该发射信号的频率变化情况,由图4a可知,发射信号的调频起始频率fc为60GHz,脉冲持续时间Tc为40us,带宽B为4GHz,调频速率(斜率)S为100MHz/us。
图4b为按照图4a的调频方式所产生的线性调频连续毫米波信号:
其中,所述信号产生模块9还产生所述毫米波雷达处理单元2中其他各模块工作所需的时钟、本振频率等信号。
所述发射机模块7将所述信号产生模块9产生的线性调频连续毫米波信号移相、放大到毫米波发射信号,并将毫米波发射信号输出到天线单元1。其中,移相是为了控制发射波束的发射角度,放大是为了保证发射出去的信号有足够的功率。
所述接收机模块8接收从天线单元1输入的目标回波毫米波信号,通过低噪声放大、下变频、中频滤波、A/D采用等处理,并将处理结果输出到所述雷达信号处理模块10进行下一步处理。
所述雷达信号处理模块10对来自于所述接收机模块9的信号进行测距、测角、目标检测、多普勒信息提取、相位信息提取等处理,并将处理结果输出到所述雷达数据处理模块进行下一步处理。
所述雷达数据处理模块11对来自于所述雷达信号处理模块10的信号进行目标聚类、目标跟踪处理,形成目标作为位置、移动轨迹、3D点云数据,并输出到所述作业位置与动作分析单元3进行下一步处理。
具体地说,对目标的聚类处理,在其中一个实施例中采用K均值聚类算法,其实现相对简单,占用资源较少,且可满足应用需求,K均值聚类算法的核心思想是把n个向量xj(1,2…,n)分为c个组Gi(i=1,2,…,c),并求每组的聚类中心,使得非相似性(或距离)指标的价值函数(或目标函数)达到最小。该算法实现步骤为:
步骤1:初始化聚类中心ci,i=1,…,c。典型的做法是从所有数据点中任取c个点;
具体地说,对目标的跟踪处理在聚类处理的基础上,在其中的一个实施例中采用一种跳转马尔科夫系统模型高斯混合概率假设密度滤波(JMS-GMPHDF)群目标跟踪算法。该算法基于随机集理论,能够同时处理多目标检测与跟踪问题,本实施例中经过改进将其用于群目标跟踪,具有明显优势。该算法的关键实施步骤包括:
步骤1:预测
设k-1时刻后验强度vk-1有如下形式:
则预测的强度vk|k-1为:
vk|k-1(x,r)=γk(x,r)+vf,k|k-1(x,r)
式中:
为新生目标强度。
因而可得:
步骤2:更新
设预测的强度vk|k-1有如下形式:
则后验强度vk为:
式中:
期望的目标数为:
各式中的J为给定的模型参数;
πk(r)为k时刻新生目标其运动模型为r的概率分布。
如图3所示,在其中一个实施例中,所述作业位置与动作分析单元包括有嵌入式AI模块12、系统管理与控制模块13。
其中,所述嵌入式AI模块12对来自于雷达数据处理模块11的作业人员移动轨迹、位置、3D点云数据,采用深度学习算法进行综合分析,得出作业人员作业位置与动作的准确性与规范性评估结果,并将结果输出到存储单元5进行存储,或/并通过接口单元4输出给外部设备。
具体地说,在其中一个实施例中,采用深度学习算法为称作Faster R-CNN的卷积神经网络,基于作业人员移动轨迹、位置、3D点云数据,进行分析推理,得出作业人员作业位置与动作准确性、规范性评估结果。
其中,所述系统管理与控制模块13负责对所述作业位置与动作监测设备进行管理、控制,确保各单元协同工作。
总之,因毫米波的波长短,本发明采用调频连续毫米波雷达可对驾驶室内作业人员的移动轨迹、位置进行精确测量,并对确定位置的动作形成高精度3D测量点云。同时,本发明采用嵌入式AI模块对作业人员作业位置与动作准确性、规范性进行分析推理,能够实时得到作业人员当前作业位置与作业动作准确性、规范性的可靠评估结果。且不受白天黑夜、气温气候等环境条件影响。为此,本发明具有设备体积小、安装便利、操作使用方便、环境适应性强、可靠性高、准确性高、智能化的特性、优点。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
Claims (22)
1.一种作业位置与动作监测设备,其特征在于监测设备包括有天线单元、毫米波雷达处理单元、作业位置与动作分析单元,天线单元接收自由空间中由目标反射回来的毫米波电磁信号并转换为毫米波电信号然后传输给毫米波雷达处理单元,毫米波雷达处理单元根据接收的毫米波信号检测出目标的移动轨迹、位置、3D点云数据并传输给作业位置与动作分析单元,作业位置与动作分析单元根据当前检测结果对目标的作业位置与动作进行准确性与规范性评估。
2.如权利要求1所述的作业位置与动作监测设备,其特征在于所述天线单元具有发射天线模块,天线单元将来自于毫米波雷达处理单元的毫米波电信号转换为毫米波电磁信号,并由发射天线模块发射到自由空间。
3.如权利要求2所述的作业位置与动作监测设备,其特征在于所述天线单元具有接收天线模块,接收天线模块接收由目标反射回来的毫米波电磁信号,并将毫米波电磁信号转换为毫米波电信号。
4.如权利要求1所述的作业位置与动作监测设备,其特征在于所述毫米波雷达处理单元包括有发射机模块、信号产生模块,信号产生模块用以产生一定带宽、脉宽的线性调频连续毫米波信号给到发射机模块,由发射机模块转换成要发射的毫米波电信号输出到所述天线单元进行发射。
5.如权利要求4所述的作业位置与动作监测设备,其特征在于所述发射机模块将所述线性调频连续毫米波信号移相、放大从而形成所述要发射的毫米波电信号。
6.如权利要求1、4或5所述的作业位置与动作监测设备,其特征在于所述毫米波为60GHz及以上的线性调频连续毫米波。
7.如权利要求4所述的作业位置与动作监测设备,其特征在于所述信号产生模块为所述毫米波雷达处理单元中的其他模块提供工作所需的时钟和/或本振频率。
8.如权利要求1所述的作业位置与动作监测设备,其特征在于所述毫米波雷达处理单元对接收的毫米波电信号进行目标聚类、目标跟踪处理,从而获得目标的移动轨迹、位置、3D点云数据。
9.如权利要求8所述的作业位置与动作监测设备,其特征在于所述毫米波雷达处理单元具体采用K均值聚类算法实施所述目标聚类。
10.如权利要求8或9所述的作业位置与动作监测设备,其特征在于所述毫米波雷达处理单元具体采用基于卡尔曼滤波的群目标跟踪算法来实施所述目标跟踪。
11.如权利要求10所述的作业位置与动作监测设备,其特征在于所述基于卡尔曼滤波的群目标跟踪算法具体是高斯混合概率假设密度滤波算法。
12.如权利要求1或8所述的作业位置与动作监测设备,其特征在于所述毫米波雷达处理单元包括有接收机模块、雷达信号处理模块,接收机模块接收从天线单元输入的毫米波电信号并传输给雷达信号处理模块,雷达信号处理模块对毫米波电信号进行测距、测角、目标检测、多普勒信息提取、相位信息提取。
13.如权利要求12所述的作业位置与动作监测设备,其特征在于所述接收机模块通过低噪声放大、下变频、中频滤波、A/D采样对所述毫米波电信号进行处理后再传输给雷达信号处理模块。
14.如权利要求12所述的作业位置与动作监测设备,其特征在于所述毫米波雷达处理单元包括有雷达数据处理模块,雷达数据处理模块获取所述雷达信号处理模块的处理结果来检测出目标的移动轨迹、位置、3D点云数据并传输给作业位置与动作分析单元。
15.如权利要求1所述的作业位置与动作监测设备,其特征在于所述作业位置与动作分析单元包括有嵌入式AI模块,嵌入式AI模块采用深度学习算法对来自于毫米波雷达处理单元的移动轨迹、位置、3D点云数据进行分析,得出目标当前的作业位置与动作的准确性与规范性评估结果。
16.如权利要求15所述的作业位置与动作监测设备,其特征在于监测设备包括有接口单元,所述嵌入式AI模块对实时评估结果进行本地存储,或经接口单元向外部设备输出实时评估结果。
17.如权利要求15所述的作业位置与动作监测设备,其特征在于所述深度学习算法具体为Faster R-CNN卷积神经网络。
18.如权利要求15所述的作业位置与动作监测设备,其特征在于所述作业位置与动作分析单元包括有系统管理与控制模块,系统管理与控制模块对所述作业位置与动作监测设备上的其他模块进行协同控制。
19.如权利要求16所述的作业位置与动作监测设备,其特征在于监测设备包括有存储单元,存储单元连接所述毫米波雷达处理单元、所述接口单元。
20.如权利要求19所述的作业位置与动作监测设备,其特征在于所述存储单元存储来自于所述毫米波雷达处理单元对移动轨迹、位置、3D点云数据的实时测量结果,并将存储的雷达工作参数输出给所述毫米波雷达处理单元。
21.如权利要求20所述的作业位置与动作监测设备,其特征在于所述存储单元存储通过所述接口单元接收的外部设备输入的工作参数。
22.如权利要求1所述的作业位置与动作监测设备,其特征在于所述目标具体是铁路机车驾驶室的作业人员,所述作业位置与动作监测设备安装在驾驶室内天花板中央。
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202010453753.3A CN111487611A (zh) | 2020-05-26 | 2020-05-26 | 一种作业位置与动作监测设备 |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202010453753.3A CN111487611A (zh) | 2020-05-26 | 2020-05-26 | 一种作业位置与动作监测设备 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN111487611A true CN111487611A (zh) | 2020-08-04 |
Family
ID=71813394
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202010453753.3A Pending CN111487611A (zh) | 2020-05-26 | 2020-05-26 | 一种作业位置与动作监测设备 |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN111487611A (zh) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN112782662A (zh) * | 2021-01-30 | 2021-05-11 | 湖南森鹰智造科技有限公司 | 一种动态手势识别监测设备 |
| CN113985369A (zh) * | 2021-10-12 | 2022-01-28 | 浙江省交通运输科学研究院 | 一种毫米波雷达性能评估方法及系统 |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20030222809A1 (en) * | 2002-04-24 | 2003-12-04 | Terumi Nakazawa | Millimeter wave radar monitoring system |
| CN110450784A (zh) * | 2019-07-30 | 2019-11-15 | 深圳普捷利科技有限公司 | 一种基于fmcw雷达的驾驶员状态监视方法及系统 |
| CN110618635A (zh) * | 2019-10-08 | 2019-12-27 | 中兴飞流信息科技有限公司 | 一种基于ai技术的列车驾驶室作业规范监测系统 |
| CN110632849A (zh) * | 2019-08-23 | 2019-12-31 | 珠海格力电器股份有限公司 | 智能家电及其控制方法和装置、存储介质 |
| CN110738095A (zh) * | 2019-08-23 | 2020-01-31 | 珠海格力电器股份有限公司 | 一种行为分析方法及装置 |
| CN212658821U (zh) * | 2020-05-26 | 2021-03-05 | 湖南森鹰科技有限公司 | 一种作业位置与动作监测设备 |
-
2020
- 2020-05-26 CN CN202010453753.3A patent/CN111487611A/zh active Pending
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20030222809A1 (en) * | 2002-04-24 | 2003-12-04 | Terumi Nakazawa | Millimeter wave radar monitoring system |
| CN110450784A (zh) * | 2019-07-30 | 2019-11-15 | 深圳普捷利科技有限公司 | 一种基于fmcw雷达的驾驶员状态监视方法及系统 |
| CN110632849A (zh) * | 2019-08-23 | 2019-12-31 | 珠海格力电器股份有限公司 | 智能家电及其控制方法和装置、存储介质 |
| CN110738095A (zh) * | 2019-08-23 | 2020-01-31 | 珠海格力电器股份有限公司 | 一种行为分析方法及装置 |
| CN110618635A (zh) * | 2019-10-08 | 2019-12-27 | 中兴飞流信息科技有限公司 | 一种基于ai技术的列车驾驶室作业规范监测系统 |
| CN212658821U (zh) * | 2020-05-26 | 2021-03-05 | 湖南森鹰科技有限公司 | 一种作业位置与动作监测设备 |
Non-Patent Citations (1)
| Title |
|---|
| 杨威 等: "《基于有限集统计学理论的机动目标联合检测、跟踪与分类技术》", 30 September 2017, 中山大学出版社, pages: 152 - 157 * |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN112782662A (zh) * | 2021-01-30 | 2021-05-11 | 湖南森鹰智造科技有限公司 | 一种动态手势识别监测设备 |
| CN113985369A (zh) * | 2021-10-12 | 2022-01-28 | 浙江省交通运输科学研究院 | 一种毫米波雷达性能评估方法及系统 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10598764B2 (en) | Radar target detection and imaging system for autonomous vehicles with ultra-low phase noise frequency synthesizer | |
| US7626535B2 (en) | Track quality based multi-target tracker | |
| CN112782662A (zh) | 一种动态手势识别监测设备 | |
| CN105572664A (zh) | 基于数据融合的组网导航雷达目标跟踪系统 | |
| CN112731380B (zh) | 一种基于毫米波的人体智能监测方法及监测设备 | |
| CN102866398A (zh) | 一种利用调频连续波雷达进行动目标识别的方法及系统 | |
| CN108802715A (zh) | 一种数字化脉冲体制的无线电高度表 | |
| US10281573B1 (en) | Retrodiction tracking system and related techniques | |
| CN106291487A (zh) | 一种基于agc电压和回波数据的雷达接收功率和rcs估计方法 | |
| CN110320507B (zh) | 一种低小慢目标自动探测、跟踪、识别系统 | |
| CN111487611A (zh) | 一种作业位置与动作监测设备 | |
| CN108872974B (zh) | 一种要地防务雷达 | |
| CN105572670A (zh) | 一种飞鸟探测雷达系统 | |
| CN111352066B (zh) | 基于粒子滤波的定位方法、装置、计算机设备和存储介质 | |
| Darlis et al. | Performance Analysis of 77 GHz mmWave Radar Based Object Behavior. | |
| CN212658821U (zh) | 一种作业位置与动作监测设备 | |
| EP4105687A1 (en) | People counting based on radar measurement | |
| WO2020133223A1 (zh) | 目标探测方法、雷达、车辆以及计算机可读存储介质 | |
| US20240245317A1 (en) | Electronic device, method for controlling electronic device, and program | |
| CN117572423B (zh) | 多普勒孔径同收发机会阵雷达 | |
| CN111568406A (zh) | 一种疲劳与健康监测设备 | |
| CN110412562B (zh) | 机载距离测量设备健康度评估方法 | |
| CN119001637A (zh) | 一种基于电信号处理的雷达监测方法及系统 | |
| CN111983596B (zh) | 多通道并行搜索跟踪测距设备 | |
| CN117331038A (zh) | 用于舰载引导雷达的动态目标模拟设备及测试方法 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| CB03 | Change of inventor or designer information | ||
| CB03 | Change of inventor or designer information |
Inventor after: Shi Shaoying Inventor after: Li Guanzhang Inventor after: Feng Qinqun Inventor after: Wu Jiewei Inventor before: Shi Shaoying Inventor before: Zheng Daikun Inventor before: Yu Fangli Inventor before: Wu Jiewei |