[go: up one dir, main page]

CN111369635A - System and method for predicting truncated image, method for preparing data, and medium thereof - Google Patents

System and method for predicting truncated image, method for preparing data, and medium thereof Download PDF

Info

Publication number
CN111369635A
CN111369635A CN201811592101.7A CN201811592101A CN111369635A CN 111369635 A CN111369635 A CN 111369635A CN 201811592101 A CN201811592101 A CN 201811592101A CN 111369635 A CN111369635 A CN 111369635A
Authority
CN
China
Prior art keywords
image
virtual
data
truncated
truncation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811592101.7A
Other languages
Chinese (zh)
Other versions
CN111369635B (en
Inventor
赵冰洁
王学礼
孙妍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GE Precision Healthcare LLC
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Priority to CN201811592101.7A priority Critical patent/CN111369635B/en
Publication of CN111369635A publication Critical patent/CN111369635A/en
Application granted granted Critical
Publication of CN111369635B publication Critical patent/CN111369635B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • G06T11/005Specific pre-processing for tomographic reconstruction, e.g. calibration, source positioning, rebinning, scatter correction, retrospective gating
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10081Computed x-ray tomography [CT]
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Image Analysis (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

本发明涉及预测截断图像的系统和方法、准备数据的方法及其介质。其中准备数据的方法包括虚拟模拟步骤,用于对图像数据进行虚拟模拟,以同时得到有数据截断的虚拟失真图像和没有数据截断的虚拟精标准图像。所述预测截断图像的方法基于训练的学习网络预测截断图像,所述训练的学习网络是基于通过上述准备数据的方法来得到的虚拟失真图像和虚拟精标准图像构成的数据集进行数据训练得到的。还提供与上述方法对应的系统以及记录的指令可实现上述方法的记录介质。

Figure 201811592101

The present invention relates to a system and method for predicting a truncated image, a method for preparing data, and a medium thereof. The method for preparing data includes a virtual simulation step for performing virtual simulation on image data, so as to simultaneously obtain a virtual distorted image with data truncation and a virtual refined standard image without data truncation. The method for predicting a truncated image predicts a truncated image based on a trained learning network, and the trained learning network is obtained by performing data training based on a data set consisting of a virtual distorted image and a virtual refined standard image obtained by the above-mentioned method of preparing data. . Also provided are a system corresponding to the above method and a recording medium in which the recorded instructions can implement the above method.

Figure 201811592101

Description

预测截断图像的系统和方法、准备数据的方法及其介质System and method for predicting truncated image, method for preparing data and medium thereof

技术领域technical field

本发明涉及医疗成像领域,特别涉及在计算机断层扫描(CT)成像中为预测截断图像准备数据以及基于该数据预测截断图像的技术。The present invention relates to the field of medical imaging, and in particular to techniques for preparing data for predicting truncated images in computed tomography (CT) imaging and predicting truncated images based on the data.

背景技术Background technique

在CT扫描的过程中,使用检测器来采集通过患者身体后的X射线的数据,之后再对这些采集到的X射线数据进行处理以得到投影数据。可利用这些投影数据来重建切片图像。完整的投影数据可重建准确的切片图像以用于诊断。During a CT scan, a detector is used to collect X-ray data after passing through the patient's body, and then the collected X-ray data is processed to obtain projection data. These projection data can be used to reconstruct slice images. Complete projection data reconstructs accurate slice images for diagnosis.

然而,如果患者体型较大或摆放特殊的姿势,那么该患者身体的某些部位就会超出扫描域,检测器也就无法采集到完整的投影数据,这被称之为数据截断。这种数据截断会带来截断伪影,并最终导致得到失真的重建图像。失真的图像在放射治疗中肯定是不理想的,因为医生在诊断时必需要知道身体皮肤的线条和沿着射线束的CT数,这样才可以准确判断出应该施加到患者身上的放射剂量,但是失真的图像无法准确体现上述信息。这样一来,如何恢复扫描域外的图像(我们称之为截断图像)就是必须要解决的问题。However, if the patient is large or in a special position, some parts of the patient's body will be out of the scanning field, and the detector will not be able to collect the complete projection data, which is called data truncation. This data truncation introduces truncation artifacts and ultimately results in distorted reconstructed images. Distorted images are definitely not ideal in radiation therapy, because doctors must know the lines of the body skin and the number of CTs along the beam when making a diagnosis, so that they can accurately judge the radiation dose that should be applied to the patient, but Distorted images do not accurately reflect the above information. In this way, how to recover the image outside the scanning domain (we call it the truncated image) is a problem that must be solved.

有好几种用于处理上述截断问题的传统方法,它们通过一些数学模型来预测被截断的投影数据,比如利用水模来预测截断部分,但是这些传统方法所恢复的截断图像的质量会随不同的实际情况而改变,性能也都不够理想。此外,不同的用户往往涉及不同的病人集,他们所需要的图像数据也有侧重点,但传统方法中从来未涉及要将图像数据进行分类。There are several traditional methods for dealing with the above truncation problem. They use some mathematical models to predict the truncated projection data, such as using the water model to predict the truncated part, but the quality of the truncated image recovered by these traditional methods will vary. The actual situation changes, and the performance is not ideal. In addition, different users often involve different sets of patients, and the image data they need is also focused, but the traditional method never involves classifying the image data.

近年来,又涌现出一种新技术,其中通过人工智能(AI)的方式来预测截断图像。通过AI来预测截断图像,其无疑有着传统技术无法比拟的巨大优势。然而,AI的性能取决于其输入数据。医院或研究机构和部门每天都会持续积累原始图像数据,但我们显然不能简单地将这些积累的原始图像数据都输入到AI网络中进行学习,因为AI的性能取决的是输入数据的质量,而不是数量。另一方面,通过AI来预测截断图像,必须要有对应失真图像的输入数据集和对应没有数据截断的精标准图像的精标准数据集被同时输入进AI网络中,然而这样的图像并不容易获取,或者,数据类型也较为单一。In recent years, a new technique has emerged in which truncated images are predicted by means of artificial intelligence (AI). Predicting truncated images through AI undoubtedly has huge advantages that traditional technologies cannot match. However, the performance of AI depends on its input data. Hospitals or research institutions and departments continue to accumulate raw image data every day, but we obviously cannot simply input these accumulated raw image data into the AI network for learning, because the performance of AI depends on the quality of the input data, not the quality of the input data. quantity. On the other hand, to predict truncated images through AI, the input data set corresponding to the distorted image and the precise standard data set corresponding to the precise standard image without data truncation must be input into the AI network at the same time. However, such an image is not easy. Get, or, the data type is also relatively single.

发明内容SUMMARY OF THE INVENTION

本发明的一个目的在于克服现有技术中的上述和/或其他问题,其能够获得充足、可靠的数据用于算法验证,从而大大有助于提高对截断图像进行预测的准确率。One objective of the present invention is to overcome the above-mentioned and/or other problems in the prior art, which can obtain sufficient and reliable data for algorithm verification, thereby greatly helping to improve the accuracy of prediction of truncated images.

根据本发明的第一方面,提供一种用于为预测截断图像准备数据的方法,其包括虚拟模拟步骤,用于对图像数据进行虚拟模拟,以同时得到有数据截断的虚拟失真图像和没有数据截断的虚拟精标准图像。According to a first aspect of the present invention, there is provided a method for preparing data for predictive truncated images, comprising a virtual simulation step for virtual simulation of image data to obtain simultaneously a virtual distorted image with data truncated and without data Truncated virtual fine standard image.

较佳地,在所述虚拟模拟步骤前,所述方法还包括自适应分类步骤,该自适应分类步骤用于根据预先定义的特征对采集到的图像数据进行自适应分类,所述虚拟模拟步骤用于对所述分类后的图像数据进行虚拟模拟。Preferably, before the virtual simulation step, the method further includes an adaptive classification step, the adaptive classification step is used for adaptively classifying the collected image data according to predefined features, and the virtual simulation step for virtual simulation of the classified image data.

所述预先定义的特征可包括图像数据类型。进一步地,所述预先定义的特征还可包括所述图像数据类型对应的可能性。The predefined characteristics may include image data types. Further, the predefined features may further include possibilities corresponding to the image data types.

所述图像数据类型可为患者的解剖部位。The image data type may be a patient's anatomy.

较佳地,所述虚拟模拟步骤进一步包括:接收没有数据截断的原始图像;使所述原始图像中对应目标物体的部分虚拟平移(offset)以部分地移出扫描域,从而得到虚拟精标准图像;对所述虚拟精标准图像进行模拟扫描并进行虚拟数据采集,以生成虚拟截断数据;以及对所述虚拟截断数据进行图像重建处理,以得到虚拟失真图像。Preferably, the virtual simulation step further comprises: receiving an original image without data truncation; virtual shifting (offset) part of the original image corresponding to the target object to partially move out of the scanning domain, thereby obtaining a virtual refined standard image; Perform a simulated scan on the virtual fine standard image and perform virtual data acquisition to generate virtual truncated data; and perform image reconstruction processing on the virtual truncated data to obtain a virtual distorted image.

较佳地,所述虚拟模拟步骤进一步包括:接收没有数据截断的原始图像,所述原始图像被用作虚拟精标准图像;使所述原始图像保持在扫描域内,并对该原始图像进行正投影处理以得到该原始图像的正弦图;切除所述正弦图的左侧通道和右侧通道,并用填充值进行填补,以生成虚拟截断数据;以及对所述虚拟截断数据进行图像重建处理,以得到虚拟失真图像。Preferably, the virtual simulation step further comprises: receiving an original image without data truncation, the original image being used as a virtual refined standard image; keeping the original image in the scanning domain, and performing orthographic projection on the original image processing to obtain a sinogram of the original image; excising the left and right channels of the sinogram and padding with padding values to generate virtual truncated data; and performing image reconstruction processing on the virtual truncated data to obtain Virtually distorted image.

更较佳地,上述填充值为边缘填充值。More preferably, the above-mentioned fill value is an edge fill value.

根据本发明的第二方面,提供一种用于预测截断图像的方法,包括如下步骤:基于训练的学习网络预测截断图像,所述训练的学习网络是基于通过采用上述准备数据的方法来得到的虚拟失真图像和虚拟精标准图像构成的数据集进行数据训练得到的。According to a second aspect of the present invention, there is provided a method for predicting a truncated image, comprising the steps of: predicting a truncated image based on a trained learning network obtained by using the above-described method of preparing data The data set composed of virtual distorted images and virtual refined standard images is obtained by data training.

根据本发明的第三方面,提供一种用于预测截断图像的系统,包括:虚拟模拟装置,用于对图像数据进行虚拟模拟,以同时得到有数据截断的虚拟失真图像和没有数据截断的虚拟精标准图像;以及预测装置,用于基于训练的学习网络预测截断图像,所述训练的学习网络是基于所述虚拟失真图像和虚拟精标准图像构成的数据集进行数据训练得到的。According to a third aspect of the present invention, there is provided a system for predicting a truncated image, comprising: a virtual simulation device for performing virtual simulation on image data to simultaneously obtain a virtual distorted image with data truncated and a virtual distorted image without data truncated A refined standard image; and a prediction device for predicting a truncated image based on a trained learning network obtained by data training based on a data set formed by the virtual distorted image and the virtual refined standard image.

较佳地,所述系统还包括自适应分类器,用于根据预先定义的特征对采集到的图像数据进行自适应分类,所述虚拟模拟装置用于对分类后的图像数据进行虚拟模拟。Preferably, the system further includes an adaptive classifier for adaptively classifying the collected image data according to predefined features, and the virtual simulation device is used for virtual simulation of the classified image data.

较佳地,所述虚拟模拟装置进一步被配置为:接收没有数据截断的原始图像;使所述原始图像中对应目标物体的部分虚拟平移(offset)以部分地移出扫描域,从而得到虚拟精标准图像;对所述虚拟精标准图像进行模拟扫描并进行虚拟数据采集,以生成虚拟截断数据;以及对所述虚拟截断数据进行图像重建处理,以得到虚拟失真图像。Preferably, the virtual simulation device is further configured to: receive an original image without data truncation; virtual shift (offset) part of the original image corresponding to the target object to partially move out of the scanning domain, thereby obtaining a virtual precision standard. image; perform simulated scanning on the virtual fine standard image and perform virtual data acquisition to generate virtual truncated data; and perform image reconstruction processing on the virtual truncated data to obtain a virtual distorted image.

较佳地,所述虚拟模拟装置进一步被配置为:接收没有数据截断的原始图像,所述原始图像被用作虚拟精标准图像;使所述原始图像保持在扫描域内,并对该原始图像进行正投影处理以得到该原始图像的正弦图;切除所述正弦图的左侧通道和右侧通道,并用填充值进行填补,以生成虚拟截断数据;以及对所述虚拟截断数据进行图像重建处理,以得到虚拟失真图像。Preferably, the virtual simulation device is further configured to: receive an original image without data truncation, the original image is used as a virtual refined standard image; keep the original image in the scanning domain, and perform a Orthographic processing to obtain a sinogram of the original image; excising the left channel and right channel of the sinogram, and filling with padding values to generate virtual truncated data; and performing image reconstruction processing on the virtual truncated data, to get a virtual distorted image.

根据本发明的第四方面,还提供一种计算机可读存储介质,其上记录的指令能够实现上述方法和系统。According to a fourth aspect of the present invention, there is also provided a computer-readable storage medium, the instructions recorded thereon can implement the above method and system.

根据本发明的用于为预测截断图像准备数据的方法,能够智能地模拟出真实的数据截断,得到截断图像的预测所需要的失真图像和精标准图像;不仅如此,其还能够附加地将图像数据智能分类到不同的类别,从而更加有利于上述失真图像和精标准图像。According to the method for preparing data for predicting a truncated image, the real data truncation can be simulated intelligently to obtain a distorted image and a fine standard image required for the prediction of the truncated image; The data is intelligently classified into different categories, which is more beneficial to the above-mentioned distorted images and refined standard images.

而根据本发明的用于预测截断图像的方法和系统基于训练的学习网络预测截断图像,所述训练的学习网络正是基于由上述虚拟失真图像和虚拟精标准图像构成的数据集进行数据训练得到的,由此能够快速且更加准确地获得预测结果。The method and system for predicting a truncated image according to the present invention predicts a truncated image based on a trained learning network, which is obtained by data training based on the data set consisting of the above-mentioned virtual distorted image and virtual refined standard image. , so that the prediction result can be obtained quickly and more accurately.

通过下面的详细描述、附图以及权利要求,其他特征和方面会变得清楚。Other features and aspects will become apparent from the following detailed description, drawings, and claims.

附图说明Description of drawings

通过结合附图对于本发明的示例性实施例进行描述,可以更好地理解本发明,在附图中:The present invention may be better understood by describing exemplary embodiments of the present invention in conjunction with the accompanying drawings, in which:

图1是根据本发明示例性实施例的用于为预测截断图像准备数据的方法的流程图;1 is a flowchart of a method for preparing data for prediction of truncated images according to an exemplary embodiment of the present invention;

图2是图1所示方法中虚拟模拟步骤的第一实施例的流程图;Fig. 2 is the flow chart of the first embodiment of the virtual simulation step in the method shown in Fig. 1;

图3是图1所示方法中虚拟模拟步骤的第一实施例的示意图;Fig. 3 is the schematic diagram of the first embodiment of the virtual simulation step in the method shown in Fig. 1;

图4是图1所示方法中虚拟模拟步骤的第二实施例的流程图;Fig. 4 is the flow chart of the second embodiment of the virtual simulation step in the method shown in Fig. 1;

图5是图1所示方法中虚拟模拟步骤的第二实施例的示意图;Fig. 5 is the schematic diagram of the second embodiment of the virtual simulation step in the method shown in Fig. 1;

图6是根据本发明示例性实施例的用于为预测截断图像准备数据的方法的可选实施例的流程图;6 is a flowchart of an alternative embodiment of a method for preparing data for prediction of truncated images according to an exemplary embodiment of the present invention;

图7示出了图6所示方法中自适应分类步骤中数据分类的一个示例;Fig. 7 shows an example of data classification in the adaptive classification step in the method shown in Fig. 6;

图8是根据本发明示例性实施例的用于预测截断图像的方法的流程图;8 is a flowchart of a method for predicting a truncated image according to an exemplary embodiment of the present invention;

图9是根据本发明示例性实施例的用于预测截断图像的系统的示意性框图;以及FIG. 9 is a schematic block diagram of a system for predicting a truncated image according to an exemplary embodiment of the present invention; and

图10示出了根据本发明示例性实施例的用于预测截断图像的系统的一个示例。FIG. 10 shows an example of a system for predicting a truncated image according to an exemplary embodiment of the present invention.

具体实施例specific embodiment

以下将描述本发明的具体实施方式,需要指出的是,在这些实施方式的具体描述过程中,为了进行简明扼要的描述,本说明书不可能对实际的实施方式的所有特征均作详尽的描述。应当可以理解的是,在任意一种实施方式的实际实施过程中,正如在任意一个工程项目或者设计项目的过程中,为了实现开发者的具体目标,为了满足系统相关的或者商业相关的限制,常常会做出各种各样的具体决策,而这也会从一种实施方式到另一种实施方式之间发生改变。此外,还可以理解的是,虽然这种开发过程中所作出的努力可能是复杂并且冗长的,然而对于与本发明公开的内容相关的本领域的普通技术人员而言,在本公开揭露的技术内容的基础上进行的一些设计,制造或者生产等变更只是常规的技术手段,不应当理解为本公开的内容不充分。The specific embodiments of the present invention will be described below. It should be noted that, in the specific description of these embodiments, for the sake of brevity and conciseness, this specification may not describe all the features of the actual embodiments in detail. It should be understood that, in the actual implementation process of any embodiment, just as in the process of any engineering project or design project, in order to achieve the developer's specific goals, in order to meet the system-related or business-related constraints, Often a variety of specific decisions are made, which also vary from one implementation to another. Furthermore, it will also be appreciated that while such development efforts may be complex and tedious, for those of ordinary skill in the art to which this disclosure pertains, the techniques disclosed in this disclosure will Some changes in design, manufacture or production based on the content are only conventional technical means, and it should not be understood that the content of the present disclosure is insufficient.

除非另作定义,权利要求书和说明书中使用的技术术语或者科学术语应当为本发明所属技术领域内具有一般技能的人士所理解的通常意义。本发明专利申请说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“一个”或者“一”等类似词语并不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现在“包括”或者“包含”前面的元件或者物件涵盖出现在“包括”或者“包含”后面列举的元件或者物件及其等同元件,并不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,也不限于是直接的还是间接的连接。Unless otherwise defined, technical or scientific terms used in the claims and the specification shall have the ordinary meaning as understood by those with ordinary skill in the technical field to which this invention belongs. The terms "first", "second" and similar terms used in the description of the patent application and the claims of the present invention do not denote any order, quantity or importance, but are only used to distinguish different components. "A" or "an" and the like do not denote a quantitative limitation, but rather denote the presence of at least one. Words like "including" or "comprising" mean that the elements or items appearing before "including" or "including" cover the elements or items listed after "including" or "including" and their equivalents, and do not exclude other components or objects. Words like "connected" or "connected" are not limited to physical or mechanical connections, nor are they limited to direct or indirect connections.

根据本发明的实施例,提供了一种用于为预测截断图像准备数据的方法。According to an embodiment of the present invention, there is provided a method for preparing data for predicting a truncated image.

参考图1,图1是根据本发明示例性实施例的用于为预测截断图像准备数据的方法10的流程图。该方法10可以包含步骤200。Referring to FIG. 1, FIG. 1 is a flowchart of a method 10 for preparing data for predicting a truncated image, according to an exemplary embodiment of the present invention. The method 10 may include step 200 .

如图1所示,在步骤200(虚拟模拟步骤)中,对图像数据进行虚拟模拟,以同时得到有数据截断的虚拟失真图像和没有数据截断的虚拟精标准图像。As shown in FIG. 1 , in step 200 (virtual simulation step), virtual simulation is performed on the image data to simultaneously obtain a virtual distorted image with data truncation and a virtual refined standard image without data truncation.

方法10要为预测截断图像准备数据,具体比如要为基于AI方式的截断图像预测准备数据。这样一来,就需要为AI网络学习准备两种数据集:一种是输入数据集(即,由截断所导致的失真图像);另一种是精标准数据集(即,没有任何截断)。The method 10 is to prepare data for predicting a truncated image, for example, preparing data for predicting a truncated image based on an AI method. In this way, two kinds of datasets need to be prepared for AI network learning: one is the input dataset (i.e., distorted images caused by truncation); the other is the refined standard dataset (i.e., without any truncation).

然而,在实际临床的病例中,因为已经发生了数据截断(例如,目标物体超出了扫描域),即,已经失去了被截断的这部分数据,所以并无法得到精标准数据。根据本发明示例性实施例的用于为预测截断图像准备数据的方法10却能通过智能的方式来模拟上述数据截断,从而同时获得失真图像和精标准图像。However, in actual clinical cases, since data truncation has occurred (for example, the target object is out of the scanning area), that is, the truncated part of the data has been lost, so the precise standard data cannot be obtained. However, the method 10 for preparing data for a predicted truncated image according to an exemplary embodiment of the present invention can simulate the above-mentioned data truncation in an intelligent manner, thereby simultaneously obtaining a distorted image and a refined standard image.

虚拟模拟的第一实施例First Embodiment of Virtual Simulation

参考图2,在根据本发明的第一实施例中,上述步骤200可以进一步包括如下子步骤210至216。Referring to FIG. 2 , in the first embodiment according to the present invention, the above-mentioned step 200 may further include the following sub-steps 210 to 216 .

具体地,在子步骤210中,接收没有数据截断的原始图像。该原始图像通常为切片图像,但不排除有时也会提供投影图像。然而,即使提供的是投影图像,只要通过反投影处理即可转换为切片图像。Specifically, in sub-step 210, an original image without data truncation is received. The original image is usually a sliced image, but it is not excluded that projection images are sometimes provided. However, even if a projection image is provided, it can be converted into a slice image by back-projection processing.

参考图3,在子步骤212中,使所述原始图像中对应目标物体的部分(灰白色部分)虚拟平移(offset)以部分地移出扫描域,从而得到虚拟精标准图像。需要说明的是,在该过程中,原始的切片图像本身是保持不动的。扫描域本身是以焦点为圆心的圆,其可表示为例如DFOV50,该“50”即为扫描域的直径,其单位为cm。在扫描域为DFOV50的情况下,部分地移出扫描域,即为部分地掠过DFOV50的边缘。Referring to FIG. 3 , in sub-step 212 , the part (gray-white part) in the original image corresponding to the target object is virtually shifted (offset) to partially move out of the scanning area, thereby obtaining a virtual refined standard image. It should be noted that in this process, the original slice image itself remains unchanged. The scanning field itself is a circle with the focal point as the center, which can be expressed as, for example, DFOV50, where "50" is the diameter of the scanning field, and its unit is cm. When the scanning field is DFOV50, it is partially moved out of the scanning field, that is, the edge of DFOV50 is partially swept.

接下来,如图2所示,在子步骤214中,对所述虚拟精标准图像进行模拟扫描并进行虚拟数据采集,以生成虚拟截断数据。如前面所述地,在子步骤212中所得到的虚拟精标准图像,即为原始图像中对应目标物体的那部分图像有一部分移出了扫描域(掠过了DFOV50的边缘),这部分图像将不会被扫描到,也就是发生了虚拟数据截断。通过子步骤214,正可以得到虚拟截断数据,其为投影数据。Next, as shown in FIG. 2 , in sub-step 214 , a simulated scan is performed on the virtual fine standard image and virtual data acquisition is performed to generate virtual truncated data. As mentioned above, the virtual refined standard image obtained in sub-step 212, that is, the part of the image corresponding to the target object in the original image has moved out of the scanning area (swiped over the edge of the DFOV50), and this part of the image will be It will not be scanned, that is, virtual data truncation occurs. Through sub-step 214, virtual truncated data can be obtained, which is projection data.

最后,在子步骤216中,对所述虚拟截断数据进行图像重建处理,以得到虚拟失真图像。所述图像重建处理具体可以是反投影处理。所得到的虚拟失真图像为切片图像。Finally, in sub-step 216, image reconstruction processing is performed on the virtual truncated data to obtain a virtual distorted image. The image reconstruction processing may specifically be back-projection processing. The resulting virtual distorted image is a slice image.

从图3可知,最后得到的虚拟精标准图像与原始的切片图像相比,仅仅是其中对应目标物体的那部分图像(灰白色部分)发生了平移,然而该灰白色部分在虚拟精标准图像中的数据是完整的,并未有任何截断。而最后得到的虚拟失真图像,其与原始的切片图像相比,不仅仅是其中对应目标物体的那部分图像(灰白色部分)发生了平移,而且该灰白色部分在虚拟失真图像中的数据明显是不完整的,其发生了数据截断。由此,仅仅通过一个虚拟模拟的过程,就可以从没有数据截断的切片图像同时得到AI网络学习所需要的输入数据和精标准数据。It can be seen from Fig. 3 that, compared with the original slice image, only the part of the image (gray-white part) corresponding to the target object is shifted in the final virtual fine-standard image, but the gray-white part is in the virtual fine-standard image. is complete without any truncation. Compared with the original sliced image, the finally obtained virtual distorted image is not only the part of the image corresponding to the target object (gray-white part) that has been translated, but also the data of the gray-white part in the virtual distorted image is obviously different. Complete, which has had data truncation. As a result, only through a virtual simulation process, the input data and precise standard data required for AI network learning can be simultaneously obtained from sliced images without data truncation.

虚拟模拟的第二实施例Second Embodiment of Virtual Simulation

根据本发明的虚拟模拟过程还可以通过另一种方式实现。The virtual simulation process according to the present invention can also be implemented in another way.

具体如图4所示,在根据本发明的第二实施例中,上述步骤200可以进一步包括如下子步骤220至226。Specifically, as shown in FIG. 4 , in the second embodiment according to the present invention, the above-mentioned step 200 may further include the following sub-steps 220 to 226 .

在子步骤220中,接收没有数据截断的原始图像,所述原始图像被用作虚拟精标准图像。如前面所述地,该原始图像通常为切片图像,但不排除有时也会提供投影图像,此时只要通过反投影处理即可转换为切片图像。结合图5可知,所述虚拟精标准图像不仅具有完整的数据,而且还处于扫描域(比如,DFOV50)的范围内。In sub-step 220, a raw image without data truncation is received, the raw image being used as a virtual refined standard image. As mentioned above, the original image is usually a sliced image, but it is not excluded that a projection image is sometimes provided, and in this case, it can be converted into a sliced image by back-projection processing. It can be seen from FIG. 5 that the virtual fine standard image not only has complete data, but also is within the range of the scanning domain (eg, DFOV50).

接着,在子步骤222中,使所述原始图像(也就是虚拟精标准图像)保持在扫描域内,并对该原始图像进行正投影处理以得到该原始图像的正弦图。如前面所述地,所述原始图像不含任何截断,其中的数据是完整的,因此通过正投影处理就可以从该原始的切片图像得到完整的投影数据,即可以得到完整的正弦图数据,具体可参见图5。Next, in sub-step 222, the original image (that is, the virtual fine-standard image) is kept in the scanning domain, and the original image is subjected to orthographic processing to obtain the sinogram of the original image. As mentioned above, the original image does not contain any truncation, and the data in it is complete. Therefore, through the forward projection processing, complete projection data can be obtained from the original slice image, that is, complete sinogram data can be obtained, See Figure 5 for details.

随后,在子步骤224中,切除所述正弦图的左侧通道和右侧通道,并用填充值进行填补,以生成虚拟截断数据。如图5所示,正弦图中原来的左侧通道和右侧通道被替换为了填充值,由此便模拟出截断。Then, in sub-step 224, the left and right channels of the sinogram are cut off and padded with padding values to generate virtual truncated data. As shown in Figure 5, the original left and right channels in the sinogram are replaced with padding values, thereby simulating truncation.

关于上述“填充值”,即为padding(填充),其属性定义元素边框与元素内容之间的空间。padding简写属性在一个声明中设置所有内边距属性,设置所有当前或者指定元素内边距属性,该属性可以有1到4个值。单独使用填充属性是在一个声明中设置元素的所内边距属性,缩写填充属性也可以使用,一旦改变一个数值,则padding对应的距离都会改变。Regarding the above "padding value", it is padding (padding), and its attribute defines the space between the element border and the element content. The padding shorthand property sets all padding properties in one declaration. Sets all current or specified element padding properties. This property can have 1 to 4 values. Using the padding attribute alone is to set the padding attribute of the element in a declaration. The abbreviated padding attribute can also be used. Once a value is changed, the distance corresponding to the padding will change.

本发明中所涉及的填充值即为该padding属性值,其较佳选择边缘padding属性值,即选择边缘填充值(比如,未截断部分最外侧通道的数值)来填补正弦图中原来左侧通道和右侧通道的部分。然而,实际操作中,根据需求也可以选择其它的填充值(比如,0)来进行填补。The padding value involved in the present invention is the padding attribute value. It is better to select the edge padding attribute value, that is, select the edge padding value (for example, the value of the outermost channel of the untruncated part) to fill the original left channel in the sinogram. and part of the right channel. However, in actual operation, other padding values (eg, 0) can also be selected for padding according to requirements.

最后,在子步骤226中,对所述虚拟截断数据进行图像重建处理,以得到虚拟失真图像。与根据本发明的第一实施例相同,所述图像重建处理具体可以是反投影处理,所得到的虚拟失真图像为切片图像。如图5所示,最后得到的虚拟失真图像,其与原始的切片图像相比,数据明显是不完整的,特别是对应目标物体的那部分图像(灰白色部分),即,发生了数据截断。Finally, in sub-step 226, image reconstruction processing is performed on the virtual truncated data to obtain a virtual distorted image. Similar to the first embodiment of the present invention, the image reconstruction process may specifically be a back-projection process, and the obtained virtual distorted image is a slice image. As shown in FIG. 5 , compared with the original sliced image, the finally obtained virtual distorted image has obviously incomplete data, especially the part of the image (gray part) corresponding to the target object, that is, data truncation occurs.

由此,采用了与上述第一实施例不同的方法虚拟模拟数据截断,在这个过程中同时得到AI网络学习所需要的输入数据(失真图像)和精标准数据(精标准图像)。Therefore, a method different from the above-mentioned first embodiment is adopted to simulate data truncation, and in this process, input data (distorted image) and fine standard data (fine standard image) required for AI network learning are obtained at the same time.

虽然以上描述了虚拟模拟的两个实施例,但这并不说明本发明只能采用这两种方式来模拟数据截断。根据本发明的用于为截断图像的预测准备数据的方法也可以采用其它的方式来虚拟模拟数据截断,以同时得到AI网络学习所需要的输入数据(失真图像)和精标准数据(精标准图像)。Although two embodiments of virtual simulation are described above, it does not mean that the present invention can only simulate data truncation in these two ways. The method for preparing data for prediction of a truncated image according to the present invention can also use other ways to simulate data truncation virtually, so as to simultaneously obtain input data (distorted image) and fine standard data (fine standard image) required for AI network learning ).

根据本发明的虚拟模拟过程,完全解决了传统技术中得不到精标准数据的问题,而且还能够十分迅速和方便地获得足够的输入数据。According to the virtual simulation process of the present invention, the problem of not being able to obtain precise standard data in the traditional technology is completely solved, and sufficient input data can be obtained very quickly and conveniently.

可选地,根据本发明示例性实施例的用于为预测截断图像准备数据的方法10在步骤200前,还可进一步包括步骤100(自适应分类步骤),具体可参见图6。Optionally, before step 200, the method 10 for preparing data for predicting a truncated image according to an exemplary embodiment of the present invention may further include step 100 (adaptive classification step), see FIG. 6 for details.

步骤100根据预先定义的特征对采集到的图像数据进行自适应分类。该图像数据可能是投影图像,也可能是切片图像。如果是投影图像,只要通过常规的反投影处理即可转换为切片图像。步骤200再进一步地对步骤100分类后的图像数据进行虚拟模拟。Step 100 performs adaptive classification on the collected image data according to predefined features. The image data may be a projection image or a slice image. If it is a projection image, it can be converted into a slice image by conventional back-projection processing. Step 200 further performs virtual simulation on the image data classified in step 100.

通过上述步骤100,方法10能够在对图像数据进行虚拟模拟之前先将该图像数据智能分类到不同的类别。Through the above step 100, the method 10 can intelligently classify the image data into different categories before performing virtual simulation on the image data.

参考图7可知,在上述步骤100中,所述预先定义的特征可包括图像数据类型。具体地,该图像数据类型可以为患者的解剖部位。进一步地,所述预先定义的特征还可包括所述图像数据类型对应的可能性。Referring to FIG. 7 , in the above step 100, the predefined features may include image data types. Specifically, the image data type may be the anatomical part of the patient. Further, the predefined features may further include possibilities corresponding to the image data types.

举例来说,上述解剖部位可包括肩部、胸部、腹部、骨盆和特殊模型(phantom)。此处所述的模型通常可以是体模,但有时也可以是水模。For example, the aforementioned anatomical sites may include shoulders, chest, abdomen, pelvis, and phantoms. The models described here can usually be phantoms, but sometimes water models.

在临床中,不同的用户(比如:医院、患者或研究机构等)会具有不同的患者数据集,因此他们可能需要为他们的AI网络训练提供不同的输入数据集。而根据本发明示例的自适应分类步骤100能够对数据输入进行配置,具体诸如数据类型、数据的可能性等,这样一来将大大改进AI网络的能力。In the clinic, different users (e.g. hospitals, patients or research institutes, etc.) will have different patient datasets, so they may need to provide different input datasets for their AI network training. The adaptive classification step 100 according to the example of the present invention can configure the data input, such as the data type, the possibility of the data, etc., which will greatly improve the capabilities of the AI network.

回到图6所示的方法,在进行虚拟模拟步骤200时,都会有一个非截断(没有数据截断)、完整的切片图像作为原始的模拟输入。这个切片图像来自于一个包含了人体从头到脚所有切片图像的数据集,这个庞大的数据集可以是由各类临床医疗机构(比如,医院)采集并对外公开的数据集,也可以是由用户自己采集的数据集。根据本发明示例的自适应分类步骤100正是要基于用户需要用哪个部位的图像来对所述庞大的数据集进行自适应分类。Returning to the method shown in FIG. 6 , when the virtual simulation step 200 is performed, there will always be a non-truncated (no data truncated), complete slice image as the original simulation input. This sliced image comes from a dataset that contains all sliced images of the human body from head to toe. This huge dataset can be a dataset collected by various clinical medical institutions (such as hospitals) and published to the public, or it can be created by users Data set collected by yourself. The adaptive classification step 100 according to the example of the present invention is to perform adaptive classification on the huge data set based on which part of the image the user needs to use.

举例来说,参见图7,在某个医院的病患中,肩部病患可能较多,因此因肩部病患而照射CT的患者也较多,这样所拿到的切片图像为肩膀部分的可能性就比较大,比如有40%的可能性;接下来较多的是骨盆患者,因此因骨盆病患而照射CT的患者次较多,相应地,所拿到的切片图像为骨盆部分的可能性就比肩膀的可能性略微小点,比如有30%的可能性;再接下来较多的是胸部和腹部的病患,因此因胸部和腹部病患而照射CT的患者就相对再减少些,相应地,所拿到的切片图像为胸部和腹部的可能性就更小,比如都为20%。同时,该医院还有被安装了特殊模型的病患,所以还要考虑所拿到的切片图像为特殊模型的可能性,比如为10%。根据上述医院的病患分布,可对特殊的数据类型(人体的部位)进行分类并优化其对应的可能性。具体地,可比如为数据分类预先定义如下两个特征:For example, referring to Figure 7, among the patients in a certain hospital, there may be more shoulder patients, so more patients are irradiated with CT because of shoulder patients, so the obtained slice image is the shoulder part. The probability is relatively high, for example, there is a 40% probability; the next most are pelvic patients, so the patients who are irradiated with CT due to pelvic diseases are more frequently, and correspondingly, the obtained slice image is the pelvic part. The probability is slightly smaller than that of the shoulder, for example, there is a 30% probability; then there are more patients in the chest and abdomen, so the patients who are irradiated with CT for chest and abdomen patients are relatively less likely If it is reduced, correspondingly, the obtained slice images are less likely to be the chest and abdomen, for example, both are 20%. At the same time, there are patients with special models installed in the hospital, so the possibility that the obtained slice images are special models should be considered, such as 10%. According to the patient distribution in the above-mentioned hospitals, special data types (parts of the human body) can be classified and their corresponding possibilities can be optimized. Specifically, for example, the following two characteristics can be pre-defined for data classification:

特征1:特殊的病患部位(如图2所示,肩膀、胸部、腹部、骨盆、特殊模型);Feature 1: Special patient parts (as shown in Figure 2, shoulders, chest, abdomen, pelvis, special models);

特征2:特殊的可能性(如图2所示,40%、20%、20%、30%、10%,分别对应上述各个病患部位)。Feature 2: Special possibility (as shown in Figure 2, 40%, 20%, 20%, 30%, 10%, corresponding to the above-mentioned respective patient parts).

基于上述两个特征,可以对该医院采集的庞大的图像数据集进行自适应分类。由此,被输入到AI学习网络中的输入数据集可以被针对性地进行选择。Based on the above two features, the huge image dataset collected by the hospital can be adaptively classified. In this way, the input datasets that are fed into the AI learning network can be selected in a targeted manner.

再比如,对于某些专科医院,比如胸科医院,病患应该几乎全部都是涉及胸部的,那么可以将上述特征1的“特殊的病患部位”设为“胸部”,而将上述特征2的“特殊的可能性”设为“100%”。还比如,即使在综合性医院中,如果所拿到的切片图像都是出自某个专门的科室(比如,神经外科),也可以将上述特征1的“特殊的病患部位”设为“脑部”,而将上述特征2的“特殊的可能性”设为“100%”。For another example, for some specialized hospitals, such as chest hospitals, almost all patients should be related to the chest, then the "special patient part" of the above feature 1 can be set to "chest", and the above feature 2 can be set as "chest". The "Special Likelihood" is set to "100%". For another example, even in a general hospital, if the obtained slice images are from a specialized department (for example, neurosurgery), the "special patient part" of the above feature 1 can be set to "brain". part", and the "special possibility" of the above-mentioned feature 2 is set to "100%".

总之,可以根据各种实际情况和具体的需求来预先定义特征,而且虽然在上述的示例中所定义的特征是两个,但根据需要有时也可以定义更多的特征,而且该特征也并非仅限于数据的类型和对应的可能性。此外,即便是数据类型,其也不仅限于人体部位,也可以是能够被成像的其它结构或物体。In a word, features can be predefined according to various actual situations and specific needs, and although there are two features defined in the above example, sometimes more features can be defined according to needs, and the features are not only Limited to the type of data and the corresponding possibilities. Furthermore, even the data type is not limited to body parts, but can also be other structures or objects that can be imaged.

很显然地,上述用于为预测截断图像准备数据的方法,因为包含了如上所述的自适应分类步骤,所以可以大大地提高用于AI学习网络中的输入数据的质量。It is clear that the above method for preparing data for predicting truncated images can greatly improve the quality of the input data used in the AI learning network because it includes the adaptive classification step as described above.

进一步地,有了上述数据的准备,就可以通过AI的方式对截断图像进行预测了。具体可参见图8,其中示出了根据本发明示例性实施例的用于预测截断图像的方法80的流程图。Further, with the preparation of the above data, the truncated image can be predicted by means of AI. Specifically, reference may be made to FIG. 8 , which shows a flowchart of a method 80 for predicting a truncated image according to an exemplary embodiment of the present invention.

如图8所示,根据本发明示例性实施例的用于预测截断图像的方法80可包括步骤810。As shown in FIG. 8 , the method 80 for predicting a truncated image according to an exemplary embodiment of the present invention may include step 810 .

在步骤810中,基于训练的学习网络预测截断图像,所述训练的学习网络是基于通过采用上述准备数据的方法来得到的虚拟失真图像和虚拟精标准图像构成的数据集进行数据训练得到的。In step 810, a truncated image is predicted based on a trained learning network obtained by data training based on a data set consisting of a virtual distorted image and a virtual refined standard image obtained by using the above data preparation method.

上述方法80通过根据本发明示例性实施例的数据准备方法来得到用于AI网络学习的数据集,在这个过程中不仅可以通过自适应数据分类来匹配用于不同用户的系统校准的特殊病人集和医生习惯,而且最主要地还能智能地同时得到必需的AI训练数据(即,输入数据和精标准数据)。这样得到的数据集无疑非常有助于AI网络学习,可大大地提高通过AI方式来预测截断图像的准确性。The above method 80 obtains a data set for AI network learning through a data preparation method according to an exemplary embodiment of the present invention, in this process not only can adaptive data classification be used to match special patient sets for system calibration of different users. and doctors are used to it, and most importantly, the necessary AI training data (ie, input data and refined standard data) can be obtained at the same time intelligently. The data set thus obtained is undoubtedly very helpful for AI network learning, which can greatly improve the accuracy of predicting truncated images through AI.

另外,本发明还提供了用于预测截断图像的系统。In addition, the present invention also provides a system for predicting truncated images.

图9示出了根据本发明示例性实施例的用于预测截断图像的系统900。该系统900可包括虚拟模拟装置910和预测装置920。虚拟模拟装置910用于对图像数据进行虚拟模拟,以同时得到有数据截断的虚拟失真图像和没有数据截断的虚拟精标准图像。预测装置920则用于基于训练的学习网络预测截断图像,所述训练的学习网络是基于所述虚拟失真图像和虚拟精标准图像构成的数据集进行数据训练得到的。FIG. 9 shows a system 900 for predicting truncated images according to an exemplary embodiment of the present invention. The system 900 may include a virtual simulation device 910 and a prediction device 920 . The virtual simulation device 910 is used to perform virtual simulation on the image data, so as to obtain a virtual distorted image with data truncation and a virtual fine-standard image without data truncation at the same time. The predicting device 920 is configured to predict the truncated image based on the trained learning network, and the trained learning network is obtained by performing data training based on the data set composed of the virtual distorted image and the virtual refined standard image.

进一步地,图10示出了根据本发明示例性实施例的用于预测截断图像的系统的一个示例。Further, FIG. 10 shows an example of a system for predicting a truncated image according to an exemplary embodiment of the present invention.

如图10所示,示例性的CT系统1000配置成用于预测截断图像和/或为预测截断图像准备数据。确切地说,CT系统1000配置成对目标物体进行成像;如果获得的图像具有截断,则对该具有截断的图像进行预测以恢复被截断的图像数据。上述目标物体可以为患者或其他任何需要成像的物体,在本示例中以患者为例。As shown in FIG. 10, an exemplary CT system 1000 is configured for predicting truncated images and/or preparing data for predicting truncated images. Specifically, the CT system 1000 is configured to image the target object; if the obtained image has a truncation, then the truncated image is predicted to recover the truncated image data. The above-mentioned target object may be a patient or any other object that needs to be imaged, and in this example, a patient is taken as an example.

在一个实施例中,CT系统1000包括扫描架1002,该扫描架1002上相对地设置有X射线源1004和检测器阵列1008,该检测器阵列1008由多个检测器元件2002构成。X射线源1004用于朝向检测器阵列1008投射穿透患者的X射线1006,检测器阵列1008收集衰减的X射线束数据,该衰减的X射线束数据经预处理后作为患者的目标体积的投影数据。In one embodiment, the CT system 1000 includes a gantry 1002 having an X-ray source 1004 and a detector array 1008 formed of a plurality of detector elements 2002 disposed oppositely thereon. X-ray source 1004 is used to project patient-penetrating X-rays 1006 towards detector array 1008, which collects attenuated X-ray beam data that is preprocessed as a projection of the patient's target volume data.

在一个实施例中,CT系统1000包括控制机构2008。控制机构2008可以包括X射线控制器2010,其用于向X射线源1004提供功率和定时信号。控制机构2008还可以包括扫描架电动机控制器2012,其用于基于成像要求控制扫描架1002的旋转速度和/或位置。此外,控制机构2008还可以包括患者床控制器2026,用于移动患者床2028以将患者(图中为示出)定位在扫描架1002内的适当位置。In one embodiment, CT system 1000 includes control mechanism 2008 . The control mechanism 2008 may include an X-ray controller 2010 for providing power and timing signals to the X-ray source 1004 . The control mechanism 2008 may also include a gantry motor controller 2012 for controlling the rotational speed and/or position of the gantry 1002 based on imaging requirements. In addition, the control mechanism 2008 may also include a patient couch controller 2026 for moving the patient couch 2028 to position the patient (shown) in the proper position within the gantry 1002 .

在一个实施例中,CT系统1000进一步包括数据采集系统(DAS)2014,用于对从检测器元件2002接收到的模拟数据进行采样和数字化。In one embodiment, CT system 1000 further includes a data acquisition system (DAS) 2014 for sampling and digitizing analog data received from detector element 2002 .

在一个实施例中,CT系统100进一步包括计算装置2016,由DAS 2014采样和数字化的数据将被传输到计算机或计算装置2016进行处理。该计算装置2016可与操作员控制台2020进行通信以方便操作员操作,同时还可连接有显示器2032以方便操作员观察。此外,计算装置2016还可与图片存档及通信系统(PACS)2024相连接。In one embodiment, the CT system 100 further includes a computing device 2016 to which the data sampled and digitized by the DAS 2014 will be transmitted to a computer or computing device 2016 for processing. The computing device 2016 can communicate with the operator console 2020 to facilitate the operator's operation, and can also be connected to a display 2032 to facilitate the operator's observation. Additionally, computing device 2016 may also be connected to a picture archiving and communication system (PACS) 2024 .

在一个示例中,计算装置2016将数据存储在存储装置-例如计算机可读存储介质2018(图10中为大容量存储器)中。该计算机可读存储介质2018可以包括硬盘驱动器、软盘驱动器、光盘读/写(CD-R/W)驱动器、数字通用磁盘(DVD)驱动器、闪存驱动器和/或固态存储装置等。In one example, computing device 2016 stores data in a storage device, such as computer-readable storage medium 2018 (mass storage in FIG. 10). The computer-readable storage medium 2018 may include a hard disk drive, a floppy disk drive, a compact disk read/write (CD-R/W) drive, a digital versatile disk (DVD) drive, a flash drive, and/or solid state storage, among others.

此外,计算装置2016还可用于向DAS 2014、X射线控制器2010和扫描架电动机控制器2012、患者床控制器2026中的一者或多者提供命令和参数,以控制系统操作,例如数据采集和/或处理。In addition, computing device 2016 may also be used to provide commands and parameters to DAS 2014, X-ray controller 2010 and one or more of gantry motor controller 2012, patient bed controller 2026 to control system operations, such as data acquisition and/or processing.

CT系统1000可进一步包括图像重建器2030,其基于上述经过采样和数字化的X射线数据、采用合适的图像重建方法来进行图像重建。例如,图像重建器2030可以使用例如滤波反投影(FBP)来重建患者的目标体积的图像。尽管图10中将图像重建器2030图示为单独实体,但是在某些实施例中,图像重建器2030可以被形成为计算装置2016的一部分。或者,图像重建器2030可以不存在于CT系统1000中;亦或,计算装置2016可以执行图像重建器2030的一个或多个功能。此外,图像重建器2030可以位于本地或远程位置,并且可以使用有线或无线网络操作性地连接到CT系统1000。The CT system 1000 may further include an image reconstructor 2030 that performs image reconstruction using a suitable image reconstruction method based on the sampled and digitized X-ray data described above. For example, the image reconstructor 2030 may reconstruct an image of the patient's target volume using, for example, filtered back projection (FBP). Although image reconstructor 2030 is illustrated in FIG. 10 as a separate entity, in some embodiments, image reconstructor 2030 may be formed as part of computing device 2016 . Alternatively, image reconstructor 2030 may not be present in CT system 1000; alternatively, computing device 2016 may perform one or more functions of image reconstructor 2030. Additionally, image reconstructor 2030 may be located at a local or remote location and may be operatively connected to CT system 1000 using a wired or wireless network.

在一个实施例中,图像重建器2030将所重建的图像存储在存储装置或计算机可读存储介质2018中。或者,图像重建器2030将重建图像传输到计算装置2016,以生成用于诊断的患者信息。In one embodiment, the image reconstructor 2030 stores the reconstructed image in a storage device or computer-readable storage medium 2018 . Alternatively, the image reconstructor 2030 transmits the reconstructed image to the computing device 2016 to generate patient information for diagnosis.

在一个实施例中,CT系统1000进一步包括截断图像预测装置,其可以接收来自上述计算装置2016或图像重建器2030的截断图像,并对该截断图像进行预测和/或恢复,上述截断图像预测装置可以被形成为计算装置2016或图像重建器2030的一部分(图10中为计算装置2016的一部分)。In one embodiment, the CT system 1000 further includes a truncated image prediction device, which can receive the truncated image from the above-mentioned computing device 2016 or the image reconstructor 2030, and predict and/or restore the truncated image, the above-mentioned truncated image prediction device May be formed as part of computing device 2016 or image reconstructor 2030 (part of computing device 2016 in Figure 10).

在一个实施例中,CT系统1000可进一步包括用于为截断图像预测准备数据的数据准备装置,该数据准备装置也可以被形成为计算装置2016或图像重建器2030的一部分(图10中为计算装置2016的一部分)。In one embodiment, CT system 1000 may further include data preparation means for preparing data for truncated image prediction, which data preparation means may also be formed as part of computing device 2016 or image reconstructor 2030 (computing in FIG. 10 ). part of Device 2016).

需要说明的是,本说明书中进一步描述的各种方法和过程都可以以可执行指令的形式存储在CT系统1000中的计算装置2016和/或图像重建器2030的计算机可读存储介质中。例如,截断图像预测装置、数据准备装置可以包括计算机可读存储介质的可执行指令,并且可以采用本说明书中所述的方法来预测截断图像/准备数据。It should be noted that various methods and processes further described in this specification may be stored in the computer-readable storage medium of the computing device 2016 and/or the image reconstructor 2030 in the CT system 1000 in the form of executable instructions. For example, the truncated image prediction apparatus, the data preparation apparatus may include executable instructions of a computer-readable storage medium, and the methods described in this specification may be employed to predict the truncated image/prepare data.

上面已经描述了一些示例性实施例。然而,应该理解的是,在不脱离本发明精神和范围的情况下,还可以对上述示例性实施例做出各种修改。例如,如果所描述的技术以不同的顺序执行和/或如果所描述的系统、架构、设备或电路中的组件以不同方式被组合和/或被另外的组件或其等同物替代或补充,也可以实现合适的结果,那么相应地,这些修改后的其它实施方式也落入权利要求书的保护范围内。Some exemplary embodiments have been described above. It should be understood, however, that various modifications may be made to the above-described exemplary embodiments without departing from the spirit and scope of the present invention. For example, if the described techniques are performed in a different order and/or if components in the described systems, architectures, devices, or circuits are combined in different ways and/or are replaced or supplemented by additional components or their equivalents, Appropriate results may be achieved, and accordingly, other embodiments of these modifications also fall within the protection scope of the claims.

Claims (14)

1.一种用于为预测截断图像准备数据的方法,包括如下步骤:1. A method for preparing data for predicting a truncated image, comprising the steps of: 虚拟模拟步骤,用于对图像数据进行虚拟模拟,以同时得到有数据截断的虚拟失真图像和没有数据截断的虚拟精标准图像。The virtual simulation step is used to perform virtual simulation on the image data, so as to obtain a virtual distorted image with data truncation and a virtual fine standard image without data truncation at the same time. 2.如权利要求1所述的方法,其特征在于,在所述虚拟模拟步骤前,所述方法还包括自适应分类步骤,该自适应分类步骤用于根据预先定义的特征对采集到的图像数据进行自适应分类,所述虚拟模拟步骤用于对所述分类后的图像数据进行虚拟模拟。2. The method according to claim 1, characterized in that, before the virtual simulation step, the method further comprises an adaptive classification step, wherein the adaptive classification step is used to classify the collected images according to predefined characteristics The data is adaptively classified, and the virtual simulation step is used for virtual simulation of the classified image data. 3.如权利要求2所述的方法,其特征在于,所述预先定义的特征包括图像数据类型。3. The method of claim 2, wherein the predefined characteristic comprises an image data type. 4.如权利要求3所述的方法,其特征在于,所述预先定义的特征还包括所述图像数据类型对应的可能性。4. The method of claim 3, wherein the predefined characteristics further include a possibility corresponding to the image data type. 5.如权利要求3所述的方法,其特征在于,所述图像数据类型为患者的解剖部位。5. The method of claim 3, wherein the image data type is a patient's anatomy. 6.如权利要求1所述的方法,其特征在于,所述虚拟模拟步骤进一步包括:6. The method of claim 1, wherein the virtual simulation step further comprises: 接收没有数据截断的原始图像;Receive raw images without data truncation; 使所述原始图像中对应目标物体的部分虚拟平移(offset)以部分地移出扫描域,从而得到虚拟精标准图像;virtual translation (offset) part of the original image corresponding to the target object to partially move out of the scanning field, thereby obtaining a virtual refined standard image; 对所述虚拟精标准图像进行模拟扫描并进行虚拟数据采集,以生成虚拟截断数据;以及performing a simulated scan and virtual data acquisition on the virtual fine-standard image to generate virtual truncated data; and 对所述虚拟截断数据进行图像重建处理,以得到虚拟失真图像。Perform image reconstruction processing on the virtual truncated data to obtain a virtual distorted image. 7.如权利要求1所述的方法,其特征在于,所述虚拟模拟步骤进一步包括:7. The method of claim 1, wherein the virtual simulation step further comprises: 接收没有数据截断的原始图像,所述原始图像被用作虚拟精标准图像;receiving a raw image without data truncation, the raw image being used as a virtual refined standard image; 使所述原始图像保持在扫描域内,并对该原始图像进行正投影处理以得到该原始图像的正弦图;Keeping the original image in the scanning domain, and performing orthographic processing on the original image to obtain a sinogram of the original image; 切除所述正弦图的左侧通道和右侧通道,并用填充值进行填补,以生成虚拟截断数据;以及cutting off the left and right channels of the sinogram and padding with padding values to generate virtual truncated data; and 对所述虚拟截断数据进行图像重建处理,以得到虚拟失真图像。Perform image reconstruction processing on the virtual truncated data to obtain a virtual distorted image. 8.如权利要求7所述的方法,其特征在于,所述填充值为边缘填充值。8. The method of claim 7, wherein the padding value is an edge padding value. 9.一种用于预测截断图像的方法,包括如下步骤:9. A method for predicting a truncated image, comprising the steps of: 基于训练的学习网络预测截断图像,所述训练的学习网络是基于通过采用如权利要求1-8中任一项所述的方法来得到的虚拟失真图像和虚拟精标准图像构成的数据集进行数据训练得到的。The truncated image is predicted based on a trained learning network based on a data set consisting of a virtual distorted image and a virtual refined standard image obtained by using the method according to any one of claims 1-8. obtained by training. 10.一种用于预测截断图像的系统,包括:10. A system for predicting a truncated image, comprising: 虚拟模拟装置,用于对图像数据进行虚拟模拟,以同时得到有数据截断的虚拟失真图像和没有数据截断的虚拟精标准图像;以及,a virtual simulation device for performing virtual simulation on the image data to simultaneously obtain a virtual distorted image with data truncation and a virtual refined standard image without data truncation; and, 预测装置,用于基于训练的学习网络预测截断图像,所述训练的学习网络是基于所述虚拟失真图像和虚拟精标准图像构成的数据集进行数据训练得到的。The prediction device is used for predicting a truncated image based on a trained learning network obtained by data training based on a data set formed by the virtual distorted image and the virtual refined standard image. 11.如权利要求10所述的系统,其特征在于,还包括自适应分类器,用于根据预先定义的特征对采集到的图像数据进行自适应分类,所述虚拟模拟装置用于对分类后的图像数据进行虚拟模拟。11. The system according to claim 10, further comprising an adaptive classifier for adaptively classifying the collected image data according to predefined characteristics, and the virtual simulation device is used for classifying the collected image data. virtual simulation of the image data. 12.如权利要求10所述的系统,其特征在于,所述虚拟模拟装置进一步被配置为:12. The system of claim 10, wherein the virtual simulation device is further configured to: 接收没有数据截断的原始图像;Receive raw images without data truncation; 使所述原始图像中对应目标物体的部分虚拟平移(offset)以部分地移出扫描域,从而得到虚拟精标准图像;virtual translation (offset) part of the original image corresponding to the target object to partially move out of the scanning field, thereby obtaining a virtual refined standard image; 对所述虚拟精标准图像进行模拟扫描并进行虚拟数据采集,以生成虚拟截断数据;以及performing a simulated scan and virtual data acquisition on the virtual fine-standard image to generate virtual truncated data; and 对所述虚拟截断数据进行图像重建处理,以得到虚拟失真图像。Perform image reconstruction processing on the virtual truncated data to obtain a virtual distorted image. 13.如权利要求10所述的系统,其特征在于,所述虚拟模拟装置进一步被配置为:13. The system of claim 10, wherein the virtual simulation device is further configured to: 接收没有数据截断的原始图像,所述原始图像被用作虚拟精标准图像;receiving a raw image without data truncation, the raw image being used as a virtual refined standard image; 使所述原始图像保持在扫描域内,并对该原始图像进行正投影处理以得到该原始图像的正弦图;Keeping the original image in the scanning domain, and performing orthographic processing on the original image to obtain a sinogram of the original image; 切除所述正弦图的左侧通道和右侧通道,并用填充值进行填补,以生成虚拟截断数据;以及cutting off the left and right channels of the sinogram and padding with padding values to generate virtual truncated data; and 对所述虚拟截断数据进行图像重建处理,以得到虚拟失真图像。Perform image reconstruction processing on the virtual truncated data to obtain a virtual distorted image. 14.一种计算机可读存储介质,其上记录有经编码的指令,当执行该指令时执行如权利要求1-9中任一项所述的方法。14. A computer-readable storage medium having encoded instructions recorded thereon which, when executed, perform the method of any of claims 1-9.
CN201811592101.7A 2018-12-25 2018-12-25 System and method for predicting truncated images, method for preparing data and medium therefor Active CN111369635B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811592101.7A CN111369635B (en) 2018-12-25 2018-12-25 System and method for predicting truncated images, method for preparing data and medium therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811592101.7A CN111369635B (en) 2018-12-25 2018-12-25 System and method for predicting truncated images, method for preparing data and medium therefor

Publications (2)

Publication Number Publication Date
CN111369635A true CN111369635A (en) 2020-07-03
CN111369635B CN111369635B (en) 2025-05-02

Family

ID=71205984

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811592101.7A Active CN111369635B (en) 2018-12-25 2018-12-25 System and method for predicting truncated images, method for preparing data and medium therefor

Country Status (1)

Country Link
CN (1) CN111369635B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114913259A (en) * 2022-05-05 2022-08-16 上海联影医疗科技股份有限公司 Truncation artifact correction method, CT image correction method, apparatus, and medium
WO2023087260A1 (en) * 2021-11-19 2023-05-25 Shanghai United Imaging Healthcare Co., Ltd. Systems and methods for data processing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070248255A1 (en) * 2006-04-25 2007-10-25 Guang-Hong Chen System and Method for Estimating Data Missing from CT Imaging Projections
CN107798682A (en) * 2017-08-31 2018-03-13 深圳联影医疗科技有限公司 Image segmentation system, method, device and computer readable storage medium
US20180197317A1 (en) * 2017-01-06 2018-07-12 General Electric Company Deep learning based acceleration for iterative tomographic reconstruction
WO2018126396A1 (en) * 2017-01-05 2018-07-12 General Electric Company Deep learning based estimation of data for use in tomographic reconstruction
US20180336677A1 (en) * 2017-05-18 2018-11-22 Toshiba Medical Systems Corporation Apparatus and method for medical image processing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070248255A1 (en) * 2006-04-25 2007-10-25 Guang-Hong Chen System and Method for Estimating Data Missing from CT Imaging Projections
WO2018126396A1 (en) * 2017-01-05 2018-07-12 General Electric Company Deep learning based estimation of data for use in tomographic reconstruction
US20180197317A1 (en) * 2017-01-06 2018-07-12 General Electric Company Deep learning based acceleration for iterative tomographic reconstruction
US20180336677A1 (en) * 2017-05-18 2018-11-22 Toshiba Medical Systems Corporation Apparatus and method for medical image processing
CN107798682A (en) * 2017-08-31 2018-03-13 深圳联影医疗科技有限公司 Image segmentation system, method, device and computer readable storage medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023087260A1 (en) * 2021-11-19 2023-05-25 Shanghai United Imaging Healthcare Co., Ltd. Systems and methods for data processing
CN114913259A (en) * 2022-05-05 2022-08-16 上海联影医疗科技股份有限公司 Truncation artifact correction method, CT image correction method, apparatus, and medium

Also Published As

Publication number Publication date
CN111369635B (en) 2025-05-02

Similar Documents

Publication Publication Date Title
CN110121749B (en) Deep learning medical systems and methods for image acquisition
CN110443268B (en) Liver CT image benign and malignant classification method based on deep learning
US12315626B2 (en) Automated protocoling in medical imaging systems
JP7100048B2 (en) Systems and methods for generating simulated computer tomography (CT) images
CN106999138B (en) Diagnostic imaging method and apparatus and recording medium therefor
WO2019211307A1 (en) Modality-agnostic method for medical image representation
JP2004105728A (en) Computer aided acquisition of medical image
US11908044B2 (en) Systems and methods for computed tomography image reconstruction
CN112005314A (en) System and method for training a deep learning model of an imaging system
CN113614788A (en) Deep reinforcement learning for computer-aided reading and analysis
JP7657635B2 (en) IMAGE PROCESSING APPARATUS, LEARNING APPARATUS, RADIOLOGICAL IMAGE CAPTURE SYSTEM, IMAGE PROCESSING METHOD, LEARNING METHOD, IMAGE PROCESSING PROGRAM, AND LEARNING PROGRAM
CN111369635B (en) System and method for predicting truncated images, method for preparing data and medium therefor
EP4193927A1 (en) Methods and system for simulated radiology studies based on prior imaging data
Mettivier et al. The Napoli-Varna-Davis project for virtual clinical trials in X-ray breast imaging
CN112004471B (en) System and method for imaging system shortcut mode
US12475690B2 (en) Simulating pathology images based on anatomy data
CN111919264A (en) System and method for synchronizing imaging system and edge computing system
WO2023287885A1 (en) Systems, methods, and media for generating low-energy virtual monoenergetic images from multi-energy computed tomography data
JP2004049909A (en) Computer-aided patient health care decision support system
JP7785494B2 (en) Learning device, image generation device, learning method, image generation method, learning program, and image generation program
WO2016186746A1 (en) Methods and systems for automatic segmentation
CN119251222B (en) Plain scan CT image lesion detection method and related equipment based on back-projection data
CN111553958B (en) Calculation of image matrix size
WO2019200353A1 (en) Systems and methods for deploying deep learning applications to an imaging system
CN117078529A (en) Method and electronic device for processing computed tomography images to eliminate secondary artifacts

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20250403

Address after: Wisconsin

Applicant after: Ge precision medical Co.,Ltd.

Country or region after: U.S.A.

Address before: New York, United States

Applicant before: General Electric Co.

Country or region before: U.S.A.

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant