CN111369635A - System and method for predicting truncated image, method for preparing data, and medium thereof - Google Patents
System and method for predicting truncated image, method for preparing data, and medium thereof Download PDFInfo
- Publication number
- CN111369635A CN111369635A CN201811592101.7A CN201811592101A CN111369635A CN 111369635 A CN111369635 A CN 111369635A CN 201811592101 A CN201811592101 A CN 201811592101A CN 111369635 A CN111369635 A CN 111369635A
- Authority
- CN
- China
- Prior art keywords
- image
- virtual
- data
- truncated
- truncation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
- G06T11/003—Reconstruction from projections, e.g. tomography
- G06T11/005—Specific pre-processing for tomographic reconstruction, e.g. calibration, source positioning, rebinning, scatter correction, retrospective gating
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
- G06T2207/10081—Computed x-ray tomography [CT]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Image Analysis (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Abstract
本发明涉及预测截断图像的系统和方法、准备数据的方法及其介质。其中准备数据的方法包括虚拟模拟步骤,用于对图像数据进行虚拟模拟,以同时得到有数据截断的虚拟失真图像和没有数据截断的虚拟精标准图像。所述预测截断图像的方法基于训练的学习网络预测截断图像,所述训练的学习网络是基于通过上述准备数据的方法来得到的虚拟失真图像和虚拟精标准图像构成的数据集进行数据训练得到的。还提供与上述方法对应的系统以及记录的指令可实现上述方法的记录介质。
The present invention relates to a system and method for predicting a truncated image, a method for preparing data, and a medium thereof. The method for preparing data includes a virtual simulation step for performing virtual simulation on image data, so as to simultaneously obtain a virtual distorted image with data truncation and a virtual refined standard image without data truncation. The method for predicting a truncated image predicts a truncated image based on a trained learning network, and the trained learning network is obtained by performing data training based on a data set consisting of a virtual distorted image and a virtual refined standard image obtained by the above-mentioned method of preparing data. . Also provided are a system corresponding to the above method and a recording medium in which the recorded instructions can implement the above method.
Description
技术领域technical field
本发明涉及医疗成像领域,特别涉及在计算机断层扫描(CT)成像中为预测截断图像准备数据以及基于该数据预测截断图像的技术。The present invention relates to the field of medical imaging, and in particular to techniques for preparing data for predicting truncated images in computed tomography (CT) imaging and predicting truncated images based on the data.
背景技术Background technique
在CT扫描的过程中,使用检测器来采集通过患者身体后的X射线的数据,之后再对这些采集到的X射线数据进行处理以得到投影数据。可利用这些投影数据来重建切片图像。完整的投影数据可重建准确的切片图像以用于诊断。During a CT scan, a detector is used to collect X-ray data after passing through the patient's body, and then the collected X-ray data is processed to obtain projection data. These projection data can be used to reconstruct slice images. Complete projection data reconstructs accurate slice images for diagnosis.
然而,如果患者体型较大或摆放特殊的姿势,那么该患者身体的某些部位就会超出扫描域,检测器也就无法采集到完整的投影数据,这被称之为数据截断。这种数据截断会带来截断伪影,并最终导致得到失真的重建图像。失真的图像在放射治疗中肯定是不理想的,因为医生在诊断时必需要知道身体皮肤的线条和沿着射线束的CT数,这样才可以准确判断出应该施加到患者身上的放射剂量,但是失真的图像无法准确体现上述信息。这样一来,如何恢复扫描域外的图像(我们称之为截断图像)就是必须要解决的问题。However, if the patient is large or in a special position, some parts of the patient's body will be out of the scanning field, and the detector will not be able to collect the complete projection data, which is called data truncation. This data truncation introduces truncation artifacts and ultimately results in distorted reconstructed images. Distorted images are definitely not ideal in radiation therapy, because doctors must know the lines of the body skin and the number of CTs along the beam when making a diagnosis, so that they can accurately judge the radiation dose that should be applied to the patient, but Distorted images do not accurately reflect the above information. In this way, how to recover the image outside the scanning domain (we call it the truncated image) is a problem that must be solved.
有好几种用于处理上述截断问题的传统方法,它们通过一些数学模型来预测被截断的投影数据,比如利用水模来预测截断部分,但是这些传统方法所恢复的截断图像的质量会随不同的实际情况而改变,性能也都不够理想。此外,不同的用户往往涉及不同的病人集,他们所需要的图像数据也有侧重点,但传统方法中从来未涉及要将图像数据进行分类。There are several traditional methods for dealing with the above truncation problem. They use some mathematical models to predict the truncated projection data, such as using the water model to predict the truncated part, but the quality of the truncated image recovered by these traditional methods will vary. The actual situation changes, and the performance is not ideal. In addition, different users often involve different sets of patients, and the image data they need is also focused, but the traditional method never involves classifying the image data.
近年来,又涌现出一种新技术,其中通过人工智能(AI)的方式来预测截断图像。通过AI来预测截断图像,其无疑有着传统技术无法比拟的巨大优势。然而,AI的性能取决于其输入数据。医院或研究机构和部门每天都会持续积累原始图像数据,但我们显然不能简单地将这些积累的原始图像数据都输入到AI网络中进行学习,因为AI的性能取决的是输入数据的质量,而不是数量。另一方面,通过AI来预测截断图像,必须要有对应失真图像的输入数据集和对应没有数据截断的精标准图像的精标准数据集被同时输入进AI网络中,然而这样的图像并不容易获取,或者,数据类型也较为单一。In recent years, a new technique has emerged in which truncated images are predicted by means of artificial intelligence (AI). Predicting truncated images through AI undoubtedly has huge advantages that traditional technologies cannot match. However, the performance of AI depends on its input data. Hospitals or research institutions and departments continue to accumulate raw image data every day, but we obviously cannot simply input these accumulated raw image data into the AI network for learning, because the performance of AI depends on the quality of the input data, not the quality of the input data. quantity. On the other hand, to predict truncated images through AI, the input data set corresponding to the distorted image and the precise standard data set corresponding to the precise standard image without data truncation must be input into the AI network at the same time. However, such an image is not easy. Get, or, the data type is also relatively single.
发明内容SUMMARY OF THE INVENTION
本发明的一个目的在于克服现有技术中的上述和/或其他问题,其能够获得充足、可靠的数据用于算法验证,从而大大有助于提高对截断图像进行预测的准确率。One objective of the present invention is to overcome the above-mentioned and/or other problems in the prior art, which can obtain sufficient and reliable data for algorithm verification, thereby greatly helping to improve the accuracy of prediction of truncated images.
根据本发明的第一方面,提供一种用于为预测截断图像准备数据的方法,其包括虚拟模拟步骤,用于对图像数据进行虚拟模拟,以同时得到有数据截断的虚拟失真图像和没有数据截断的虚拟精标准图像。According to a first aspect of the present invention, there is provided a method for preparing data for predictive truncated images, comprising a virtual simulation step for virtual simulation of image data to obtain simultaneously a virtual distorted image with data truncated and without data Truncated virtual fine standard image.
较佳地,在所述虚拟模拟步骤前,所述方法还包括自适应分类步骤,该自适应分类步骤用于根据预先定义的特征对采集到的图像数据进行自适应分类,所述虚拟模拟步骤用于对所述分类后的图像数据进行虚拟模拟。Preferably, before the virtual simulation step, the method further includes an adaptive classification step, the adaptive classification step is used for adaptively classifying the collected image data according to predefined features, and the virtual simulation step for virtual simulation of the classified image data.
所述预先定义的特征可包括图像数据类型。进一步地,所述预先定义的特征还可包括所述图像数据类型对应的可能性。The predefined characteristics may include image data types. Further, the predefined features may further include possibilities corresponding to the image data types.
所述图像数据类型可为患者的解剖部位。The image data type may be a patient's anatomy.
较佳地,所述虚拟模拟步骤进一步包括:接收没有数据截断的原始图像;使所述原始图像中对应目标物体的部分虚拟平移(offset)以部分地移出扫描域,从而得到虚拟精标准图像;对所述虚拟精标准图像进行模拟扫描并进行虚拟数据采集,以生成虚拟截断数据;以及对所述虚拟截断数据进行图像重建处理,以得到虚拟失真图像。Preferably, the virtual simulation step further comprises: receiving an original image without data truncation; virtual shifting (offset) part of the original image corresponding to the target object to partially move out of the scanning domain, thereby obtaining a virtual refined standard image; Perform a simulated scan on the virtual fine standard image and perform virtual data acquisition to generate virtual truncated data; and perform image reconstruction processing on the virtual truncated data to obtain a virtual distorted image.
较佳地,所述虚拟模拟步骤进一步包括:接收没有数据截断的原始图像,所述原始图像被用作虚拟精标准图像;使所述原始图像保持在扫描域内,并对该原始图像进行正投影处理以得到该原始图像的正弦图;切除所述正弦图的左侧通道和右侧通道,并用填充值进行填补,以生成虚拟截断数据;以及对所述虚拟截断数据进行图像重建处理,以得到虚拟失真图像。Preferably, the virtual simulation step further comprises: receiving an original image without data truncation, the original image being used as a virtual refined standard image; keeping the original image in the scanning domain, and performing orthographic projection on the original image processing to obtain a sinogram of the original image; excising the left and right channels of the sinogram and padding with padding values to generate virtual truncated data; and performing image reconstruction processing on the virtual truncated data to obtain Virtually distorted image.
更较佳地,上述填充值为边缘填充值。More preferably, the above-mentioned fill value is an edge fill value.
根据本发明的第二方面,提供一种用于预测截断图像的方法,包括如下步骤:基于训练的学习网络预测截断图像,所述训练的学习网络是基于通过采用上述准备数据的方法来得到的虚拟失真图像和虚拟精标准图像构成的数据集进行数据训练得到的。According to a second aspect of the present invention, there is provided a method for predicting a truncated image, comprising the steps of: predicting a truncated image based on a trained learning network obtained by using the above-described method of preparing data The data set composed of virtual distorted images and virtual refined standard images is obtained by data training.
根据本发明的第三方面,提供一种用于预测截断图像的系统,包括:虚拟模拟装置,用于对图像数据进行虚拟模拟,以同时得到有数据截断的虚拟失真图像和没有数据截断的虚拟精标准图像;以及预测装置,用于基于训练的学习网络预测截断图像,所述训练的学习网络是基于所述虚拟失真图像和虚拟精标准图像构成的数据集进行数据训练得到的。According to a third aspect of the present invention, there is provided a system for predicting a truncated image, comprising: a virtual simulation device for performing virtual simulation on image data to simultaneously obtain a virtual distorted image with data truncated and a virtual distorted image without data truncated A refined standard image; and a prediction device for predicting a truncated image based on a trained learning network obtained by data training based on a data set formed by the virtual distorted image and the virtual refined standard image.
较佳地,所述系统还包括自适应分类器,用于根据预先定义的特征对采集到的图像数据进行自适应分类,所述虚拟模拟装置用于对分类后的图像数据进行虚拟模拟。Preferably, the system further includes an adaptive classifier for adaptively classifying the collected image data according to predefined features, and the virtual simulation device is used for virtual simulation of the classified image data.
较佳地,所述虚拟模拟装置进一步被配置为:接收没有数据截断的原始图像;使所述原始图像中对应目标物体的部分虚拟平移(offset)以部分地移出扫描域,从而得到虚拟精标准图像;对所述虚拟精标准图像进行模拟扫描并进行虚拟数据采集,以生成虚拟截断数据;以及对所述虚拟截断数据进行图像重建处理,以得到虚拟失真图像。Preferably, the virtual simulation device is further configured to: receive an original image without data truncation; virtual shift (offset) part of the original image corresponding to the target object to partially move out of the scanning domain, thereby obtaining a virtual precision standard. image; perform simulated scanning on the virtual fine standard image and perform virtual data acquisition to generate virtual truncated data; and perform image reconstruction processing on the virtual truncated data to obtain a virtual distorted image.
较佳地,所述虚拟模拟装置进一步被配置为:接收没有数据截断的原始图像,所述原始图像被用作虚拟精标准图像;使所述原始图像保持在扫描域内,并对该原始图像进行正投影处理以得到该原始图像的正弦图;切除所述正弦图的左侧通道和右侧通道,并用填充值进行填补,以生成虚拟截断数据;以及对所述虚拟截断数据进行图像重建处理,以得到虚拟失真图像。Preferably, the virtual simulation device is further configured to: receive an original image without data truncation, the original image is used as a virtual refined standard image; keep the original image in the scanning domain, and perform a Orthographic processing to obtain a sinogram of the original image; excising the left channel and right channel of the sinogram, and filling with padding values to generate virtual truncated data; and performing image reconstruction processing on the virtual truncated data, to get a virtual distorted image.
根据本发明的第四方面,还提供一种计算机可读存储介质,其上记录的指令能够实现上述方法和系统。According to a fourth aspect of the present invention, there is also provided a computer-readable storage medium, the instructions recorded thereon can implement the above method and system.
根据本发明的用于为预测截断图像准备数据的方法,能够智能地模拟出真实的数据截断,得到截断图像的预测所需要的失真图像和精标准图像;不仅如此,其还能够附加地将图像数据智能分类到不同的类别,从而更加有利于上述失真图像和精标准图像。According to the method for preparing data for predicting a truncated image, the real data truncation can be simulated intelligently to obtain a distorted image and a fine standard image required for the prediction of the truncated image; The data is intelligently classified into different categories, which is more beneficial to the above-mentioned distorted images and refined standard images.
而根据本发明的用于预测截断图像的方法和系统基于训练的学习网络预测截断图像,所述训练的学习网络正是基于由上述虚拟失真图像和虚拟精标准图像构成的数据集进行数据训练得到的,由此能够快速且更加准确地获得预测结果。The method and system for predicting a truncated image according to the present invention predicts a truncated image based on a trained learning network, which is obtained by data training based on the data set consisting of the above-mentioned virtual distorted image and virtual refined standard image. , so that the prediction result can be obtained quickly and more accurately.
通过下面的详细描述、附图以及权利要求,其他特征和方面会变得清楚。Other features and aspects will become apparent from the following detailed description, drawings, and claims.
附图说明Description of drawings
通过结合附图对于本发明的示例性实施例进行描述,可以更好地理解本发明,在附图中:The present invention may be better understood by describing exemplary embodiments of the present invention in conjunction with the accompanying drawings, in which:
图1是根据本发明示例性实施例的用于为预测截断图像准备数据的方法的流程图;1 is a flowchart of a method for preparing data for prediction of truncated images according to an exemplary embodiment of the present invention;
图2是图1所示方法中虚拟模拟步骤的第一实施例的流程图;Fig. 2 is the flow chart of the first embodiment of the virtual simulation step in the method shown in Fig. 1;
图3是图1所示方法中虚拟模拟步骤的第一实施例的示意图;Fig. 3 is the schematic diagram of the first embodiment of the virtual simulation step in the method shown in Fig. 1;
图4是图1所示方法中虚拟模拟步骤的第二实施例的流程图;Fig. 4 is the flow chart of the second embodiment of the virtual simulation step in the method shown in Fig. 1;
图5是图1所示方法中虚拟模拟步骤的第二实施例的示意图;Fig. 5 is the schematic diagram of the second embodiment of the virtual simulation step in the method shown in Fig. 1;
图6是根据本发明示例性实施例的用于为预测截断图像准备数据的方法的可选实施例的流程图;6 is a flowchart of an alternative embodiment of a method for preparing data for prediction of truncated images according to an exemplary embodiment of the present invention;
图7示出了图6所示方法中自适应分类步骤中数据分类的一个示例;Fig. 7 shows an example of data classification in the adaptive classification step in the method shown in Fig. 6;
图8是根据本发明示例性实施例的用于预测截断图像的方法的流程图;8 is a flowchart of a method for predicting a truncated image according to an exemplary embodiment of the present invention;
图9是根据本发明示例性实施例的用于预测截断图像的系统的示意性框图;以及FIG. 9 is a schematic block diagram of a system for predicting a truncated image according to an exemplary embodiment of the present invention; and
图10示出了根据本发明示例性实施例的用于预测截断图像的系统的一个示例。FIG. 10 shows an example of a system for predicting a truncated image according to an exemplary embodiment of the present invention.
具体实施例specific embodiment
以下将描述本发明的具体实施方式,需要指出的是,在这些实施方式的具体描述过程中,为了进行简明扼要的描述,本说明书不可能对实际的实施方式的所有特征均作详尽的描述。应当可以理解的是,在任意一种实施方式的实际实施过程中,正如在任意一个工程项目或者设计项目的过程中,为了实现开发者的具体目标,为了满足系统相关的或者商业相关的限制,常常会做出各种各样的具体决策,而这也会从一种实施方式到另一种实施方式之间发生改变。此外,还可以理解的是,虽然这种开发过程中所作出的努力可能是复杂并且冗长的,然而对于与本发明公开的内容相关的本领域的普通技术人员而言,在本公开揭露的技术内容的基础上进行的一些设计,制造或者生产等变更只是常规的技术手段,不应当理解为本公开的内容不充分。The specific embodiments of the present invention will be described below. It should be noted that, in the specific description of these embodiments, for the sake of brevity and conciseness, this specification may not describe all the features of the actual embodiments in detail. It should be understood that, in the actual implementation process of any embodiment, just as in the process of any engineering project or design project, in order to achieve the developer's specific goals, in order to meet the system-related or business-related constraints, Often a variety of specific decisions are made, which also vary from one implementation to another. Furthermore, it will also be appreciated that while such development efforts may be complex and tedious, for those of ordinary skill in the art to which this disclosure pertains, the techniques disclosed in this disclosure will Some changes in design, manufacture or production based on the content are only conventional technical means, and it should not be understood that the content of the present disclosure is insufficient.
除非另作定义,权利要求书和说明书中使用的技术术语或者科学术语应当为本发明所属技术领域内具有一般技能的人士所理解的通常意义。本发明专利申请说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“一个”或者“一”等类似词语并不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现在“包括”或者“包含”前面的元件或者物件涵盖出现在“包括”或者“包含”后面列举的元件或者物件及其等同元件,并不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,也不限于是直接的还是间接的连接。Unless otherwise defined, technical or scientific terms used in the claims and the specification shall have the ordinary meaning as understood by those with ordinary skill in the technical field to which this invention belongs. The terms "first", "second" and similar terms used in the description of the patent application and the claims of the present invention do not denote any order, quantity or importance, but are only used to distinguish different components. "A" or "an" and the like do not denote a quantitative limitation, but rather denote the presence of at least one. Words like "including" or "comprising" mean that the elements or items appearing before "including" or "including" cover the elements or items listed after "including" or "including" and their equivalents, and do not exclude other components or objects. Words like "connected" or "connected" are not limited to physical or mechanical connections, nor are they limited to direct or indirect connections.
根据本发明的实施例,提供了一种用于为预测截断图像准备数据的方法。According to an embodiment of the present invention, there is provided a method for preparing data for predicting a truncated image.
参考图1,图1是根据本发明示例性实施例的用于为预测截断图像准备数据的方法10的流程图。该方法10可以包含步骤200。Referring to FIG. 1, FIG. 1 is a flowchart of a
如图1所示,在步骤200(虚拟模拟步骤)中,对图像数据进行虚拟模拟,以同时得到有数据截断的虚拟失真图像和没有数据截断的虚拟精标准图像。As shown in FIG. 1 , in step 200 (virtual simulation step), virtual simulation is performed on the image data to simultaneously obtain a virtual distorted image with data truncation and a virtual refined standard image without data truncation.
方法10要为预测截断图像准备数据,具体比如要为基于AI方式的截断图像预测准备数据。这样一来,就需要为AI网络学习准备两种数据集:一种是输入数据集(即,由截断所导致的失真图像);另一种是精标准数据集(即,没有任何截断)。The
然而,在实际临床的病例中,因为已经发生了数据截断(例如,目标物体超出了扫描域),即,已经失去了被截断的这部分数据,所以并无法得到精标准数据。根据本发明示例性实施例的用于为预测截断图像准备数据的方法10却能通过智能的方式来模拟上述数据截断,从而同时获得失真图像和精标准图像。However, in actual clinical cases, since data truncation has occurred (for example, the target object is out of the scanning area), that is, the truncated part of the data has been lost, so the precise standard data cannot be obtained. However, the
虚拟模拟的第一实施例First Embodiment of Virtual Simulation
参考图2,在根据本发明的第一实施例中,上述步骤200可以进一步包括如下子步骤210至216。Referring to FIG. 2 , in the first embodiment according to the present invention, the above-mentioned
具体地,在子步骤210中,接收没有数据截断的原始图像。该原始图像通常为切片图像,但不排除有时也会提供投影图像。然而,即使提供的是投影图像,只要通过反投影处理即可转换为切片图像。Specifically, in
参考图3,在子步骤212中,使所述原始图像中对应目标物体的部分(灰白色部分)虚拟平移(offset)以部分地移出扫描域,从而得到虚拟精标准图像。需要说明的是,在该过程中,原始的切片图像本身是保持不动的。扫描域本身是以焦点为圆心的圆,其可表示为例如DFOV50,该“50”即为扫描域的直径,其单位为cm。在扫描域为DFOV50的情况下,部分地移出扫描域,即为部分地掠过DFOV50的边缘。Referring to FIG. 3 , in
接下来,如图2所示,在子步骤214中,对所述虚拟精标准图像进行模拟扫描并进行虚拟数据采集,以生成虚拟截断数据。如前面所述地,在子步骤212中所得到的虚拟精标准图像,即为原始图像中对应目标物体的那部分图像有一部分移出了扫描域(掠过了DFOV50的边缘),这部分图像将不会被扫描到,也就是发生了虚拟数据截断。通过子步骤214,正可以得到虚拟截断数据,其为投影数据。Next, as shown in FIG. 2 , in
最后,在子步骤216中,对所述虚拟截断数据进行图像重建处理,以得到虚拟失真图像。所述图像重建处理具体可以是反投影处理。所得到的虚拟失真图像为切片图像。Finally, in
从图3可知,最后得到的虚拟精标准图像与原始的切片图像相比,仅仅是其中对应目标物体的那部分图像(灰白色部分)发生了平移,然而该灰白色部分在虚拟精标准图像中的数据是完整的,并未有任何截断。而最后得到的虚拟失真图像,其与原始的切片图像相比,不仅仅是其中对应目标物体的那部分图像(灰白色部分)发生了平移,而且该灰白色部分在虚拟失真图像中的数据明显是不完整的,其发生了数据截断。由此,仅仅通过一个虚拟模拟的过程,就可以从没有数据截断的切片图像同时得到AI网络学习所需要的输入数据和精标准数据。It can be seen from Fig. 3 that, compared with the original slice image, only the part of the image (gray-white part) corresponding to the target object is shifted in the final virtual fine-standard image, but the gray-white part is in the virtual fine-standard image. is complete without any truncation. Compared with the original sliced image, the finally obtained virtual distorted image is not only the part of the image corresponding to the target object (gray-white part) that has been translated, but also the data of the gray-white part in the virtual distorted image is obviously different. Complete, which has had data truncation. As a result, only through a virtual simulation process, the input data and precise standard data required for AI network learning can be simultaneously obtained from sliced images without data truncation.
虚拟模拟的第二实施例Second Embodiment of Virtual Simulation
根据本发明的虚拟模拟过程还可以通过另一种方式实现。The virtual simulation process according to the present invention can also be implemented in another way.
具体如图4所示,在根据本发明的第二实施例中,上述步骤200可以进一步包括如下子步骤220至226。Specifically, as shown in FIG. 4 , in the second embodiment according to the present invention, the above-mentioned
在子步骤220中,接收没有数据截断的原始图像,所述原始图像被用作虚拟精标准图像。如前面所述地,该原始图像通常为切片图像,但不排除有时也会提供投影图像,此时只要通过反投影处理即可转换为切片图像。结合图5可知,所述虚拟精标准图像不仅具有完整的数据,而且还处于扫描域(比如,DFOV50)的范围内。In
接着,在子步骤222中,使所述原始图像(也就是虚拟精标准图像)保持在扫描域内,并对该原始图像进行正投影处理以得到该原始图像的正弦图。如前面所述地,所述原始图像不含任何截断,其中的数据是完整的,因此通过正投影处理就可以从该原始的切片图像得到完整的投影数据,即可以得到完整的正弦图数据,具体可参见图5。Next, in
随后,在子步骤224中,切除所述正弦图的左侧通道和右侧通道,并用填充值进行填补,以生成虚拟截断数据。如图5所示,正弦图中原来的左侧通道和右侧通道被替换为了填充值,由此便模拟出截断。Then, in
关于上述“填充值”,即为padding(填充),其属性定义元素边框与元素内容之间的空间。padding简写属性在一个声明中设置所有内边距属性,设置所有当前或者指定元素内边距属性,该属性可以有1到4个值。单独使用填充属性是在一个声明中设置元素的所内边距属性,缩写填充属性也可以使用,一旦改变一个数值,则padding对应的距离都会改变。Regarding the above "padding value", it is padding (padding), and its attribute defines the space between the element border and the element content. The padding shorthand property sets all padding properties in one declaration. Sets all current or specified element padding properties. This property can have 1 to 4 values. Using the padding attribute alone is to set the padding attribute of the element in a declaration. The abbreviated padding attribute can also be used. Once a value is changed, the distance corresponding to the padding will change.
本发明中所涉及的填充值即为该padding属性值,其较佳选择边缘padding属性值,即选择边缘填充值(比如,未截断部分最外侧通道的数值)来填补正弦图中原来左侧通道和右侧通道的部分。然而,实际操作中,根据需求也可以选择其它的填充值(比如,0)来进行填补。The padding value involved in the present invention is the padding attribute value. It is better to select the edge padding attribute value, that is, select the edge padding value (for example, the value of the outermost channel of the untruncated part) to fill the original left channel in the sinogram. and part of the right channel. However, in actual operation, other padding values (eg, 0) can also be selected for padding according to requirements.
最后,在子步骤226中,对所述虚拟截断数据进行图像重建处理,以得到虚拟失真图像。与根据本发明的第一实施例相同,所述图像重建处理具体可以是反投影处理,所得到的虚拟失真图像为切片图像。如图5所示,最后得到的虚拟失真图像,其与原始的切片图像相比,数据明显是不完整的,特别是对应目标物体的那部分图像(灰白色部分),即,发生了数据截断。Finally, in
由此,采用了与上述第一实施例不同的方法虚拟模拟数据截断,在这个过程中同时得到AI网络学习所需要的输入数据(失真图像)和精标准数据(精标准图像)。Therefore, a method different from the above-mentioned first embodiment is adopted to simulate data truncation, and in this process, input data (distorted image) and fine standard data (fine standard image) required for AI network learning are obtained at the same time.
虽然以上描述了虚拟模拟的两个实施例,但这并不说明本发明只能采用这两种方式来模拟数据截断。根据本发明的用于为截断图像的预测准备数据的方法也可以采用其它的方式来虚拟模拟数据截断,以同时得到AI网络学习所需要的输入数据(失真图像)和精标准数据(精标准图像)。Although two embodiments of virtual simulation are described above, it does not mean that the present invention can only simulate data truncation in these two ways. The method for preparing data for prediction of a truncated image according to the present invention can also use other ways to simulate data truncation virtually, so as to simultaneously obtain input data (distorted image) and fine standard data (fine standard image) required for AI network learning ).
根据本发明的虚拟模拟过程,完全解决了传统技术中得不到精标准数据的问题,而且还能够十分迅速和方便地获得足够的输入数据。According to the virtual simulation process of the present invention, the problem of not being able to obtain precise standard data in the traditional technology is completely solved, and sufficient input data can be obtained very quickly and conveniently.
可选地,根据本发明示例性实施例的用于为预测截断图像准备数据的方法10在步骤200前,还可进一步包括步骤100(自适应分类步骤),具体可参见图6。Optionally, before
步骤100根据预先定义的特征对采集到的图像数据进行自适应分类。该图像数据可能是投影图像,也可能是切片图像。如果是投影图像,只要通过常规的反投影处理即可转换为切片图像。步骤200再进一步地对步骤100分类后的图像数据进行虚拟模拟。Step 100 performs adaptive classification on the collected image data according to predefined features. The image data may be a projection image or a slice image. If it is a projection image, it can be converted into a slice image by conventional back-projection processing. Step 200 further performs virtual simulation on the image data classified in
通过上述步骤100,方法10能够在对图像数据进行虚拟模拟之前先将该图像数据智能分类到不同的类别。Through the
参考图7可知,在上述步骤100中,所述预先定义的特征可包括图像数据类型。具体地,该图像数据类型可以为患者的解剖部位。进一步地,所述预先定义的特征还可包括所述图像数据类型对应的可能性。Referring to FIG. 7 , in the
举例来说,上述解剖部位可包括肩部、胸部、腹部、骨盆和特殊模型(phantom)。此处所述的模型通常可以是体模,但有时也可以是水模。For example, the aforementioned anatomical sites may include shoulders, chest, abdomen, pelvis, and phantoms. The models described here can usually be phantoms, but sometimes water models.
在临床中,不同的用户(比如:医院、患者或研究机构等)会具有不同的患者数据集,因此他们可能需要为他们的AI网络训练提供不同的输入数据集。而根据本发明示例的自适应分类步骤100能够对数据输入进行配置,具体诸如数据类型、数据的可能性等,这样一来将大大改进AI网络的能力。In the clinic, different users (e.g. hospitals, patients or research institutes, etc.) will have different patient datasets, so they may need to provide different input datasets for their AI network training. The
回到图6所示的方法,在进行虚拟模拟步骤200时,都会有一个非截断(没有数据截断)、完整的切片图像作为原始的模拟输入。这个切片图像来自于一个包含了人体从头到脚所有切片图像的数据集,这个庞大的数据集可以是由各类临床医疗机构(比如,医院)采集并对外公开的数据集,也可以是由用户自己采集的数据集。根据本发明示例的自适应分类步骤100正是要基于用户需要用哪个部位的图像来对所述庞大的数据集进行自适应分类。Returning to the method shown in FIG. 6 , when the
举例来说,参见图7,在某个医院的病患中,肩部病患可能较多,因此因肩部病患而照射CT的患者也较多,这样所拿到的切片图像为肩膀部分的可能性就比较大,比如有40%的可能性;接下来较多的是骨盆患者,因此因骨盆病患而照射CT的患者次较多,相应地,所拿到的切片图像为骨盆部分的可能性就比肩膀的可能性略微小点,比如有30%的可能性;再接下来较多的是胸部和腹部的病患,因此因胸部和腹部病患而照射CT的患者就相对再减少些,相应地,所拿到的切片图像为胸部和腹部的可能性就更小,比如都为20%。同时,该医院还有被安装了特殊模型的病患,所以还要考虑所拿到的切片图像为特殊模型的可能性,比如为10%。根据上述医院的病患分布,可对特殊的数据类型(人体的部位)进行分类并优化其对应的可能性。具体地,可比如为数据分类预先定义如下两个特征:For example, referring to Figure 7, among the patients in a certain hospital, there may be more shoulder patients, so more patients are irradiated with CT because of shoulder patients, so the obtained slice image is the shoulder part. The probability is relatively high, for example, there is a 40% probability; the next most are pelvic patients, so the patients who are irradiated with CT due to pelvic diseases are more frequently, and correspondingly, the obtained slice image is the pelvic part. The probability is slightly smaller than that of the shoulder, for example, there is a 30% probability; then there are more patients in the chest and abdomen, so the patients who are irradiated with CT for chest and abdomen patients are relatively less likely If it is reduced, correspondingly, the obtained slice images are less likely to be the chest and abdomen, for example, both are 20%. At the same time, there are patients with special models installed in the hospital, so the possibility that the obtained slice images are special models should be considered, such as 10%. According to the patient distribution in the above-mentioned hospitals, special data types (parts of the human body) can be classified and their corresponding possibilities can be optimized. Specifically, for example, the following two characteristics can be pre-defined for data classification:
特征1:特殊的病患部位(如图2所示,肩膀、胸部、腹部、骨盆、特殊模型);Feature 1: Special patient parts (as shown in Figure 2, shoulders, chest, abdomen, pelvis, special models);
特征2:特殊的可能性(如图2所示,40%、20%、20%、30%、10%,分别对应上述各个病患部位)。Feature 2: Special possibility (as shown in Figure 2, 40%, 20%, 20%, 30%, 10%, corresponding to the above-mentioned respective patient parts).
基于上述两个特征,可以对该医院采集的庞大的图像数据集进行自适应分类。由此,被输入到AI学习网络中的输入数据集可以被针对性地进行选择。Based on the above two features, the huge image dataset collected by the hospital can be adaptively classified. In this way, the input datasets that are fed into the AI learning network can be selected in a targeted manner.
再比如,对于某些专科医院,比如胸科医院,病患应该几乎全部都是涉及胸部的,那么可以将上述特征1的“特殊的病患部位”设为“胸部”,而将上述特征2的“特殊的可能性”设为“100%”。还比如,即使在综合性医院中,如果所拿到的切片图像都是出自某个专门的科室(比如,神经外科),也可以将上述特征1的“特殊的病患部位”设为“脑部”,而将上述特征2的“特殊的可能性”设为“100%”。For another example, for some specialized hospitals, such as chest hospitals, almost all patients should be related to the chest, then the "special patient part" of the
总之,可以根据各种实际情况和具体的需求来预先定义特征,而且虽然在上述的示例中所定义的特征是两个,但根据需要有时也可以定义更多的特征,而且该特征也并非仅限于数据的类型和对应的可能性。此外,即便是数据类型,其也不仅限于人体部位,也可以是能够被成像的其它结构或物体。In a word, features can be predefined according to various actual situations and specific needs, and although there are two features defined in the above example, sometimes more features can be defined according to needs, and the features are not only Limited to the type of data and the corresponding possibilities. Furthermore, even the data type is not limited to body parts, but can also be other structures or objects that can be imaged.
很显然地,上述用于为预测截断图像准备数据的方法,因为包含了如上所述的自适应分类步骤,所以可以大大地提高用于AI学习网络中的输入数据的质量。It is clear that the above method for preparing data for predicting truncated images can greatly improve the quality of the input data used in the AI learning network because it includes the adaptive classification step as described above.
进一步地,有了上述数据的准备,就可以通过AI的方式对截断图像进行预测了。具体可参见图8,其中示出了根据本发明示例性实施例的用于预测截断图像的方法80的流程图。Further, with the preparation of the above data, the truncated image can be predicted by means of AI. Specifically, reference may be made to FIG. 8 , which shows a flowchart of a
如图8所示,根据本发明示例性实施例的用于预测截断图像的方法80可包括步骤810。As shown in FIG. 8 , the
在步骤810中,基于训练的学习网络预测截断图像,所述训练的学习网络是基于通过采用上述准备数据的方法来得到的虚拟失真图像和虚拟精标准图像构成的数据集进行数据训练得到的。In
上述方法80通过根据本发明示例性实施例的数据准备方法来得到用于AI网络学习的数据集,在这个过程中不仅可以通过自适应数据分类来匹配用于不同用户的系统校准的特殊病人集和医生习惯,而且最主要地还能智能地同时得到必需的AI训练数据(即,输入数据和精标准数据)。这样得到的数据集无疑非常有助于AI网络学习,可大大地提高通过AI方式来预测截断图像的准确性。The
另外,本发明还提供了用于预测截断图像的系统。In addition, the present invention also provides a system for predicting truncated images.
图9示出了根据本发明示例性实施例的用于预测截断图像的系统900。该系统900可包括虚拟模拟装置910和预测装置920。虚拟模拟装置910用于对图像数据进行虚拟模拟,以同时得到有数据截断的虚拟失真图像和没有数据截断的虚拟精标准图像。预测装置920则用于基于训练的学习网络预测截断图像,所述训练的学习网络是基于所述虚拟失真图像和虚拟精标准图像构成的数据集进行数据训练得到的。FIG. 9 shows a
进一步地,图10示出了根据本发明示例性实施例的用于预测截断图像的系统的一个示例。Further, FIG. 10 shows an example of a system for predicting a truncated image according to an exemplary embodiment of the present invention.
如图10所示,示例性的CT系统1000配置成用于预测截断图像和/或为预测截断图像准备数据。确切地说,CT系统1000配置成对目标物体进行成像;如果获得的图像具有截断,则对该具有截断的图像进行预测以恢复被截断的图像数据。上述目标物体可以为患者或其他任何需要成像的物体,在本示例中以患者为例。As shown in FIG. 10, an
在一个实施例中,CT系统1000包括扫描架1002,该扫描架1002上相对地设置有X射线源1004和检测器阵列1008,该检测器阵列1008由多个检测器元件2002构成。X射线源1004用于朝向检测器阵列1008投射穿透患者的X射线1006,检测器阵列1008收集衰减的X射线束数据,该衰减的X射线束数据经预处理后作为患者的目标体积的投影数据。In one embodiment, the
在一个实施例中,CT系统1000包括控制机构2008。控制机构2008可以包括X射线控制器2010,其用于向X射线源1004提供功率和定时信号。控制机构2008还可以包括扫描架电动机控制器2012,其用于基于成像要求控制扫描架1002的旋转速度和/或位置。此外,控制机构2008还可以包括患者床控制器2026,用于移动患者床2028以将患者(图中为示出)定位在扫描架1002内的适当位置。In one embodiment,
在一个实施例中,CT系统1000进一步包括数据采集系统(DAS)2014,用于对从检测器元件2002接收到的模拟数据进行采样和数字化。In one embodiment,
在一个实施例中,CT系统100进一步包括计算装置2016,由DAS 2014采样和数字化的数据将被传输到计算机或计算装置2016进行处理。该计算装置2016可与操作员控制台2020进行通信以方便操作员操作,同时还可连接有显示器2032以方便操作员观察。此外,计算装置2016还可与图片存档及通信系统(PACS)2024相连接。In one embodiment, the
在一个示例中,计算装置2016将数据存储在存储装置-例如计算机可读存储介质2018(图10中为大容量存储器)中。该计算机可读存储介质2018可以包括硬盘驱动器、软盘驱动器、光盘读/写(CD-R/W)驱动器、数字通用磁盘(DVD)驱动器、闪存驱动器和/或固态存储装置等。In one example,
此外,计算装置2016还可用于向DAS 2014、X射线控制器2010和扫描架电动机控制器2012、患者床控制器2026中的一者或多者提供命令和参数,以控制系统操作,例如数据采集和/或处理。In addition,
CT系统1000可进一步包括图像重建器2030,其基于上述经过采样和数字化的X射线数据、采用合适的图像重建方法来进行图像重建。例如,图像重建器2030可以使用例如滤波反投影(FBP)来重建患者的目标体积的图像。尽管图10中将图像重建器2030图示为单独实体,但是在某些实施例中,图像重建器2030可以被形成为计算装置2016的一部分。或者,图像重建器2030可以不存在于CT系统1000中;亦或,计算装置2016可以执行图像重建器2030的一个或多个功能。此外,图像重建器2030可以位于本地或远程位置,并且可以使用有线或无线网络操作性地连接到CT系统1000。The
在一个实施例中,图像重建器2030将所重建的图像存储在存储装置或计算机可读存储介质2018中。或者,图像重建器2030将重建图像传输到计算装置2016,以生成用于诊断的患者信息。In one embodiment, the
在一个实施例中,CT系统1000进一步包括截断图像预测装置,其可以接收来自上述计算装置2016或图像重建器2030的截断图像,并对该截断图像进行预测和/或恢复,上述截断图像预测装置可以被形成为计算装置2016或图像重建器2030的一部分(图10中为计算装置2016的一部分)。In one embodiment, the
在一个实施例中,CT系统1000可进一步包括用于为截断图像预测准备数据的数据准备装置,该数据准备装置也可以被形成为计算装置2016或图像重建器2030的一部分(图10中为计算装置2016的一部分)。In one embodiment,
需要说明的是,本说明书中进一步描述的各种方法和过程都可以以可执行指令的形式存储在CT系统1000中的计算装置2016和/或图像重建器2030的计算机可读存储介质中。例如,截断图像预测装置、数据准备装置可以包括计算机可读存储介质的可执行指令,并且可以采用本说明书中所述的方法来预测截断图像/准备数据。It should be noted that various methods and processes further described in this specification may be stored in the computer-readable storage medium of the
上面已经描述了一些示例性实施例。然而,应该理解的是,在不脱离本发明精神和范围的情况下,还可以对上述示例性实施例做出各种修改。例如,如果所描述的技术以不同的顺序执行和/或如果所描述的系统、架构、设备或电路中的组件以不同方式被组合和/或被另外的组件或其等同物替代或补充,也可以实现合适的结果,那么相应地,这些修改后的其它实施方式也落入权利要求书的保护范围内。Some exemplary embodiments have been described above. It should be understood, however, that various modifications may be made to the above-described exemplary embodiments without departing from the spirit and scope of the present invention. For example, if the described techniques are performed in a different order and/or if components in the described systems, architectures, devices, or circuits are combined in different ways and/or are replaced or supplemented by additional components or their equivalents, Appropriate results may be achieved, and accordingly, other embodiments of these modifications also fall within the protection scope of the claims.
Claims (14)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201811592101.7A CN111369635B (en) | 2018-12-25 | 2018-12-25 | System and method for predicting truncated images, method for preparing data and medium therefor |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201811592101.7A CN111369635B (en) | 2018-12-25 | 2018-12-25 | System and method for predicting truncated images, method for preparing data and medium therefor |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN111369635A true CN111369635A (en) | 2020-07-03 |
| CN111369635B CN111369635B (en) | 2025-05-02 |
Family
ID=71205984
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201811592101.7A Active CN111369635B (en) | 2018-12-25 | 2018-12-25 | System and method for predicting truncated images, method for preparing data and medium therefor |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN111369635B (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN114913259A (en) * | 2022-05-05 | 2022-08-16 | 上海联影医疗科技股份有限公司 | Truncation artifact correction method, CT image correction method, apparatus, and medium |
| WO2023087260A1 (en) * | 2021-11-19 | 2023-05-25 | Shanghai United Imaging Healthcare Co., Ltd. | Systems and methods for data processing |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20070248255A1 (en) * | 2006-04-25 | 2007-10-25 | Guang-Hong Chen | System and Method for Estimating Data Missing from CT Imaging Projections |
| CN107798682A (en) * | 2017-08-31 | 2018-03-13 | 深圳联影医疗科技有限公司 | Image segmentation system, method, device and computer readable storage medium |
| US20180197317A1 (en) * | 2017-01-06 | 2018-07-12 | General Electric Company | Deep learning based acceleration for iterative tomographic reconstruction |
| WO2018126396A1 (en) * | 2017-01-05 | 2018-07-12 | General Electric Company | Deep learning based estimation of data for use in tomographic reconstruction |
| US20180336677A1 (en) * | 2017-05-18 | 2018-11-22 | Toshiba Medical Systems Corporation | Apparatus and method for medical image processing |
-
2018
- 2018-12-25 CN CN201811592101.7A patent/CN111369635B/en active Active
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20070248255A1 (en) * | 2006-04-25 | 2007-10-25 | Guang-Hong Chen | System and Method for Estimating Data Missing from CT Imaging Projections |
| WO2018126396A1 (en) * | 2017-01-05 | 2018-07-12 | General Electric Company | Deep learning based estimation of data for use in tomographic reconstruction |
| US20180197317A1 (en) * | 2017-01-06 | 2018-07-12 | General Electric Company | Deep learning based acceleration for iterative tomographic reconstruction |
| US20180336677A1 (en) * | 2017-05-18 | 2018-11-22 | Toshiba Medical Systems Corporation | Apparatus and method for medical image processing |
| CN107798682A (en) * | 2017-08-31 | 2018-03-13 | 深圳联影医疗科技有限公司 | Image segmentation system, method, device and computer readable storage medium |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2023087260A1 (en) * | 2021-11-19 | 2023-05-25 | Shanghai United Imaging Healthcare Co., Ltd. | Systems and methods for data processing |
| CN114913259A (en) * | 2022-05-05 | 2022-08-16 | 上海联影医疗科技股份有限公司 | Truncation artifact correction method, CT image correction method, apparatus, and medium |
Also Published As
| Publication number | Publication date |
|---|---|
| CN111369635B (en) | 2025-05-02 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN110121749B (en) | Deep learning medical systems and methods for image acquisition | |
| CN110443268B (en) | Liver CT image benign and malignant classification method based on deep learning | |
| US12315626B2 (en) | Automated protocoling in medical imaging systems | |
| JP7100048B2 (en) | Systems and methods for generating simulated computer tomography (CT) images | |
| CN106999138B (en) | Diagnostic imaging method and apparatus and recording medium therefor | |
| WO2019211307A1 (en) | Modality-agnostic method for medical image representation | |
| JP2004105728A (en) | Computer aided acquisition of medical image | |
| US11908044B2 (en) | Systems and methods for computed tomography image reconstruction | |
| CN112005314A (en) | System and method for training a deep learning model of an imaging system | |
| CN113614788A (en) | Deep reinforcement learning for computer-aided reading and analysis | |
| JP7657635B2 (en) | IMAGE PROCESSING APPARATUS, LEARNING APPARATUS, RADIOLOGICAL IMAGE CAPTURE SYSTEM, IMAGE PROCESSING METHOD, LEARNING METHOD, IMAGE PROCESSING PROGRAM, AND LEARNING PROGRAM | |
| CN111369635B (en) | System and method for predicting truncated images, method for preparing data and medium therefor | |
| EP4193927A1 (en) | Methods and system for simulated radiology studies based on prior imaging data | |
| Mettivier et al. | The Napoli-Varna-Davis project for virtual clinical trials in X-ray breast imaging | |
| CN112004471B (en) | System and method for imaging system shortcut mode | |
| US12475690B2 (en) | Simulating pathology images based on anatomy data | |
| CN111919264A (en) | System and method for synchronizing imaging system and edge computing system | |
| WO2023287885A1 (en) | Systems, methods, and media for generating low-energy virtual monoenergetic images from multi-energy computed tomography data | |
| JP2004049909A (en) | Computer-aided patient health care decision support system | |
| JP7785494B2 (en) | Learning device, image generation device, learning method, image generation method, learning program, and image generation program | |
| WO2016186746A1 (en) | Methods and systems for automatic segmentation | |
| CN119251222B (en) | Plain scan CT image lesion detection method and related equipment based on back-projection data | |
| CN111553958B (en) | Calculation of image matrix size | |
| WO2019200353A1 (en) | Systems and methods for deploying deep learning applications to an imaging system | |
| CN117078529A (en) | Method and electronic device for processing computed tomography images to eliminate secondary artifacts |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| TA01 | Transfer of patent application right |
Effective date of registration: 20250403 Address after: Wisconsin Applicant after: Ge precision medical Co.,Ltd. Country or region after: U.S.A. Address before: New York, United States Applicant before: General Electric Co. Country or region before: U.S.A. |
|
| TA01 | Transfer of patent application right | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |