CN1113408C - 利用受控电子束辐射将低-k聚合物并入层间电介质 - Google Patents
利用受控电子束辐射将低-k聚合物并入层间电介质 Download PDFInfo
- Publication number
- CN1113408C CN1113408C CN98805439A CN98805439A CN1113408C CN 1113408 C CN1113408 C CN 1113408C CN 98805439 A CN98805439 A CN 98805439A CN 98805439 A CN98805439 A CN 98805439A CN 1113408 C CN1113408 C CN 1113408C
- Authority
- CN
- China
- Prior art keywords
- electron beam
- dielectric layer
- dielectric
- layer
- beam irradiation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76822—Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc.
- H01L21/76825—Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc. by exposing the layer to particle radiation, e.g. ion implantation, irradiation with UV light or electrons etc.
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02123—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
- H01L21/02126—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
- H01L21/02134—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material comprising hydrogen silsesquioxane, e.g. HSQ
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02123—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
- H01L21/02126—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
- H01L21/02137—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material comprising alkyl silsesquioxane, e.g. MSQ
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02282—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02296—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
- H01L21/02318—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
- H01L21/02345—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light
- H01L21/02351—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light treatment by exposure to corpuscular radiation, e.g. exposure to electrons, alpha-particles, protons or ions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02123—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
- H01L21/02126—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02205—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
- H01L21/02208—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
- H01L21/02214—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen
- H01L21/02216—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen the compound being a molecule comprising at least one silicon-oxygen bond and the compound having hydrogen or an organic group attached to the silicon or oxygen, e.g. a siloxane
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S430/00—Radiation imagery chemistry: process, composition, or product thereof
- Y10S430/143—Electron beam
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Plasma & Fusion (AREA)
- Formation Of Insulating Films (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
| 固化方法 | Si-H保留(%) | 薄膜收缩(%) | ||||||
| 400℃ | 450℃ | 500℃ | 600℃ | 400℃ | 450℃ | 500℃ | 600℃ | |
| 热固化 | 87.7 | 55.3 | 29.5 | 25.4 | 0.9 | 4.0 | 7.6 | 11.4 |
| 电子束部分固化 | 99.0 | 89.1 | 80.6 | 37.5 | 0.4 | 1.1 | 2.4 | 9.3 |
Claims (24)
Applications Claiming Priority (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US4110497P | 1997-03-24 | 1997-03-24 | |
| US60/041104 | 1997-03-24 | ||
| US60/041,104 | 1997-03-24 | ||
| US09/028,465 US6080526A (en) | 1997-03-24 | 1998-02-24 | Integration of low-k polymers into interlevel dielectrics using controlled electron-beam radiation |
| US09/028,465 | 1998-02-24 | ||
| US09/028465 | 1998-02-24 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN1257610A CN1257610A (zh) | 2000-06-21 |
| CN1113408C true CN1113408C (zh) | 2003-07-02 |
Family
ID=26703725
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN98805439A Expired - Fee Related CN1113408C (zh) | 1997-03-24 | 1998-03-09 | 利用受控电子束辐射将低-k聚合物并入层间电介质 |
Country Status (9)
| Country | Link |
|---|---|
| US (1) | US6080526A (zh) |
| EP (1) | EP0970519B1 (zh) |
| JP (1) | JP3276963B2 (zh) |
| KR (1) | KR100477455B1 (zh) |
| CN (1) | CN1113408C (zh) |
| CA (1) | CA2284760A1 (zh) |
| DE (1) | DE69836009D1 (zh) |
| IL (1) | IL132017A0 (zh) |
| WO (1) | WO1998043294A1 (zh) |
Families Citing this family (83)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6607991B1 (en) | 1995-05-08 | 2003-08-19 | Electron Vision Corporation | Method for curing spin-on dielectric films utilizing electron beam radiation |
| US6042994A (en) * | 1998-01-20 | 2000-03-28 | Alliedsignal Inc. | Nanoporous silica dielectric films modified by electron beam exposure and having low dielectric constant and low water content |
| US6303523B2 (en) * | 1998-02-11 | 2001-10-16 | Applied Materials, Inc. | Plasma processes for depositing low dielectric constant films |
| US6413583B1 (en) * | 1998-02-11 | 2002-07-02 | Applied Materials, Inc. | Formation of a liquid-like silica layer by reaction of an organosilicon compound and a hydroxyl forming compound |
| US6054379A (en) | 1998-02-11 | 2000-04-25 | Applied Materials, Inc. | Method of depositing a low k dielectric with organo silane |
| US6593247B1 (en) | 1998-02-11 | 2003-07-15 | Applied Materials, Inc. | Method of depositing low k films using an oxidizing plasma |
| US6287990B1 (en) | 1998-02-11 | 2001-09-11 | Applied Materials, Inc. | CVD plasma assisted low dielectric constant films |
| US6660656B2 (en) | 1998-02-11 | 2003-12-09 | Applied Materials Inc. | Plasma processes for depositing low dielectric constant films |
| US6800571B2 (en) * | 1998-09-29 | 2004-10-05 | Applied Materials Inc. | CVD plasma assisted low dielectric constant films |
| US8021976B2 (en) * | 2002-10-15 | 2011-09-20 | Megica Corporation | Method of wire bonding over active area of a semiconductor circuit |
| JP2002534546A (ja) | 1999-01-08 | 2002-10-15 | ザ ダウ ケミカル カンパニー | 良好な接着性および靭性を有する低誘電率ポリマーおよび該ポリマーから作製された物品 |
| US6361837B2 (en) | 1999-01-15 | 2002-03-26 | Advanced Micro Devices, Inc. | Method and system for modifying and densifying a porous film |
| US6207555B1 (en) * | 1999-03-17 | 2001-03-27 | Electron Vision Corporation | Electron beam process during dual damascene processing |
| US6770975B2 (en) * | 1999-06-09 | 2004-08-03 | Alliedsignal Inc. | Integrated circuits with multiple low dielectric-constant inter-metal dielectrics |
| US6271127B1 (en) * | 1999-06-10 | 2001-08-07 | Conexant Systems, Inc. | Method for dual damascene process using electron beam and ion implantation cure methods for low dielectric constant materials |
| US6204201B1 (en) * | 1999-06-11 | 2001-03-20 | Electron Vision Corporation | Method of processing films prior to chemical vapor deposition using electron beam processing |
| US6495478B1 (en) * | 1999-06-21 | 2002-12-17 | Taiwan Semiconductor Manufacturing Company | Reduction of shrinkage of poly(arylene ether) for low-K IMD |
| US20060263531A1 (en) * | 2003-12-18 | 2006-11-23 | Lichtenhan Joseph D | Polyhedral oligomeric silsesquioxanes as glass forming coatings |
| US6403464B1 (en) * | 1999-11-03 | 2002-06-11 | Taiwan Semiconductor Manufacturing Company | Method to reduce the moisture content in an organic low dielectric constant material |
| US6358670B1 (en) * | 1999-12-28 | 2002-03-19 | Electron Vision Corporation | Enhancement of photoresist plasma etch resistance via electron beam surface cure |
| US6291302B1 (en) * | 2000-01-14 | 2001-09-18 | Advanced Micro Devices, Inc. | Selective laser anneal process using highly reflective aluminum mask |
| US6184134B1 (en) * | 2000-02-18 | 2001-02-06 | Infineon Technologies North America Corp. | Dry process for cleaning residues/polymers after metal etch |
| US6759098B2 (en) * | 2000-03-20 | 2004-07-06 | Axcelis Technologies, Inc. | Plasma curing of MSQ-based porous low-k film materials |
| US7011868B2 (en) * | 2000-03-20 | 2006-03-14 | Axcelis Technologies, Inc. | Fluorine-free plasma curing process for porous low-k materials |
| US6913796B2 (en) * | 2000-03-20 | 2005-07-05 | Axcelis Technologies, Inc. | Plasma curing process for porous low-k materials |
| JP4368498B2 (ja) * | 2000-05-16 | 2009-11-18 | Necエレクトロニクス株式会社 | 半導体装置、半導体ウェーハおよびこれらの製造方法 |
| US6531398B1 (en) | 2000-10-30 | 2003-03-11 | Applied Materials, Inc. | Method of depositing organosillicate layers |
| US6465361B1 (en) * | 2001-02-20 | 2002-10-15 | Advanced Micro Devices, Inc. | Method for preventing damage of low-k dielectrics during patterning |
| US7000313B2 (en) * | 2001-03-08 | 2006-02-21 | Ppg Industries Ohio, Inc. | Process for fabricating circuit assemblies using electrodepositable dielectric coating compositions |
| US6951707B2 (en) * | 2001-03-08 | 2005-10-04 | Ppg Industries Ohio, Inc. | Process for creating vias for circuit assemblies |
| US6458691B1 (en) | 2001-04-04 | 2002-10-01 | Advanced Micro Devices, Inc. | Dual inlaid process using an imaging layer to protect via from poisoning |
| US6589711B1 (en) | 2001-04-04 | 2003-07-08 | Advanced Micro Devices, Inc. | Dual inlaid process using a bilayer resist |
| US6486082B1 (en) * | 2001-06-18 | 2002-11-26 | Applied Materials, Inc. | CVD plasma assisted lower dielectric constant sicoh film |
| TW588403B (en) * | 2001-06-25 | 2004-05-21 | Tokyo Electron Ltd | Substrate treating device and substrate treating method |
| US6605549B2 (en) * | 2001-09-29 | 2003-08-12 | Intel Corporation | Method for improving nucleation and adhesion of CVD and ALD films deposited onto low-dielectric-constant dielectrics |
| US7091137B2 (en) * | 2001-12-14 | 2006-08-15 | Applied Materials | Bi-layer approach for a hermetic low dielectric constant layer for barrier applications |
| US6890850B2 (en) * | 2001-12-14 | 2005-05-10 | Applied Materials, Inc. | Method of depositing dielectric materials in damascene applications |
| US6838393B2 (en) * | 2001-12-14 | 2005-01-04 | Applied Materials, Inc. | Method for producing semiconductor including forming a layer containing at least silicon carbide and forming a second layer containing at least silicon oxygen carbide |
| US20030134499A1 (en) * | 2002-01-15 | 2003-07-17 | International Business Machines Corporation | Bilayer HDP CVD / PE CVD cap in advanced BEOL interconnect structures and method thereof |
| US6936309B2 (en) | 2002-04-02 | 2005-08-30 | Applied Materials, Inc. | Hardness improvement of silicon carboxy films |
| US20030194495A1 (en) * | 2002-04-11 | 2003-10-16 | Applied Materials, Inc. | Crosslink cyclo-siloxane compound with linear bridging group to form ultra low k dielectric |
| US20030211244A1 (en) * | 2002-04-11 | 2003-11-13 | Applied Materials, Inc. | Reacting an organosilicon compound with an oxidizing gas to form an ultra low k dielectric |
| US20030194496A1 (en) * | 2002-04-11 | 2003-10-16 | Applied Materials, Inc. | Methods for depositing dielectric material |
| US6815373B2 (en) * | 2002-04-16 | 2004-11-09 | Applied Materials Inc. | Use of cyclic siloxanes for hardness improvement of low k dielectric films |
| US20030206337A1 (en) * | 2002-05-06 | 2003-11-06 | Eastman Kodak Company | Exposure apparatus for irradiating a sensitized substrate |
| US7056560B2 (en) * | 2002-05-08 | 2006-06-06 | Applies Materials Inc. | Ultra low dielectric materials based on hybrid system of linear silicon precursor and organic porogen by plasma-enhanced chemical vapor deposition (PECVD) |
| US6936551B2 (en) * | 2002-05-08 | 2005-08-30 | Applied Materials Inc. | Methods and apparatus for E-beam treatment used to fabricate integrated circuit devices |
| EP1504138A2 (en) * | 2002-05-08 | 2005-02-09 | Applied Materials, Inc. | Method for using low dielectric constant film by electron beam |
| US7060330B2 (en) * | 2002-05-08 | 2006-06-13 | Applied Materials, Inc. | Method for forming ultra low k films using electron beam |
| US20040101632A1 (en) * | 2002-11-22 | 2004-05-27 | Applied Materials, Inc. | Method for curing low dielectric constant film by electron beam |
| US6824959B2 (en) * | 2002-06-27 | 2004-11-30 | Ppg Industries Ohio, Inc. | Process for creating holes in polymeric substrates |
| US20060213685A1 (en) * | 2002-06-27 | 2006-09-28 | Wang Alan E | Single or multi-layer printed circuit board with improved edge via design |
| CN1672475B (zh) * | 2002-06-27 | 2011-11-23 | Ppg工业俄亥俄公司 | 有凹入或伸长分离接头片的单层或多层印刷电路板及其制造方法 |
| US6927178B2 (en) * | 2002-07-11 | 2005-08-09 | Applied Materials, Inc. | Nitrogen-free dielectric anti-reflective coating and hardmask |
| US7105460B2 (en) * | 2002-07-11 | 2006-09-12 | Applied Materials | Nitrogen-free dielectric anti-reflective coating and hardmask |
| CN1302524C (zh) * | 2002-09-27 | 2007-02-28 | 上海华虹(集团)有限公司 | 有机聚合物低介电材料刻蚀后的湿法去胶工艺 |
| US7749563B2 (en) * | 2002-10-07 | 2010-07-06 | Applied Materials, Inc. | Two-layer film for next generation damascene barrier application with good oxidation resistance |
| US6972217B1 (en) | 2002-12-23 | 2005-12-06 | Lsi Logic Corporation | Low k polymer E-beam printable mechanical support |
| US6790788B2 (en) * | 2003-01-13 | 2004-09-14 | Applied Materials Inc. | Method of improving stability in low k barrier layers |
| US6897163B2 (en) * | 2003-01-31 | 2005-05-24 | Applied Materials, Inc. | Method for depositing a low dielectric constant film |
| US20050260420A1 (en) * | 2003-04-01 | 2005-11-24 | Collins Martha J | Low dielectric materials and methods for making same |
| US20040253378A1 (en) * | 2003-06-12 | 2004-12-16 | Applied Materials, Inc. | Stress reduction of SIOC low k film by addition of alkylenes to OMCTS based processes |
| TW200528462A (en) * | 2003-12-18 | 2005-09-01 | Hybrid Plastics Llc | Polyhedral oligomeric silsesquioxanes and metallized polyhedral oligomeric silsesquioxanes as coatings, composites and additives |
| US7030041B2 (en) * | 2004-03-15 | 2006-04-18 | Applied Materials Inc. | Adhesion improvement for low k dielectrics |
| US20050214457A1 (en) * | 2004-03-29 | 2005-09-29 | Applied Materials, Inc. | Deposition of low dielectric constant films by N2O addition |
| US7229911B2 (en) * | 2004-04-19 | 2007-06-12 | Applied Materials, Inc. | Adhesion improvement for low k dielectrics to conductive materials |
| US20050233555A1 (en) * | 2004-04-19 | 2005-10-20 | Nagarajan Rajagopalan | Adhesion improvement for low k dielectrics to conductive materials |
| US7018941B2 (en) | 2004-04-21 | 2006-03-28 | Applied Materials, Inc. | Post treatment of low k dielectric films |
| US7075093B2 (en) | 2004-05-12 | 2006-07-11 | Gorski Richard M | Parallel multi-electron beam lithography for IC fabrication with precise X-Y translation |
| US20050277302A1 (en) * | 2004-05-28 | 2005-12-15 | Nguyen Son V | Advanced low dielectric constant barrier layers |
| US7229041B2 (en) * | 2004-06-30 | 2007-06-12 | Ohio Central Steel Company | Lifting lid crusher |
| US7288205B2 (en) * | 2004-07-09 | 2007-10-30 | Applied Materials, Inc. | Hermetic low dielectric constant layer for barrier applications |
| US7259381B2 (en) * | 2004-08-03 | 2007-08-21 | Applied Materials, Inc. | Methodology for determining electron beam penetration depth |
| US7588803B2 (en) * | 2005-02-01 | 2009-09-15 | Applied Materials, Inc. | Multi step ebeam process for modifying dielectric materials |
| JP2006253577A (ja) * | 2005-03-14 | 2006-09-21 | Fuji Photo Film Co Ltd | 絶縁膜、その製造方法及び該絶縁膜を有するデバイス |
| US7622378B2 (en) | 2005-11-09 | 2009-11-24 | Tokyo Electron Limited | Multi-step system and method for curing a dielectric film |
| US20070134435A1 (en) * | 2005-12-13 | 2007-06-14 | Ahn Sang H | Method to improve the ashing/wet etch damage resistance and integration stability of low dielectric constant films |
| US7473567B2 (en) | 2006-03-30 | 2009-01-06 | Tokyo Electron Limited | Change rate prediction method, storage medium, and substrate processing system |
| US7297376B1 (en) | 2006-07-07 | 2007-11-20 | Applied Materials, Inc. | Method to reduce gas-phase reactions in a PECVD process with silicon and organic precursors to deposit defect-free initial layers |
| US8029971B2 (en) * | 2008-03-13 | 2011-10-04 | International Business Machines Corporation | Photopatternable dielectric materials for BEOL applications and methods for use |
| US20140014621A1 (en) * | 2012-07-16 | 2014-01-16 | Zhaoning Yu | Analysis of pattern features |
| US9558930B2 (en) | 2014-08-13 | 2017-01-31 | International Business Machines Corporation | Mixed lithography approach for e-beam and optical exposure using HSQ |
| WO2018013976A1 (en) * | 2016-07-15 | 2018-01-18 | Brewer Science Inc. | Laser ablative dielectric material |
Family Cites Families (24)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4222792A (en) * | 1979-09-10 | 1980-09-16 | International Business Machines Corporation | Planar deep oxide isolation process utilizing resin glass and E-beam exposure |
| US4503126A (en) * | 1982-08-18 | 1985-03-05 | Foster Grant Corporation | Method of making an abrasion resistant coating on a solid substrate and articles produced thereby |
| US4435441A (en) * | 1982-12-30 | 1984-03-06 | The United States Of America As Represented By The Secretary Of The Army | Method of frequency trimming surface acoustic wave devices |
| US4661193A (en) * | 1984-08-27 | 1987-04-28 | The Dow Chemical Company | Adhesive compositions for arylcyclobutene monomeric compositions |
| US5354695A (en) * | 1992-04-08 | 1994-10-11 | Leedy Glenn J | Membrane dielectric isolation IC fabrication |
| US5270259A (en) * | 1988-06-21 | 1993-12-14 | Hitachi, Ltd. | Method for fabricating an insulating film from a silicone resin using O.sub. |
| US5141970A (en) * | 1990-12-10 | 1992-08-25 | Loctite (Ireland) Limited | Method of forming high-temperature resistant polymers |
| US5262392A (en) * | 1991-07-15 | 1993-11-16 | Eastman Kodak Company | Method for patterning metallo-organic percursor film and method for producing a patterned ceramic film and film products |
| US5229172A (en) * | 1993-01-19 | 1993-07-20 | Medtronic, Inc. | Modification of polymeric surface by graft polymerization |
| US5468595A (en) * | 1993-01-29 | 1995-11-21 | Electron Vision Corporation | Method for three-dimensional control of solubility properties of resist layers |
| JP4014234B2 (ja) * | 1994-05-27 | 2007-11-28 | テキサス インスツルメンツ インコーポレイテツド | 半導体デバイス中に線間容量の低減化された相互接続線を作製する方法 |
| US5504042A (en) * | 1994-06-23 | 1996-04-02 | Texas Instruments Incorporated | Porous dielectric material with improved pore surface properties for electronics applications |
| US5545475A (en) * | 1994-09-20 | 1996-08-13 | W. L. Gore & Associates | Microfiber-reinforced porous polymer film and a method for manufacturing the same and composites made thereof |
| US6652922B1 (en) * | 1995-06-15 | 2003-11-25 | Alliedsignal Inc. | Electron-beam processed films for microelectronics structures |
| US5609925A (en) * | 1995-12-04 | 1997-03-11 | Dow Corning Corporation | Curing hydrogen silsesquioxane resin with an electron beam |
| US5789140A (en) * | 1996-04-25 | 1998-08-04 | Fujitsu Limited | Method of forming a pattern or via structure utilizing supplemental electron beam exposure and development to remove image residue |
| US5763049A (en) * | 1996-04-30 | 1998-06-09 | Minnesota Mining And Manufacturing Company | Formed ultra-flexible retroreflective cube-corner composite sheeting with target optical properties and method for making same |
| US5883212A (en) * | 1996-05-08 | 1999-03-16 | Rexam Graphics, Inc. | Conductivity exaltation in radiation cured electrically conductive coatings |
| US5916641A (en) * | 1996-08-01 | 1999-06-29 | Loctite (Ireland) Limited | Method of forming a monolayer of particles |
| ATE217366T1 (de) * | 1996-08-15 | 2002-05-15 | Alcan Tech & Man Ag | Reflektor mit resistenter oberfläche |
| US5863963A (en) * | 1996-08-29 | 1999-01-26 | Xerox Corporation | Halomethylated high performance curable polymers |
| US5707681A (en) * | 1997-02-07 | 1998-01-13 | Dow Corning Corporation | Method of producing coatings on electronic substrates |
| US5843537A (en) * | 1997-03-07 | 1998-12-01 | Quantum Corporation | Insulator cure process for giant magnetoresistive heads |
| US5939334A (en) * | 1997-05-22 | 1999-08-17 | Sharp Laboratories Of America, Inc. | System and method of selectively cleaning copper substrate surfaces, in-situ, to remove copper oxides |
-
1998
- 1998-02-24 US US09/028,465 patent/US6080526A/en not_active Expired - Fee Related
- 1998-03-09 KR KR10-1999-7008771A patent/KR100477455B1/ko not_active Expired - Fee Related
- 1998-03-09 CN CN98805439A patent/CN1113408C/zh not_active Expired - Fee Related
- 1998-03-09 WO PCT/US1998/004560 patent/WO1998043294A1/en not_active Ceased
- 1998-03-09 DE DE69836009T patent/DE69836009D1/de not_active Expired - Lifetime
- 1998-03-09 JP JP54573798A patent/JP3276963B2/ja not_active Expired - Fee Related
- 1998-03-09 CA CA002284760A patent/CA2284760A1/en not_active Abandoned
- 1998-03-09 EP EP98911525A patent/EP0970519B1/en not_active Expired - Lifetime
- 1998-03-09 IL IL13201798A patent/IL132017A0/xx unknown
Also Published As
| Publication number | Publication date |
|---|---|
| KR20010005703A (ko) | 2001-01-15 |
| CN1257610A (zh) | 2000-06-21 |
| JP2000511006A (ja) | 2000-08-22 |
| CA2284760A1 (en) | 1998-10-01 |
| JP3276963B2 (ja) | 2002-04-22 |
| KR100477455B1 (ko) | 2005-03-23 |
| US6080526A (en) | 2000-06-27 |
| WO1998043294A1 (en) | 1998-10-01 |
| DE69836009D1 (de) | 2006-11-09 |
| EP0970519B1 (en) | 2006-09-27 |
| EP0970519A1 (en) | 2000-01-12 |
| IL132017A0 (en) | 2001-03-19 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN1113408C (zh) | 利用受控电子束辐射将低-k聚合物并入层间电介质 | |
| US6214748B1 (en) | Semiconductor device and method for the fabrication thereof | |
| CN1298045C (zh) | 具有埋入的多层配线结构的半导体器件的制造方法 | |
| JP4546094B2 (ja) | デュアルダマシン配線をパターン形成する三層マスキングアーキテクチャ | |
| US6607991B1 (en) | Method for curing spin-on dielectric films utilizing electron beam radiation | |
| CN1165986C (zh) | 用于自调准Cu扩散阻挡层的集成电路制造方法 | |
| US6177143B1 (en) | Electron beam treatment of siloxane resins | |
| CN100477106C (zh) | 半导体器件制造方法 | |
| US7557035B1 (en) | Method of forming semiconductor devices by microwave curing of low-k dielectric films | |
| CN1832128A (zh) | 制造互连结构的方法及由其制造的互连结构 | |
| US7830012B2 (en) | Material for forming exposure light-blocking film, multilayer interconnection structure and manufacturing method thereof, and semiconductor device | |
| CN101045820B (zh) | 形成绝缘膜的组合物以及制造半导体器件的方法 | |
| US20020173138A1 (en) | Method for manufacturing a semiconductor device | |
| US6784092B2 (en) | Method of forming insulating film and method of manufacturing semiconductor device | |
| JP2000221699A (ja) | 膜の処理方法 | |
| TW409283B (en) | Integration of LOW-K polymers into interlevel dielectrics using controlled electron-beam radiation | |
| JP5565314B2 (ja) | 半導体装置の製造方法及びその製造装置 | |
| JPH10335324A (ja) | 半導体装置及びその製造方法 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| EE01 | Entry into force of recordation of patent licensing contract |
Assignee: Applied Materials Inc.|Electronic vision Inc Assignor: Honeywell International Inc.|Honeywell intellectual property company Contract fulfillment period: Within the validity of the patent Contract record no.: 031000030215 Denomination of invention: The low -K polymer is incorporated into the interlayer dielectric by controlled electron beam radiation Granted publication date: 20030702 License type: Exclusive license Record date: 20030708 |
|
| LIC | Patent licence contract for exploitation submitted for record |
Free format text: EXCLUSIVE LICENCE; TIME LIMIT OF IMPLEMENTING CONTACT: PATENT RIGHT DURATION Name of requester: APPLICATION MATERIAL LTD. ELECTRONICS VISION CO., Effective date: 20030708 |
|
| C19 | Lapse of patent right due to non-payment of the annual fee | ||
| CF01 | Termination of patent right due to non-payment of annual fee |