CN111345814B - Analysis method, device, equipment and storage medium for electrocardiosignal center beat - Google Patents
Analysis method, device, equipment and storage medium for electrocardiosignal center beat Download PDFInfo
- Publication number
- CN111345814B CN111345814B CN202010085728.4A CN202010085728A CN111345814B CN 111345814 B CN111345814 B CN 111345814B CN 202010085728 A CN202010085728 A CN 202010085728A CN 111345814 B CN111345814 B CN 111345814B
- Authority
- CN
- China
- Prior art keywords
- heartbeat
- point
- loss
- anchor
- anchor point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/318—Heart-related electrical modalities, e.g. electrocardiography [ECG]
- A61B5/346—Analysis of electrocardiograms
- A61B5/349—Detecting specific parameters of the electrocardiograph cycle
- A61B5/366—Detecting abnormal QRS complex, e.g. widening
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/318—Heart-related electrical modalities, e.g. electrocardiography [ECG]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Molecular Biology (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Physics & Mathematics (AREA)
- Medical Informatics (AREA)
- Biophysics (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
本发明实施例公开了一种心电信号中心拍的分析方法、装置、设备和存储介质。该方法包括:对采集到的心电信号进行预处理,得到若干段设定长度的样本信号;对样本信号进行特征提取,生成样本信号在三个尺度上的特征向量;根据特征向量构建预设长度的锚点,根据锚点计算心拍的基准点位置;将每个心拍在对应的宽度范围内的特征向量输入到类型识别模块,依次经过类型识别模块的卷积层、激活层、批归一化层和线性全连接层的计算,输出一个五维向量,五维向量用于表征心拍对应属于五种心拍类型的概率。本实施例实现自动对模块进行同步训练,节约了训练时间。
The embodiment of the present invention discloses an analysis method, device, equipment and storage medium of a heartbeat of an electrocardiographic signal. The method includes: preprocessing the collected ECG signals to obtain several sample signals with a set length; performing feature extraction on the sample signals to generate feature vectors of the sample signals on three scales; constructing a preset according to the feature vectors The length of the anchor point, calculate the reference point position of the heartbeat according to the anchor point; input the feature vector of each heartbeat within the corresponding width range to the type recognition module, and then go through the convolution layer, activation layer, and batch normalization of the type recognition module The calculation of the normalized layer and the linear fully connected layer outputs a five-dimensional vector, and the five-dimensional vector is used to represent the probability that the heartbeat corresponds to the five heartbeat types. This embodiment realizes automatic synchronous training of the modules, which saves training time.
Description
技术领域Technical Field
本发明实施例涉及信号处理技术领域,尤其涉及一种心电信号中心拍的分析方法、装置、设备和存储介质。The embodiments of the present invention relate to the field of signal processing technology, and in particular to a method, device, equipment and storage medium for analyzing the heartbeat of an electrocardiogram signal.
背景技术Background Art
目前我国的心血管疾病患者数量约为2.6亿,心血管死亡率占城乡居民疾病死亡构成的首位,并且患病人数依然在持续增加。心电信号反应了心脏活动的电生理过程。由于基于心电信号的检查成本低,使用方便,因此被广泛用于心血管疾病的检查和诊断。图1给出了一个典型的心电波形。正常的心电信号一般由P波,QRS复合波和T波组成,有时候也会有u波。其中P波表示了心房收缩的电活动,QRS波和T分别表示了心室收缩和舒张的电活动。At present, the number of cardiovascular disease patients in my country is about 260 million, and cardiovascular mortality ranks first among urban and rural residents' disease deaths, and the number of patients is still increasing. ECG signals reflect the electrophysiological process of cardiac activity. Since ECG-based inspections are low-cost and easy to use, they are widely used in the inspection and diagnosis of cardiovascular diseases. Figure 1 shows a typical ECG waveform. A normal ECG signal is generally composed of a P wave, a QRS complex wave and a T wave, and sometimes a U wave. The P wave represents the electrical activity of atrial contraction, and the QRS wave and T represent the electrical activity of ventricular contraction and relaxation, respectively.
心电分析算法是心电图机、心电监护仪等诊断和分析设备中的重要组成部分。心电分析算法通过对心电信号进行测量和分类,能够检测多种疾病并及时发出警报。在实际使用过程中,心电分析通常为首先进行心拍位置检测(又称为QRS检波),然后在检出的心拍位置上进行基准点检测(如QRS波起点、终点等)和类型识别(正常,室上性异常,室性异常等),最终输出分析结果。一旦心拍位置检测模块输出的心拍位置发生变化,会严重影响后续的基准点检测和心拍类型识别的性能。现有算法通常针对不同步骤设计了不同的功能模块,并分别测试。其优点在于单个模块的研发过程简单,规定好各模块之前的输入输出方式后即可通过标注信息测试各个模块的性能,但是缺点在于模块之间的联调过程繁琐。ECG analysis algorithms are an important component of diagnostic and analysis equipment such as electrocardiographs and electrocardiograph monitors. ECG analysis algorithms can detect a variety of diseases and issue alarms in a timely manner by measuring and classifying ECG signals. In actual use, ECG analysis usually first performs heartbeat position detection (also known as QRS detection), then performs reference point detection (such as QRS wave starting point, end point, etc.) and type identification (normal, supraventricular abnormality, ventricular abnormality, etc.) on the detected heartbeat position, and finally outputs the analysis results. Once the heartbeat position output by the heartbeat position detection module changes, it will seriously affect the performance of subsequent reference point detection and heartbeat type identification. Existing algorithms usually design different functional modules for different steps and test them separately. Its advantage is that the development process of a single module is simple. After specifying the input and output methods of each module, the performance of each module can be tested by marking information, but the disadvantage is that the joint debugging process between modules is cumbersome.
发明内容Summary of the invention
本发明提供了一种确心电信号中心拍的分析方法、装置、设备和存储介质,以解决现有技术中基于步骤细化实现的多个模块之间联调过程繁琐的技术问题。The present invention provides an analysis method, device, equipment and storage medium for determining the heartbeat in an electrocardiogram signal, so as to solve the technical problem of the cumbersome joint debugging process between multiple modules based on step refinement in the prior art.
第一方面,本发明实施例提供了一种心电信号中心拍的分析方法,包括:In a first aspect, an embodiment of the present invention provides a method for analyzing a heartbeat in an electrocardiogram signal, comprising:
对采集到的心电信号进行预处理,得到若干段设定长度的样本信号;Preprocessing the collected ECG signals to obtain a number of sample signals of set lengths;
对所述样本信号进行特征提取,生成所述样本信号在三个尺度上的特征向量,三个尺度上的特征向量的长度分别为所述设定长度的二分之一、四分之一和八分之一;Performing feature extraction on the sample signal to generate feature vectors of the sample signal at three scales, wherein the lengths of the feature vectors at the three scales are respectively one-half, one-quarter, and one-eighth of the set length;
根据所述样本信号对应的特征向量构建预设长度的锚点,根据所述锚点计算心拍的基准点位置;Constructing an anchor point of a preset length according to the feature vector corresponding to the sample signal, and calculating the reference point position of the heartbeat according to the anchor point;
将每个所述心拍在对应的基准点位置范围内的特征向量输入到类型识别模块,依次经过所述类型识别模块的卷积层、激活层、批归一化层和线性全连接层的计算,输出一个五维向量,所述五维向量用于表征所述心拍对应属于五种心拍类型的概率。The feature vector of each heartbeat within the corresponding reference point position range is input into the type recognition module, and is calculated in sequence by the convolution layer, activation layer, batch normalization layer and linear fully connected layer of the type recognition module to output a five-dimensional vector, which is used to characterize the probability that the heartbeat belongs to the five heartbeat types.
其中,所述根据所述样本信号对应的特征向量构建预设长度的锚点,根据所述锚点计算心拍的基准点位置,包括:The step of constructing an anchor point of a preset length according to the feature vector corresponding to the sample signal and calculating the reference point position of the heartbeat according to the anchor point includes:
对于每个所述尺度对应的特征向量,以所述特征向量上的每个样本点为中心,构建长度为9个样本点的锚点,所述锚点的分数为所述锚点的中心样本点的值;For each feature vector corresponding to the scale, an anchor point with a length of 9 sample points is constructed with each sample point on the feature vector as the center, and the score of the anchor point is the value of the central sample point of the anchor point;
将所述锚点对应的特征向量输入心拍位置检测和测量模块,得到心拍概率的分数、锚点至边界框的变化量和各个波段持续的时间比例;Input the feature vector corresponding to the anchor point into the heartbeat position detection and measurement module to obtain the score of the heartbeat probability, the change from the anchor point to the bounding box, and the duration ratio of each band;
将全部所述锚点按分数由大到小进行排序,生成检查列表;Sort all the anchor points by scores from large to small to generate a checklist;
依次对所述检查列表中的所述锚点进行候选区域筛选,将每次筛选出的锚点作为候选区域添加到候选列表,在所述检查列表中删除该锚点以及与该锚点距离0.2秒内的其他锚点,每次筛选出的锚点为所述检查列表中分数最高、起点大于0且终点小于对应的所述特征向量的长度的锚点;The anchor points in the inspection list are sequentially screened for candidate regions, and the screened anchor points are added to the candidate list as candidate regions. The anchor points and other anchor points within 0.2 seconds of the anchor points are deleted from the inspection list, and the screened anchor points are the anchor points in the inspection list with the highest scores, starting points greater than 0, and end points less than the length of the corresponding feature vector;
根据所述候选列表中锚点的中点、宽度以及所述变化量计算心拍边界框的中点和宽度,根据所述心拍边界框的中点和宽度计算所述心拍边界框的起点和终点;Calculate the midpoint and width of the heartbeat bounding box according to the midpoint and width of the anchor point in the candidate list and the variation, and calculate the start point and end point of the heartbeat bounding box according to the midpoint and width of the heartbeat bounding box;
根据所述心拍边界框的起点、宽度以及时间比例计算心拍的五种基准点的位置。The positions of five reference points of the heartbeat are calculated according to the starting point, width and time ratio of the heartbeat boundary box.
其中,所述对所述样本信号进行特征提取,生成所述样本信号在三个尺度上的特征向量,三个尺度上的特征向量的长度分别为所述设定长度的二分之一、四分之一和八分之一,包括:The step of extracting features from the sample signal to generate feature vectors of the sample signal at three scales, wherein the lengths of the feature vectors at the three scales are respectively one-half, one-quarter, and one-eighth of the set length, includes:
将所述样本信号输入初始特征提取模块得到初始特征提取结果,三个尺度对应的特征提取模块对所述初始特征提取结果按对应的尺度等级进行特征提取,三个尺度上的特征向量的长度分别为所述设定长度的二分之一、四分之一和八分之一;The sample signal is input into an initial feature extraction module to obtain an initial feature extraction result, and the feature extraction modules corresponding to the three scales perform feature extraction on the initial feature extraction result according to the corresponding scale levels, and the lengths of the feature vectors at the three scales are respectively one-half, one-quarter and one-eighth of the set length;
将每个尺度对应的特征提取结果输出到对应的卷积层并综合相邻尺度上特征提取的结果生成所述样本信号在三个尺度上的特征向量。The feature extraction result corresponding to each scale is output to the corresponding convolution layer and the feature extraction results at adjacent scales are integrated to generate the feature vectors of the sample signal at three scales.
其中,所述类型识别模块在训练过程中的总损失通过以下公式计算:The total loss of the type recognition module during training is calculated by the following formula:
loss=det_loss+bbx_loss+fiducial_loss+cls_lossloss=det_loss+bbx_loss+fiducial_loss+cls_loss
其中loss为总损失,det_loss为心拍位置检测损失,bbx_loss为心拍边界框范围检测损失,fiducial_loss为基准点位置检测损失和cls_loss为心拍类型分类损失。Among them, loss is the total loss, det_loss is the heartbeat position detection loss, bbx_loss is the heartbeat bounding box range detection loss, fiducial_loss is the reference point position detection loss and cls_loss is the heartbeat type classification loss.
其中,所述心拍位置检测损失通过以下公式计算:The heartbeat position detection loss is calculated by the following formula:
其中,scorei表示第i个锚点在心拍位置检测和测量模块的输出分数(0<scorei<1),fi表示该锚点的类型,当锚点位置与真实的心拍位置之差的绝对值小于0.15秒时fi=1,反之fi=0。Wherein, score i represents the output score of the i-th anchor point in the heart beat position detection and measurement module (0<score i <1), fi represents the type of the anchor point, and fi = 1 when the absolute value of the difference between the anchor point position and the true heart beat position is less than 0.15 seconds, otherwise fi = 0.
其中,所述心拍边界框范围检测损失bbx_loss通过以下公式计算:The heartbeat bounding box range detection loss bbx_loss is calculated by the following formula:
所述基准点位置检测损失fiducial_loss通过以下公式计算:The fiducial_loss is calculated by the following formula:
其中,第j个锚点所对应心拍的起点和终点分别为和第j个锚点对应的P波起点、P波终点、QRS波起点、QRS波终点和T波终点分别为和 Among them, the starting point and end point of the heartbeat corresponding to the jth anchor point are and The P wave start point, P wave end point, QRS wave start point, QRS wave end point, and T wave end point corresponding to the jth anchor point are and
其中,所述类型分类损失通过以下公式计算:Among them, the type classification loss is calculated by the following formula:
其中表示第j个锚点属于第k类型心拍的概率 表示该锚点是否属于第k类型,如果属于该类型则反之 in represents the probability that the jth anchor point belongs to the kth type of heartbeat Indicates whether the anchor point belongs to the kth type. If it does, then on the contrary
第二方面,本发明实施例还提供了一种心电信号中心拍的分析装置,包括:In a second aspect, an embodiment of the present invention further provides a device for analyzing a heartbeat in an electrocardiogram signal, comprising:
预处理单元,用于对采集到的心电信号进行预处理,得到若干段设定长度的样本信号;A preprocessing unit, used to preprocess the collected ECG signals to obtain a number of sample signals of set lengths;
特征提取单元,用于对所述样本信号进行特征提取,生成所述样本信号在三个尺度上的特征向量,三个尺度上的特征向量的长度分别为所述设定长度的二分之一、四分之一和八分之一;A feature extraction unit, used to extract features from the sample signal to generate feature vectors of the sample signal at three scales, wherein the lengths of the feature vectors at the three scales are respectively one-half, one-quarter and one-eighth of the set length;
基准点检测单元,用于根据所述样本信号对应的特征向量构建预设长度的锚点,根据所述锚点计算心拍的基准点位置;A reference point detection unit, configured to construct an anchor point of a preset length according to a feature vector corresponding to the sample signal, and calculate a reference point position of a heartbeat according to the anchor point;
心拍分类单元,用于将每个所述心拍在对应的基准点位置范围内的特征向量输入到类型识别模块,依次经过所述类型识别模块的卷积层、激活层、批归一化层和线性全连接层的计算,输出一个五维向量,所述五维向量用于表征所述心拍对应属于五种心拍类型的概率。The heartbeat classification unit is used to input the feature vector of each heartbeat within the corresponding reference point position range into the type recognition module, and sequentially pass the calculations of the convolution layer, activation layer, batch normalization layer and linear fully connected layer of the type recognition module to output a five-dimensional vector, wherein the five-dimensional vector is used to characterize the probability that the heartbeat corresponds to the five heartbeat types.
其中,所述基准点检测单元,包括:Wherein, the reference point detection unit includes:
锚点计算模块,用于对于每个所述尺度对应的特征向量,以所述特征向量上的每个样本点为中心,构建长度为9个样本点的锚点,所述锚点的分数为所述锚点的中心样本点的值;An anchor point calculation module, used for constructing an anchor point with a length of 9 sample points, with each sample point on the feature vector as the center, for each feature vector corresponding to the scale, wherein the score of the anchor point is the value of the central sample point of the anchor point;
数据输出模块,用于将所述锚点对应的特征向量输入心拍位置检测和测量模块,得到心拍概率的分数、锚点至边界框的变化量和各个波段持续的时间比例;A data output module, used to input the feature vector corresponding to the anchor point into the heartbeat position detection and measurement module to obtain the score of the heartbeat probability, the change from the anchor point to the bounding box and the duration ratio of each band;
锚点排序模块,用于将全部所述锚点按分数由大到小进行排序,生成检查列表;An anchor point sorting module, used to sort all the anchor points from large to small according to the scores, and generate a check list;
候选区筛选模块,用于依次对所述检查列表中的所述锚点进行候选区域筛选,将每次筛选出的锚点作为候选区域添加到候选列表,在所述检查列表中删除该锚点以及与该锚点距离0.2秒内的其他锚点,每次筛选出的锚点为所述检查列表中分数最高、起点大于0且终点小于对应的所述特征向量的长度的锚点;A candidate area screening module is used to sequentially screen the anchor points in the inspection list for candidate areas, add the screened anchor points each time as candidate areas to the candidate list, delete the anchor point and other anchor points within 0.2 seconds of the anchor point in the inspection list, and the screened anchor point each time is the anchor point in the inspection list with the highest score, a starting point greater than 0, and an end point less than the length of the corresponding feature vector;
范围计算模块,用于根据所述候选列表中锚点的中点、宽度以及所述变化量计算心拍边界框的中点和宽度,根据所述心拍边界框的中点和宽度计算所述心拍边界框的起点和终点;A range calculation module, used to calculate the midpoint and width of the heartbeat bounding box according to the midpoint and width of the anchor point in the candidate list and the variation, and calculate the start point and end point of the heartbeat bounding box according to the midpoint and width of the heartbeat bounding box;
基准点计算模块,用于根据所述心拍边界框的起点、宽度以及时间比例计算心拍的五种基准点的位置。The reference point calculation module is used to calculate the positions of five reference points of the heartbeat according to the starting point, width and time ratio of the heartbeat boundary box.
其中,所述特征提取单元,包括:Wherein, the feature extraction unit comprises:
特征提取模块,用于将所述样本信号输入初始特征提取模块得到初始特征提取结果,三个尺度对应的特征提取模块对所述初始特征提取结果按对应的尺度等级进行特征提取,三个尺度上的特征向量的长度分别为所述设定长度的二分之一、四分之一和八分之一;A feature extraction module, used for inputting the sample signal into an initial feature extraction module to obtain an initial feature extraction result, wherein the feature extraction modules corresponding to the three scales perform feature extraction on the initial feature extraction result according to the corresponding scale levels, and the lengths of the feature vectors at the three scales are respectively one-half, one-quarter and one-eighth of the set length;
特征向量生成模块,用于将每个尺度对应的特征提取结果输出到对应的卷积层并综合相邻尺度上特征提取的结果生成所述样本信号在三个尺度上的特征向量。The feature vector generation module is used to output the feature extraction result corresponding to each scale to the corresponding convolution layer and integrate the feature extraction results at adjacent scales to generate the feature vectors of the sample signal at three scales.
其中,所述类型识别模块在训练过程中的总损失通过以下公式计算:The total loss of the type recognition module during training is calculated by the following formula:
loss=det_loss+bbx_loss+fiducial_loss+cls_lossloss=det_loss+bbx_loss+fiducial_loss+cls_loss
其中loss为总损失,det_loss为心拍位置检测损失,bbx_loss为心拍边界框范围检测损失,fiducial_loss为基准点位置检测损失和cls_loss为心拍类型分类损失。Among them, loss is the total loss, det_loss is the heartbeat position detection loss, bbx_loss is the heartbeat bounding box range detection loss, fiducial_loss is the reference point position detection loss and cls_loss is the heartbeat type classification loss.
其中,所述心拍位置检测损失通过以下公式计算:The heartbeat position detection loss is calculated by the following formula:
其中,scorei表示第i个锚点在心拍位置检测和测量模块的输出分数(0<scorei<1),fi表示该锚点的类型,当锚点位置与真实的心拍位置之差的绝对值小于0.15秒时fi=1,反之fi=0。Wherein, score i represents the output score of the i-th anchor point in the heart beat position detection and measurement module (0<score i <1), fi represents the type of the anchor point, and fi = 1 when the absolute value of the difference between the anchor point position and the true heart beat position is less than 0.15 seconds, otherwise fi = 0.
其中,所述心拍边界框范围检测损失bbx_loss通过以下公式计算:The heartbeat bounding box range detection loss bbx_loss is calculated by the following formula:
所述基准点位置检测损失fiducial_loss通过以下公式计算:The fiducial_loss is calculated by the following formula:
其中,第j个锚点所对应心拍的起点和终点分别为和第j个锚点对应的P波起点、P波终点、QRS波起点、QRS波终点和T波终点分别为和 Among them, the starting point and end point of the heartbeat corresponding to the jth anchor point are and The P wave start point, P wave end point, QRS wave start point, QRS wave end point, and T wave end point corresponding to the jth anchor point are and
其中,所述类型分类损失通过以下公式计算:Among them, the type classification loss is calculated by the following formula:
其中,表示第j个锚点属于第k类型心拍的概率 表示该锚点是否属于第k类型,如果属于该类型则反之 in, represents the probability that the jth anchor point belongs to the kth type of heartbeat Indicates whether the anchor point belongs to the kth type. If it does, then on the contrary
第三方面,本发明实施例还提供了一种设备,所述设备包括:In a third aspect, an embodiment of the present invention further provides a device, the device comprising:
一个或多个处理器;one or more processors;
存储器,用于存储一个或多个程序,a memory for storing one or more programs,
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如第一方面中任一所述的心电信号中心拍的分析方法。When the one or more programs are executed by the one or more processors, the one or more processors implement the method for analyzing the heartbeat in the electrocardiogram signal as described in any one of the first aspects.
第四方面,本发明实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如第一方面中任一所述的心电信号中心拍的分析方法。In a fourth aspect, an embodiment of the present invention further provides a computer-readable storage medium having a computer program stored thereon, which, when executed by a processor, implements the method for analyzing the heartbeat in an electrocardiogram signal as described in any one of the first aspects.
上述心电信号中心拍的分析方法、装置、设备和存储介质,通过对采集到的心电信号进行预处理,得到若干段设定长度的样本信号;对所述样本信号进行特征提取,生成所述样本信号在三个尺度上的特征向量,三个尺度上的特征向量的长度分别为所述设定长度的二分之一、四分之一和八分之一;根据所述样本信号对应的特征向量构建预设长度的锚点,根据所述锚点计算心拍的基准点位置;将每个所述心拍在对应的基准点位置范围内的特征向量输入到类型识别模块,依次经过所述类型识别模块的卷积层、激活层、批归一化层和线性全连接层的计算,输出一个五维向量,所述五维向量用于表征所述心拍对应属于五种心拍类型的概率。本实施例基于深度学习的方法,通过端到端的全自动分析过程输出各心拍基准点位置的类型,实现自动对全部模块进行同步训练,简化了训练过程同时保持了各个环节的综合性能,节约了训练时间。The above-mentioned heartbeat analysis method, device, equipment and storage medium of the ECG signal preprocess the collected ECG signal to obtain several segments of sample signals of set length; extract features from the sample signals to generate feature vectors of the sample signals at three scales, and the lengths of the feature vectors at the three scales are respectively one-half, one-quarter and one-eighth of the set length; construct anchor points of preset lengths according to the feature vectors corresponding to the sample signals, and calculate the reference point position of the heartbeat according to the anchor points; input the feature vectors of each heartbeat within the corresponding reference point position range into the type recognition module, and sequentially pass through the convolution layer, activation layer, batch normalization layer and linear full connection layer of the type recognition module to output a five-dimensional vector, which is used to characterize the probability that the heartbeat corresponds to the five heartbeat types. This embodiment is based on a deep learning method, and outputs the type of each heartbeat reference point position through an end-to-end fully automatic analysis process, so as to realize automatic synchronous training of all modules, simplify the training process while maintaining the comprehensive performance of each link, and save training time.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为心电信号的结构示意图;FIG1 is a schematic diagram of the structure of an electrocardiogram signal;
图2为本发明实施例一提供的一种心电信号中心拍的分析方法的流程图;FIG2 is a flow chart of a method for analyzing the heartbeat of an electrocardiogram signal provided in
图3-图6为本发明实施例一提供的一种心电信号处理过程的变化示意图;3 to 6 are schematic diagrams showing changes in an electrocardiogram signal processing process provided by the first embodiment of the present invention;
图7为本发明实施例一提供的心电信号处理过程中的数据流动示意图;7 is a schematic diagram of data flow in the process of processing ECG signals provided in the first embodiment of the present invention;
图8为本发明实施例二提供的一种心电信号中心拍的分析方法的特征提取流程图;FIG8 is a flow chart of feature extraction of a method for analyzing the heartbeat of an electrocardiogram signal provided in
图9为本发明实施例二中特征提取过程中数据流动示意图;FIG9 is a schematic diagram of data flow during feature extraction in
图10-图13为本发明实施例二中特征提取模块的数据处理流程示意图;10-13 are schematic diagrams of the data processing flow of the feature extraction module in the second embodiment of the present invention;
图14为本发明实施例二中基准点位置计算的流程图;14 is a flowchart of reference point position calculation in
图15为本发明实施例二中基准点位置计算的数据处理流程示意图;15 is a schematic diagram of a data processing flow for calculating a reference point position in a second embodiment of the present invention;
图16为本发明实施例二中心拍分类的数据处理流程示意图;FIG16 is a schematic diagram of a data processing flow for center beat classification according to
图17为本发明实施例三提供的一种心电信号中心拍的分析装置的结构示意图;FIG17 is a schematic diagram of the structure of a device for analyzing the heartbeat of an electrocardiogram signal provided in
图18为本发明实施例四提供的一种设备的结构示意图。FIG18 is a schematic diagram of the structure of a device provided in
具体实施方式DETAILED DESCRIPTION
下面结合附图和实施例对本发明作进一步的详细说明。可以理解的是,此处所描述的具体实施例用于解释本发明,而非对本发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分而非全部结构。The present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. It is to be understood that the specific embodiments described herein are used to explain the present invention, rather than to limit the present invention. It should also be noted that, for ease of description, only the parts related to the present invention, rather than all structures, are shown in the accompanying drawings.
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。Reference to "embodiments" herein means that a particular feature, structure, or characteristic described in conjunction with the embodiments may be included in at least one embodiment of the present application. The appearance of the phrase in various locations in the specification does not necessarily refer to the same embodiment, nor is it an independent or alternative embodiment that is mutually exclusive with other embodiments. It is explicitly and implicitly understood by those skilled in the art that the embodiments described herein may be combined with other embodiments.
实施例一
图2为本发明实施例一提供的一种心电信号中心拍的分析方法的流程图。实施例中提供的心电信号中心拍的分析方法可以由心电信号中QRS波的检测分析设备执行,该心电信号中QRS波的检测设备可以通过软件和/或硬件的方式实现,该心电信号中心拍的分析设备可以是两个或多个物理实体构成,也可以是一个物理实体构成。例如,心电信号中心拍的分析设备可以是手机、工业控制计算机等。FIG2 is a flow chart of a method for analyzing the heartbeat of an ECG signal provided in
如图2所示,实施例一中提供的心电信号中心拍的分析方法,包括以下步骤:As shown in FIG2 , the method for analyzing the heartbeat of an electrocardiogram signal provided in the first embodiment includes the following steps:
步骤S110:对采集到的心电信号进行预处理,得到若干段设定长度的样本信号。Step S110: pre-processing the collected ECG signal to obtain a number of sample signals of set length.
预处理主要包括重采样、滤波等对信号的波形调整,具体来说,对于最原始的心电信号,首先将心电信号重采样到256Hz(fs=256),然后利用通带范围为0.5Hz到40Hz的滤波器进行带通滤波。对于某个个体的心电信号,用于分析的心电信号片段长度一般为10秒左右,也就是说,对于某个个体的心电信号,10秒长度的心电信号中有2560个样本点,在本实施例中取整,设重采样后的心电信号为si,i=1,…,n(n=2560),图3和图4给出了滤波前后的心电信号。对比图3和图4可以发现,带通滤波滤除了信号中的“毛刺”部分。Preprocessing mainly includes resampling, filtering and other waveform adjustments to the signal. Specifically, for the most original ECG signal, the ECG signal is first resampled to 256Hz (fs=256), and then bandpass filtered using a filter with a passband range of 0.5Hz to 40Hz. For an individual's ECG signal, the length of the ECG signal segment used for analysis is generally about 10 seconds, that is, for an individual's ECG signal, there are 2560 sample points in a 10-second ECG signal. In this embodiment, the resampled ECG signal is rounded to s i , i=1,…,n (n=2560). Figures 3 and 4 show the ECG signals before and after filtering. By comparing Figures 3 and 4, it can be found that the bandpass filter filters out the "burr" part of the signal.
步骤S120:对所述样本信号进行特征提取,生成所述样本信号在三个尺度上的特征向量,三个尺度上的特征向量的长度分别为所述设定长度的二分之一、四分之一和八分之一。Step S120: extracting features from the sample signal to generate feature vectors of the sample signal at three scales, wherein the lengths of the feature vectors at the three scales are respectively one-half, one-quarter and one-eighth of the set length.
三个尺度上的特征向量的长度分别为设定长度的二分之一、四分之一和八分之一,为表述简单,分别定义为第一层、第二层和第三层。其中第一层用于起搏器信号的检测,第二层用于正常宽度心拍的检测,第三层用于宽大畸形的心拍,例如室性早搏的检测,这三种的集合构成全部的心拍。The lengths of the feature vectors at the three scales are half, one quarter, and one eighth of the set length, respectively. For simplicity, they are defined as the first, second, and third layers, respectively. The first layer is used for the detection of pacemaker signals, the second layer is used for the detection of normal width heartbeats, and the third layer is used for the detection of wide and deformed heartbeats, such as ventricular premature beats. The collection of these three types constitutes all heartbeats.
步骤S130:根据所述样本信号对应的特征向量构建预设长度的锚点,根据所述锚点计算心拍的基准点位置。Step S130: constructing anchor points of a preset length according to the feature vector corresponding to the sample signal, and calculating the reference point position of the heartbeat according to the anchor points.
根据设定长度的锚点的值,可以对各个样本信号进行打分和排序,先粗略确认出疑似心拍的候选区域,如图5所示,其中先行确认了若干疑似QRS波的位置,并用“×”予以标记,除了峰值较大的那一部分,还有相当多峰值较小的心电波被标记。According to the value of the anchor point of the set length, each sample signal can be scored and sorted, and the candidate area of the suspected heartbeat can be roughly identified first, as shown in Figure 5, in which the positions of several suspected QRS waves are first identified and marked with "×". In addition to the part with a larger peak value, there are also quite a few ECG waves with smaller peak values that are marked.
在初步确认疑似QRS波之后,将对应得到的候选区域和特征向量输入到候选区检测模块,可以进一步精确判断出候选区的信号是否是QRS波。在图5所示的候选区的基础上,判断出图6中“×”标记的信号为QRS波,在图3-图6中,“·”对应的波为事实上的QRS波,可以清晰看到,经过以上处理,在图6中准确的判断出了所有的QRS波。After the suspected QRS wave is initially confirmed, the corresponding candidate area and feature vector are input into the candidate area detection module, which can further accurately determine whether the signal in the candidate area is a QRS wave. Based on the candidate area shown in Figure 5, the signal marked with "×" in Figure 6 is determined to be a QRS wave. In Figures 3 to 6, the wave corresponding to "·" is the actual QRS wave. It can be clearly seen that after the above processing, all QRS waves are accurately determined in Figure 6.
在心拍检测的过程中,候选区检测模块还会更精确地判断每个心拍所对应的宽度范围,该宽度范围以通过基准点进行数据表达,后续基于宽度范围内对应的特征向量进行心拍类型的判断。During the heartbeat detection process, the candidate area detection module will also more accurately determine the width range corresponding to each heartbeat. The width range is expressed as data through reference points, and the heartbeat type is subsequently determined based on the corresponding feature vector within the width range.
步骤S140:将每个所述心拍在对应的基准点位置范围内的特征向量输入到类型识别模块,依次经过所述类型识别模块的卷积层、激活层、批归一化层和线性全连接层的计算,输出一个五维向量,所述五维向量用于表征所述心拍对应属于五种心拍类型的概率。Step S140: Input the feature vector of each heartbeat within the corresponding reference point position range into the type recognition module, and sequentially pass through the convolution layer, activation layer, batch normalization layer and linear fully connected layer of the type recognition module to output a five-dimensional vector, which is used to characterize the probability that the heartbeat corresponds to one of the five heartbeat types.
各个心拍对应的基准点位置范围内的特征向量输入到类型识别模块,依次经过卷积层、激活层、批归一化层和线性全连接层的计算,每个心拍可以得到一个五维向量的结果,该五维向量表明了该心拍可能对应五中心拍类型的概率,在五维向量的基础上,可以将概率最高的类型作为该心拍的心拍类型,如果有多种类型对应的概率接近,可以将该心拍单独标记,以供人工判断。The feature vectors within the reference point position range corresponding to each heartbeat are input into the type recognition module. After calculations by the convolution layer, activation layer, batch normalization layer and linear fully connected layer in sequence, each heartbeat can obtain a five-dimensional vector result. The five-dimensional vector indicates the probability that the heartbeat may correspond to one of the five heartbeat types. Based on the five-dimensional vector, the type with the highest probability can be used as the heartbeat type of the heartbeat. If the probabilities corresponding to multiple types are close, the heartbeat can be marked separately for manual judgment.
图7中进一步形象地呈现了以上的数据流动过程,从得到最原始的心电信号,然后对其进行预处理得到可做特征提取的初步信号,对于特征提取的结果,心拍及对应的宽度检测,将心拍检测、宽度测量和调整提取的结果综合起来,即可实现心拍的分类。FIG7 further illustrates the above data flow process, starting with obtaining the original ECG signal, which is then preprocessed to obtain a preliminary signal for feature extraction. As for the result of feature extraction, the heartbeat and the corresponding width detection are combined to achieve heartbeat classification by combining the results of heartbeat detection, width measurement and adjustment extraction.
整体而言,通过对采集到的心电信号进行预处理,得到若干段设定长度的样本信号;对所述样本信号进行特征提取,生成所述样本信号在三个尺度上的特征向量,三个尺度上的特征向量的长度分别为所述设定长度的二分之一、四分之一和八分之一;根据所述样本信号对应的特征向量构建预设长度的锚点,根据所述锚点计算心拍的基准点位置;将每个所述心拍在对应的计算心拍的基准点位置范围内的特征向量输入到类型识别模块,依次经过所述类型识别模块的卷积层、激活层、批归一化层和线性全连接层的计算,输出一个五维向量,所述五维向量用于表征所述心拍对应属于五种心拍类型的概率。本实施例基于深度学习的方法,通过端到端的全自动分析过程输出各心拍基准点位置的类型,实现自动对全部模块进行同步训练,简化了训练过程同时保持了各个环节的综合性能,节约了训练时间。In general, by preprocessing the collected ECG signals, several segments of sample signals of set lengths are obtained; feature extraction is performed on the sample signals to generate feature vectors of the sample signals at three scales, and the lengths of the feature vectors at the three scales are respectively one-half, one-quarter and one-eighth of the set length; anchor points of preset lengths are constructed according to the feature vectors corresponding to the sample signals, and the reference point positions of the heartbeats are calculated according to the anchor points; the feature vectors of each heartbeat within the corresponding reference point position range of the calculated heartbeats are input into the type recognition module, and the convolution layer, activation layer, batch normalization layer and linear full connection layer of the type recognition module are calculated in turn to output a five-dimensional vector, which is used to characterize the probability that the heartbeats correspond to the five types of heartbeats. This embodiment is based on a deep learning method, and outputs the type of each heartbeat reference point position through an end-to-end fully automatic analysis process, so as to realize automatic synchronous training of all modules, simplify the training process while maintaining the comprehensive performance of each link, and save training time.
实施例二
本实施例是在上述实施例的基础上进行具体化,尤其是对步骤S120和步骤S130的具体化,需要说明的是,在本实施例中同时呈现了对步骤S120和步骤S130的具体化,并不是二者必须同时实施,而是为描述方案做的整合处理,在实际处理过程中,可以将步骤S120和步骤S130的具体化作为独立的实现方式存在,也可以是二者的整合。本实施例中对整个信号处理过程做了更细层面上的完整描述。整体上,包括步骤S110,图8和图14中的相关步骤以及步骤S140。This embodiment is concretized on the basis of the above-mentioned embodiment, especially the concretization of step S120 and step S130. It should be noted that in this embodiment, the concretization of step S120 and step S130 is presented at the same time, which does not mean that the two must be implemented at the same time, but is an integrated processing for describing the scheme. In the actual processing process, the concretization of step S120 and step S130 can exist as an independent implementation method, or it can be an integration of the two. This embodiment makes a complete description of the entire signal processing process at a more detailed level. On the whole, it includes step S110, the related steps in Figures 8 and 14, and step S140.
步骤S110:对采集到的心电信号进行预处理,得到若干段设定长度的样本信号。Step S110: pre-processing the collected ECG signal to obtain a number of sample signals of set length.
步骤S121:将所述样本信号输入初始特征提取模块得到初始特征提取结果,三个尺度对应的特征提取模块对所述初始特征提取结果按对应的尺度等级进行特征提取,三个尺度上的特征向量的长度分别为所述设定长度的二分之一、四分之一和八分之一。Step S121: Input the sample signal into the initial feature extraction module to obtain an initial feature extraction result. The feature extraction modules corresponding to the three scales perform feature extraction on the initial feature extraction result according to the corresponding scale levels. The lengths of the feature vectors at the three scales are respectively one-half, one-quarter and one-eighth of the set length.
步骤S122:将每个尺度对应的特征提取结果输出到对应的卷积层并综合相邻尺度上特征提取的结果生成所述样本信号在三个尺度上的特征向量。Step S122: outputting the feature extraction result corresponding to each scale to the corresponding convolution layer and integrating the feature extraction results at adjacent scales to generate feature vectors of the sample signal at three scales.
步骤S121和步骤S122中的数据处理过程可以参考图9,其中C0、C1、C2和C3分别表示初始特征提取模块和三个尺度对应的特征提取模块,样本信号进入到C0(初始特征提取模块)之后按照图9中所示的方向进行流动,并在流动过程中按图9所示进行对应的处理。以第一层为例,样本信号在进入到C0之后,按图10所示的数据处理流程(包括卷积层、批归一化层、激活层和池化层);C0的提取结果输出到C1(第一层提取模块),C1按图11所示的数据处理流程(包括两个卷积层、两个批归一化层和两个激活层)得到相应的处理结果,该处理结果输出到C2以及C1对应的卷积层,再经过图9所示的两次卷积以及一次上采样的数据综合,得到第一层对应的特征向量f1。第二层和第三层的特征提取分别参考图12和图13。第二层和第三层的数据处理过程类似,只是其中涉及到的某些处理参数不同,例如C0的卷积层的通道数(c)、卷积核尺寸(k),步长(s)和填充尺寸(p)分别为64、7、1和3,C1、C2和C3本身的两层卷积层的参数组合又有可能不同,具体参考图11-图13。最后提取到的特征向量中,第i个尺度(第i层)特征向量上的第j个样本点(即位置为j)记录为 The data processing process in step S121 and step S122 can refer to FIG9, where C0, C1, C2 and C3 represent the initial feature extraction module and the feature extraction modules corresponding to the three scales, respectively. After the sample signal enters C0 (initial feature extraction module), it flows in the direction shown in FIG9, and is processed accordingly in the flow process as shown in FIG9. Taking the first layer as an example, after the sample signal enters C0, it follows the data processing flow shown in FIG10 (including convolution layer, batch normalization layer, activation layer and pooling layer); the extraction result of C0 is output to C1 (first layer extraction module), and C1 obtains the corresponding processing result according to the data processing flow shown in FIG11 (including two convolution layers, two batch normalization layers and two activation layers), and the processing result is output to C2 and the convolution layer corresponding to C1, and then after two convolutions shown in FIG9 and one upsampling data synthesis, the feature vector f1 corresponding to the first layer is obtained. The feature extraction of the second and third layers refers to FIG12 and FIG13 respectively. The data processing process of the second and third layers is similar, except that some of the processing parameters involved are different. For example, the number of channels (c), convolution kernel size (k), step size (s) and padding size (p) of the convolution layer C0 are 64, 7, 1 and 3 respectively. The parameter combinations of the two convolution layers of C1, C2 and C3 may be different. For details, please refer to Figures 11-13. In the feature vector finally extracted, the jth sample point (i.e. position j) on the feature vector of the i-th scale (i-th layer) is recorded as
步骤S131:对于每个所述尺度对应的特征向量,以所述特征向量上的每个样本点为中心,构建长度为9个样本点的锚点,所述锚点的分数为所述锚点的中心样本点的值。Step S131: for each feature vector corresponding to the scale, an anchor point with a length of 9 sample points is constructed with each sample point on the feature vector as the center, and the score of the anchor point is the value of the central sample point of the anchor point.
步骤S132:将所述锚点对应的特征向量输入心拍位置检测和测量模块,得到心拍概率的分数、锚点至边界框的变化量和各个波段持续的时间比例。Step S132: input the feature vector corresponding to the anchor point into the heartbeat position detection and measurement module to obtain the score of the heartbeat probability, the change from the anchor point to the bounding box, and the duration ratio of each band.
步骤S133:将全部所述锚点按分数由大到小进行排序,生成检查列表。Step S133: sort all the anchor points according to the scores from large to small to generate a check list.
步骤S134:依次对所述检查列表中的所述锚点进行候选区域筛选,将每次筛选出的锚点作为候选区域添加到候选列表,在所述候选列表中删除该锚点以及与该锚点距离0.2秒内的其他锚点,每次筛选出的锚点为所述检查列表中分数最高、起点大于0且终点小于对应的所述特征向量的长度的锚点,所述锚点的分数作为对应候选区域的分数。Step S134: Screen the candidate areas for the anchor points in the inspection list in turn, add the screened anchor point each time as a candidate area to the candidate list, delete the anchor point and other anchor points within 0.2 seconds from the anchor point in the candidate list, and the anchor point screened out each time is the anchor point with the highest score in the inspection list, a starting point greater than 0 and an end point less than the length of the corresponding feature vector, and the score of the anchor point is used as the score of the corresponding candidate area.
对于候选区域的确定,步骤S131-步骤S133具体可以通过以下数学语言描述:a.以特征向量上的每个样本点为中心,构建长度为9个样本点的锚点例如样本点所对应的锚点为锚点的分数为(锚点中心处样本)的值。(第1层特征向量上的锚点对应于原始信号上的17个样本点长度,即0.067秒的候选区域,用于起搏器信号的检测;第2层特征向量上的锚点对应于原始信号上的33个样本点长度,即0.13秒的候选区域,用于正常宽度心拍的检测;第3层特征向量上的锚点对应于原始信号上的65个样本点长度,即0.25秒的候选区域,用于宽大畸形的心拍的检测)b.将全部锚点按分数由大到小进行排序,生成检查列表。c.在检查列表中选择分数最高,且锚点起点大于0,锚点终点小于特征图长度(li)的锚点作为候选区域加入候选列表,并在检查列表中删除该锚点,以及与该锚点相距离0.2秒(正常情况下两次心跳的最短间隔为0.2秒)之内的所有其他锚点。d.重复步骤c直到检查列表为空,将候选列表中的锚点作为候选区域的位置,锚点的值作为候选区域的分数并输出。The determination of the candidate region in steps S131 to S133 can be specifically described by the following mathematical language: a. Taking each sample point on the feature vector As the center, construct an anchor point with a length of 9 sample points For example, sample points The corresponding anchor point is The score of the anchor point is (sample at the center of the anchor point). (The anchor points on the first-layer feature vector correspond to 17 sample points on the original signal, i.e., a candidate region of 0.067 seconds, which is used for the detection of pacemaker signals; the anchor points on the second-layer feature vector correspond to 33 sample points on the original signal, i.e., a candidate region of 0.13 seconds, which is used for the detection of normal width heartbeats; the anchor points on the third-layer feature vector correspond to 65 sample points on the original signal, i.e., a candidate region of 0.25 seconds, which is used for the detection of wide and deformed heartbeats) b. Sort all anchor points by scores from large to small to generate a check list. c. Select the anchor point with the highest score in the check list, whose starting point is greater than 0 and whose end point is less than the feature map length (l i ), as a candidate region and add it to the candidate list, and delete the anchor point in the check list, as well as all other anchor points within 0.2 seconds (the shortest interval between two heartbeats is 0.2 seconds under normal circumstances) from the anchor point. d. Repeat step c until the check list is empty, take the anchor point in the candidate list as the position of the candidate region, and the value of the anchor point as the score of the candidate region and output it.
步骤S135:根据所述候选列表中锚点的中点、宽度以及所述变化量计算心拍边界框的中点和宽度,根据所述心拍边界框的中点和宽度计算所述心拍边界框的起点和终点。Step S135: Calculate the midpoint and width of the heartbeat bounding box according to the midpoint and width of the anchor points in the candidate list and the variation, and calculate the start point and end point of the heartbeat bounding box according to the midpoint and width of the heartbeat bounding box.
步骤S136:根据心拍边界框的起点、宽度以及时间比例计算心拍的五种基准点的位置。Step S136: Calculate the positions of five reference points of the heartbeat according to the starting point, width and time ratio of the heartbeat boundary box.
在特征向量的基础上关于心拍的整体计算过程如下:首先在特征向量上建立锚点,然后同时预测1)各锚点属于心拍的概率分数(score),2)从锚点到心拍边界框的变化量(de lta)和3)心拍边界框内4个部分持续时间的比例(duration rate):P波起点至P波终点(Pdur),P波终点至QRS波起点(PRseg),QRS波起点至QRS波终点(QRSint),QRS波终点至T波终点(STint)。再根据各锚点的概率分数得到心拍位置(beat location),和根据边界框的变化量(de lta)得到心拍边界框的范围(bounding box),最后利用心拍边界框的范围和各部分持续时间的比例得到当前心拍的5个基准点位置(fiducial points):P波起点(Ponset),P波终点(Poffset),QRS波起点(QRSonset),QRS波终点(QRSoffset)和T波终点(Toffset)。具体过程如下:The overall calculation process of the heartbeat based on the feature vector is as follows: first, anchor points are established on the feature vector, and then 1) the probability score of each anchor point belonging to the heartbeat (score), 2) the change from the anchor point to the heartbeat bounding box (delta), and 3) the ratio of the duration of the four parts within the heartbeat bounding box (duration rate): P wave start to P wave end ( Pdur ), P wave end to QRS wave start ( PRseg ), QRS wave start to QRS wave end ( QRSint ), QRS wave end to T wave end ( STint ). Then, the beat location is obtained according to the probability score of each anchor point, and the range of the beat bounding box is obtained according to the change of the bounding box. Finally, the five fiducial points of the current beat are obtained by using the range of the beat bounding box and the ratio of the duration of each part: P wave start (P onset ), P wave end (P offset ), QRS wave start (QRS onset ), QRS wave end (QRS offset ) and T wave end (T offset ). The specific process is as follows:
a.以特征向量上的每个样本点为中心,构建长度为9个样本点的锚点例如样本点所对应的锚点为锚点的分数为(锚点中心处样本)的值。(第1层特征向量上的锚点对应于原始信号上的17个样本点长度,即0.067秒的候选区域,用于起搏器信号的分析;第2层特征向量上的锚点对应于原始信号上的33个样本点长度,即0.13秒的候选区域,用于正常心拍和室上性异常心拍的分析;第3层特征向量上的锚点对应于原始信号上的65个样本点长度,即0.25秒的候选区域,用于室性异常心拍和融合心拍的分析)。a. Take each sample point on the feature vector As the center, construct an anchor point with a length of 9 sample points For example, sample points The corresponding anchor point is The score of the anchor point is (Sample at the center of the anchor point). (The anchor points on the first-layer feature vector correspond to 17 sample points on the original signal, i.e., a candidate region of 0.067 seconds, which is used for the analysis of pacemaker signals; the anchor points on the second-layer feature vector correspond to 33 sample points on the original signal, i.e., a candidate region of 0.13 seconds, which is used for the analysis of normal heartbeats and supraventricular abnormal heartbeats; the anchor points on the third-layer feature vector correspond to 65 sample points on the original signal, i.e., a candidate region of 0.25 seconds, which is used for the analysis of ventricular abnormal heartbeats and fusion heartbeats).
b.将各锚点对应的特征向量输入心拍位置检测和测量模块,同时得到心拍概率分数,锚点至边界框的变化值和各波段持续时间的比例。b. Input the feature vector corresponding to each anchor point into the heartbeat position detection and measurement module, and obtain the heartbeat probability score, the change value from the anchor point to the bounding box, and the ratio of the duration of each band.
c.对于预测的心拍概率分数,首先对概率分数由大到小进行排序,生成检查列表。在检查列表中选择分数最高的锚点作为候选区域加入候选列表,并在检查列表中删除该锚点和与该锚点相距离0.2秒(正常情况下两次心跳的最短间隔为0.2秒)之内的所有其他锚点。重复上述步骤直到检查列表为空或者剩下的锚点值都小于0.5。最后将候选列表中的锚点中点作为心拍位置。c. For the predicted heartbeat probability scores, first sort the probability scores from large to small to generate a check list. Select the anchor point with the highest score in the check list as the candidate area and add it to the candidate list. Delete the anchor point and all other anchor points within 0.2 seconds (the shortest interval between two heartbeats is 0.2 seconds) from the anchor point in the check list. Repeat the above steps until the check list is empty or the remaining anchor point values are all less than 0.5. Finally, the midpoint of the anchor point in the candidate list is used as the heartbeat position.
d.对于锚点到心拍边界框的变化量,首先根据锚点的中点(anchorcenter)和宽度(anchorwidth)及其变化量(deltacenter和deltawidth)计算预测的心拍边界框的中点和宽度最后求出预测的心拍边界框的起点和终点位置,如公式(2)所示。d. For the change from the anchor point to the heartbeat bounding box, first calculate the midpoint of the predicted heartbeat bounding box based on the midpoint (anchor center ) and width (anchor width ) of the anchor point and its change (delta center and delta width ) and width Finally, find the starting point of the predicted heartbeat bounding box and end point Position, as shown in formula (2).
e.根据心拍边界框的起点和宽度,以及边界框内4个部分持续时间的比例,利用公式(3)预测5种基准点的位置:e. Based on the starting point and width of the heartbeat bounding box and the ratio of the duration of the four parts within the bounding box, use formula (3) to predict the positions of the five reference points:
步骤S140:将每个所述心拍在对应的宽度范围内的特征向量输入到类型识别模块,依次经过所述类型识别模块的卷积层、激活层、批归一化层和线性全连接层的计算,输出一个五维向量,所述五维向量用于表征所述心拍对应属于五种心拍类型的概率。Step S140: Input the feature vector of each heartbeat within the corresponding width range into the type recognition module, and sequentially pass through the convolution layer, activation layer, batch normalization layer and linear fully connected layer of the type recognition module to output a five-dimensional vector, which is used to characterize the probability that the heartbeat corresponds to the five heartbeat types.
对于心拍位置检测及测量模块检测出的心拍位置,首先提取特征提取模块上对应位置的特征向量,然后送入心拍类型识别模块进行分类。经过卷积层(convo l ut i on)、激活层(re l u)、批归一化层(batch norma l i zat i on)和线性全连接层(l i near)的计算后,输出一个5维向量,分别表示该心拍属于5种类型的概率:窦性心拍,室上性异常心拍,室性异常心拍,融合心拍和其他类型心拍。最后将概率最高的类型作为心拍的类型。For the heartbeat position detected by the heartbeat position detection and measurement module, the feature vector of the corresponding position on the feature extraction module is first extracted, and then sent to the heartbeat type recognition module for classification. After calculation by the convolution layer, activation layer, batch normalization layer and linear full connection layer, a 5-dimensional vector is output, which respectively represents the probability that the heartbeat belongs to 5 types: sinus beat, supraventricular abnormal heartbeat, ventricular abnormal heartbeat, fusion heartbeat and other types of heartbeat. Finally, the type with the highest probability is taken as the type of heartbeat.
实施例三
图17为本发明实施例三提供的一种心电信号中心拍的分析装置的结构示意图。参考图17,该心电信号中心拍的分析装置包括:预处理单元310、特征提取单元320、基准点检测单元330和心拍分类单元340。FIG17 is a schematic diagram of the structure of a device for analyzing the heartbeat of an electrocardiogram signal provided by
其中,预处理单元310,用于对采集到的心电信号进行预处理,得到若干段设定长度的样本信号;特征提取单元320,用于对所述样本信号进行特征提取,生成所述样本信号在三个尺度上的特征向量,三个尺度上的特征向量的长度分别为所述设定长度的二分之一、四分之一和八分之一;基准点检测单元330,用于根据所述样本信号对应的特征向量构建预设长度的锚点,根据所述锚点计算心拍的基准点位置;心拍分类单元340,用于将每个所述心拍在对应的基准点位置范围内的特征向量输入到类型识别模块,依次经过所述类型识别模块的卷积层、激活层、批归一化层和线性全连接层的计算,输出一个五维向量,所述五维向量用于表征所述心拍对应属于五种心拍类型的概率。Among them, the
在上述实施例的基础上,所述基准点检测单元330,包括:Based on the above embodiment, the reference
锚点计算模块,用于对于每个所述尺度对应的特征向量,以所述特征向量上的每个样本点为中心,构建长度为9个样本点的锚点,所述锚点的分数为所述锚点的中心样本点的值;An anchor point calculation module, used for constructing an anchor point with a length of 9 sample points, with each sample point on the feature vector as the center, for each feature vector corresponding to the scale, wherein the score of the anchor point is the value of the central sample point of the anchor point;
数据输出模块,用于将所述锚点对应的特征向量输入心拍位置检测和测量模块,得到心拍概率的分数、锚点至边界框的变化量和各个波段持续的时间比例;A data output module, used to input the feature vector corresponding to the anchor point into the heartbeat position detection and measurement module to obtain the score of the heartbeat probability, the change from the anchor point to the bounding box and the duration ratio of each band;
锚点排序模块,用于将全部所述锚点按分数由大到小进行排序,生成检查列表;An anchor point sorting module, used to sort all the anchor points from large to small according to the scores, and generate a check list;
候选区筛选模块,用于依次对所述检查列表中的所述锚点进行候选区域筛选,将每次筛选出的锚点作为候选区域添加到候选列表,在所述检查列表中删除该锚点以及与该锚点距离0.2秒内的其他锚点,每次筛选出的锚点为所述检查列表中分数最高、起点大于0且终点小于对应的所述特征向量的长度的锚点;A candidate area screening module is used to sequentially screen the anchor points in the inspection list for candidate areas, add the screened anchor points each time as candidate areas to the candidate list, delete the anchor point and other anchor points within 0.2 seconds of the anchor point in the inspection list, and the screened anchor point each time is the anchor point in the inspection list with the highest score, a starting point greater than 0, and an end point less than the length of the corresponding feature vector;
范围计算模块,用于根据所述候选列表中锚点的中点、宽度以及所述变化量计算心拍边界框的中点和宽度,根据所述心拍边界框的中点和宽度计算所述心拍边界框的起点和终点;A range calculation module, used to calculate the midpoint and width of the heartbeat bounding box according to the midpoint and width of the anchor point in the candidate list and the variation, and calculate the start point and end point of the heartbeat bounding box according to the midpoint and width of the heartbeat bounding box;
基准点计算模块,用于根据所述心拍边界框的起点、宽度以及时间比例计算心拍的五种基准点的位置。The reference point calculation module is used to calculate the positions of five reference points of the heartbeat according to the starting point, width and time ratio of the heartbeat boundary box.
在上述实施例的基础上,所述特征提取单元320,包括:Based on the above embodiment, the
特征提取模块,用于将所述样本信号输入初始特征提取模块得到初始特征提取结果,三个尺度对应的特征提取模块对所述初始特征提取结果按对应的尺度等级进行特征提取,三个尺度上的特征向量的长度分别为所述设定长度的二分之一、四分之一和八分之一;A feature extraction module, used for inputting the sample signal into an initial feature extraction module to obtain an initial feature extraction result, wherein the feature extraction modules corresponding to the three scales perform feature extraction on the initial feature extraction result according to the corresponding scale levels, and the lengths of the feature vectors at the three scales are respectively one-half, one-quarter and one-eighth of the set length;
特征向量生成模块,用于将每个尺度对应的特征提取结果输出到对应的卷积层并综合相邻尺度上特征提取的结果生成所述样本信号在三个尺度上的特征向量。The feature vector generation module is used to output the feature extraction result corresponding to each scale to the corresponding convolution layer and integrate the feature extraction results at adjacent scales to generate the feature vectors of the sample signal at three scales.
在上述实施例的基础上,所述类型识别模块在训练过程中的总损失通过以下公式计算:Based on the above embodiment, the total loss of the type recognition module during the training process is calculated by the following formula:
loss=det_loss+bbx_loss+fiducial_loss+cls_lossloss=det_loss+bbx_loss+fiducial_loss+cls_loss
其中loss为总损失,det_loss为心拍位置检测损失,bbx_loss为心拍边界框范围检测损失,fiducial_loss为基准点位置检测损失和cls_loss为心拍类型分类损失。Among them, loss is the total loss, det_loss is the heartbeat position detection loss, bbx_loss is the heartbeat bounding box range detection loss, fiducial_loss is the reference point position detection loss and cls_loss is the heartbeat type classification loss.
在上述实施例的基础上,所述心拍位置检测损失通过以下公式计算:Based on the above embodiment, the heartbeat position detection loss is calculated by the following formula:
其中,scorei表示第i个锚点在心拍位置检测和测量模块的输出分数(0<scorei<1),fi表示该锚点的类型,当锚点位置与真实的心拍位置之差的绝对值小于0.15秒时fi=1,反之fi=0。Wherein, score i represents the output score of the i-th anchor point in the heart beat position detection and measurement module (0<score i <1), fi represents the type of the anchor point, and fi = 1 when the absolute value of the difference between the anchor point position and the true heart beat position is less than 0.15 seconds, otherwise fi = 0.
在上述实施例的基础上,所述心拍边界框范围检测损失bbx_loss通过以下公式计算:Based on the above embodiment, the heartbeat bounding box range detection loss bbx_loss is calculated by the following formula:
所述基准点位置检测损失fiducial_loss通过以下公式计算:The fiducial_loss is calculated by the following formula:
其中,第j个锚点所对应心拍的起点和终点分别为和第j个锚点对应的P波起点、P波终点、QRS波起点、QRS波终点和T波终点分别为和 Among them, the starting point and end point of the heartbeat corresponding to the jth anchor point are and The P wave start point, P wave end point, QRS wave start point, QRS wave end point, and T wave end point corresponding to the jth anchor point are and
在上述实施例的基础上,所述类型分类损失通过以下公式计算:Based on the above embodiment, the type classification loss is calculated by the following formula:
其中,表示第j个锚点属于第k类型心拍的概率 表示该锚点是否属于第k类型,如果属于该类型则反之 in, represents the probability that the jth anchor point belongs to the kth type of heartbeat Indicates whether the anchor point belongs to the kth type. If it does, then on the contrary
本发明实施例提供的心电信号中心拍的分析装置包含在心电信号中心拍的检测设备中,且可用于执行上述任意实施例提供的心电信号中心拍的分析方法,具备相应的功能和有益效果。The device for analyzing the heartbeat of an electrocardiogram signal provided in an embodiment of the present invention is included in a device for detecting the heartbeat of an electrocardiogram signal, and can be used to execute the method for analyzing the heartbeat of an electrocardiogram signal provided in any of the above embodiments, and has corresponding functions and beneficial effects.
实施例四
图18为本发明实施例四提供的一种设备的结构示意图,该设备在具体的产品呈现上可以是各种心电图机,心电监护仪,更具体来来说,可以是应用有前述实施例中所述的心电信号中心拍的分析方法的设备。如图18所示,该设备包括处理器410、存储器420、输入装置430、输出装置440以及通信装置450;设备中处理器410的数量可以是一个或多个,图18中以一个处理器410为例;心电信号中心拍的检测设备中的处理器410、存储器420、输入装置430、输出装置440以及通信装置450可以通过总线或其他方式连接,图18中以通过总线连接为例。FIG18 is a schematic diagram of the structure of a device provided in the fourth embodiment of the present invention. The device can be various electrocardiographs and electrocardiograph monitors in specific product presentation. More specifically, it can be a device that applies the method for analyzing the heartbeat of an electrocardiograph signal described in the aforementioned embodiment. As shown in FIG18 , the device includes a
存储器420作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序以及模块,如本发明实施例中的心电信号中心拍的分析方法对应的程序指令/模块(例如,心电信号中心拍的分析装置中的预处理单元310、特征提取单元320、基准点检测单元330和心拍分类单元340)。处理器410通过运行存储在存储器420中的软件程序、指令以及模块,从而执行设备的各种功能应用以及数据处理,即实现上述的心电信号中心拍的分析方法。The
存储器420可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据设备的使用所创建的数据等。此外,存储器420可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器420可进一步包括相对于处理器410远程设置的存储器,这些远程存储器可以通过网络连接至设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。The
输入装置430可用于接收输入的数字或字符信息,以及产生与设备的用户设置以及功能控制有关的键信号输入。输出装置440可包括显示屏等显示设备。通信装置450用于与图像拍摄模块进行数据通信。The
上述设备包含心电信号中心拍的分析装置,可以用于执行任意心电信号中心拍的分析方法,具备相应的功能和有益效果。The above-mentioned device includes a device for analyzing the heartbeat of an electrocardiogram signal, which can be used to execute a method for analyzing the heartbeat of any electrocardiogram signal and has corresponding functions and beneficial effects.
实施例五Embodiment 5
本发明实施例还提供一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行一种心电信号中心拍的分析方法,该方法包括:An embodiment of the present invention further provides a storage medium comprising computer executable instructions, wherein the computer executable instructions are used to execute a method for analyzing the heartbeat in an electrocardiogram signal when executed by a computer processor, the method comprising:
对采集到的心电信号进行预处理,得到若干段设定长度的样本信号;Preprocessing the collected ECG signals to obtain a number of sample signals of set lengths;
对所述样本信号进行特征提取,生成所述样本信号在三个尺度上的特征向量,三个尺度上的特征向量的长度分别为所述设定长度的二分之一、四分之一和八分之一;Performing feature extraction on the sample signal to generate feature vectors of the sample signal at three scales, wherein the lengths of the feature vectors at the three scales are respectively one-half, one-quarter, and one-eighth of the set length;
根据所述样本信号对应的特征向量构建预设长度的锚点,根据所述锚点计算心拍的基准点位置;Constructing an anchor point of a preset length according to the feature vector corresponding to the sample signal, and calculating the reference point position of the heartbeat according to the anchor point;
将每个所述心拍在对应的基准点位置范围内的特征向量输入到类型识别模块,依次经过所述类型识别模块的卷积层、激活层、批归一化层和线性全连接层的计算,输出一个五维向量,所述五维向量用于表征所述心拍对应属于五种心拍类型的概率。The feature vector of each heartbeat within the corresponding reference point position range is input into the type recognition module, and is calculated in sequence by the convolution layer, activation layer, batch normalization layer and linear fully connected layer of the type recognition module to output a five-dimensional vector, which is used to characterize the probability that the heartbeat belongs to the five heartbeat types.
当然,本发明实施例所提供的一种包含计算机可执行指令的存储介质,其计算机可执行指令不限于如上所述的方法操作,还可以执行本发明任意实施例所提供的心电信号中心拍的分析方法中的相关操作。Of course, the computer executable instructions of a storage medium including computer executable instructions provided in an embodiment of the present invention are not limited to the method operations described above, and can also execute related operations in the method for analyzing the heartbeat of an electrocardiogram signal provided in any embodiment of the present invention.
通过以上关于实施方式的描述,所属领域的技术人员可以清楚地了解到,本发明可借助软件及必需的通用硬件来实现,当然也可以通过硬件实现,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如计算机的软盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(RandomAccess Memory,RAM)、闪存(FLASH)、硬盘或光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。Through the above description of the implementation methods, the technicians in the relevant field can clearly understand that the present invention can be implemented by means of software and necessary general hardware, and of course it can also be implemented by hardware, but in many cases the former is a better implementation method. Based on such an understanding, the technical solution of the present invention, in essence, or the part that contributes to the prior art, can be embodied in the form of a software product, and the computer software product can be stored in a computer-readable storage medium, such as a computer floppy disk, read-only memory (ROM), random access memory (RAM), flash memory (FLASH), hard disk or optical disk, etc., including a number of instructions for a computer device (which can be a personal computer, server, or network device, etc.) to execute the methods described in each embodiment of the present invention.
值得注意的是,上述心电信号中心拍的分析装置的实施例中,所包括的各个单元和模块只是按照功能逻辑进行划分的,但并不局限于上述的划分,只要能够实现相应的功能即可;另外,各功能单元的具体名称也只是为了便于相互区分,并不用于限制本发明的保护范围。It is worth noting that in the embodiment of the above-mentioned device for analyzing the cardiac beat of the electrocardiogram signal, the various units and modules included are only divided according to functional logic, but are not limited to the above-mentioned division, as long as the corresponding functions can be achieved; in addition, the specific names of the various functional units are only for the convenience of distinguishing each other, and are not used to limit the scope of protection of the present invention.
注意,上述仅为本发明的较佳实施例及所运用技术原理。本领域技术人员会理解,本发明不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本发明的保护范围。因此,虽然通过以上实施例对本发明进行了较为详细的说明,但是本发明不仅仅限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,而本发明的范围由所附的权利要求范围决定。Note that the above are only preferred embodiments of the present invention and the technical principles used. Those skilled in the art will understand that the present invention is not limited to the specific embodiments described herein, and that various obvious changes, readjustments and substitutions can be made by those skilled in the art without departing from the scope of protection of the present invention. Therefore, although the present invention has been described in more detail through the above embodiments, the present invention is not limited to the above embodiments, and may include more other equivalent embodiments without departing from the concept of the present invention, and the scope of the present invention is determined by the scope of the appended claims.
Claims (9)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202010085728.4A CN111345814B (en) | 2020-02-11 | 2020-02-11 | Analysis method, device, equipment and storage medium for electrocardiosignal center beat |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202010085728.4A CN111345814B (en) | 2020-02-11 | 2020-02-11 | Analysis method, device, equipment and storage medium for electrocardiosignal center beat |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN111345814A CN111345814A (en) | 2020-06-30 |
| CN111345814B true CN111345814B (en) | 2023-04-18 |
Family
ID=71192212
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202010085728.4A Active CN111345814B (en) | 2020-02-11 | 2020-02-11 | Analysis method, device, equipment and storage medium for electrocardiosignal center beat |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN111345814B (en) |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN115067967B (en) * | 2021-03-10 | 2024-10-18 | 广州视源电子科技股份有限公司 | Method for determining heartbeat signal reference point, method and device for identifying heartbeat type |
| CN115474941B (en) * | 2021-06-16 | 2024-09-06 | 广州视源电子科技股份有限公司 | Heart beat datum point detection method, device, equipment and storage medium |
| CN114343659A (en) * | 2022-01-05 | 2022-04-15 | 北京信息科技大学 | Electrocardio characteristic signal extraction method, computer device and storage medium |
| CN115546549A (en) * | 2022-10-11 | 2022-12-30 | 中国科学院微电子研究所 | Point cloud classification model construction method, point cloud classification method, device and equipment |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN108932452A (en) * | 2017-05-22 | 2018-12-04 | 中国科学院半导体研究所 | Arrhythmia cordis beat classification method based on multiple dimensioned convolutional neural networks |
| CN110393519A (en) * | 2019-08-19 | 2019-11-01 | 广州视源电子科技股份有限公司 | Electrocardiosignal analysis method and device, storage medium and processor |
| CN110720894A (en) * | 2019-11-08 | 2020-01-24 | 广州视源电子科技股份有限公司 | Atrial flutter detection method, device, equipment and storage medium |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8755875B2 (en) * | 2008-05-09 | 2014-06-17 | Siemens Medical Solutions Usa, Inc. | System for heart performance characterization and abnormality detection |
-
2020
- 2020-02-11 CN CN202010085728.4A patent/CN111345814B/en active Active
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN108932452A (en) * | 2017-05-22 | 2018-12-04 | 中国科学院半导体研究所 | Arrhythmia cordis beat classification method based on multiple dimensioned convolutional neural networks |
| CN110393519A (en) * | 2019-08-19 | 2019-11-01 | 广州视源电子科技股份有限公司 | Electrocardiosignal analysis method and device, storage medium and processor |
| CN110720894A (en) * | 2019-11-08 | 2020-01-24 | 广州视源电子科技股份有限公司 | Atrial flutter detection method, device, equipment and storage medium |
Also Published As
| Publication number | Publication date |
|---|---|
| CN111345814A (en) | 2020-06-30 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN111345814B (en) | Analysis method, device, equipment and storage medium for electrocardiosignal center beat | |
| CN109886933B (en) | Medical image recognition method and device and storage medium | |
| CN104970789B (en) | Electrocardiogram sorting technique and system | |
| CN112971802B (en) | Method and system for detecting heart sound signals based on deep learning model | |
| CN108511055B (en) | Ventricular premature beat recognition system and method based on classifier fusion and diagnosis rules | |
| CN113057648A (en) | ECG signal classification method based on composite LSTM structure | |
| CN111358450B (en) | Blood pressure classification method and device | |
| CN108256452A (en) | A kind of method of the ECG signal classification of feature based fusion | |
| CN114041800B (en) | Electrocardiosignal real-time classification method and device and readable storage medium | |
| WO2019161611A1 (en) | Ecg information processing method and ecg workstation | |
| CN115553784B (en) | Coronary heart disease assessment method and system based on coupled analysis of electrocardiogram and heart sound signals | |
| CN111956212A (en) | Inter-group atrial fibrillation identification method based on frequency domain filtering-multi-mode deep neural network | |
| CN111904411B (en) | Multi-lead heartbeat signal classification method and device based on multi-scale feature extraction | |
| CN113855063B (en) | An automatic heart sound diagnosis system based on deep learning | |
| CN113180688A (en) | Coronary heart disease electrocardiogram screening system and method based on residual error neural network | |
| CN110693488A (en) | ECG signal processing system, method, electronic device and readable storage medium | |
| CN113995419A (en) | A risk prediction system for atrial fibrillation based on heartbeat rhythm signal and its application | |
| CN117598711B (en) | A QRS wave group detection method, device, equipment and medium of electrocardiogram signal | |
| CN117425431A (en) | Electrocardiogram analysis support device, program, electrocardiogram analysis support method, and electrocardiogram analysis support system | |
| Agrawal et al. | A machine learning approach for classifying healthy and infarcted patients using heart rate variabilities derived vector magnitude | |
| CN113171105A (en) | Myocardial ischemia identification and classification method based on integrated CNN | |
| CN111557660A (en) | A method for arrhythmia identification under the framework of subpopulation deep learning | |
| CN111345815B (en) | Method, device, equipment and storage medium for detecting QRS waves in electrocardiographic signals | |
| CN112336310B (en) | FCBF and SVM fusion-based heart disease diagnosis system | |
| CN118873148A (en) | Electrocardiogram long-tail classification method, device and medium based on anomaly detection pre-training |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |