[go: up one dir, main page]

CN111325795A - An image processing method, device, storage medium and robot - Google Patents

An image processing method, device, storage medium and robot Download PDF

Info

Publication number
CN111325795A
CN111325795A CN202010117760.6A CN202010117760A CN111325795A CN 111325795 A CN111325795 A CN 111325795A CN 202010117760 A CN202010117760 A CN 202010117760A CN 111325795 A CN111325795 A CN 111325795A
Authority
CN
China
Prior art keywords
grasping
data information
points
point
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010117760.6A
Other languages
Chinese (zh)
Other versions
CN111325795B (en
Inventor
周韬
王旭新
成慧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Sensetime Technology Co Ltd
Original Assignee
Shenzhen Sensetime Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Sensetime Technology Co Ltd filed Critical Shenzhen Sensetime Technology Co Ltd
Priority to CN202010117760.6A priority Critical patent/CN111325795B/en
Publication of CN111325795A publication Critical patent/CN111325795A/en
Application granted granted Critical
Publication of CN111325795B publication Critical patent/CN111325795B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • G06T7/75Determining position or orientation of objects or cameras using feature-based methods involving models
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10004Still image; Photographic image
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Biomedical Technology (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Image Analysis (AREA)

Abstract

本公开实施例公开了一种图像处理方法、装置、存储介质及机器人,包括根据待处理多维图像的图像数据信息,从待处理多维图像中确定多个抓取面以及与多个抓取面对应的多个抓取点,其中,多个抓取面与多个抓取点一一对应;确定多个抓取面对应的多个抓取参数;利用多个抓取参数对多个抓取面进行评估,并根据评估结果从多个抓取面中确定出目标抓取面;将目标抓取面对应的抓取点作为目标抓取点;根据目标抓取点,确定出目标抓取点对应的抓取点位姿,以根据抓取点位姿,从待处理多维图像中抓取目标抓取点对应的目标物体。

Figure 202010117760

The embodiments of the present disclosure disclose an image processing method, a device, a storage medium and a robot, which include determining a plurality of grasping surfaces from the to-be-processed multi-dimensional image according to the image data information of the to-be-processed multi-dimensional image and matching the plurality of grasping surfaces with the multiple grasping surfaces. The corresponding multiple grasping points, wherein the multiple grasping surfaces are in one-to-one correspondence with the multiple grasping points; the multiple grasping parameters corresponding to the multiple grasping surfaces are determined; the multiple grasping parameters are used to Take the surface for evaluation, and determine the target grasping surface from multiple grasping surfaces according to the evaluation results; take the grasping point corresponding to the target grasping surface as the target grasping point; determine the target grasping point according to the target grasping point The pose of the grasping point corresponding to the point is taken, so as to grasp the target object corresponding to the target grasping point from the multi-dimensional image to be processed according to the pose of the grasping point.

Figure 202010117760

Description

一种图像处理方法、装置、存储介质及机器人An image processing method, device, storage medium and robot

技术领域technical field

本公开涉及计算机视觉领域,尤其涉及一种图像处理方法、装置、存储介质及机器人。The present disclosure relates to the field of computer vision, and in particular, to an image processing method, device, storage medium and robot.

背景技术Background technique

近年来,物体的位姿计算在机器人、自动化及机器视觉领域有着非常重要的应用,尤其是在计算机视觉领域。In recent years, the pose calculation of objects has had very important applications in the fields of robotics, automation and machine vision, especially in the field of computer vision.

在现有技术中,图像处理装置是根据目标物体的目标抓取面的高度信息,来确定目标物体的位姿,降低了图像处理装置确定目标物体位姿时的准确度。In the prior art, the image processing device determines the pose of the target object according to the height information of the target grasping surface of the target object, which reduces the accuracy of the image processing device in determining the pose of the target object.

发明内容SUMMARY OF THE INVENTION

本公开实施例提供一种图像处理方法、装置、存储介质及机器人。Embodiments of the present disclosure provide an image processing method, device, storage medium, and robot.

本公开的技术方案是这样实现的:The technical solution of the present disclosure is realized as follows:

本实施例提供一种图像处理方法,所述方法包括:This embodiment provides an image processing method, the method includes:

根据待处理多维图像的图像数据信息,从所述待处理多维图像中确定多个抓取面以及与所述多个抓取面对应的多个抓取点,其中,所述多个抓取面与所述多个抓取点一一对应;According to the image data information of the multi-dimensional image to be processed, a plurality of grasping surfaces and a plurality of grasping points corresponding to the multiple grasping surfaces are determined from the to-be-processed multi-dimensional image, wherein the multiple grasping surfaces are The surfaces correspond one-to-one with the plurality of grab points;

确定所述多个抓取面对应的多个抓取参数的;determining multiple gripping parameters corresponding to the multiple gripping surfaces;

利用所述多个抓取参数对所述多个抓取面进行评估,并根据评估结果从所述多个抓取面中确定出目标抓取面;Evaluate the multiple gripping surfaces by using the multiple gripping parameters, and determine a target gripping surface from the multiple gripping surfaces according to the evaluation result;

将所述目标抓取面对应的抓取点作为目标抓取点;Taking the grab point corresponding to the target grab surface as the target grab point;

根据所述目标抓取点,确定出所述目标抓取点对应的抓取点位姿,以根据所述抓取点位姿,从所述待处理多维图像中抓取所述目标抓取点对应的目标物体。According to the target grabbing point, the grabbing point pose corresponding to the target grabbing point is determined, so as to grab the target grabbing point from the multi-dimensional image to be processed according to the grabbing point pose the corresponding target object.

图像处理装置根据多个抓取参数值对多个抓取面进行评估,从而确定出目标抓取面,并非是根据单一的高度参数值来确定出目标抓取面,提高了图像处理装置确定目标抓取面的准确性,根据该准确度高的目标抓取面确定出目标物体的抓取点位姿,提高了图像处理装置确定目标物体位姿时的准确度。The image processing device evaluates multiple grasping surfaces according to multiple grasping parameter values, thereby determining the target grasping surface, instead of determining the target grasping surface according to a single height parameter value, which improves the image processing device to determine the target. With regard to the accuracy of the grasping surface, the grasping point pose of the target object is determined according to the target grasping surface with high accuracy, which improves the accuracy of the image processing device when determining the pose of the target object.

在上述方案中,所述利用所述多个抓取参数对所述多个抓取面进行评估,并根据评估结果从所述多个抓取面中确定出目标抓取面,包括:In the above solution, evaluating the multiple grasping surfaces by using the multiple grasping parameters, and determining a target grasping surface from the multiple grasping surfaces according to the evaluation result, includes:

利用所述多个抓取参数分别对所述多个抓取面中的每一个抓取面进行评估,得到所述多个抓取面对应的多个抓取面评估值;Using the plurality of grasping parameters to evaluate each of the plurality of grasping surfaces, respectively, to obtain a plurality of grasping surface evaluation values corresponding to the plurality of grasping surfaces;

从所述多个抓取面评估值中确定出评估值最高的第一抓取面评估值,并将所述第一抓取面评估值对应的抓取面作为所述目标抓取面。A first grasping surface evaluation value with the highest evaluation value is determined from the plurality of grasping surface evaluation values, and the grasping surface corresponding to the first grasping surface evaluation value is used as the target grasping surface.

图像处理装置根据多个参数值分别对每一个抓取面进行评估,根据评估值从多个抓取面中确定出目标抓取面,提高了图像处理装置确定目标抓取面的准确性。The image processing device evaluates each grasping surface respectively according to a plurality of parameter values, and determines the target grasping surface from the plurality of grasping surfaces according to the evaluation value, which improves the accuracy of the image processing device in determining the target grasping surface.

在上述方案中,所述多个抓取参数包括以下至少一种:In the above solution, the multiple grab parameters include at least one of the following:

抓取面的面积参数、抓取面的高度参数、抓取面的平整度参数、抓取面的倾斜度参数。The area parameter of the grasping surface, the height parameter of the grasping surface, the flatness parameter of the grasping surface, and the inclination parameter of the grasping surface.

具体阐述该多个抓取参数为抓取面的面积参数、抓取面的高度参数、抓取面的平整度参数或抓取面的倾斜度参数,图像处理装置可以利用这些抓取参数对多个抓取面进行评估,来提高确定目标抓取面时的准确性。It is specifically stated that the plurality of grasping parameters are the area parameter of the grasping surface, the height parameter of the grasping surface, the flatness parameter of the grasping surface or the inclination parameter of the grasping surface, and the image processing device can use these grasping parameters to Each gripping surface is evaluated to improve the accuracy of determining the target gripping surface.

在上述方案中,所述根据待处理多维图像的图像数据信息,从所述待处理多维图像中确定多个抓取面以及与所述多个抓取面对应的多个抓取点,包括:In the above solution, according to the image data information of the multi-dimensional image to be processed, the plurality of grasping surfaces and the multiple grasping points corresponding to the multiple grasping surfaces are determined from the multi-dimensional image to be processed, including: :

将所述待处理多维图像的图像数据信息输入深度学习网络模型中,得到多个像素点和所述多个像素点对应的多个中心点,所述深度学习网络模型为利用样本多维图像的样本图像数据信息对初始深度学习网络模型进行训练得到的模型,所述多个像素点和所述多个中心点一一对应;Input the image data information of the multi-dimensional image to be processed into a deep learning network model to obtain a plurality of pixel points and a plurality of center points corresponding to the plurality of pixel points, and the deep learning network model is a sample using the sample multi-dimensional image. The image data information is a model obtained by training the initial deep learning network model, and the multiple pixel points correspond to the multiple center points one-to-one;

将所述多个中心点划分为多组中心点;dividing the plurality of center points into multiple groups of center points;

根据所述多组中心点中的任一组中心点,确定出所述任一组中心点对应的一个抓取点,直至从所述多组中心点中确定出所述多个抓取点;According to any group of center points in the multiple groups of center points, determine a grab point corresponding to the any group of center points, until the multiple grab points are determined from the multiple groups of center points;

根据所述多组中心点中的任一组中心点对应的任一组像素点,确定出所述任一组中心点对应的一个抓取面,直至从所述多组中心点对应的多组像素点中确定出所述多个抓取面,所述任一组中心点与所述任一组像素点一一对应。According to any group of pixel points corresponding to any group of center points in the multiple groups of center points, a grasping surface corresponding to any group of center points is determined, until the multiple groups of center points corresponding to the multiple groups of center points are determined. The plurality of grasping surfaces are determined from the pixel points, and the center point of any group corresponds to the pixel point of any group one-to-one.

图像处理装置将利用深度学习网络模型从待处理多维图像的图像数据信息中,确定出多个像素点和多个像素点对应的多个中心点,并根据该多个像素点和多个中心点确定出多个抓取面和多个抓取点,使得图像处理装置无需进行采集数据标注与重训练,就可以推断出多个抓取面对应的多个抓取点。The image processing device will use the deep learning network model to determine multiple pixels and multiple center points corresponding to the multiple pixel points from the image data information of the multi-dimensional image to be processed, and according to the multiple pixel points and multiple center points The multiple grasping surfaces and multiple grasping points are determined, so that the image processing device can infer multiple grasping points corresponding to the multiple grasping surfaces without labeling the collected data and retraining.

在上述方案中,所述根据所述多组中心点中的任一组中心点,确定出所述任一组中心点对应的一个抓取点,直至从所述多组中心点中确定出所述多个抓取点,包括:In the above solution, a grab point corresponding to any group of center points is determined according to any group of center points in the multiple groups of center points, until the center point is determined from the multiple groups of center points Describe multiple grab points, including:

对所述任一组中心点的一组位置数据求平均值,得到一个平均位置数据,直至从所述多组中心点的多组位置数据信息中,得到多个平均位置数据;A group of position data of any group of center points is averaged to obtain an average position data, until a plurality of average position data are obtained from the multiple groups of position data information of the multiple groups of center points;

将所述多个平均位置数据对应的多个点作为多个抓取点,其中,所述多个平均位置数据与所述多个抓取点一一对应。A plurality of points corresponding to the plurality of average position data are used as a plurality of grab points, wherein the plurality of average position data are in one-to-one correspondence with the plurality of grab points.

图像处理装置根据任一组中心点的一组位置数据求平均值,来确定多个抓取点的位置,提高了多个抓取点位置信息的准确性。The image processing device calculates an average value according to a group of position data of any group of center points to determine the positions of the plurality of grab points, which improves the accuracy of the position information of the plurality of grab points.

在上述方案中,所述根据待处理多维图像的图像数据信息,从所述待处理多维图像中确定多个抓取面以及与所述多个抓取面对应的多个抓取点之前,所述方法还包括:In the above solution, before determining multiple grasping surfaces and multiple grasping points corresponding to the multiple grasping surfaces from the to-be-processed multi-dimensional image according to the image data information of the to-be-processed multi-dimensional image, The method also includes:

获取所述待处理多维图像的原始图像数据信息;obtaining the original image data information of the multi-dimensional image to be processed;

对所述原始图像数据信息进行预处理,得到所述图像数据信息。The original image data information is preprocessed to obtain the image data information.

对将原始图像数据进行数据点数统一,以提高样本图像数据与图像数据匹配时的准确性。Unify the data points of the original image data to improve the accuracy of matching the sample image data with the image data.

在上述方案中,所述对所述原始图像数据信息进行预处理,得到所述图像数据信息,包括:In the above solution, the preprocessing of the original image data information to obtain the image data information includes:

在所述原始图像数据信息中的原始数据信息的数量不满足预设数量值的情况下,将所述原始数据信息的数量调整成预设数量;In the case that the quantity of raw data information in the raw image data information does not meet the preset quantity value, adjusting the quantity of the raw data information to a preset quantity;

对调整至预设数量的原始数据信息的数据分别除以预设数值,得到所述图像数据信息。The image data information is obtained by dividing the data of the original data information adjusted to a preset amount by a preset value respectively.

将原始的数据信息除以预设数值,以提高原始数据信息计算时的收敛度,提高计算结果的准确性。The original data information is divided by the preset value to improve the convergence degree of the original data information calculation and improve the accuracy of the calculation result.

在上述方案中,所述图像数据信息包括颜色通道数据信息和深度数据信息。In the above solution, the image data information includes color channel data information and depth data information.

本公开是根据待处理多维图像的RGB信息和深度信息来确定目标物体的抓取点位姿的,以提高计算目标物体的抓取点位姿时的准确性。The present disclosure determines the pose of the grasping point of the target object according to the RGB information and depth information of the multi-dimensional image to be processed, so as to improve the accuracy of calculating the pose of the grasping point of the target object.

本公开实施例提供了一种图像处理装置,所述装置包括:An embodiment of the present disclosure provides an image processing apparatus, and the apparatus includes:

确定单元,用于根据待处理多维图像的图像数据信息,从所述待处理多维图像中确定多个抓取面以及与所述多个抓取面对应的多个抓取点,其中,所述多个抓取面与所述多个抓取点一一对应;确定所述多个抓取面对应的多个抓取参数;将目标抓取面对应的抓取点作为目标抓取点;根据所述目标抓取点,确定出所述目标抓取点对应的抓取点位姿,以根据所述抓取点位姿,从所述RGBD图像中抓取所述目标抓取点对应的目标物体;The determining unit is configured to determine, according to the image data information of the multi-dimensional image to be processed, a plurality of grasping surfaces and a plurality of grasping points corresponding to the multiple grasping surfaces from the multi-dimensional image to be processed, wherein the The multiple gripping surfaces are in one-to-one correspondence with the multiple gripping points; multiple gripping parameters corresponding to the multiple gripping surfaces are determined; the gripping points corresponding to the target gripping surfaces are used as the target gripping point; according to the target grab point, determine the grab point pose corresponding to the target grab point, so as to grab the target grab point from the RGBD image according to the grab point pose the corresponding target object;

评估单元,用于利用所述多个抓取参数对所述多个抓取面进行评估,并根据评估结果从所述多个抓取面中确定出所述目标抓取面。The evaluating unit is configured to evaluate the multiple gripping surfaces by using the multiple gripping parameters, and determine the target gripping surface from the multiple gripping surfaces according to the evaluation result.

在上述方案中,所述评估单元,具体用于利用所述多个抓取参数的多个参数分别对所述多个抓取面中的每一个抓取面进行评估,得到所述多个抓取面对应的多个抓取面评估值;In the above solution, the evaluation unit is specifically configured to use multiple parameters of the multiple gripping parameters to evaluate each of the multiple gripping surfaces respectively, and obtain the multiple gripping surfaces. Take the evaluation values of multiple grab surfaces corresponding to the surface;

所述确定单元,具体用于从所述多个抓取面评估值中确定出评估值最高的第一抓取面评估值,并将所述第一抓取面评估值对应的抓取面作为所述目标抓取面。The determining unit is specifically configured to determine the first grasping surface evaluation value with the highest evaluation value from the plurality of grasping surface evaluation values, and use the grasping surface corresponding to the first grasping surface evaluation value as the first grasping surface evaluation value. the target gripping surface.

在上述方案中,所述多个抓取参数包括以下至少一种:In the above solution, the multiple grab parameters include at least one of the following:

抓取面的面积参数、抓取面的高度参数、抓取面的平整度参数、抓取面的倾斜度参数。The area parameter of the grasping surface, the height parameter of the grasping surface, the flatness parameter of the grasping surface, and the inclination parameter of the grasping surface.

在上述方案中,所述确定单元,具体用于将所述待处理多维图像的图像数据信息输入深度学习网络模型中,得到多个像素点和所述多个像素点对应的多个中心点,所述深度学习网络模型为利用样本多维图像的样本图像数据信息对初始深度学习网络模型进行训练得到的模型,所述多个像素点和所述多个中心点一一对应;将所述多个中心点划分为多组中心点;根据所述多组中心点中的任一组中心点,确定出所述任一组中心点对应的一个抓取点,直至从所述多组中心点中确定出所述多个抓取点;根据所述多组中心点中的任一组中心点对应的任一组像素点,确定出所述任一组中心点对应的一个抓取面,直至从所述多组中心点对应的多组像素点中确定出所述多个抓取面,所述任一组中心点与所述任一组像素点一一对应。In the above solution, the determining unit is specifically configured to input the image data information of the multi-dimensional image to be processed into the deep learning network model, and obtain a plurality of pixel points and a plurality of center points corresponding to the plurality of pixel points, The deep learning network model is a model obtained by using the sample image data information of the sample multidimensional images to train the initial deep learning network model, and the plurality of pixel points correspond to the plurality of center points one-to-one; The center point is divided into multiple groups of center points; according to any group of center points in the multiple groups of center points, a grab point corresponding to the any group of center points is determined, until it is determined from the multiple groups of center points According to any group of pixel points corresponding to any group of center points in the multiple groups of center points, determine a grab surface corresponding to the any group of center points, until the The multiple grasping surfaces are determined from the multiple sets of pixel points corresponding to the multiple sets of center points, and the center points of any group are in one-to-one correspondence with the pixel points of any group.

在上述方案中,所述确定单元,具体用于对所述任一组中心点的一组位置数据求平均值,得到一个平均位置数据,直至从所述多组中心点的多组位置数据信息中,得到多个平均位置数据;将所述多个平均位置数据对应的多个点作为多个抓取点,其中,所述多个平均位置数据与所述多个抓取点一一对应。In the above solution, the determining unit is specifically configured to average a set of position data of any set of center points to obtain an average position data, until multiple sets of position data information from the multiple sets of center points , obtain a plurality of average position data; take a plurality of points corresponding to the plurality of average position data as a plurality of grab points, wherein the plurality of average position data are in one-to-one correspondence with the plurality of grab points.

在上述方案中,所述装置还包括获取单元和预处理单元;In the above solution, the device further includes an acquisition unit and a preprocessing unit;

所述获取单元,用于获取所述待处理多维图像的原始图像数据信息;the acquisition unit, configured to acquire the original image data information of the multi-dimensional image to be processed;

所述预处理单元,用于对所述原始图像数据信息进行预处理,得到所述图像数据信息。The preprocessing unit is configured to preprocess the original image data information to obtain the image data information.

在上述方案中,所述预处理单元,具体用于在所述原始图像数据信息中的原始数据信息的数量不满足预设数量值的情况下,将所述原始数据信息的数量调整成预设数量;对调整至预设数量的原始数据信息的数据分别除以预设数值,得到所述图像数据信息。In the above solution, the preprocessing unit is specifically configured to adjust the quantity of the raw data information to a preset value when the quantity of the raw data information in the raw image data information does not meet the preset quantity value Quantity; divide the data of the original data information adjusted to the preset quantity by the preset value to obtain the image data information.

在上述方案中,所述图像数据信息包括颜色通道数据信息和深度数据信息。In the above solution, the image data information includes color channel data information and depth data information.

本公开实施例提供了一种图像处理装置,所述装置包括:An embodiment of the present disclosure provides an image processing apparatus, and the apparatus includes:

存储器和图形处理器,所述存储器存储所述图形处理器可执行的图像处理程序,当所述图像处理程序被执行时,通过所述图形处理器执行上述所述的方法。A memory and a graphics processor, where the memory stores an image processing program executable by the graphics processor, and when the image processing program is executed, the method described above is executed by the graphics processor.

本公开实施例提供了一种存储介质,其上存储有计算机程序,应用于图像处理装置,其特征在于,该计算机程序被图形处理器执行时实现上述所述的方法。An embodiment of the present disclosure provides a storage medium on which a computer program is stored, which is applied to an image processing apparatus, and is characterized in that, when the computer program is executed by a graphics processor, the above-mentioned method is implemented.

本公开实施例提供了一种机器人,包括机械臂和图像处理装置,所述图像处理装置用于执行上述所述的方法,所述机械臂用于在图像处理装置确定出目标物体的抓取点位姿的情况下,在抓取点位姿处抓取目标物体。An embodiment of the present disclosure provides a robot, including a robotic arm and an image processing device, where the image processing device is configured to execute the above method, and the robotic arm is configured to determine a grasping point of a target object on the image processing device In the case of pose, grab the target object at the grab point pose.

本公开实施例提供了一种图像处理方法、装置、存储介质及机器人,图像处理方法包括:根据待处理多维图像的图像数据信息,从待处理多维图像中确定多个抓取面以及与多个抓取面对应的多个抓取点,其中,多个抓取面与多个抓取点一一对应;确定多个抓取面对应的多个抓取参数;利用多个抓取参数对多个抓取面进行评估,并根据评估结果从多个抓取面中确定出目标抓取面;将目标抓取面对应的抓取点作为目标抓取点;根据目标抓取点,确定出目标抓取点对应的抓取点位姿,以根据抓取点位姿,从待处理多维图像中抓取目标抓取点对应的目标物体。采用上述方法实现方案,图像处理装置先确定出多个抓取面对应的多个抓取参数值,再根据该多个抓取参数值对多个抓取面进行评估,从而从多个抓取面中确定出了目标抓取面,并非是根据单一的高度参数值来确定出目标抓取面,提高了图像处理装置确定目标抓取面的准确性,图像处理装置根据该准确度高的目标抓取面确定出目标物体的抓取点位姿,提高了图像处理装置确定目标物体位姿时的准确度。Embodiments of the present disclosure provide an image processing method, a device, a storage medium, and a robot. The image processing method includes: according to image data information of the multi-dimensional image to be processed, determining a plurality of grasping surfaces from the multi-dimensional image to be processed, and determining a plurality of grasping surfaces from the multi-dimensional image to be processed. Multiple grasping points corresponding to grasping surfaces, wherein multiple grasping surfaces correspond to multiple grasping points one-to-one; determine multiple grasping parameters corresponding to multiple grasping surfaces; use multiple grasping parameters Evaluate multiple grasping surfaces, and determine the target grasping surface from the multiple grasping surfaces according to the evaluation results; take the grasping point corresponding to the target grasping surface as the target grasping point; according to the target grasping point, The grasping point pose corresponding to the target grasping point is determined, so as to grasp the target object corresponding to the target grasping point from the multi-dimensional image to be processed according to the grasping point pose. By adopting the above method implementation scheme, the image processing device first determines multiple grasping parameter values corresponding to multiple grasping surfaces, and then evaluates multiple grasping surfaces according to the multiple grasping parameter values, so as to obtain multiple grasping parameters from multiple grasping surfaces. The target grasping surface is determined in the surface taking, and the target grasping surface is not determined according to a single height parameter value, which improves the accuracy of the image processing device in determining the target grasping surface. The target grasping surface determines the grasping point pose of the target object, which improves the accuracy of the image processing device when determining the target object's pose.

附图说明Description of drawings

图1为本实施例提供的一种图像处理方法流程图一;FIG. 1 is a flowchart 1 of an image processing method provided in this embodiment;

图2为本实施例提供的一种图像处理方法流程图;2 is a flowchart of an image processing method provided in this embodiment;

图3为本实施例提供的一种图像处理装置的组成结构示意图一;FIG. 3 is a schematic diagram 1 of the composition structure of an image processing apparatus provided in this embodiment;

图4为本实施例提供的一种图像处理装置的组成结构示意图二。FIG. 4 is a second schematic diagram of the composition and structure of an image processing apparatus provided in this embodiment.

具体实施方式Detailed ways

下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述。The technical solutions in the embodiments of the present disclosure will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present disclosure.

本公开实施例提供了一种图像处理方法,图1为本公开实施例提供的一种图像处理方法流程图一,如图1所示,图像处理方法可以包括:An embodiment of the present disclosure provides an image processing method. FIG. 1 is a flowchart of an image processing method provided by an embodiment of the present disclosure. As shown in FIG. 1 , the image processing method may include:

S101、根据待处理多维图像的图像数据信息,从待处理多维图像中确定出多个抓取面以及与多个抓取面对应的多个抓取点,其中,多个抓取面与多个抓取点一一对应。S101. According to the image data information of the multi-dimensional image to be processed, determine a plurality of grasping surfaces and a plurality of grasping points corresponding to the multiple grasping surfaces from the multi-dimensional image to be processed, wherein the multiple grasping surfaces and the Each grab point corresponds to each other.

本公开实施例提供的一种图像处理方法适用于对待处理多维图像的图像数据信息进行处理,确定出目标物体的抓取点位姿的场景下。An image processing method provided by an embodiment of the present disclosure is suitable for a scene in which the image data information of a multi-dimensional image to be processed is processed to determine the pose of a grasping point of a target object.

在本公开实施例中,图像处理方法应用于图像处理装置中,该图像处理装置可以集成在机器人中,以供机器人根据目标物体的抓取点位姿对目标物体进行抓取。在一些可能的实现方式中,该图像处理方法可以通过处理器调用存储器中存储的计算机可读指令的方式来实现。In the embodiment of the present disclosure, the image processing method is applied to an image processing device, and the image processing device can be integrated in a robot, so that the robot can grasp the target object according to the grasping point pose of the target object. In some possible implementations, the image processing method may be implemented by the processor calling computer-readable instructions stored in the memory.

需要说明的是,待处理多维图像可以为待处理三维图像,也可以为待处理四维图像,还可以为待处理二维图像,具体的可根据实际情况进行确定,本公开实施例对此不做限定。It should be noted that the multi-dimensional image to be processed may be a three-dimensional image to be processed, a four-dimensional image to be processed, or a two-dimensional image to be processed. limited.

在本公开实施例中,当图像处理装置获取到待处理多维图像的图像数据信息时,图像处理装置就可以根据该图像数据信息,从该待处理图像中确定出多个抓取面和多个抓取面对应的多个抓取点。In the embodiment of the present disclosure, when the image processing device obtains the image data information of the multi-dimensional image to be processed, the image processing device can determine, from the image to be processed, a plurality of grasping surfaces and a plurality of grasping surfaces according to the image data information. Grab the multiple grab points corresponding to the surface.

需要说明的是,图像处理装置获取待处理多维图像的图像数据信息方式,可以是图像处理装置通过摄像头等图像采集装置,来获取到待处理多维图像,并从该待处理多维图像中读取出的图像数据信息,图像处理装置还可以是在其他装置处直接获取待处理多维图像的图像数据信息,具体的图像处理装置获取待处理多维图像的图像数据信息方式可根据实际情况进行确定,本公开实施例对此不做限定。It should be noted that, the way that the image processing device obtains the image data information of the multi-dimensional image to be processed may be that the image processing device obtains the multi-dimensional image to be processed through an image acquisition device such as a camera, and reads out the multi-dimensional image from the to-be-processed image. The image data information of the multi-dimensional image to be processed can also be directly obtained by the image processing device from other devices. The specific method for the image processing device to obtain the image data information of the multi-dimensional image to be processed can be determined according to the actual situation. The embodiment does not limit this.

还需要说明的是,若图像处理装置是通过摄像头等图像采集装置,来获取到待处理多维图像,并从该待处理多维图像中读取出的图像数据信息的方式获取到该图像处理数据,则图像处理装置可以通过中央处理器(Central Processing Unit,CPU)控制照相机采集到待处理多维图像,并根据该待处理多维图像获取到图像数据信息。当图像处理装置获取到图像数据信息时,图像处理装置就将该图像数据信息传输至图形处理器(GraphicsProcessing Unit,GPU),利用图形处理器对该图像数据信息进行处理,确定出目标物体的抓取点位姿。It should also be noted that, if the image processing device obtains the multi-dimensional image to be processed through an image acquisition device such as a camera, and obtains the image processing data by means of the image data information read out from the multi-dimensional image to be processed, Then, the image processing apparatus can control the camera through a central processing unit (Central Processing Unit, CPU) to acquire the multi-dimensional image to be processed, and acquire image data information according to the multi-dimensional image to be processed. When the image processing device obtains the image data information, the image processing device transmits the image data information to a graphics processor (Graphics Processing Unit, GPU), and uses the graphics processor to process the image data information to determine the grasp of the target object. Take a point pose.

在本公开实施例中,图像处理装置利用GPU对待处理多维图像的图像数据信息进行并行处理,即,GPU对待处理多维图像中的所有像素点处的图像数据信息同时进行处理,提高了图像处理装置处理图像数据信息时的速度,即,提高了图像处理装置利用待处理多维图像中的图像数据信息,确定目标物体的抓取点位姿时的速度。In the embodiment of the present disclosure, the image processing apparatus uses the GPU to perform parallel processing on the image data information of the multi-dimensional image to be processed, that is, the GPU simultaneously processes the image data information at all pixels in the multi-dimensional image to be processed, which improves the image processing apparatus. The speed when processing the image data information, that is, the speed when the image processing device uses the image data information in the multi-dimensional image to be processed to determine the pose of the grasping point of the target object is increased.

需要说明的是,多个抓取面与多个抓取点一一对应。It should be noted that the multiple grasping surfaces correspond to the multiple grasping points one-to-one.

多个抓取面为待处理多维图像中待抓取的目标物体的多个面,多个抓取点为该多个抓取面的中心点,其中,一个抓取面对应一个抓取点。The multiple grasping surfaces are multiple surfaces of the target object to be grasped in the multi-dimensional image to be processed, and the multiple grasping points are the center points of the multiple grasping surfaces, wherein one grasping surface corresponds to one grasping point .

示例性地,待处理多维图像中的目标物体可以为两个六面体,多个抓取面可以为两个六面体的两个正面,即多个可抓面的数量为2个,第一个可抓面就是第一个六面体的正面,第二个可抓面就是第二个六面体的正面,多个可抓点分别是这两个正面的中心点,即多个可抓点的数量为2个,第一个可抓点就是第一个六面体的正面的中心点,第二个可抓点就是第二个六面体的正面的中心点。Exemplarily, the target object in the multi-dimensional image to be processed may be two hexahedrons, and the multiple grasping surfaces may be two front faces of the two hexahedrons, that is, the number of the multiple graspable surfaces is 2, and the first graspable surface can be grasped. The face is the front of the first hexahedron, the second grippable face is the front of the second hexahedron, and the multiple grippable points are the center points of the two front faces, that is, the number of multiple grippable points is 2. The first graspable point is the center point of the front face of the first hexahedron, and the second graspable point is the center point of the front face of the second hexahedron.

示例性地,待处理多维图像中的目标物体可以为一个四面体,多个抓取面可以为这个四面体的两个侧面,即多个可抓面的数量为2个,第一个可抓面就是这个四面体的第一个侧面,第二个可抓面就是与第一个侧面相邻的侧面,即第二个侧面,多个可抓点分别是这两个侧面的中心点,即多个可抓点的数量为2个,第一个可抓点就是第一个侧面的中心点,第二个可抓点就是第二个侧面的中心点。Exemplarily, the target object in the multi-dimensional image to be processed may be a tetrahedron, and the multiple grasping surfaces may be two sides of the tetrahedron, that is, the number of multiple graspable surfaces is 2, and the first graspable surface can be grasped. The surface is the first side of the tetrahedron, the second graspable surface is the side adjacent to the first side, that is, the second side, and the multiple graspable points are the center points of the two sides, namely The number of multiple grab points is 2, the first grab point is the center point of the first side, and the second grab point is the center point of the second side.

在本公开实施例中,图像数据信息包括颜色通道数据信息和深度数据信息。In the embodiment of the present disclosure, the image data information includes color channel data information and depth data information.

示例性地,图像数据信息可以为待处理多维图像的RGBD数据信息,其中,颜色通道数据信息可以为待处理多维图像的RGB数据信息,深度数据信息可以为待处理多维图像的深度信息。当图像数据信息为待处理多维图像的RGBD数据时,图像处理装置可以根据待处理多维图像的RGB数据与待处理多维图像的深度图像数据来确定出目标物体的抓取点位姿,提高了图像处理装置计算目标物体的抓取点位姿时的准确性。Exemplarily, the image data information may be RGBD data information of the multi-dimensional image to be processed, wherein the color channel data information may be RGB data information of the multi-dimensional image to be processed, and the depth data information may be depth information of the multi-dimensional image to be processed. When the image data information is the RGBD data of the multi-dimensional image to be processed, the image processing device can determine the pose of the grasping point of the target object according to the RGB data of the multi-dimensional image to be processed and the depth image data of the multi-dimensional image to be processed, thereby improving the image quality. The accuracy of the processing device when calculating the grasping point pose of the target object.

在本公开实施例中,图像处理装置根据待处理多维图像的图像数据信息,从待处理图像中确定多个抓取面以及与多个抓取面对应的多个抓取点的方式可以为:图像处理装置将待处理多维图像的图像数据信息输入深度学习网络模型中,得到多个像素点和多个像素点对应的多个中心点。In the embodiment of the present disclosure, the image processing apparatus determines the multiple grasping surfaces and the multiple grasping points corresponding to the multiple grasping surfaces from the to-be-processed image according to the image data information of the to-be-processed multi-dimensional image may be as follows: : The image processing device inputs the image data information of the multi-dimensional image to be processed into the deep learning network model, and obtains multiple pixel points and multiple center points corresponding to the multiple pixel points.

在本公开实施例中,图像处理装置中包含深度学习网络模型,当图像处理装置获取到待处理多维图像的图像数据信息时,图像处理装置就将该图像数据信息输入至深度学习网络模型,深度学习网络模型就从该图像数据信息中,确定出多个像素点和多个中心点。In the embodiment of the present disclosure, the image processing device includes a deep learning network model. When the image processing device obtains the image data information of the multi-dimensional image to be processed, the image processing device inputs the image data information into the deep learning network model. The learning network model determines a plurality of pixel points and a plurality of center points from the image data information.

在本公开实施例中,图像处理装置利用样本图像数据信息对初始深度学习网络模型进行训练,并调整该初始深度学习网络模型的初始参数,使得调整初始参数后的初始深度学习网络模型可以对样本图像数据信息进行分类和检测,学习到样本多维图像中样本物体的面信息,确定出样本图像点和样本中心点,从而得到深度学习网络模型。当深度学习网络模型得到待处理多维图像的图像数据信息时,深度学习网络模型就可以对该图像数据信息进行分类和检测,从图像数据信息中确定出多个像素点和多个中心点。In the embodiment of the present disclosure, the image processing apparatus uses the sample image data information to train the initial deep learning network model, and adjusts the initial parameters of the initial deep learning network model, so that the initial deep learning network model after adjusting the initial parameters can The image data information is classified and detected, the surface information of the sample object in the sample multi-dimensional image is learned, the sample image point and the sample center point are determined, and the deep learning network model is obtained. When the deep learning network model obtains the image data information of the multi-dimensional image to be processed, the deep learning network model can classify and detect the image data information, and determine multiple pixel points and multiple center points from the image data information.

需要说明的是,多个像素点与多个中心点一一对应,其中,一个像素点对应一个中心点。It should be noted that a plurality of pixel points are in one-to-one correspondence with a plurality of center points, wherein one pixel point corresponds to one center point.

需要说明的是,样本图像数据信息为对初始深度学习网络模型进行训练的数据信息。样本图像数据信息可以为多面体的多个面信息,也可以为球的面信息,还可以为玩具的多个面信息,也可以为其他物体的多个面信息,具体的样本图像数据信息可根据实际情况进行确定,本公开实施例对此不做限定。It should be noted that the sample image data information is the data information for training the initial deep learning network model. The sample image data information can be multiple surface information of a polyhedron, or the surface information of a sphere, or multiple surface information of a toy, or multiple surface information of other objects. The specific sample image data information can be based on The actual situation is determined, which is not limited in this embodiment of the present disclosure.

在本公开实施例中,多个面信息可以为多个面的位置信息,也可以为多个面的尺寸信息,还可以为多个面中的多个样本图像点信息,具体的可根据实际情况进行确定,本公开实施例对此不做限定。In this embodiment of the present disclosure, the information of the multiple surfaces may be the position information of the multiple surfaces, the size information of the multiple surfaces, or the information of multiple sample image points in the multiple surfaces. The specific information may be based on the actual situation. The situation is determined, which is not limited in this embodiment of the present disclosure.

在本公开实施例中,图像处理装置对初始深度学习网络模型进行训练之前,图像处理装置需要获取许多样本图像数据信息,如:多面体的多个面信息、玩具的多个面信息、球的面信息、水杯的面信息等等。图像处理装置在获取到这些样本图像数据信息时,图像处理装置就利用这些样本图像数据信息对初始深度学习网络模型进行训练,并调整初始深度学习网络模型的初始参数,使得调整初始参数后的初始深度学习网络模型可以对样本图像数据信息进行分类和检测,学习到样本多维图像中样本物体的面信息,确定出样本图像点和样本中心点,从而得到深度学习网络模型。因此,当图像处理装置将待处理多维图像的图像数据信息输入至深度学习网络模型时,深度学习网络模型可以从待处理多维图像的图像数据信息中确定出多个抓取面上的像素点。In the embodiment of the present disclosure, before the image processing apparatus trains the initial deep learning network model, the image processing apparatus needs to obtain a lot of sample image data information, such as: multiple face information of a polyhedron, multiple face information of a toy, and face of a sphere information, the face information of the water cup, etc. When the image processing device acquires the sample image data information, the image processing device uses the sample image data information to train the initial deep learning network model, and adjusts the initial parameters of the initial deep learning network model, so that the initial parameters after adjusting the initial parameters are adjusted. The deep learning network model can classify and detect the sample image data information, learn the surface information of the sample object in the sample multi-dimensional image, determine the sample image point and the sample center point, and then obtain the deep learning network model. Therefore, when the image processing device inputs the image data information of the multi-dimensional image to be processed into the deep learning network model, the deep learning network model can determine a plurality of pixel points on the grasping surface from the image data information of the multi-dimensional image to be processed.

需要说明的是,样本图像点为样本图像上的点,样本中心点为样本图像的中心点。It should be noted that the sample image point is a point on the sample image, and the sample center point is the center point of the sample image.

可以理解的是,深度学习网络模型中的模型参数是通过学习样本多维图像中物体的面信息而得到的参数,当深度学习网络模型获取到待处理多维图像中包括未知物体的图像数据信息时,深度学习网络模型可根据该模型参数,从该图像数据信息中直接确定出未知物体的面信息,从而确定出该面信息对应的多个像素点和多个中心点,不需要对该未知物体的图像数据信息进行标注和重训练,提高了图像处理装置处理图像数据信息时的泛化性与实用性。It can be understood that the model parameters in the deep learning network model are parameters obtained by learning the surface information of the objects in the multi-dimensional image of the sample. When the deep learning network model obtains the image data information of the unknown objects in the multi-dimensional image to be processed, The deep learning network model can directly determine the surface information of the unknown object from the image data information according to the model parameters, so as to determine multiple pixel points and multiple center points corresponding to the surface information, without the need for the unknown object. The image data information is marked and retrained, which improves the generalization and practicability of the image processing device when processing the image data information.

在本公开实施例中,当图像处理装置利用深度学习网络模型从待处理多维图像的图像数据信息中,确定出多个像素点和多个像素点对应的多个中心点之后,图像处理装置就可以将多个中心点划分为多组中心点。In the embodiment of the present disclosure, after the image processing apparatus determines from the image data information of the multi-dimensional image to be processed by using the deep learning network model, multiple pixel points and multiple center points corresponding to the multiple pixel points are determined, the image processing apparatus will Multiple center points can be divided into groups of center points.

在本公开实施例中,图像处理装置对多个中心点进行划分,得到多组中心点的方式,可以为图像处理装置对多个中心点进行聚类,从而确定出多个抓取面对应的多组中心点。图像处理装置也可以先利用深度学习网络模型对多个中心点进行划分,确定出多组抓取点,具体的图像处理装置将多个中心点划分为多组中心点的方式可根据实际情况进行确定,本公开实施例对此不做限定。In the embodiment of the present disclosure, the image processing apparatus divides multiple center points to obtain multiple sets of center points, which can be used for the image processing apparatus to cluster the multiple center points, so as to determine the correspondence between multiple grasping surfaces multiple sets of center points. The image processing device can also first use the deep learning network model to divide multiple center points, and determine multiple groups of grasping points. The specific image processing device divides multiple center points into multiple groups of center points. The method can be carried out according to the actual situation. It is determined that this embodiment of the present disclosure does not limit this.

需要说明的是,图像处装置对多个中心点进行聚类的方式,可以为均值漂移聚类算法,也可以为层次聚类算法,还可以为密度聚类算法,具体的聚类算法可根据实际情况进行确定,本公开实施例对此不做限定。It should be noted that, the method for clustering the plurality of center points by the image processing device may be a mean shift clustering algorithm, a hierarchical clustering algorithm, or a density clustering algorithm, and the specific clustering algorithm may be based on The actual situation is determined, which is not limited in this embodiment of the present disclosure.

需要说明的是,多个抓取面与多组中心点一一对应,其中,一个抓取面对应一组抓取点。It should be noted that a plurality of grasping surfaces correspond to a plurality of sets of center points one-to-one, wherein one grasping surface corresponds to a group of grasping points.

在本公开实施例中,当图像处理装置将所述多个中心点划分为多组中心点之后,图像处理装置就可以根据多组中心点中的任一组中心点,确定出任一组中心点对应的一个抓取点,直至从多组中心点中确定出多个抓取点。In the embodiment of the present disclosure, after the image processing apparatus divides the plurality of center points into multiple groups of center points, the image processing apparatus may determine any group of center points according to any group of center points in the multiple groups of center points A corresponding grab point, until multiple grab points are determined from multiple sets of center points.

在本公开实施例中,图像处理装置根据多组中心点中的任一组中心点,确定出任一组中心点对应的一个抓取点的方式,可以为图像处理装置从任一组中心点中随机确定一个点,将该点作为一个抓取点,也可以为图像处理装置从任一组中心点中随机选择部分中心点,根据该部分中心点的位置信息确定出一个抓取点,图像处理装置还可以根据任一组中心点的所有点的位置信息确定一个抓取点,具体的图像处理装置根据多组中心点中的一组中心点,确定出一个抓取点的方式可根据实际情况进行确定,本公开实施例对此不做限定。In the embodiment of the present disclosure, the manner in which the image processing apparatus determines a grab point corresponding to any group of center points according to any group of center points in the multiple groups of center points may be that the image processing apparatus selects one of the center points from any group of center points. Randomly determine a point and use this point as a grab point, or randomly select a part of the center point from any group of center points for the image processing device, and determine a grab point according to the position information of the part of the center point, image processing The device can also determine a grab point according to the position information of all points of any group of center points, and the specific image processing device determines a grab point according to a group of center points in multiple groups of center points. It is determined, which is not limited in this embodiment of the present disclosure.

在本公开实施例中,当图像处理装置根据某种方式从多组中心点中的任一组中心点,确定出任一组中心点对应的一个抓取点时,图像处理装置也可以根据该方式从多组中心点中的其他组中心点中确定出剩余抓取点,从而得到多个抓取点。In the embodiment of the present disclosure, when the image processing apparatus determines a grab point corresponding to any set of center points from any set of center points in the multiple sets of center points according to a certain method, the image processing apparatus may also use this method The remaining grab points are determined from other groups of center points in the plurality of groups of center points, thereby obtaining a plurality of grab points.

在本公开实施例中,图像处理装置根据多组中心点中的任一组中心点,确定出任一组中心点对应的一个抓取点,直至从多组中心点中确定出多个抓取点的过程可以为:图像处理装置对任一组中心点的一组位置数据求平均值,得到一个平均位置数据,直至图像处理装置从多组中心点的多组位置数据信息中,得到多个平均位置数据。In the embodiment of the present disclosure, the image processing device determines a grab point corresponding to any group of center points according to any group of center points, until a plurality of grab points are determined from the multiple groups of center points The process can be as follows: the image processing device averages a set of position data of any set of center points to obtain an average position data, until the image processing device obtains multiple averages from multiple sets of position data information of multiple sets of center points location data.

需要说明的是,一个平均位置数据对应一组位置数据。It should be noted that one average position data corresponds to a group of position data.

需要说明的是,一组位置数据可以为一组中心点的三维坐标数据,也可以为一组中心点的三维位姿数据,还可以为一组中心点的其他位置数据,具体的可根据实际情况进行确定,本公开实施例对此不做限定。It should be noted that a set of position data can be a set of three-dimensional coordinate data of center points, a set of three-dimensional pose data of a set of center points, or other position data of a set of center points. The situation is determined, which is not limited in this embodiment of the present disclosure.

在本公开实施例中,图像处理装置得到多个平均位置数据之后,图像处理装置就可以将多个平均位置数据对应的多个点作为多个抓取点。In the embodiment of the present disclosure, after the image processing apparatus obtains the plurality of average position data, the image processing apparatus may use the plurality of points corresponding to the plurality of average position data as the plurality of grasping points.

需要说明的是,多个平均位置数据与多个抓取点一一对应,其中,一个平均位置数据对应一个抓取点。It should be noted that a plurality of average position data correspond to a plurality of grab points one-to-one, wherein one average position data corresponds to one grab point.

在本公开实施例中,图像处理装置多组中心点中确定出多个抓取点之后,图像处理装置就可以根据多组中心点中的任一组中心点对应的任一组像素点,确定出任一组中心点对应的一个抓取面,直至从多组中心点对应的多组像素点中确定出多个抓取面。In the embodiment of the present disclosure, after the image processing apparatus determines a plurality of grasping points among the multiple sets of center points, the image processing apparatus may determine, according to any set of pixel points corresponding to any set of center points in the multiple sets of center points, to determine A grasping surface corresponding to any set of center points is obtained until multiple grasping surfaces are determined from multiple sets of pixel points corresponding to multiple sets of center points.

需要说明的是,任一组中心点与任一组像素点一一对应,其中,一组中心点对应一组像素点。It should be noted that any group of center points corresponds to any group of pixel points one-to-one, wherein a group of center points corresponds to a group of pixel points.

需要说明的是,多组像素点与多个抓取面一一对应,其中,一组像素点对应一个抓取面。It should be noted that multiple groups of pixel points correspond to multiple grasping surfaces one-to-one, wherein one group of pixel points corresponds to one grasping surface.

在本公开实施例中,图像处理装置根据待处理多维图像的图像数据信息,从待处理多维图像中确定多个抓取面以及与多个抓取面对应的抓取点之前,图像处理装置需要先获取待处理多维图像的原始图像数据信息。In the embodiment of the present disclosure, before the image processing device determines a plurality of grasping surfaces and grasping points corresponding to the multiple grasping surfaces from the multi-dimensional image to be processed according to the image data information of the multi-dimensional image to be processed, the image processing device The original image data information of the multi-dimensional image to be processed needs to be obtained first.

需要说明的是,图像处理装置获取待处理多维图像的原始图像数据信息的方式,可以为图像处理装置通过摄像头等图像采集装置,来获取到待处理多维图像,并从该待处理多维图像中读取出的原始图像数据信息,也可以为图像处理装置直接从其他装置处获取到待处理多维图像的原始图像数据信息,图像处理装置具体获取待处理多维图像的原始图像数据信息的方式可根据实际情况进行确定,本公开实施例对此不做限定。It should be noted that, the way for the image processing device to obtain the original image data information of the multi-dimensional image to be processed may be that the image processing device obtains the multi-dimensional image to be processed through an image acquisition device such as a camera, and reads the multi-dimensional image to be processed from the multi-dimensional image to be processed. The extracted original image data information can also be the original image data information of the multi-dimensional image to be processed directly obtained by the image processing device from other devices. The situation is determined, which is not limited in this embodiment of the present disclosure.

需要说明的是,原始图像数据信息可以为原始RGBD数据信息。It should be noted that the original image data information may be original RGBD data information.

在本公开实施例中,当图像处理装置获取到待处理多维图像的原始图像数据信息时,图像处理装置就对原始图像数据信息进行预处理,得到图像数据信息。In the embodiment of the present disclosure, when the image processing apparatus acquires the original image data information of the multi-dimensional image to be processed, the image processing apparatus preprocesses the original image data information to obtain the image data information.

可以理解的是,图像处理装置通过对原始图像数据信息进行预处理,提高了预处理后的原始图像数据信息与样本图像数据信息匹配时的准确,提高了图像处理装置对待处理多维图像的图像数据信息处理时的准确性。It can be understood that, by preprocessing the original image data information, the image processing device improves the accuracy of matching between the preprocessed original image data information and the sample image data information, and improves the image data of the multi-dimensional image to be processed by the image processing device. Accuracy in Information Processing.

需要说明的是,图像处理装置对原始图像数据进行预处理的方式,可以为去除该原始图像数据信息中的噪声,也可以为将原始图像数据信息进行放大,还可以为改变原始图像数据信息的数量的方式,也可以为其他的对原始数据信息进行处理的方式,具体的可根据实际情况进行确定,本公开实施例对此不做限定。It should be noted that, the way of preprocessing the original image data by the image processing device may be to remove noise in the original image data information, or to amplify the original image data information, or to change the original image data information. The manner of quantity may also be other manners for processing the original data information, and the specific manner may be determined according to the actual situation, which is not limited in this embodiment of the present disclosure.

在本公开实施例中,图像处理装置对原始图像数据信息进行预处理,得到图像数据信息的过程可以为:当原始图像数据信息中的原始数据信息的数量不满足预设数量值时,图像处理装置将原始数据信息的数量调整成预设数量。In the embodiment of the present disclosure, the image processing apparatus preprocesses the original image data information, and the process of obtaining the image data information may be: when the quantity of the original data information in the original image data information does not meet the preset quantity value, the image processing The device adjusts the amount of raw data information to a preset amount.

可以理解的是,该预设数量为图像处理装置处理图像数据信息时预设的数据信息量,图像处理装置通过将原始数据信息的数据量调整成预设数量,使得调整后的原始数据信息与样本图像数据匹配时的准确度,提高了图像处理装置对待处理多维图像的图像数据信息处理时的准确性。It can be understood that the preset amount is the amount of data information preset when the image processing device processes the image data information, and the image processing device adjusts the data amount of the original data information to the preset amount, so that the adjusted original data information and The accuracy of the sample image data matching improves the accuracy of the image processing device when processing the image data information of the multi-dimensional image to be processed.

在本公开实施例中,当图像处理装置得到待处理多维图像的原始图像数据信息时,图像处理装置就将该原始图像数据信息的数量与预设数量值进行对比,当原始图像数据信息中的原始数据信息的数量不满足预设数量值时,图像处理装置就将该原始数据信息的数量调整成预设数量。In the embodiment of the present disclosure, when the image processing apparatus obtains the original image data information of the multi-dimensional image to be processed, the image processing apparatus compares the quantity of the original image data information with the preset quantity value. When the quantity of the original data information does not meet the preset quantity value, the image processing apparatus adjusts the quantity of the original data information to the preset quantity.

需要说明的是,原始数据信息的数量不满足预设数量值,可以为原始数据信息的数量大于或者小于预设数量值,原始数据信息的数量满足预设数量值,可以为原始数据信息的数量等于预设数量值。It should be noted that, if the quantity of raw data information does not meet the preset quantity value, it may be that the quantity of raw data information is greater than or less than the preset quantity value, and the quantity of raw data information meets the preset quantity value, which may be the quantity of raw data information. equal to the preset amount value.

需要说明的是,预设数量值为图像处理装置中预设的原始图像数据信息的数量值,如,预设数量值可以为65536个,对应的待处理多维图像的横坐标的点数可以为256个点,对应的待处理多维图像的纵坐标的点数可以为256个点。It should be noted that the preset number value is the number value of the original image data information preset in the image processing device, for example, the preset number value may be 65536, and the corresponding number of points of the abscissa of the multi-dimensional image to be processed may be 256 points, and the number of points corresponding to the ordinate of the multi-dimensional image to be processed may be 256 points.

示例性地,图像处理装置获取到的待处理多维图像的横坐标有1024个点,待处理多维图像的纵坐标有1024个点,则图像处理装置就将该待处理多维图像的原始图像数据信息的数据量与预设数量值进行对比,即,将1024个点乘1024个点,共计1048576个点,与预设数量值65536个点进行对比,由于原始图像数据信息的数据量1048576个点,大于预设数量值65536个点,则原始数据信息的数量不满足预设数量值。Exemplarily, the abscissa of the multi-dimensional image to be processed obtained by the image processing device has 1024 points, and the ordinate of the multi-dimensional image to be processed has 1024 points, then the image processing device will use the original image data information of the multi-dimensional image to be processed. Compared with the preset number of data, that is, multiplying 1024 points by 1024 points, a total of 1,048,576 points, is compared with the preset number of 65,536 points. Since the data volume of the original image data information is 1,048,576 points, If it is greater than the preset quantity value of 65536 points, the quantity of the original data information does not meet the preset quantity value.

在本公开实施例中,图像处理装置就将该原始数据信息的数量调整成预设数量的方式可以为,当图像处理装置判断出原始数据信息的数量小于预设数量时,增加该原始数据信息,当图像处理装置判断出原始数据信息的数量大于预设数量时,减少该原始数据信息。In this embodiment of the present disclosure, the image processing apparatus may adjust the quantity of the original data information to a preset quantity, as follows: when the image processing apparatus determines that the quantity of the original data information is less than the preset quantity, increase the quantity of the original data information , when the image processing apparatus determines that the quantity of the original data information is greater than the preset quantity, the original data information is reduced.

需要说明的是,图像处理装置增加原始数据信息的方式,可以为在原始数据信息的相邻两个原始数据信息之间增加一个或者多个数据信息,该增加的一个或者多个数据信息的取值可以根据该相邻两个原始数据信息进行确定,图像处理装置增加原始数据信息的方式,可以为在原始数据信息的相邻两个原始数据信息之间增加一个或者多个数据信息,该一个或者多个数据信息的取值可根据所有的原始数据信息进行确定,图像处理装置还可以通过其他的方式增加原始数据信息,具体的图像处理装置增加原始数据信息的方式,可根据实际情况进行确定,本公开实施例对此不做限定。It should be noted that, the way of adding the original data information by the image processing apparatus may be to add one or more pieces of data information between two adjacent pieces of the original data information, and the value of the added one or more pieces of data information can be obtained. The value can be determined according to the two adjacent original data information, and the way of adding the original data information by the image processing apparatus can be to add one or more data information between two adjacent original data information of the original data information, the one Or the values of multiple data information can be determined according to all the original data information. The image processing device can also add original data information in other ways. The specific method of adding original data information to the image processing device can be determined according to the actual situation. , which is not limited in this embodiment of the present disclosure.

需要说明的是,图像处理装置减少原始数据信息的方式,可以为图像处理装置将原始数据信息的奇数点位置处的数据删除掉,也可以为图像处理装置将原始数据信息的偶数点位置处的数据删除掉,还可以为其他的减少原始数据信息的方式,具体的可根据实际情况进行确定,本公开实施例对此不做限定。It should be noted that, the way of reducing the original data information by the image processing device may be that the image processing device deletes the data at the odd-numbered point position of the original data information, or the image processing device may delete the data at the even-numbered point position of the original data information. Deleting the data can also be other ways of reducing the original data information, which can be determined according to the actual situation, which is not limited in this embodiment of the present disclosure.

在本公开实施例中,图像处理装置将原始数据信息的数量调整成预设数量之后,图像处理装置就对调整至预设数量的原始数据信息的数据分别除以预设数值,得到图像数据信息。In the embodiment of the present disclosure, after the image processing apparatus adjusts the quantity of the original data information to a preset quantity, the image processing apparatus divides the data of the original data information adjusted to the preset quantity by a preset value to obtain the image data information .

可以理解的是,图像处理装置将原始的数据信息除以预设数值,使得原始数据信息可以快速收敛,提高了原始数据信息计算时的收敛度,图像处理装置对待处理多维图像的图像数据信息处理时的准确性。It can be understood that the image processing device divides the original data information by the preset value, so that the original data information can be quickly converged, which improves the degree of convergence in the calculation of the original data information, and the image processing device processes the image data information of the multi-dimensional image to be processed. time accuracy.

需要说明的是,预设数值为图像处理装置中预设的数值。It should be noted that the preset value is a preset value in the image processing device.

在本公开实施例中,图像处理装置中的预设数值可以为多个,当原始图像数据信息的取值范围不同时,可对应不同的预设数值,具体的预设数值的取值可根据实际情况进行确定,本公开实施例对此不做限定。In the embodiment of the present disclosure, there may be multiple preset values in the image processing device. When the value ranges of the original image data information are different, they may correspond to different preset values. The specific preset values may be selected according to The actual situation is determined, which is not limited in this embodiment of the present disclosure.

S102、确定多个抓取面对应的多个抓取参数。S102: Determine multiple gripping parameters corresponding to multiple gripping surfaces.

在本公开实施例中,当图像处理装置从待处理多维图像中确定出多个抓取面之后,图像处理装置就可以分别确定该多个抓取面中的每一个抓取面对应的多个抓取参数了。In the embodiment of the present disclosure, after the image processing device determines a plurality of grasping surfaces from the multi-dimensional image to be processed, the image processing device can respectively determine the number of grasping surfaces corresponding to each of the multiple grasping surfaces. fetch parameters.

需要说明的是,多个抓取参数包括以下至少一种:抓取面的面积参数、抓取面的高度参数、抓取面的平整度参数、抓取面的倾斜度参数。It should be noted that the plurality of grasping parameters include at least one of the following: area parameters of the grasping surface, height parameters of the grasping surface, flatness parameters of the grasping surface, and inclination parameters of the grasping surface.

还需要说明的是,多个抓取参数可以是图像处理装置根据该多个抓取面确定出来的。It should also be noted that the multiple grasping parameters may be determined by the image processing apparatus according to the multiple grasping surfaces.

在本公开实施例中,图像处理装置对单一抓取参数对应的多个抓取面进行赋值,确定出该多个抓取面针对该单一抓取参数对应的多个抓取参数值,直至图像处理装置对多个抓取参数对应的多个抓取面进行赋值,确定出该多个抓取面对应的多个抓取参数。In the embodiment of the present disclosure, the image processing device assigns values to multiple grasping surfaces corresponding to a single grasping parameter, and determines the multiple grasping parameter values corresponding to the single grasping parameter for the multiple grasping surfaces, until the image The processing device assigns multiple grasping surfaces corresponding to the multiple grasping parameters, and determines multiple grasping parameters corresponding to the multiple grasping surfaces.

在本公开实施例中,图像处理装置中设置了抓取面不同面积参数对应的第一组抓取参数值,抓取面不同高度参数对应的第二组抓取参数值、抓取面不同平整度参数对应的第三组抓取参数值和抓取面不同倾斜度参数对应的第四组抓取参数值,当图像处理装置得到多个抓取面中的一个抓取面时,图像处理装置就根据该抓取面的抓取面积参数,从第一组预设参数值中确定出该抓取面积参数对应的第一抓取参数值;根据该抓取面的高度参数,从第二组抓取参数值中确定出该抓取面的高度参数对应的第二抓取参数值;根据该抓取面的平整度参数,从第三组抓取参数值中确定出该抓取面的平整度参数对应的第三抓取参数值;根据该抓取面的倾斜度参数,从第四组抓取参数值中确定出该抓取面的倾斜度参数对应的第四抓取参数值,直至图像处理装置确定出多个抓取面中每一个抓取面对应四个抓取参数值。In the embodiment of the present disclosure, the image processing device is provided with a first set of grasping parameter values corresponding to different area parameters of the grasping surface, a second set of grasping parameter values corresponding to different height parameters of the grasping surface, and the grasping surface is different and flat. The third group of grasping parameter values corresponding to the degree parameter and the fourth group of grasping parameter values corresponding to the different inclination parameters of the grasping surface, when the image processing device obtains one grasping surface among the plurality of grasping surfaces, the image processing device According to the grabbing area parameter of the grabbing surface, the first grabbing parameter value corresponding to the grabbing area parameter is determined from the first group of preset parameter values; The second grabbing parameter value corresponding to the height parameter of the grabbing surface is determined from the grabbing parameter values; the flatness of the grabbing surface is determined from the third group of grabbing parameter values according to the flatness parameter of the grabbing surface According to the inclination parameter of the grabbing surface, the fourth grabbing parameter value corresponding to the inclination parameter of the grabbing surface is determined from the fourth group of grabbing parameter values, until The image processing device determines that each of the multiple grasping surfaces corresponds to four grasping parameter values.

S103、利用多个抓取参数对多个抓取面进行评估,并根据评估结果从多个抓取面中确定出目标抓取面。S103: Evaluate multiple grasping surfaces by using multiple grasping parameters, and determine a target grasping surface from the multiple grasping surfaces according to the evaluation result.

在本公开实施例中,当图像处理装置确定出多个抓取面对应的多个抓取参数之后,图像处理装置就可以利用多个抓取参数对多个抓取面进行评估,从多个抓取面中确定出目标抓取面了。In the embodiment of the present disclosure, after the image processing device determines multiple grasping parameters corresponding to the multiple grasping surfaces, the image processing device can use the multiple grasping parameters to evaluate the multiple grasping surfaces, from multiple grasping surfaces. The target grasping surface is determined from the grasping surfaces.

在本公开实施例中,图像处理装置利用多个抓取参数对多个抓取面进行评估,从多个抓取面中确定出目标抓取面的过程可以为:图像处理装置利用多个抓取参数分别对多个抓取面中的每一个抓取面进行评估,得到多个抓取面对应的多个抓取面评估值。In the embodiment of the present disclosure, the image processing device uses multiple grasping parameters to evaluate multiple grasping surfaces, and the process of determining the target grasping surface from the multiple grasping surfaces may be as follows: the image processing device uses multiple grasping surfaces. The parameters are taken to evaluate each of the multiple grasping surfaces respectively, and multiple grasping surface evaluation values corresponding to the multiple grasping surfaces are obtained.

在本公开实施例中,图像处理装置可以根据每一个抓取面对应的抓取面的面积参数、抓取面的高度参数、抓取面的平整度参数和抓取面的倾斜度参数,得到每一个抓取面对应的每一个参数值,直至得到多个抓取面对应的多个第一参数值,根据多个第一参数值与多个抓取面的多个抓取概率值,得到多个抓取面评估值。In the embodiment of the present disclosure, the image processing device may, according to the area parameter of the grasping surface, the height parameter of the grasping surface, the flatness parameter of the grasping surface, and the inclination parameter of the grasping surface corresponding to each grasping surface, Each parameter value corresponding to each grasping surface is obtained until multiple first parameter values corresponding to multiple grasping surfaces are obtained, according to multiple first parameter values and multiple grasping probabilities of multiple grasping surfaces value to get multiple grab surface evaluation values.

还需要说明的是,多个抓取概率值为将多个抓取面作为目标抓取面的概率值。It should also be noted that the multiple grasping probability values are the probability values of using multiple grasping surfaces as target grasping surfaces.

示例性地,图像处理装置可通过公式(1)确定出多个抓取面评估值。Exemplarily, the image processing device may determine a plurality of grasping surface evaluation values through formula (1).

Figure BDA0002392015610000161
Figure BDA0002392015610000161

若一个抓取面对应的一组抓取参数为抓取面的面积参数和抓取面的高度参数,则P(ci|x)为多个抓取面中的每一个抓取面在抓取参数为抓取面的面积参数和抓取面的高度参数下的评估值,其中,ci为多个抓取面中的一个抓取面,x为多个抓取面中的一个抓取面的面积参数和多个抓取面中的一个抓取面的高度参数,P(x|ci)为每个抓取面对应的总抓取参数值,P(ci)可以为在不考虑抓取参数的情况下,每个抓取面被抓取的概率,P(x)为抓取参数为抓取面的面积参数和抓取面的高度参数时的概率,即,P(x)的值为1。If a set of grasping parameters corresponding to a grasping surface is the area parameter of the grasping surface and the height parameter of the grasping surface, then P(c i |x) is the number of grasping surfaces where each grasping surface is at The grasping parameter is the evaluation value under the area parameter of the grasping surface and the height parameter of the grasping surface, where c i is one grasping surface among the multiple grasping surfaces, and x is one grasping surface among the multiple grasping surfaces. Take the area parameter of the surface and the height parameter of one of the multiple grasping surfaces, P(x|c i ) is the total grasping parameter value corresponding to each grasping surface, and P(c i ) can be Without considering the grasping parameters, the probability of each grasping surface being grasped, P(x) is the probability when the grasping parameters are the area parameter of the grasping surface and the height parameter of the grasping surface, that is, P (x) has the value 1.

在本公开实施例中,每个抓取面对应的总抓取参数值可以为每个抓取面对应的一组抓取参数的乘积,每个抓取面对应的总抓取参数值也可以为每个抓取面对应的一组抓取参数的和,具体的可根据实际情况进行确定,本公开请实施例对此不做限定。In the embodiment of the present disclosure, the total grasping parameter value corresponding to each grasping surface may be the product of a set of grasping parameters corresponding to each grasping surface, and the total grasping parameter corresponding to each grasping surface The value may also be the sum of a set of grasping parameters corresponding to each grasping surface, and the specific value may be determined according to the actual situation, which is not limited in the embodiments of the present disclosure.

若每个抓取面对应的总抓取参数值为每个抓取面对应的一组抓取参数的乘积,抓取参数为抓取面的面积参数和抓取面的高度参数时,则每个抓取面对应的总抓取参数值为该抓取面对应的抓取面的面积参数与抓取面的高度参数的乘积。If the total grasping parameter value corresponding to each grasping surface is the product of a set of grasping parameters corresponding to each grasping surface, and the grasping parameter is the area parameter of the grasping surface and the height parameter of the grasping surface, The total grasping parameter value corresponding to each grasping surface is the product of the area parameter of the grasping surface corresponding to the grasping surface and the height parameter of the grasping surface.

示例性地,图像处理装置确定出只有两个抓取面,抓取参数为抓取面的面积参数和抓取面的高度参数,其中,第一个抓取面对应的抓取面的面积参数值为0.5,第二个抓取面对应的抓取面的面积参数值为0.2,第一个抓取面对应的抓取面的高度参数值为0.4,第二个抓取面对应的抓取面的面积参数值为0.6,则第一个抓取面对应的总抓取参数值为第一个抓取面的面积参数值为0.5与第一个抓取面的高度参数值为0.4的乘积,为0.2;则第二个抓取面对应的总抓取参数值为第二个抓取面的面积参数值为0.2与第二个抓取面的高度参数值为0.6的乘积,为0.12。Exemplarily, the image processing device determines that there are only two grasping surfaces, and the grasping parameters are the area parameter of the grasping surface and the height parameter of the grasping surface, wherein the area of the grasping surface corresponding to the first grasping surface is The parameter value is 0.5, the area parameter value of the grasping surface corresponding to the second grasping surface is 0.2, the height parameter value of the grasping surface corresponding to the first grasping surface is 0.4, and the second grasping surface The area parameter value of the corresponding grasping surface is 0.6, then the total grasping parameter value corresponding to the first grasping surface is 0.5, and the area parameter value of the first grasping surface is 0.5 and the height parameter of the first grasping surface The value of the product of 0.4 is 0.2; then the total grabbing parameter value corresponding to the second grabbing surface is 0.2, and the area parameter value of the second grabbing surface is 0.2 and the height parameter value of the second grabbing surface is 0.6 The product of , is 0.12.

在本公开实施例中,图像处理装置可以根据多个抓取面的数量来确定出每个抓取面被抓取的概率。In the embodiment of the present disclosure, the image processing apparatus may determine the probability of each grasping surface being grasped according to the number of the multiple grasping surfaces.

示例性地,若图像处理装置确定出有5个抓取面,则每一个抓取面被抓取的概率,即P(ci)的值为0.2;若图像处理装置确定出有2个抓取面,则每一个抓取面被抓取的概率,即P(ci)的值为0.5;若图像处理装置确定出有3个抓取面,则每一个抓取面被抓取的概率,即P(ci)的值为1/3。Exemplarily, if the image processing device determines that there are 5 grasping surfaces, the probability of each grasping surface being grasped, that is, the value of P(c i ) is 0.2; if the image processing device determines that there are 2 grasping surfaces If the image processing device determines that there are 3 grasping surfaces, then the probability of each grasping surface being grasped, that is, the value of P(c i ) is 0.5; , that is, the value of P( ci ) is 1/3.

在本公开实施例中,若一个抓取面对应的一组抓取参数为抓取面的面积参数、抓取面的高度参数和抓取面的平整度参数,则公式(1)中的x为多个抓取面中的一个抓取面的面积参数、多个抓取面中的一个抓取面的高度参数和多个抓取面中的一个抓取面的平整度参数,P(ci|x)为多个抓取面中的每一个抓取面在抓取参数为抓取面的面积参数、抓取面的高度参数和抓取面的平整度参数下的评估值,P(x)为抓取参数为抓取面的面积参数、抓取面的高度参数和抓取面的平整度参数时的概率,即,P(x)的值为1,P(x|ci)为每个抓取面对应的总抓取参数值。In the embodiment of the present disclosure, if a set of grasping parameters corresponding to a grasping surface is the area parameter of the grasping surface, the height parameter of the grasping surface, and the flatness parameter of the grasping surface, then the formula (1) x is the area parameter of one of the multiple gripping surfaces, the height parameter of one of the multiple gripping surfaces, and the flatness parameter of one of the multiple gripping surfaces, P( c i |x) is the evaluation value of each grasping surface among the multiple grasping surfaces when the grasping parameters are the area parameter of the grasping surface, the height parameter of the grasping surface and the flatness parameter of the grasping surface, P (x) is the probability when the grasping parameters are the area parameter of the grasping surface, the height parameter of the grasping surface and the flatness parameter of the grasping surface, that is, the value of P(x) is 1, and P(x|c i ) is the total grab parameter value corresponding to each grab surface.

若抓取面参数为每个抓取面对应的总抓取参数值为每个抓取面对应的一组抓取参数的乘积,抓取参数为抓取面的面积参数、抓取面的高度参数和抓取面的平整度参数时,则每个抓取面对应的总抓取参数值为该抓取面对应的抓取面的面积参数、抓取面的高度参数和抓取面的平整度参数的乘积。If the grasping surface parameter is the product of a set of grasping parameters corresponding to each grasping surface, the total grasping parameter value is the product of a set of grasping parameters corresponding to each grasping surface, and the grasping parameter is the area parameter of the grasping surface, the grasping surface When the height parameter and the flatness parameter of the grasping surface are set, the total grasping parameter value corresponding to each grasping surface is the area parameter of the grasping surface corresponding to the grasping surface, the height parameter of the grasping surface and the grasping surface. Take the product of the flatness parameters of the face.

在本公开实施例中,若一个抓取面对应的一组抓取参数为抓取面的面积参数、抓取面的高度参数、抓取面的平整度参数和抓取面的倾斜度参数,则公式(1)中x为多个抓取面中的一个抓取面的面积参数、多个抓取面中的一个抓取面的高度参数、多个抓取面中的一个抓取面的平整度参数和多个抓取面中的一个抓取面的倾斜度参数,P(ci|x)为多个抓取面中的每一个抓取面在抓取参数为抓取面的面积参数、抓取面的高度参数、抓取面的平整度参数和抓取面的倾斜度参数下的评估值,P(x)为抓取参数为抓取面的面积参数、抓取面的高度参数、抓取面的平整度参数和抓取面的平整度参数时的概率,即,P(x)的值为1,P(x|ci)为每个抓取面对应的总抓取参数值。In the embodiment of the present disclosure, if a set of grasping parameters corresponding to a grasping surface is the area parameter of the grasping surface, the height parameter of the grasping surface, the flatness parameter of the grasping surface, and the inclination parameter of the grasping surface , then x in formula (1) is the area parameter of one of the multiple gripping surfaces, the height parameter of one of the multiple gripping surfaces, and the one gripping surface of the multiple gripping surfaces The flatness parameter and the inclination parameter of one of the multiple grasping surfaces, P(c i |x) is each grasping surface in the multiple grasping surfaces, and the grasping parameter is the grasping surface The area parameter, the height parameter of the grasping surface, the flatness parameter of the grasping surface and the evaluation value of the inclination parameter of the grasping surface, P(x) is the grasping parameter, which is the area parameter of the grasping surface, the The probability of the height parameter, the flatness parameter of the grasping surface, and the smoothness parameter of the grasping surface, that is, the value of P(x) is 1, and P(x|c i ) is the total corresponding to each grasping surface. Grab the parameter value.

若抓取面参数为每个抓取面对应的总抓取参数值为每个抓取面对应的一组抓取参数的乘积,抓取参数为抓取面的面积参数、抓取面的高度参数、抓取面的平整度参数和抓取面的倾斜度参数时,则每个抓取面对应的总抓取参数值为该抓取面对应的抓取面的面积参数、抓取面的高度参数、抓取面的平整度参数和抓取面的倾斜度参数的乘积。If the grasping surface parameter is the product of a set of grasping parameters corresponding to each grasping surface, the total grasping parameter value is the product of a set of grasping parameters corresponding to each grasping surface, and the grasping parameter is the area parameter of the grasping surface, the grasping surface When the height parameter, the flatness parameter of the grasping surface, and the inclination parameter of the grasping surface are obtained, the total grasping parameter value corresponding to each grasping surface is the area parameter of the grasping surface corresponding to the grasping surface, The product of the height parameter of the grasping surface, the flatness parameter of the grasping surface, and the inclination parameter of the grasping surface.

在本公开实施例中,当图像处理装置得到多个抓取面对应的多个抓取面评估值后,图像处理装置就可以从多个抓取面评估值中确定出评估值最高的第一抓取面评估值,并将第一抓取面评估值对应的抓取面作为目标抓取面。In the embodiment of the present disclosure, after the image processing device obtains multiple grasping surface evaluation values corresponding to the multiple grasping surfaces, the image processing device can determine the first evaluation value with the highest evaluation value from the multiple grasping surface evaluation values. A grasping surface evaluation value, and the grasping surface corresponding to the first grasping surface evaluation value is used as the target grasping surface.

在本公开实施例中,图像处理装置从多个抓取面评估值中确定出评估值最高的第一抓取面评估值的方式,可以为图像处理装置先从多个抓取面评估值中中随机确定一个抓取面评估值,并将该抓取面评估值分别与其他抓取面评估值进行对比,从而确定出抓取面评估值最高的第一抓取面评估值,图像处理装置就可以将该第一抓取面评估值对应的抓取面作为目标抓取面;图像处理装置还可以对该多个抓取面评估值按照从大到小排序方式进行排序,将排序在第一位置处的抓取面评估值对应的抓取面,作为目标抓取面;图像处理装置还可以对该多个抓取面评估值按照从小到大排序方式进行排序,将排序在最后一位置处的抓取面评估值对应的抓取面,作为目标抓取面,具体的确定目标抓取面的方式可根据实际情况进行确定,本公开实施例对此不做限定。In this embodiment of the present disclosure, the manner in which the image processing device determines the first grasping surface evaluation value with the highest evaluation value from the plurality of grasping surface evaluation values may be that the image processing device first selects the first grasping surface evaluation value from the plurality of grasping surface evaluation values. Randomly determine a grasping surface evaluation value in the system, and compare the grasping surface evaluation value with other grasping surface evaluation values respectively, so as to determine the first grasping surface evaluation value with the highest grasping surface evaluation value, and the image processing device The grasping surface corresponding to the first grasping surface evaluation value can be used as the target grasping surface; the image processing device can also sort the multiple grasping surface evaluation values in descending order, and sort the first grasping surface evaluation value. The grasping surface corresponding to the grasping surface evaluation value at one position is used as the target grasping surface; the image processing device can also sort the multiple grasping surface evaluation values according to the order from small to large, and will sort at the last position The grasping surface corresponding to the grasping surface evaluation value at is regarded as the target grasping surface, and the specific method for determining the target grasping surface may be determined according to the actual situation, which is not limited in this embodiment of the present disclosure.

S104、将目标抓取面对应的抓取点作为目标抓取点。S104, take the grab point corresponding to the target grab surface as the target grab point.

在本公开实施例中,当图像处理装置利用多个抓取参数值对多个抓取面进行评估,从多个抓取面中确定出目标抓取面之后,图像处理装置就将该目标抓取面对应的抓取点作为目标抓取点。In the embodiment of the present disclosure, after the image processing device evaluates multiple grasping surfaces by using multiple grasping parameter values, and determines the target grasping surface from the multiple grasping surfaces, the image processing device grasps the target grasping surface. The grab point corresponding to the surface is taken as the target grab point.

其中,该目标抓取点可以为目标抓取面的中心点。当然,在其他实施例中,该目标抓取点也可以不是目标抓取面的中心点,例如可以是目标抓取面中心点的邻域点。The target grasping point may be the center point of the target grasping surface. Of course, in other embodiments, the target grasping point may not be the center point of the target grasping surface, for example, it may be a neighborhood point of the center point of the target grasping surface.

S105、根据目标抓取点,确定出目标抓取点对应的抓取点位姿,以根据抓取点位姿,从待处理多维图像中抓取目标抓取点对应的目标物体。S105 , according to the target grasping point, determine the grasping point pose corresponding to the target grasping point, so as to grasp the target object corresponding to the target grasping point from the multi-dimensional image to be processed according to the grasping point pose.

在本公开实施例中,当图像处理装置确定出目标抓取点之后,图像处理装置就可以根据目标抓取点,确定出目标抓取点对应的抓取点位姿,以根据抓取点位姿,从待处理多维图像中抓取目标抓取点对应的目标物体。In the embodiment of the present disclosure, after the image processing device determines the target grasping point, the image processing device may determine the grasping point pose corresponding to the target grasping point according to the target grasping point, so as to determine the corresponding grasping point pose according to the grasping point. Pose, grab the target object corresponding to the target grab point from the multi-dimensional image to be processed.

需要说明的是,目标抓取点对应的抓取点位姿可以为目标抓取点的六维位姿,也可以为目标抓取点的五维位姿,还可以为目标抓取点的其他维度的位姿,具体的可根据实际情况进行确定,本公开实施例对此不做限定。It should be noted that the pose of the grasping point corresponding to the target grasping point may be the six-dimensional pose of the target grasping point, the five-dimensional pose of the target grasping point, or the other The pose of the dimension can be specifically determined according to the actual situation, which is not limited in this embodiment of the present disclosure.

需要说明的是,目标抓取点的信息可以为三维坐标点信息。It should be noted that the information of the target grasping point may be three-dimensional coordinate point information.

当目标抓取点对应的抓取点位姿为目标抓取点的六维位姿时,图像处理装置可以根据该目标抓取点的三维坐标点信息以及该目标抓取点的旋转度信息确定出目标抓取点对应的抓取点位姿。When the grasping point pose corresponding to the target grasping point is the six-dimensional pose of the target grasping point, the image processing device may determine the three-dimensional coordinate point information of the target grasping point and the rotation degree information of the target grasping point Get the grab point pose corresponding to the target grab point.

在本公开实施例中,图像处理装置确定目标抓取点的旋转度信息的方式,可以为图像处理装置根据目标抓取面上的多个目标像素点进行平面拟合,得到一个拟合的目标抓取面,图像处理装置确定出目标抓取点在该拟合平面上的切线,图像处理装置将该切线的垂直向量作为旋转度信息,从而得到了目标抓取点的旋转度信息。In the embodiment of the present disclosure, the way for the image processing device to determine the rotation degree information of the target grasping point may be that the image processing device performs plane fitting according to a plurality of target pixel points on the target grasping surface to obtain a fitted target For the grasping plane, the image processing device determines the tangent of the target grasping point on the fitting plane, and the image processing device uses the vertical vector of the tangent as the rotation degree information, thereby obtaining the rotation degree information of the target grasping point.

本公开实施例提供了一种示例性的图像处理方式流程图,如图2所示,当智能机器人中的CPU控制照相机采集到待处理多维图像的原始图像数据信息时,即,图像处理装置采集到待处理多维图像的原始RGBD图像数据信息时,CPU就控制将该原始RGBD图像数据传输至GPU中,GPU对该原始RGBD图像数据进行预处理,得到RGBD图像数据信息,即,得到图像数据信息,GPU利用深度学习网络模型从RGBD图像数据信息中确定出多个抓取面以及多个抓取面对应的多个抓取点,GPU利用多个抓取参数对多个抓取面中的每一个抓取面进行评估,根据每一个抓取面的评估结果,从多个抓取面中确定出目标抓取面,并将目标抓取面对应的抓取点作为目标抓取点,根据该目标抓取点确定出目标物体的抓取点位姿,当图像处理装置确定出目标物体的抓取点位姿后,智能机器人就可以在该抓取点位姿处抓取目标物体。The embodiment of the present disclosure provides an exemplary flow chart of an image processing method. As shown in FIG. 2 , when the CPU in the intelligent robot controls the camera to collect the original image data information of the multi-dimensional image to be processed, that is, the image processing device collects the original image data information. When the original RGBD image data information of the multi-dimensional image to be processed is reached, the CPU controls the transmission of the original RGBD image data to the GPU, and the GPU preprocesses the original RGBD image data to obtain the RGBD image data information, that is, obtains the image data information. , the GPU uses the deep learning network model to determine multiple grasping surfaces and multiple grasping points corresponding to the multiple grasping surfaces from the RGBD image data information, and the GPU uses multiple grasping parameters to determine the Each grasping surface is evaluated. According to the evaluation results of each grasping surface, the target grasping surface is determined from the multiple grasping surfaces, and the grasping point corresponding to the target grasping surface is used as the target grasping point. The grasping point pose of the target object is determined according to the target grasping point. After the image processing device determines the grasping point pose of the target object, the intelligent robot can grasp the target object at the grasping point pose.

可以理解的是,图像处理装置先确定出多个抓取面对应的多个抓取参数值,再根据该多个抓取参数值对多个抓取面进行评估,从而从多个抓取面中确定出了目标抓取面,并非是根据单一的高度参数值来确定出目标抓取面,提高了图像处理装置确定目标抓取面的准确性,图像处理装置根据该准确度高的目标抓取面确定出目标物体的抓取点位姿,提高了图像处理装置确定目标物体位姿时的准确度。It can be understood that the image processing device first determines multiple grasping parameter values corresponding to the multiple grasping surfaces, and then evaluates the multiple grasping surfaces according to the multiple grasping parameter values, so as to obtain multiple grasping parameters from the multiple grasping surfaces. The target grasping surface is determined in the surface, and the target grasping surface is not determined according to a single height parameter value, which improves the accuracy of the image processing device in determining the target grasping surface. The grasping surface determines the grasping point pose of the target object, which improves the accuracy of the image processing device when determining the pose of the target object.

当图像处理装置应用于物流传输过程中时,图像处理装置可根据上述实现方式确定出目标快递的抓取点位姿,从而实现快递的分拣与码垛。When the image processing device is applied in the logistics transmission process, the image processing device can determine the position and posture of the grabbing point of the target express delivery according to the above-mentioned implementation manner, so as to realize the sorting and palletizing of the express delivery.

当图像处理装置应用于医药、美妆过程中时,图像处理装置可根据上述实现方式确定出目标药品的抓取点位姿,或者图像处理装置可根据上述实现方式确定出目标美妆产品抓取点位姿,从而实现对药品和美妆产品的分类包装。When the image processing device is applied in the process of medicine and beauty, the image processing device can determine the grasping point pose of the target drug according to the above implementation method, or the image processing device can determine the grasping point of the target beauty product according to the above implementation method. Point poses, so as to realize the classification and packaging of medicines and beauty products.

当图像处理装置应用于重工业时,图像处理装置可根据上述实现方式确定出目标工业产品的抓取点位姿,从而实现目标工业产品的搬运。When the image processing device is applied to the heavy industry, the image processing device can determine the grasping point pose of the target industrial product according to the above implementation manner, so as to realize the handling of the target industrial product.

当图像处理装置应用于垃圾处理过程中时,图像处理装置可根据上述实现方式确定出目标垃圾的抓取点位姿,从而实现垃圾的分类处理。When the image processing device is applied in the process of garbage disposal, the image processing device can determine the pose of the grabbing point of the target garbage according to the above implementation manner, so as to realize the classification and processing of garbage.

基于同一发明构思,本公开实施例提供了一种图像处理装置1,对应于一种图像处理方法;图3为本公开实施例提供的一种图像处理装置的组成结构示意图一,该图像处理装置1可以包括:Based on the same inventive concept, an embodiment of the present disclosure provides an image processing apparatus 1, which corresponds to an image processing method; FIG. 3 is a schematic structural diagram 1 of an image processing apparatus provided by an embodiment of the present disclosure. The image processing apparatus 1 can include:

确定单元11,用于根据待处理多维图像的图像数据信息,从所述待处理多维图像中确定多个抓取面以及与所述多个抓取面对应的多个抓取点,其中,所述多个抓取面与所述多个抓取点一一对应;确定所述多个抓取面对应的多个抓取参数;将目标抓取面对应的抓取点作为目标抓取点;根据所述目标抓取点,确定出所述目标抓取点对应的抓取点位姿,以根据所述抓取点位姿,从所述RGBD图像中抓取所述目标抓取点对应的目标物体;The determining unit 11 is configured to determine a plurality of grasping surfaces and a plurality of grasping points corresponding to the multiple grasping surfaces from the to-be-processed multi-dimensional image according to the image data information of the to-be-processed multi-dimensional image, wherein, The plurality of grasping surfaces are in one-to-one correspondence with the multiple grasping points; multiple grasping parameters corresponding to the multiple grasping surfaces are determined; the grasping points corresponding to the target grasping surfaces are used as the target grasping taking a point; according to the target grabbing point, determine the grabbing point pose corresponding to the target grabbing point, so as to grab the target grabbing from the RGBD image according to the grabbing point pose The target object corresponding to the point;

评估单元12,用于利用所述多个抓取参数对所述多个抓取面进行评估,并根据评估结果从所述多个抓取面中确定出所述目标抓取面。The evaluating unit 12 is configured to evaluate the multiple gripping surfaces by using the multiple gripping parameters, and determine the target gripping surface from the multiple gripping surfaces according to the evaluation result.

在本公开的一些实施例中,所述评估单元12,具体用于利用所述多个抓取参数的多个参数分别对所述多个抓取面中的每一个抓取面进行评估,得到所述多个抓取面对应的多个抓取面评估值;In some embodiments of the present disclosure, the evaluating unit 12 is specifically configured to use multiple parameters of the multiple gripping parameters to evaluate each of the multiple gripping surfaces, respectively, to obtain multiple gripping surface evaluation values corresponding to the multiple gripping surfaces;

所述确定单元11,具体用于从所述多个抓取面评估值中确定出评估值最高的第一抓取面评估值,并将所述第一抓取面评估值对应的抓取面作为所述目标抓取面。The determining unit 11 is specifically configured to determine the first grasping surface evaluation value with the highest evaluation value from the plurality of grasping surface evaluation values, and determine the grasping surface corresponding to the first grasping surface evaluation value. as the target gripping surface.

在本公开的一些实施例中,所述多个抓取参数包括以下至少一种:In some embodiments of the present disclosure, the plurality of grasping parameters include at least one of the following:

抓取面的面积参数、抓取面的高度参数、抓取面的平整度参数、抓取面的倾斜度参数。The area parameter of the grasping surface, the height parameter of the grasping surface, the flatness parameter of the grasping surface, and the inclination parameter of the grasping surface.

在本公开的一些实施例中,所述确定单元11,具体用于将所述待处理多维图像的图像数据信息输入深度学习网络模型中,得到多个像素点和所述多个像素点对应的多个中心点,所述深度学习网络模型为利用样本多维图像的样本图像数据信息对初始深度学习网络模型进行训练得到的模型,所述多个像素点和所述多个中心点一一对应;将所述多个中心点划分为多组中心点;根据所述多组中心点中的任一组中心点,确定出所述任一组中心点对应的一个抓取点,直至从所述多组中心点中确定出所述多个抓取点;根据所述多组中心点中的任一组中心点对应的任一组像素点,确定出所述任一组中心点对应的一个抓取面,直至从所述多组中心点对应的多组像素点中确定出所述多个抓取面,所述任一组中心点与所述任一组像素点一一对应。In some embodiments of the present disclosure, the determining unit 11 is specifically configured to input the image data information of the multi-dimensional image to be processed into a deep learning network model, and obtain a plurality of pixels and the corresponding data of the plurality of pixels. A plurality of center points, the deep learning network model is a model obtained by using the sample image data information of the sample multi-dimensional image to train the initial deep learning network model, and the plurality of pixel points correspond to the plurality of center points one-to-one; The multiple center points are divided into multiple sets of center points; according to any set of center points in the multiple sets of center points, a grab point corresponding to the any set of center points is determined, until the point from the multiple sets of center points is determined. Determine the plurality of grab points from the group center points; determine a grab point corresponding to any group of center points according to any group of pixel points corresponding to any group of center points in the multiple groups of center points surface, until the multiple grasping surfaces are determined from the multiple sets of pixel points corresponding to the multiple sets of center points, and the center points of any group correspond to the pixel points of any group one-to-one.

在本公开的一些实施例中,所述确定单元11,具体用于对所述任一组中心点的一组位置数据求平均值,得到一个平均位置数据,直至从所述多组中心点的多组位置数据信息中,得到多个平均位置数据;将所述多个平均位置数据对应的多个点作为多个抓取点,其中,所述多个平均位置数据与所述多个抓取点一一对应。In some embodiments of the present disclosure, the determining unit 11 is specifically configured to average a set of position data of any set of center points to obtain an average position data, until the data from the multiple sets of center points is obtained. In multiple sets of position data information, multiple average position data are obtained; multiple points corresponding to the multiple average position data are used as multiple grab points, wherein the multiple average position data and the multiple grab points are obtained. One-to-one correspondence.

在本公开的一些实施例中,所述装置还包括获取单元13和预处理单元14;In some embodiments of the present disclosure, the apparatus further includes an acquisition unit 13 and a preprocessing unit 14;

所述获取单元13,用于获取所述待处理多维图像的原始图像数据信息;The obtaining unit 13 is configured to obtain the original image data information of the multi-dimensional image to be processed;

所述预处理单元14,用于对所述原始图像数据信息进行预处理,得到所述图像数据信息。The preprocessing unit 14 is configured to preprocess the original image data information to obtain the image data information.

在本公开的一些实施例中,所述预处理单元14,具体用于在所述原始图像数据信息中的原始数据信息的数量不满足预设数量值的情况下,将所述原始数据信息的数量调整成预设数量;对调整至预设数量的原始数据信息的数据分别除以预设数值,得到所述图像数据信息。In some embodiments of the present disclosure, the preprocessing unit 14 is specifically configured to, if the quantity of the raw data information in the raw image data information does not meet a preset quantity value, The number is adjusted to a preset number; the data of the original data information adjusted to the preset number is divided by a preset value to obtain the image data information.

在本公开的一些实施例中,所述图像数据信息包括颜色通道数据信息和深度数据信息。In some embodiments of the present disclosure, the image data information includes color channel data information and depth data information.

需要说明的是,在实际应用中,上述确定单元11、评估单元12、获取单元13和预处理单元14可由运动质量评估装置1上的处理器15实现,具体为GPU(Graphics ProcessingUnit,图形处理器)、MPU(Microprocessor Unit,微处理器)、DSP(Digital SignalProcessing,数字信号处理器)或现场可编程门阵列(FPGA,Field Programmable GateArray)等实现;上述数据存储可由运动质量评估装置1上的存储器16实现。It should be noted that, in practical applications, the above determination unit 11 , evaluation unit 12 , acquisition unit 13 and preprocessing unit 14 may be implemented by the processor 15 on the motion quality evaluation device 1 , specifically a GPU (Graphics Processing Unit, graphics processor). ), MPU (Microprocessor Unit, microprocessor), DSP (Digital Signal Processing, digital signal processor) or Field Programmable Gate Array (FPGA, Field Programmable Gate Array), etc.; the above data storage can be achieved by the memory on the motion quality evaluation device 1 16 realized.

本公开实施例还提供了一种图像处理装置1,如图4所示,所述图像处理装置1包括:处理器15和存储器16,所述存储器16存储所述处理器14可执行的图像处理程序,当所述程序被执行时,通过所述处理器15执行如上述所述的图像处理方法。An embodiment of the present disclosure further provides an image processing apparatus 1. As shown in FIG. 4 , the image processing apparatus 1 includes: a processor 15 and a memory 16, where the memory 16 stores image processing executable by the processor 14 A program, when the program is executed, executes the image processing method as described above by the processor 15 .

在实际应用中,上述存储器16可以是易失性存储器(volatile memory),例如随机存取存储器(Random-Access Memory,RAM);或者非易失性存储器(non-volatile memory),例如只读存储器(Read-Only Memory,ROM),快闪存储器(flash memory),硬盘(Hard DiskDrive,HDD)或固态硬盘(Solid-State Drive,SSD);或者上述种类的存储器的组合,并向处理器15提供指令和数据。In practical applications, the above-mentioned memory 16 may be a volatile memory (volatile memory), such as a random-access memory (Random-Access Memory, RAM); or a non-volatile memory (non-volatile memory), such as a read-only memory (Read-Only Memory, ROM), flash memory (flash memory), hard disk (Hard DiskDrive, HDD) or solid-state drive (Solid-State Drive, SSD); or a combination of the above types of memory, and provide the processor 15 with instructions and data.

本公开实施例提供了一种计算机可读存储介质,其上有计算机程序,所述程序被处理器15执行时实现如上述所述的图像处理方法。An embodiment of the present disclosure provides a computer-readable storage medium having a computer program thereon, and when the program is executed by the processor 15, the image processing method as described above is implemented.

本实施例提供了一种机器人,包括机械臂和图像处理装置,所述图像处理装置用于执行上述所述的方法,所述机械臂用于在图像处理装置确定出目标物体的抓取点位姿的情况下,在抓取点位姿处抓取目标物体。This embodiment provides a robot, including a robotic arm and an image processing device, the image processing device is used to execute the above method, and the robotic arm is used to determine the grasping point of a target object on the image processing device In the case of the grasping point pose, grab the target object at the grasping point pose.

具体地,机械臂可以在获取图像处理装置确定的目标物体抓取点位姿后,根据抓取点位姿计算得到机械臂在抓取点位姿处抓取目标物体的抓取位姿,从而规划机械臂运动路径进行物体抓取。Specifically, after obtaining the grasping point pose of the target object determined by the image processing device, the robotic arm can calculate the grasping pose of the robotic arm to grasp the target object at the grasping point pose according to the grasping point pose, so as to obtain the grasping pose of the robotic arm. Plan the motion path of the robotic arm for object grasping.

可以理解的是,图像处理装置先确定出多个抓取面对应的多个抓取参数值,再根据该多个抓取参数值对多个抓取面进行评估,从而从多个抓取面中确定出了目标抓取面,并非是根据单一的高度参数值来确定出目标抓取面,提高了图像处理装置确定目标抓取面的准确性,图像处理装置根据该准确度高的目标抓取面确定出目标物体的抓取点位姿,提高了图像处理装置确定目标物体位姿时的准确度。It can be understood that the image processing device first determines multiple grasping parameter values corresponding to the multiple grasping surfaces, and then evaluates the multiple grasping surfaces according to the multiple grasping parameter values, so as to obtain multiple grasping parameters from the multiple grasping surfaces. The target grasping surface is determined in the surface, and the target grasping surface is not determined according to a single height parameter value, which improves the accuracy of the image processing device in determining the target grasping surface. The grasping surface determines the grasping point pose of the target object, which improves the accuracy of the image processing device when determining the pose of the target object.

当图像处理装置应用于物流传输过程中时,图像处理装置可根据上述实现方式确定出目标快递的抓取点位姿,从而实现快递的分拣与码垛。When the image processing device is applied in the logistics transmission process, the image processing device can determine the position and posture of the grabbing point of the target express delivery according to the above-mentioned implementation manner, so as to realize the sorting and palletizing of the express delivery.

当图像处理装置应用于医药、美妆过程中时,图像处理装置可根据上述实现方式确定出目标药品的抓取点位姿,或者图像处理装置可根据上述实现方式确定出目标美妆产品抓取点位姿,从而实现对药品和美妆产品的分类包装。When the image processing device is applied in the process of medicine and beauty, the image processing device can determine the grasping point pose of the target drug according to the above implementation method, or the image processing device can determine the grasping point of the target beauty product according to the above implementation method. Point poses, so as to realize the classification and packaging of medicines and beauty products.

当图像处理装置应用于重工业时,图像处理装置可根据上述实现方式确定出目标工业产品的抓取点位姿,从而实现目标工业产品的搬运。When the image processing device is applied to the heavy industry, the image processing device can determine the grasping point pose of the target industrial product according to the above implementation manner, so as to realize the handling of the target industrial product.

当图像处理装置应用于垃圾处理过程中时,图像处理装置可根据上述实现方式确定出目标垃圾的抓取点位姿,从而实现垃圾的分类处理。When the image processing device is applied in the process of garbage disposal, the image processing device can determine the pose of the grabbing point of the target garbage according to the above implementation manner, so as to realize the classification and processing of garbage.

本领域内的技术人员应明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用硬件实施例、软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。As will be appreciated by one skilled in the art, embodiments of the present disclosure may be provided as a method, system, or computer program product. Accordingly, the present disclosure may take the form of a hardware embodiment, a software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present disclosure may take the form of a computer program product embodied on one or more computer-usable storage media having computer-usable program code embodied therein, including but not limited to disk storage, optical storage, and the like.

本公开是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。The present disclosure is described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the disclosure. It will be understood that each flow and/or block in the flowchart illustrations and/or block diagrams, and combinations of flows and/or blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to the processor of a general purpose computer, special purpose computer, embedded processor or other programmable data processing device to produce a machine such that the instructions executed by the processor of the computer or other programmable data processing device produce Means for implementing the functions specified in a flow or flow of a flowchart and/or a block or blocks of a block diagram.

这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions The apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.

这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。These computer program instructions can also be loaded on a computer or other programmable data processing device to cause a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented process such that The instructions provide steps for implementing the functions specified in the flow or blocks of the flowcharts and/or the block or blocks of the block diagrams.

以上所述,仅为本公开的较佳实施例而已,并非用于限定本公开的保护范围。The above descriptions are merely preferred embodiments of the present disclosure, and are not intended to limit the protection scope of the present disclosure.

Claims (12)

1.一种图像处理方法,其特征在于,所述方法包括:1. an image processing method, is characterized in that, described method comprises: 根据待处理多维图像的图像数据信息,从所述待处理多维图像中确定多个抓取面以及与所述多个抓取面对应的多个抓取点,其中,所述多个抓取面与所述多个抓取点一一对应;According to the image data information of the multi-dimensional image to be processed, a plurality of grasping surfaces and a plurality of grasping points corresponding to the multiple grasping surfaces are determined from the to-be-processed multi-dimensional image, wherein the multiple grasping surfaces are The surfaces correspond one-to-one with the plurality of grab points; 确定所述多个抓取面对应的多个抓取参数;determining multiple gripping parameters corresponding to the multiple gripping surfaces; 利用所述多个抓取参数对所述多个抓取面进行评估,并根据评估结果从所述多个抓取面中确定出目标抓取面;Evaluate the multiple gripping surfaces by using the multiple gripping parameters, and determine a target gripping surface from the multiple gripping surfaces according to the evaluation result; 将所述目标抓取面对应的抓取点作为目标抓取点;Taking the grab point corresponding to the target grab surface as the target grab point; 根据所述目标抓取点,确定出所述目标抓取点对应的抓取点位姿,以根据所述抓取点位姿,从所述待处理多维图像中抓取所述目标抓取点对应的目标物体。According to the target grabbing point, the grabbing point pose corresponding to the target grabbing point is determined, so as to grab the target grabbing point from the multi-dimensional image to be processed according to the grabbing point pose the corresponding target object. 2.根据权利要求1所述的方法,其特征在于,所述利用所述多个抓取参数对所述多个抓取面进行评估,并根据评估结果从所述多个抓取面中确定出目标抓取面,包括:2 . The method according to claim 1 , wherein the plurality of grasping surfaces are evaluated by using the plurality of grasping parameters, and are determined from the plurality of grasping surfaces according to the evaluation results. 3 . Out of the target grasping surface, including: 利用所述多个抓取参数分别对所述多个抓取面中的每一个抓取面进行评估,得到所述多个抓取面对应的多个抓取面评估值;Using the plurality of grasping parameters to evaluate each of the plurality of grasping surfaces, respectively, to obtain a plurality of grasping surface evaluation values corresponding to the plurality of grasping surfaces; 从所述多个抓取面评估值中确定出评估值最高的第一抓取面评估值,并将所述第一抓取面评估值对应的抓取面作为所述目标抓取面。A first grasping surface evaluation value with the highest evaluation value is determined from the plurality of grasping surface evaluation values, and the grasping surface corresponding to the first grasping surface evaluation value is used as the target grasping surface. 3.根据权利要求1或2所述的方法,其特征在于,所述多个抓取参数包括以下至少一种:3. The method according to claim 1 or 2, wherein the plurality of grasping parameters comprise at least one of the following: 抓取面的面积参数、抓取面的高度参数、抓取面的平整度参数、抓取面的倾斜度参数。The area parameter of the grasping surface, the height parameter of the grasping surface, the flatness parameter of the grasping surface, and the inclination parameter of the grasping surface. 4.根据权利要求1-3任一项所述的方法,其特征在于,所述根据待处理多维图像的图像数据信息,从所述待处理多维图像中确定多个抓取面以及与所述多个抓取面对应的多个抓取点,包括:4. The method according to any one of claims 1-3, wherein, according to the image data information of the multi-dimensional image to be processed, a plurality of grasping surfaces are determined from the multi-dimensional image to be processed and the Multiple grab points corresponding to multiple grab surfaces, including: 将所述待处理多维图像的图像数据信息输入深度学习网络模型中,得到多个像素点和所述多个像素点对应的多个中心点,所述深度学习网络模型为利用样本多维图像的样本图像数据信息对初始深度学习网络模型进行训练得到的模型,所述多个像素点和所述多个中心点一一对应;Input the image data information of the multi-dimensional image to be processed into a deep learning network model to obtain a plurality of pixel points and a plurality of center points corresponding to the plurality of pixel points, and the deep learning network model is a sample using the sample multi-dimensional image. The image data information is a model obtained by training the initial deep learning network model, and the multiple pixel points correspond to the multiple center points one-to-one; 将所述多个中心点划分为多组中心点;dividing the plurality of center points into multiple groups of center points; 根据所述多组中心点中的任一组中心点,确定出所述任一组中心点对应的一个抓取点,直至从所述多组中心点中确定出所述多个抓取点;According to any group of center points in the multiple groups of center points, determine a grab point corresponding to the any group of center points, until the multiple grab points are determined from the multiple groups of center points; 根据所述多组中心点中的任一组中心点对应的任一组像素点,确定出所述任一组中心点对应的一个抓取面,直至从所述多组中心点对应的多组像素点中确定出所述多个抓取面,所述任一组中心点与所述任一组像素点一一对应。According to any group of pixel points corresponding to any group of center points in the multiple groups of center points, a grasping surface corresponding to any group of center points is determined, until the multiple groups of center points corresponding to the multiple groups of center points are determined. The plurality of grasping surfaces are determined from the pixel points, and the center point of any group corresponds to the pixel point of any group one-to-one. 5.根据权利要求4所述的方法,其特征在于,所述根据所述多组中心点中的任一组中心点,确定出所述任一组中心点对应的一个抓取点,直至从所述多组中心点中确定出所述多个抓取点,包括:5 . The method according to claim 4 , wherein, according to any one group of center points in the multiple groups of center points, a grab point corresponding to the any group of center points is determined, until from The multiple grab points are determined from the multiple sets of center points, including: 对所述任一组中心点的一组位置数据求平均值,得到一个平均位置数据,直至从所述多组中心点的多组位置数据信息中,得到多个平均位置数据;A group of position data of any group of center points is averaged to obtain an average position data, until a plurality of average position data are obtained from the multiple groups of position data information of the multiple groups of center points; 将所述多个平均位置数据对应的多个点作为多个抓取点,其中,所述多个平均位置数据与所述多个抓取点一一对应。A plurality of points corresponding to the plurality of average position data are used as a plurality of grab points, wherein the plurality of average position data are in one-to-one correspondence with the plurality of grab points. 6.根据权利要求1-5任一项所述的方法,其特征在于,所述根据待处理多维图像的图像数据信息,从所述待处理多维图像中确定多个抓取面以及与所述多个抓取面对应的多个抓取点之前,所述方法还包括:6. The method according to any one of claims 1-5, wherein, according to the image data information of the multi-dimensional image to be processed, a plurality of grasping surfaces are determined from the multi-dimensional image to be processed and the Before the multiple gripping points corresponding to the multiple gripping surfaces, the method further includes: 获取所述待处理多维图像的原始图像数据信息;obtaining the original image data information of the multi-dimensional image to be processed; 对所述原始图像数据信息进行预处理,得到所述图像数据信息。The original image data information is preprocessed to obtain the image data information. 7.根据权利要求6所述的方法,其特征在于,所述对所述原始图像数据信息进行预处理,得到所述图像数据信息,包括:7. The method according to claim 6, wherein the preprocessing of the original image data information to obtain the image data information comprises: 在所述原始图像数据信息中的原始数据信息的数量不满足预设数量值的情况下,将所述原始数据信息的数量调整成预设数量;In the case that the quantity of raw data information in the raw image data information does not meet the preset quantity value, adjusting the quantity of the raw data information to a preset quantity; 对调整至预设数量的原始数据信息的数据分别除以预设数值,得到所述图像数据信息。The image data information is obtained by dividing the data of the original data information adjusted to a preset amount by a preset value respectively. 8.根据权利要求1-7中任一项所述的方法,其特征在于,所述图像数据信息包括颜色通道数据信息和深度数据信息。8. The method according to any one of claims 1-7, wherein the image data information includes color channel data information and depth data information. 9.一种图像处理装置,其特征在于,所述装置包括:9. An image processing device, wherein the device comprises: 确定单元,用于根据待处理多维图像的图像数据信息,从所述待处理多维图像中确定多个抓取面以及与所述多个抓取面对应的多个抓取点,其中,所述多个抓取面与所述多个抓取点一一对应;确定所述多个抓取面对应的多个抓取参数;将目标抓取面对应的抓取点作为目标抓取点;根据所述目标抓取点,确定出所述目标抓取点对应的抓取点位姿,以根据所述抓取点位姿,从所述RGBD图像中抓取所述目标抓取点对应的目标物体;The determining unit is configured to determine, according to the image data information of the multi-dimensional image to be processed, a plurality of grasping surfaces and a plurality of grasping points corresponding to the multiple grasping surfaces from the multi-dimensional image to be processed, wherein the The multiple gripping surfaces are in one-to-one correspondence with the multiple gripping points; multiple gripping parameters corresponding to the multiple gripping surfaces are determined; the gripping points corresponding to the target gripping surfaces are used as the target gripping point; according to the target grab point, determine the grab point pose corresponding to the target grab point, so as to grab the target grab point from the RGBD image according to the grab point pose the corresponding target object; 评估单元,用于利用所述多个抓取参数对所述多个抓取面进行评估,并根据评估结果从所述多个抓取面中确定出所述目标抓取面。The evaluating unit is configured to evaluate the multiple gripping surfaces by using the multiple gripping parameters, and determine the target gripping surface from the multiple gripping surfaces according to the evaluation result. 10.一种图像处理装置,其特征在于,所述装置包括:10. An image processing device, wherein the device comprises: 存储器和图形处理器,所述存储器存储所述图形处理器可执行的图像处理程序,当所述图像处理程序被执行时,通过所述图形处理器执行如权利要求1至8任一项所述的方法。A memory and a graphics processor, the memory stores an image processing program executable by the graphics processor, and when the image processing program is executed, the graphics processor executes any one of claims 1 to 8 Methods. 11.一种存储介质,其上存储有计算机程序,应用于图像处理装置,其特征在于,该计算机程序被图形处理器执行时实现权利要求1至8任一项所述的方法。11 . A storage medium having a computer program stored thereon and applied to an image processing apparatus, wherein the computer program implements the method according to any one of claims 1 to 8 when the computer program is executed by a graphics processor. 12.一种机器人,其特征在于,包括:机械臂和图像处理装置,所述图像处理装置用于执行权利要1-8任一项所述方法,所述机械臂用于在图像处理装置确定出目标物体的抓取点位姿的情况下,在抓取点位姿处抓取目标物体。12. A robot, characterized by comprising: a robotic arm and an image processing device, wherein the image processing device is used to execute the method according to any one of claims 1-8, and the robotic arm is used to determine when the image processing device is used. When the grasping point pose of the target object is obtained, the target object is grasped at the grasping point pose.
CN202010117760.6A 2020-02-25 2020-02-25 Image processing method, device, storage medium and robot Active CN111325795B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010117760.6A CN111325795B (en) 2020-02-25 2020-02-25 Image processing method, device, storage medium and robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010117760.6A CN111325795B (en) 2020-02-25 2020-02-25 Image processing method, device, storage medium and robot

Publications (2)

Publication Number Publication Date
CN111325795A true CN111325795A (en) 2020-06-23
CN111325795B CN111325795B (en) 2023-07-25

Family

ID=71172985

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010117760.6A Active CN111325795B (en) 2020-02-25 2020-02-25 Image processing method, device, storage medium and robot

Country Status (1)

Country Link
CN (1) CN111325795B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111928953A (en) * 2020-09-15 2020-11-13 深圳市商汤科技有限公司 Temperature measuring method and device, electronic equipment and storage medium
CN114078158A (en) * 2020-08-14 2022-02-22 边辕视觉科技(上海)有限公司 A method for automatic acquisition of target object feature point parameters

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108280856A (en) * 2018-02-09 2018-07-13 哈尔滨工业大学 The unknown object that network model is inputted based on mixed information captures position and orientation estimation method
US20190091869A1 (en) * 2017-09-25 2019-03-28 Fanuc Corporation Robot system and workpiece picking method
CN109598264A (en) * 2017-09-30 2019-04-09 北京猎户星空科技有限公司 Grasping body method and device
CN109794933A (en) * 2017-11-17 2019-05-24 香港科技大学 Robot fingertip design method, grasping planner and grasping method
CN109986560A (en) * 2019-03-19 2019-07-09 埃夫特智能装备股份有限公司 An adaptive grasping method of manipulator for multi-object types
CN110238840A (en) * 2019-04-24 2019-09-17 中山大学 A Vision-Based Robotic Arm Autonomous Grasping Method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190091869A1 (en) * 2017-09-25 2019-03-28 Fanuc Corporation Robot system and workpiece picking method
CN109598264A (en) * 2017-09-30 2019-04-09 北京猎户星空科技有限公司 Grasping body method and device
CN109794933A (en) * 2017-11-17 2019-05-24 香港科技大学 Robot fingertip design method, grasping planner and grasping method
CN108280856A (en) * 2018-02-09 2018-07-13 哈尔滨工业大学 The unknown object that network model is inputted based on mixed information captures position and orientation estimation method
CN109986560A (en) * 2019-03-19 2019-07-09 埃夫特智能装备股份有限公司 An adaptive grasping method of manipulator for multi-object types
CN110238840A (en) * 2019-04-24 2019-09-17 中山大学 A Vision-Based Robotic Arm Autonomous Grasping Method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114078158A (en) * 2020-08-14 2022-02-22 边辕视觉科技(上海)有限公司 A method for automatic acquisition of target object feature point parameters
CN111928953A (en) * 2020-09-15 2020-11-13 深圳市商汤科技有限公司 Temperature measuring method and device, electronic equipment and storage medium

Also Published As

Publication number Publication date
CN111325795B (en) 2023-07-25

Similar Documents

Publication Publication Date Title
CN108280856B (en) Unknown object grabbing pose estimation method based on mixed information input network model
US11794343B2 (en) System and method for height-map-based grasp execution
CN110692082B (en) Learning device, learning method, learning model, calculating device and clamping system
CN109986560B (en) Mechanical arm self-adaptive grabbing method for multiple target types
CN106530297B (en) Grasping body area positioning method based on point cloud registering
CN110400322B (en) Fruit point cloud segmentation method based on color and three-dimensional geometric information
CN110509273B (en) Robot manipulator detection and grabbing method based on visual deep learning features
CN106934833A (en) A kind of stacking material pick device and method at random
CN113524172B (en) Robot, article grabbing method thereof and computer-readable storage medium
Chen et al. Combining reinforcement learning and rule-based method to manipulate objects in clutter
CN109948457B (en) Real-time object recognition method based on convolutional neural network and CUDA acceleration
CN112338898B (en) Image processing method and device of object sorting system and object sorting system
CN107016391A (en) A kind of complex scene workpiece identification method
CN111325795B (en) Image processing method, device, storage medium and robot
CN108345835A (en) A kind of target identification method based on the perception of imitative compound eye
CN113894058A (en) Quality detection and sorting method and system based on deep learning and storage medium
JP2019153309A (en) Image processing device, bin picking system, image processing method, and image processing program
CN117474979A (en) Robot 6D grasping posture estimation method and system based on RGB images
CN106372618A (en) Road extraction method and system based on SVM and genetic algorithm
CN116652974A (en) Control unit and method for controlling robot to grasp objects
CN114463634A (en) Method for identifying stacking heteromorphic objects and sorting workstation thereof
CN113409392A (en) 6DoF pose estimation method of reflective workpiece
Chen et al. A Framework for 3D Object Detection and Pose Estimation in Unstructured Environment Using Single Shot Detector and Refined LineMOD Template Matching
CN113298847B (en) Consensus autonomous pursuit and escape method and device based on field-of-view perception
Kuang et al. Stopnet: Multiview-based 6-dof suction detection for transparent objects on production lines

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant