Method for selectively preparing fatty amine
The present invention relates to a process for the preparation of fatty amines.
In the industrial production of aliphatic amines, aliphatic alcohols, aldehydes or ketones are generally used as raw materials to react with ammonia, methylamine or dimethylamine in the presence of a hydrogenation dehydrogenation catalyst to produce aliphatic primary, secondary or tertiary amines. For example, primary, secondary and tertiary alkylamines can be formed starting from ammonia; methylamine is used as a raw material to generate methyl alkyl secondary amine, methyl dialkyl tertiary amine and trialkyl tertiary amine; dimethyl amine is used as raw material to produce dimethyl alkyl tertiary amine and methyl dialkyl tertiary amine. As can be seen from the above, ammonia, methylamine or dimethylamine are used as raw materials to react with alkyl-containing fatty alcohol, aldehyde and ketone compounds, so as to obtain alkyl mono-, di-and tri-substituted fatty amine products, and the three products have chemical thermodynamic equilibrium, that is, the reaction system does not only carry out amination reaction of alcohol, aldehyde and ketone, but also carries out disproportionation reaction of mono-, di-and tri-substituted fatty amines. In the case of ammonia and alcohol as starting materials, several disproportionation reactions can be represented as follows:
therefore, in the case of a catalyst and a process form, the ratio of the three types of aliphatic amines produced is limited by the chemical thermodynamic equilibrium, and a certain type of amine cannot be selectively produced. Although the selectivity of the mono-substituted aliphatic amine can be improved to a certain extent by improving the ammonia (amine) ratio, the increase is limited, and the recovery cost is increased due to the excessive use amount of ammonia. The prior art has been studied in a number of ways in order to increase the selectivity of certain amines.
US 4,251,465 changes the catalyst support, uses magnesium aluminate spinel to replace the commonly used gamma-alumina, impregnates metals such as copper, chromium, etc., reacts the dodecanol and dimethylamine, and under the same reaction conditions, the content of dimethyl dodecyl tertiary amine in the product is increased from 68.8% to 89.0%, but the used magnesium aluminate spinel is high in price and is not easy to obtain.
US 4,654,440 uses gamma-alumina as carrier, adjusts the formula of the dipping metal, uses the oxide of copper, antimony, manganese, tin and other metals as active component, carrieson the reaction of n-octyl alcohol and ammonia, under the reaction condition of 230 deg.C, the ratio of ammonia, hydrogen and alcohol is 20: 5: 1, the selectivity of n-octyl amine reaches 80%, but the conversion rate is lower, only 60%, and the consumption of ammonia is too large.
US 4,918,234 in C2~C4Alcohol is used as raw material, Co-Y molecular sieve and other shape-selective catalysts are used, the limitation of chemical equilibrium is broken, the selectivity of primary amine can reach 90% at most, basically no tertiary amine exists, but the conversion rate is lower, only 43%, and the method is only suitable for low-carbon alcohol (C)2~C4) Amination reaction of (a).
CN 1057831A changes the reaction process, adopts two-stage method to carry out reaction from C under normal pressure2~C9Fatty alcohol to prepare fatty amine. The main products of the first stage are nitrile and secondary amine, the fractions before the secondary amine are cut by distillation, the second stage reaction is carried out, the nitrile is converted into primary amine, the two-stage reaction is integrated, the selectivity of the primary amine is relatively high, for example, the selectivity of isooctylamine is 56%, the conversion rate is 94.6%, but the whole process flow is long, the operation is complex, and the selectivity of the primary amine is relatively high.
The invention aims to provide a method for selectively preparing alkyl monosubstituted aliphatic amine, which has simple process and mild process conditions, and improves the selectivity of the monosubstituted aliphatic amine under the condition of ensuring higher conversion rate and lower ammonia (amine) ratio.
The key point of the method is that by utilizing the rule that chemicalthermodynamic equilibrium exists among mono-substituted, di-substituted and tri-substituted fatty amine in a reaction product and the characteristic that the boiling point of the mono-substituted fatty amine is the lowest, the gasification amount of the mono-substituted fatty amine with the lowest boiling point is larger than that of the di-substituted and tri-substituted fatty amine (namely the concentration of the mono-substituted fatty amine in a gas product is larger than the equilibrium concentration of the mono-substituted fatty amine in the total product) by controlling the reaction condition, and the gaseous mono-substituted fatty amine leaves a reaction area in time, while the di-substituted and tri-substituted fatty amine is in a liquid state and remains in the reaction area for continuous reaction. And the gas phase material flow enters a gas-liquid separator after being condensed and cooled. The separated gas (hydrogen, ammonia, monomethylamine, dimethylamine, etc.) is circulated back to the reaction system, and the separated liquid is the target product with high concentration, which can meet the industrial requirement and can be further refined to obtain high-purity product.
The method for selectively preparing the mono-substituted aliphatic amine comprises the step of introducing C with the molar ratio of 1: 1-12 into a reactor capable of timely separating gas phase material flow under the activity temperature of a hydrogenation and dehydrogenation catalyst and the system pressure of keeping an alcohol raw material and a non-target aliphatic amine product in a liquid state2~C24The method comprises the following steps of adjusting the hydrogen amount of a mixed raw material consisting of aliphatic alcohol and one of ammonia, monomethylamine or dimethylamine within the range of the molar ratio of alcohol to hydrogen of 1: 1-20, carrying the generated target product mono-substituted aliphatic amine out of a reaction area and collecting the mono-substituted aliphatic amine, and maintaining the liquid level of the reaction area to be constant.
The method of the invention can select C as the raw material2~C24Preferably C2~C18Fatty alcohols, and ammonia, monomethylamine or dimethylamine. The molar ratio of the alcohol to the ammonia or amine may be 1: 1 to 12, preferably 1: 3 to 10. Generally, the amount of the same ammonia (amine) is increased with the carbon number of the alcohol in order to achieve a higher conversion, but the reactivity of ammonia, monomethylamine and dimethylamine is different for the same alcoholAs is well known to those of ordinary skill in the art. In order to reduce the using amount of ammonia (amine),lower ammonia (amine) alcohol ratios are used, although higher ammonia (amine) alcohol ratios are also possible.
The reaction temperature adopted by the method is controlled within the range of the activity temperature of the hydrogenation dehydrogenation catalyst, generally 150-300 ℃, preferably 170-250 ℃, and the system pressure determined by hydrogen is required to ensure that the alcohol raw material and the non-target aliphatic amine product are in liquid state, generally 0.1-5.0 MPa, preferably 0.1-3.5 MPa. Obviously, the pressure required for different alcohols will be different, with higher alcohols requiring lower pressures. The hydrogen amount in the reaction is controlled in the range of the molar ratio of alcohol to hydrogen of 1: 1-20, preferably 1: 3-15. The hourly space velocity (calculated by alcohol) of the raw material liquid can be 0.1-5.0 h-1Preferably 0.3 to 2.0 hours-1。
The reactor can be a fixed bed reactor or a kettle reactor. In the case of a fixed bed reactor, the lower feeding mode is adopted.
The hydrogenation and dehydrogenation catalyst is a conventional catalyst commonly used in the prior art and consists of a metal active component and a carrier. The metal active component comprises transition metal elements and compounds thereof, wherein the metal elements are selected from one or more of IB, VIB, VIIB and VIIIB groups, preferably one or more of chromium, molybdenum, manganese, iron, cobalt, nickel, platinum, copper and the like, and the metal compounds are preferably sulfides and oxides. The carrier may be alumina, silica, activated carbon, diatomaceous earth, kaolin, zeolite, etc. or a mixture thereof. The total content of the metal active components is 0.1-60 wt%, preferably 0.5-50 wt%, based on the total weight of the catalyst. Generally, the content of the noble metal may be smaller, and the content of the general metal may be larger. The catalyst is prepared according to methods well known to those of ordinary skill in the art.
The method for selectively preparing the alkyl monosubstituted aliphatic amine provided by the invention obviously improves the selectivity (not less than 90%) of the monosubstituted aliphatic amine in a reaction system on the premise of ensuring higher conversion rate (not less than 95%) and lower ammonia (amine) alcohol ratio, and can obtain a high-concentration target product in one step. In addition, the method has the advantages of simple and easy process, mild conditions and wide application range, can be used for preparing the amine compound with wider carbon number range, and can adopt a fixed bed reactor or a kettle reactor.
FIG. 1 is a process flow diagram using a fixed bed reactor.
FIG. 2 is a flow chart of a process employing a tank reactor.
The invention is further illustrated by the following examples and figures. The product compositions in the examples were analysed by chromatography.
Example 1
As shown in figure 1, lauryl alcohol, dimethylamine and hydrogen are continuously fed into a fixed bed reactor 1 in a way of feeding, the ratio of the lauryl alcohol, the dimethylamine and the hydrogen is 1: 3: 8(mol), the space velocity is 0.5(ml lauryl alcohol/ml catalyst. h), the reaction temperature is 210 ℃, the reaction pressure is 0.1-0.2 MPa, and the catalyst takes gamma-alumina as a carrier and is impregnated with 6.0% of metallic nickel, 6.5% of copper and 1.5% of molybdenum. And cooling the distillate by a condenser 2, and then feeding the distillate into a gas-liquid separator 3 for separation to obtain a product. Wherein the content of the dimethyl dodecyl tertiary amine is up to 93.7 percent, the content of the heavy component methyl didodecyl tertiary amine is only 2.6 percent, the conversion rate is 98.2 percent, and the selectivity of the dimethyl dodecyl tertiary amine is 95.4 percent. After reacting for 30h, the retention solution in the reactor contains 44.5 percent of dimethyl dodecyl tertiary amine and 44.8 percent of methyl didodecyl tertiary amine. The total selectivity of the dimethyl dodecyl tertiary amine is more than 90 percent.
Comparative example 1
Dodecanol, dimethylamine, hydrogen were continuously fed into the fixed bed reactor in the above-mentioned manner without any measures to separate the gas phase stream, and the rest of the reaction conditions were the same as in example 1. The product composition was 58.6% dimethyl dodecyl tertiary amine, 31.0% methyl didodecyl tertiary amine, 95.7% conversion, 61.4% dimethyl dodecyl tertiary amine selectivity.
Example 2
As shown in figure 2, n-octanol, ammonia and hydrogen are continuously introduced into an autoclave 4, the ratio of the three is 1: 8: 5(mol), the space velocityis 1.0(ml of n-octanol/ml of catalyst. h), the reaction temperature is 230 ℃, the reaction pressure is 1.5MPa, and the catalyst takes a mixed forming product of alumina and RE-Y type zeolite as a carrier, and is impregnated with 0.9% of metallic nickel and 9.7% of copper. And cooling the distillate by a condenser 2, and then feeding the distillate into a gas-liquid separator 3 for separation to obtain a product. The product composition was 92.9% n-octylamine, 3.9% di-n-octylamine, no tri-n-octylamine, 97.5% conversion, 95.3% n-octylamine selectivity. After 24h of reaction, the residue consists of 6.4% of n-octylamine, 47.9% of di-n-octylamine and 43.0% of tri-n-octylamine. The total selectivity of n-octylamine is more than 90%.
Comparative example 2
N-octanol was added to the autoclave once, ammonia and hydrogen were continuously introduced, the reaction conditions were the same as in example 2, and the reaction was carried out for 10 hours, with the compositions of n-octylamine 56.6%, di-n-octylamine 30.8%, tri-n-octylamine 2.4%, conversion rate 94.1%, and n-octylamine selectivity 60.1%.
Example 3
As shown in FIG. 2, n-butanol, ammonia and hydrogen were continuously introduced into an autoclave 2 at a ratio of 1: 3: 4(mol), an airspeed of 0.5(ml n-butanol/ml catalyst. h), a reaction temperature of 190 ℃ and a reaction pressure of 3.5MPa, and the catalyst was impregnated with 45% nickel using diatomaceous earth as a carrier. And cooling the distillate by a condenser 2, and then feeding the distillate into a gas-liquid separator 3 for separation to obtain a product. The product composition was 93.0% n-butylamine and 5.0% dibutylamine, with no tri-n-butylamine, conversion 98.2% and n-butylamine selectivity 94.7%. After 30 hours of reaction, the composition of the retentate in the reactor was 5.5% of n-butylamine, 46.0% of di-n-butylamine and 47.5% of tri-n-butylamine. The total selectivity of the n-butylamine is more than 90 percent.
As can be seen from the above examples and comparative examples, the selectivity of the mono-substituted aliphatic amine is significantly improved due to the novel reaction format employed in the process of the present invention.