[go: up one dir, main page]

CN110567303A - Temperature-equalizing plate structure with convex part and manufacturing method thereof - Google Patents

Temperature-equalizing plate structure with convex part and manufacturing method thereof Download PDF

Info

Publication number
CN110567303A
CN110567303A CN201910841706.3A CN201910841706A CN110567303A CN 110567303 A CN110567303 A CN 110567303A CN 201910841706 A CN201910841706 A CN 201910841706A CN 110567303 A CN110567303 A CN 110567303A
Authority
CN
China
Prior art keywords
convex
convex portion
vapor chamber
plate body
bodies
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910841706.3A
Other languages
Chinese (zh)
Inventor
杨修维
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asia Vital Components Co Ltd
Original Assignee
Asia Vital Components Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asia Vital Components Co Ltd filed Critical Asia Vital Components Co Ltd
Priority to CN201910841706.3A priority Critical patent/CN110567303A/en
Publication of CN110567303A publication Critical patent/CN110567303A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0283Means for filling or sealing heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20936Liquid coolant with phase change

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

本发明提供一种具有凸部的均温板结构及其制造方法,包含:一本体、一工作流体,所述本体具有一冷凝区及一蒸发区及一腔室,所述冷凝区及该蒸发区分设于该腔室之两侧,所述蒸发部具有一第一侧面及一第二侧面,所述第一侧面具有一凸部;该工作流体填充于前述腔室内,并通过机械加工之方式成型该凸部作为支撑结构及增加结构强度之用,令其可大幅降低制造成本。

The present invention provides a temperature equalizing plate structure with a convex portion and a manufacturing method thereof, comprising: a body and a working fluid, wherein the body has a condensation zone, an evaporation zone and a chamber, wherein the condensation zone and the evaporation zone are arranged on both sides of the chamber, and the evaporation portion has a first side surface and a second side surface, wherein the first side surface has a convex portion; the working fluid is filled in the aforementioned chamber, and the convex portion is formed by mechanical processing as a supporting structure and to increase the structural strength, so that the manufacturing cost can be greatly reduced.

Description

具有凸部的均温板结构及其制造方法Vaporizing plate structure with convex portion and manufacturing method thereof

本申请是一件分案申请,其母案是申请号为201310284895.1、申请日为2013年7月8日、发明名称为“均温板结构及其制造方法”的中国发明专利申请。This application is a divisional application, and its parent case is a Chinese invention patent application with the application number of 201310284895.1, the application date of July 8, 2013, and the invention titled "The temperature equalizing plate structure and its manufacturing method".

技术领域technical field

本发明属于一种均温板结构及其制造方法,尤其涉及一种可大幅降低制造成本的均温板结构及其制造方法。The invention belongs to a temperature uniformity plate structure and a manufacturing method thereof, in particular to a temperature uniformity plate structure and a manufacturing method thereof which can greatly reduce the manufacturing cost.

背景技术Background technique

随现行电子设备逐渐以轻薄作为标榜的宣传,所以各项元件皆须随的缩小尺寸,但电子设备的尺寸缩小伴随而来产生的热,变成电子设备与系统改善性能的主要障碍。无论形成电子元件的半导体尺寸不断地缩小,仍持续地要求增加性能。As the current electronic equipment is gradually advertised as thin and light, all components must be reduced in size. However, the heat generated by the reduction in the size of electronic equipment has become a major obstacle to improving the performance of electronic equipment and systems. Despite the ever shrinking dimensions of the semiconductors that form electronic components, there is a continuing need for increased performance.

当半导体尺寸缩小,结果热通量增加,热通量增加所造成将产品冷却的挑战超过仅仅是全部热的增加,因为热通量的增加造成在不同时间和不同长度尺寸会过热,可能导致电子故障或损毁。As the semiconductor size shrinks, the resulting heat flux increases, and the increased heat flux creates a challenge to cool the product beyond just the overall heat increase, because the increased heat flux results in overheating at different times and at different length dimensions, potentially causing the electrons to overheat. malfunction or damage.

所以本领域技术人员为解决上述现有技术因散热空间狭小的问题,以一种VC(Vapor chamber)Heat Sink置于chip上方作为散热器使用,为了增加毛细极限,利用铜柱coating烧结、烧结柱、发泡柱等毛细结构用来支撑作为回流道,但由于微均温板上下壁厚较薄(1.5mm以下应用),利用上述此毛细结构作为支撑的习知结构于应用在微均温板上,会造成该微均温板在有铜柱、烧结柱或发泡柱的地方才有支撑,而其余未设有的处即形成塌限或凹陷,造成该微均温板结构的整体平面度与强度无法维持,因此无法实现薄型化。Therefore, those skilled in the art use a VC (Vapor chamber) Heat Sink above the chip to serve as a heat sink to solve the problem of the above-mentioned prior art due to the narrow heat dissipation space. , foaming column and other capillary structures are used to support as the return channel, but because the upper and lower wall thicknesses of the micro-evening plate are thin (applied below 1.5mm), the conventional structure using the above-mentioned capillary structure as a support is used in the micro-evening plate. On the other hand, it will cause the micro-leveling plate to be supported only where there are copper pillars, sintered pillars or foamed pillars, and the rest of the places that are not provided will form collapses or depressions, resulting in the overall plane of the micro-leveling plate structure. The strength and strength cannot be maintained, so thinning cannot be achieved.

上述均温板中的工作流体当由蒸发区域受热域产生蒸发,工作流体由液态转换为汽态,汽态的工作流体至均温板的冷凝区域后由汽态冷凝转化成为液态,再回流到蒸发区域继续循环,均温板的冷凝区域通常为光滑面,又或者为具有烧结的毛细结构态样,汽态的工作流体在该冷凝区域冷凝成液态小水珠状后,因重力或毛细结构的关系使得可回流至蒸发区域,但前述习知冷凝区域的结构由于系呈光滑面,致使冷凝后的液态水珠需储至一定容积方才依重力垂滴,造成其回流效率实显不足,且因液态工作流体回流速率过慢,使得蒸发区域中无工作流体而产生干烧的状态,令热传导效率大幅降低;若为加强工作流体的回流效率则增设毛细结构则为习知不可或缺的结构,但此一毛细结构(如烧结体或网格)的设置则令均温板无法实现薄型化的功效。When the working fluid in the above-mentioned vaporizing plate is evaporated by the heating area of the evaporation area, the working fluid is converted from liquid state to vapor state, and the working fluid in vapor state is condensed from vapor state to liquid state after reaching the condensation area of the vaporizing plate, and then flows back to the vapor state. The evaporation area continues to circulate, and the condensation area of the vapor chamber is usually a smooth surface, or has a sintered capillary structure. However, the structure of the conventional condensation area is smooth, so that the condensed liquid water droplets need to be stored to a certain volume before they drop by gravity, resulting in insufficient reflux efficiency. Due to the too slow return rate of the liquid working fluid, there is no working fluid in the evaporation area, resulting in a dry burning state, which greatly reduces the heat transfer efficiency. To enhance the return efficiency of the working fluid, a capillary structure is added, which is an indispensable structure in the prior art. , but the setting of such a capillary structure (such as a sintered body or a grid) makes the vapor chamber unable to achieve the effect of thinning.

薄型化热板主要是通过蚀刻的方式于该板体开设沟槽做毛细结构或于板体上形成支撑结构,但由于蚀刻的缺点为精度不佳,以及加工时耗费时间,令薄型化热板或均温板制造成本无法降低。The thinned hot plate is mainly formed by etching grooves on the plate to form a capillary structure or to form a support structure on the plate. Or the manufacturing cost of the vapor chamber cannot be reduced.

发明内容SUMMARY OF THE INVENTION

本发明为解决上述现有技术的缺点,提供一种可降低制造成本的均温板结构。In order to solve the above-mentioned shortcomings of the prior art, the present invention provides a vapor chamber structure that can reduce the manufacturing cost.

本发明的另一目地是提供一种可大幅降低均温板制造成本的均温板制造方法。Another object of the present invention is to provide a method for manufacturing a vapor chamber that can greatly reduce the manufacturing cost of the vapor chamber.

为达上述目的本发明提供一种均温板结构,包括:一本体,具有一冷凝区及一蒸发区及一腔室,所述冷凝区及该蒸发区分设于该腔室的两侧;一凸部,系选择由该蒸发区或冷凝区其中任一凸起所构形;一毛细结构,设于前述腔室表面;一工作流体,填充于前述腔室内。In order to achieve the above object, the present invention provides a temperature equalizing plate structure, comprising: a body having a condensation area, an evaporation area and a chamber, the condensation area and the evaporation area are arranged on both sides of the chamber; a The convex part is selected to be formed by any one of the evaporating zone or the condensation zone; a capillary structure is arranged on the surface of the chamber; a working fluid is filled in the chamber.

所述凸部具有多个凸体,所述凸体由该蒸发区向相反该蒸发区的方向延伸所构成,该本体相邻所述凸体的周边处对应呈凹状。The protruding portion has a plurality of protruding bodies, the protruding bodies are formed by the evaporation area extending in a direction opposite to the evaporation area, and the body adjacent to the periphery of the protruding body is correspondingly concave.

所述凸部具有多个凸体,所述凸体是由该冷凝区向相反该冷凝区的方向延伸所构成,该本体相邻所述凸体的周边处对应呈凹状。The protruding portion has a plurality of protruding bodies, the protruding bodies are formed by the condensation area extending in a direction opposite to the condensation area, and the body adjacent to the periphery of the protruding body is correspondingly concave.

所述本体具有一第一板体及一第二板体所述第一、二板体对应盖合并共同界定前述腔室,所述冷凝区设于该第一板体一侧,该蒸发区设于该第二板体一侧。The main body has a first plate body and a second plate body. The first and second plate bodies correspond to covers and jointly define the aforementioned chamber. The condensation area is arranged on one side of the first plate body, and the evaporation area is arranged on one side of the second plate body.

所述本体为一扁状管体。The body is a flat tube body.

所述凸体具有一自由端,该自由端与该冷凝区相连接,即所述凸体与该冷凝区间具有前述毛细结构。The convex body has a free end, and the free end is connected with the condensation area, that is, the convex body and the condensation area have the aforementioned capillary structure.

所述凸部具有多个凸体,所述凸体是由该蒸发区向相反该蒸发区的方向延伸所构成,该本体相反所述凸体的另一侧处对应呈凹状。The protruding portion has a plurality of protruding bodies, the protruding bodies are formed by the evaporation area extending in a direction opposite to the evaporation area, and the body is correspondingly concave on the other side of the protruding body.

所述凸部具有多个凸体,所述凸体是由该冷凝区向相反该冷凝区的方向延伸所构成,该本体相反所述凸体的另一侧处对应呈凹状。The protruding portion has a plurality of protruding bodies, the protruding bodies are formed by the condensation area extending in a direction opposite to the condensation area, and the body is correspondingly concave on the opposite side of the protruding body.

为达上述目的本发明提供一种均温板结构制造方法,系包含下列步骤:提供一第一板体及一第二板体;通过机械加工的方式选择于前述第一、二板体其中任一成型至少一凸体;将第一、二板体对应盖合,将其四周围封闭并进行抽真空与填入工作流体的作业。In order to achieve the above purpose, the present invention provides a method for manufacturing a vapor chamber structure, which includes the following steps: providing a first plate body and a second plate body; selecting any one of the first and second plate bodies by machining forming at least one convex body; covering the first and second plate bodies correspondingly, sealing their surroundings, and performing the operations of vacuuming and filling the working fluid.

一种均温板结构制造方法,包含下列步骤:提供一第一板体及一第二板体;通过机械加工的方式选择于前述第一、二板体其中任一成型至少一凸体;将第一、二板体对应盖合,将其四周围封闭并进行抽真空与填入工作流体的作业。A method for manufacturing a vapor chamber structure, comprising the following steps: providing a first plate body and a second plate body; selecting at least one convex body from any one of the first and second plate bodies by machining; The first and second plate bodies are covered correspondingly, and the surrounding areas are closed and the operations of vacuuming and filling the working fluid are carried out.

所述机械加工选择为冲压加工或压花加工或锻造加工或滚辗加工或刻印加工或铸造加工其中任一。The machining selection is any of stamping, embossing, forging, rolling, engraving, or casting.

所述通过机械加工的方式选择于前述第一、二板体其中任一成型至少一凸体此一步骤后更具有一步骤,于该第一、二板体相对应的一侧成型毛细结构。After the step of forming at least one convex body in any one of the first and second plates by machining, there is a further step of forming capillary structures on the corresponding sides of the first and second plates.

本发明提供一种均温板结构制造方法,包含下列步骤:提供一扁平管体;通过机械加工的方式于前述管体内部一侧成型至少一凸休;将该管体两端封闭并进行抽真空与填入工作流体的作业。The present invention provides a method for manufacturing a temperature equalizing plate structure, which includes the following steps: providing a flat tube body; forming at least one protrusion on one side of the inner part of the tube body by machining; sealing both ends of the tube body and pumping Vacuuming and filling with working fluid.

所述通过机械加工的方式于前述管体内部一侧成型至少一凸体此一步骤后更具有一步骤于该管体内部成型一毛细结构。After the step of forming at least one convex body on one side of the inside of the tube body by machining, there is a further step of forming a capillary structure inside the tube body.

所述机械加工是选择为冲压加工或压花加工或锻造加工或滚辗加工或刻印加工或铸造加工其中任一。The machining is selected to be any one of stamping, embossing, forging, rolling, engraving, or casting.

通过本发明可大幅降低均温板的制造成本,并进一步可提升制造精度者。According to the present invention, the manufacturing cost of the vapor chamber can be greatly reduced, and the manufacturing accuracy can be further improved.

附图说明Description of drawings

图1为本发明均温板结构第一实施例的立体分解图;1 is an exploded perspective view of the first embodiment of the vapor chamber structure of the present invention;

图2为本发明均温板结构第一实施例的立体组合图;FIG. 2 is a three-dimensional combined view of the first embodiment of the vapor chamber structure of the present invention;

图3为本发明均温板结构第一实施例的剖视图;3 is a cross-sectional view of the first embodiment of the vapor chamber structure of the present invention;

图4为本发明均温板结构第二实施例的剖视图;4 is a cross-sectional view of the second embodiment of the vapor chamber structure of the present invention;

图5为本发明均温板结构第三实施例的剖视图;5 is a cross-sectional view of a third embodiment of the vapor chamber structure of the present invention;

图6为本发明均温板结构第四实施例的剖视图;6 is a cross-sectional view of the fourth embodiment of the vapor chamber structure of the present invention;

图7为本发明均温板结构制造方法第一实施例的步骤流程图;7 is a flow chart of steps of the first embodiment of the method for manufacturing a vapor chamber structure according to the present invention;

图8为本发明均温板结构制造方法第二实施例的步骤流程图;8 is a flow chart of the steps of the second embodiment of the method for manufacturing a vapor chamber structure according to the present invention;

图9为本发明均温板结构制造方法第三实施例的步骤流程图;9 is a flow chart of steps of a third embodiment of a method for manufacturing a vapor chamber structure according to the present invention;

图10为本发明均温板结构制造方法第四实施例的步骤流程图。FIG. 10 is a flow chart of the steps of the fourth embodiment of the method for manufacturing the vapor chamber structure of the present invention.

附图标记说明:Description of reference numbers:

本体 11Body 11

第一板体 11aThe first plate body 11a

第二板体 11bSecond plate body 11b

凸部 111Bump 111

凸体 1111Convex 1111

自由端 1111aFree end 1111a

毛细结构 2capillary 2

工作流体 3Working fluid 3

冷凝区 112Condensation zone 112

蒸发区 113Evaporation zone 113

腔室 114Chamber 114

具体实施方式Detailed ways

下面结合附图和具体实施方式对本发明作进一步详细描述:The present invention will be described in further detail below in conjunction with the accompanying drawings and specific embodiments:

本发明的上述目的及其结构与功能上的特性,将依据所附图式的较佳实施例予以说明。The above objects of the present invention and their structural and functional characteristics will be described with reference to the preferred embodiments of the accompanying drawings.

请参阅图1、图2、图3,为本发明均温板结构第一实施例的立体分解及组合与剖视图,如图所示,所述均温板结构,系包含:一本体11、一凸部111、一毛细结构2、一工作流体3;Please refer to FIG. 1 , FIG. 2 , and FIG. 3 , which are three-dimensional exploded, assembled and cross-sectional views of the first embodiment of the vapor chamber structure of the present invention. As shown in the figures, the vapor chamber structure includes: a main body 11 , a convex part 111, a capillary structure 2, a working fluid 3;

所述本体11具有一冷凝区112及一蒸发区113及一腔室114,并所述本体11更具有一第一板体11a及一第二板体11b所述第一、二板体11a、11b对应盖合并共同界定前述腔室114,所述冷凝区112设于该第一板体11a一侧,该蒸发区113设于该第二板体11b一侧,即所述冷凝区112及该蒸发区113分设于该腔室114的两侧并相互对应。The main body 11 has a condensation zone 112, an evaporation zone 113 and a chamber 114, and the main body 11 further has a first plate body 11a and a second plate body 11b. The first and second plate bodies 11a, 11b corresponds to the cover and jointly defines the aforementioned chamber 114, the condensation area 112 is provided on one side of the first plate body 11a, the evaporation area 113 is provided on the side of the second plate body 11b, that is, the condensation area 112 and the The evaporation areas 113 are located on two sides of the chamber 114 and correspond to each other.

所述凸部111系选择由该蒸发区113或冷凝区112其中任一或二者(蒸发区113、冷凝区112)都凸起所构形,本实施例的所述凸部111具有多个凸体1111,所述凸体1111系由该蒸发区113向相反该蒸发区113的方向延伸所构成,并该凸体1111具有一自由端1111a,该自由端1111a与前述冷凝区112连接,该本体11相邻所述凸体1111的周边处系对应呈凹状,本实施例的所述凸体1111系通过压浮花法所成型,故所述凸体1111的另一侧系呈平坦状。The protruding portion 111 is selected to be formed by either or both of the evaporation zone 113 or the condensation zone 112 (evaporation zone 113 and condensation zone 112 ). The protruding portion 111 in this embodiment has a plurality of The convex body 1111 is formed by the evaporation area 113 extending in the opposite direction to the evaporation area 113, and the convex body 1111 has a free end 1111a, the free end 1111a is connected with the condensation area 112, the The periphery of the main body 11 adjacent to the convex body 1111 is correspondingly concave. The convex body 1111 in this embodiment is formed by embossing, so the other side of the convex body 1111 is flat.

所述毛细结构2设于前述腔室114表面,即所述凸体1111与该冷凝区112间具有前述毛细结构2,该工作流体3填充于前述腔室114内。The capillary structure 2 is disposed on the surface of the cavity 114 , that is, the capillary structure 2 is formed between the convex body 1111 and the condensation area 112 , and the working fluid 3 is filled in the cavity 114 .

请参阅第4图,系为本发明均温板结构第二实施例的剖视图,如图所示,本实施例与前述第一实施例部分结构技术特征相同,故在此将不再赘述,惟本实例与前述第一实施例的不同处系为所述蒸发区113的多个凸体1111相对的另一侧是呈凹状。Please refer to FIG. 4, which is a cross-sectional view of the second embodiment of the vapor chamber structure of the present invention. As shown in the figure, this embodiment has the same structural and technical features as the first embodiment, so it will not be repeated here, but The difference between this example and the aforementioned first embodiment is that the opposite side of the plurality of protrusions 1111 of the evaporation area 113 is concave.

请参阅第5图,为本发明均温板结构第三实施例的剖视图,如图所示,本实施例系与前述第一实施例部分结构技术特征相同,故在此将不再赘述,惟本实例与前述第一实施例的不同处是为所述凸部111具有多个凸体1111,所述凸体1111是由该冷凝区112向相反该冷凝区112的方向延伸所构成,该本体11相邻所述凸体1111的周边处对应呈凹状。Please refer to FIG. 5, which is a cross-sectional view of the third embodiment of the vapor chamber structure of the present invention. As shown in the figure, this embodiment has the same structural and technical features as the first embodiment, so it will not be repeated here. The difference between this embodiment and the first embodiment is that the protruding portion 111 has a plurality of protruding bodies 1111 , and the protruding bodies 1111 are formed by the condensation area 112 extending in the opposite direction to the condensation area 112 . The periphery of 11 adjacent to the convex body 1111 is correspondingly concave.

请参阅第6图,为本发明均温板结构第四实施例的剖视图,如图所示,本实施例是与前述第一、二、三实施例部分结构技术特征相同,故在此将不再赘述,惟本实例与前述第一、二、三实施例的不同处为所述本体11系为一扁状管体。Please refer to FIG. 6 , which is a cross-sectional view of the fourth embodiment of the vapor chamber structure of the present invention. As shown in the figure, this embodiment has the same structural and technical features as the first, second, and third embodiments described above, so it will not be discussed here. Again, the only difference between this example and the first, second, and third embodiments is that the main body 11 is a flat tube.

请参阅第7图,为本发明均温板结构制造方法第一实施例的步骤流程图,并一并参阅前述图1~图6,如图所示,所述均温板结构制造方法,包含下列步骤:Please refer to FIG. 7 , which is a flow chart of the steps of the first embodiment of the method for manufacturing a vapor chamber structure according to the present invention, and refer to the aforementioned FIGS. 1 to 6 together. As shown in the figures, the method for manufacturing a vapor chamber structure includes: The following steps:

S1:提供一第一板体及一第二板体;S1: provide a first plate body and a second plate body;

提供一第一板体11a及一第二板体11b,所述第一、二板体11a、11b是为导热性质较佳的材料,如铜或铝材质。A first plate body 11a and a second plate body 11b are provided, and the first and second plate bodies 11a and 11b are made of materials with better thermal conductivity, such as copper or aluminum.

S2:通过机械加工的方式选择于前述第一、二板体其中任一成型至少一凸体;S2: Selecting at least one convex body from any one of the aforementioned first and second plate bodies by machining;

通过以机械加工的方式选择于前述第一、二板体11a、11b其中任一上成型至少一凸体1111,所述机械加工可选择为冲压加工或压花加工或锻造加工其中任一,所述冲压加工亦可选择以压浮花法或压模法或打凸法其中任一方式形成该凸体。By choosing to form at least one convex body 1111 on any one of the first and second plate bodies 11a, 11b by mechanical processing, the mechanical processing can be any one of stamping processing, embossing processing or forging processing, so The stamping process can also be selected to form the convex body by embossing method, compression molding method or embossing method.

S3:将第一、二板体对应盖合,将其四周围封闭并进行抽真空与填入工作流体的作业。S3: Cover the first and second plates correspondingly, seal their surroundings, and perform the operations of vacuuming and filling the working fluid.

将通过机械加工成型凸体1111后将第一、二板体11a、11b对应盖合,并将该第一、二板体11a、11b以焊接或扩散接合的方式进行封闭,并进行抽真空以及填入工作流体3等作业。请参阅第8图,为本发明均温板结构制造方法第二实施例的步骤流程图,并一并参阅第1~6图,如图所示,所述均温板结构制造方法,包含下列步骤:After the protruding body 1111 is formed by machining, the first and second plate bodies 11a and 11b are correspondingly covered, and the first and second plate bodies 11a and 11b are sealed by welding or diffusion bonding, and vacuuming and Fill in the work such as working fluid 3. Please refer to FIG. 8 , which is a flow chart of the steps of the second embodiment of the method for manufacturing a vapor chamber structure according to the present invention, and refer to FIGS. 1 to 6 together. As shown in the figures, the method for manufacturing a vapor chamber structure includes the following step:

S1:提供一第一板体及一第二板体;S1: provide a first plate body and a second plate body;

S2:通过机械加工的方式选择于前述第一、二板体其中任一成型至少一凸体;S2: Selecting at least one convex body from any one of the aforementioned first and second plate bodies by machining;

S3:将第一、二板体对应盖合,将其四周围封闭并进行抽真空与填入工作流体的作业。S3: Cover the first and second plates correspondingly, seal their surroundings, and perform the operations of vacuuming and filling the working fluid.

本实施例部分步骤与前述第一实施例相同,故在此将不再赘述,惟本实施例与前述第一实施例的不同处系为所述步骤S2:通过机械加工的方式选择于前述第一、二板体其中任一成型至少一凸体此一步骤后更具有一步骤S4:。Part of the steps in this embodiment are the same as those in the aforementioned first embodiment, so they will not be repeated here, but the difference between this embodiment and the aforementioned first embodiment is that the step S2 is selected by machining in the aforementioned first embodiment. Either one of the one or two plate bodies is formed with at least one convex body. After this step, there is a step S4:.

所述毛细结构2可选用烧结粉末结构或置入网格体或开设沟槽的方式于该第一、二板体11a、11b另外设置毛细结构2。The capillary structure 2 can be additionally provided with a sintered powder structure, a grid body or a groove formed on the first and second plate bodies 11a and 11b.

请参阅第9图,为本发明均温板结构制造方法第三实施例的步骤流程图,并一并参阅第1~6图,如图所示,所述均温板结构制造方法,包含下列步骤:Please refer to FIG. 9 , which is a flow chart of the steps of the third embodiment of the method for manufacturing a vapor chamber structure according to the present invention, and refer to FIGS. 1 to 6 together. As shown in the figures, the method for manufacturing a vapor chamber structure includes the following step:

A1:提供一扁平管体;A1: Provide a flat tube body;

提供至少一端为开放状的扁平状管体。A flat tubular body with at least one end being open is provided.

A2:通过机械加工的方式于前述管体内部一侧成型至少一凸体;A2: At least one convex body is formed on the inner side of the aforementioned pipe body by machining;

通过以机械加工的方式选择于前述管体内部一侧成型至少一凸体1111,所述机械加工是可选择为冲压加工或压花加工或锻造加工其中任一,所述冲压加工也可选择以压浮花法或压模法或打凸法其中任一方式形成该凸体1111。By choosing to form at least one convex body 1111 on the inner side of the aforementioned pipe body by machining, the machining can be any one of stamping, embossing or forging, and the stamping can also be selected as The convex body 1111 is formed by any one of embossing method, stamping method or embossing method.

A3:将该管体两端封闭并进行抽真空与填入工作流体的作业。A3: The two ends of the tube body are closed and vacuumed and filled with working fluid.

将通过机械加工成型凸体后该扁平管体呈开放状的一端以焊接或扩散接合的方式进行封闭,并进行抽真空以及填入工作流体等作业。The open end of the flat tube body after the protruding body is formed by machining is closed by welding or diffusion bonding, and the operations such as vacuuming and filling of the working fluid are performed.

请参阅第10图,为本发明均温板结构制造方法第四实施例的步骤流程图,并一并参阅第1~6图,如图所示,所述均温板结构制造方法,包含下列步骤:Please refer to FIG. 10, which is a flow chart of the steps of the fourth embodiment of the method for manufacturing a vapor chamber structure according to the present invention, and refer to FIGS. 1 to 6 together. As shown in the figures, the method for manufacturing a vapor chamber structure includes the following step:

A1:提供一扁平管体;A1: Provide a flat tube body;

A2:通过机械加工的方式于前述管体内部一侧成型至少一凸体;A2: At least one convex body is formed on the inner side of the aforementioned pipe body by machining;

A3:将该管体两端封闭并进行抽真空与填入工作流体的作业。A3: The two ends of the tube body are closed and vacuumed and filled with working fluid.

本实施例部分步骤系与前述第三实施例相同,故在此将不再赘述,惟本实施例与前述第一实施例的不同处系为步骤A2:通过机械加工的方式于前述管体内部一侧成型至少一凸体此一步骤后更具有一步骤A4:于该管体内部成型一毛细结构2,所述毛细结构2可选用烧结粉末结构或置入网格体或开设沟槽的方式于该管体内部另外设置毛细结构2。Part of the steps in this embodiment are the same as those in the aforementioned third embodiment, so they will not be repeated here, but the difference between this embodiment and the aforementioned first embodiment is step A2: machining the inside of the aforementioned pipe body by machining At least one convex body is formed on one side. After this step, there is a further step A4: forming a capillary structure 2 inside the tube body. A capillary structure 2 is additionally arranged inside the tube body.

以上实施例中所述的机械加工均可选择为冲压加工或压花加工或锻造加工或滚辗加工或刻印加工或铸造加工其中任一。The mechanical processing described in the above embodiments can be selected from any one of stamping processing, embossing processing, forging processing, rolling processing, engraving processing or casting processing.

通过本发明的均温板结构及其制造方法可进一步提供一种可节省制造工时以及提升制造精度的均温板结构以及制造方法。The vapor chamber structure and the manufacturing method thereof of the present invention can further provide a vapor chamber structure and a manufacturing method that can save manufacturing man-hours and improve manufacturing accuracy.

Claims (14)

1.一种具有凸部的均温板结构,其特征在于,包括:1. A vapor chamber structure with a convex portion, characterized in that, comprising: 一本体,具有一冷凝区及一蒸发区及一腔室,所述冷凝区及所述蒸发区分设于所述腔室的两侧;a body, having a condensation area, an evaporation area and a chamber, the condensation area and the evaporation area are arranged on both sides of the chamber; 一凸部,选择由所述蒸发区或所述冷凝区其中任一凸起所构形;a convex portion, selected to be configured by any one of the evaporating zone or the condensation zone; 一工作流体,填充于所述腔室内;a working fluid, filled in the chamber; 一第一毛细结构,设于所述腔室表面,为烧结粉末或网格体;a first capillary structure, disposed on the surface of the chamber, is sintered powder or grid; 其中,所述本体具有一第一板体及一第二板体;所述第一板体、第二板体对应盖合并共同界定所述腔室;所述第一板体有第一外侧面及第一内侧面,所述冷凝区设置于其中;所述第二板体有第二外侧面及第二内侧面,所述蒸发区设置于其中;所述凸部由所述第一板体的第一内侧面上凸起;所述第一毛细结构设置于所述腔室中所述第二板体的第二内侧面;于所述第二板体的第二内侧面的毛细结构均匀延伸该第二内侧面,所述凸部直接接触所述第二板体的第二内侧面的第一毛细结构;Wherein, the main body has a first plate body and a second plate body; the first plate body and the second plate body correspond to the cover and jointly define the cavity; the first plate body has a first outer surface and a first inner side surface, in which the condensation area is arranged; the second plate body has a second outer side surface and a second inner side surface, and the evaporation area is arranged therein; the convex portion is formed by the first plate body The first inner surface of the second plate is convex; the first capillary structure is arranged on the second inner surface of the second plate body in the chamber; the capillary structure on the second inner surface of the second plate body is uniform extending the second inner side surface, the convex portion directly contacts the first capillary structure of the second inner side surface of the second plate body; 一第二毛细结构,该第二毛细结构的一侧与前述第一毛细结构贴合,该第二毛细结构另一侧全部或局部与前述第一板体之第一内侧面及凸部其中任一贴合,所述第二毛细结构为编织体。A second capillary structure, one side of the second capillary structure is attached to the first capillary structure, and the other side of the second capillary structure is fully or partially attached to any one of the first inner side surface and the convex portion of the first plate body For a fit, the second capillary structure is a braided body. 2.如权利要求1所述的具有凸部的均温板结构,其特征在于,所述凸部具有多个凸体,所述凸体是由所述蒸发区向相反所述蒸发区的方向延伸所构成,所述本体相邻所述凸体的周边处是对应呈凹状。2 . The vapor chamber structure with a convex portion according to claim 1 , wherein the convex portion has a plurality of convex bodies, and the convex bodies are directed from the evaporation area to the opposite direction to the evaporation area. 3 . It is formed by extending, and the periphery of the main body adjacent to the convex body is correspondingly concave. 3.如权利要求1所述的具有凸部的均温板结构,其特征在于,所述凸部具有多个凸体,所述凸体是由所述冷凝区向相反所述冷凝区的方向延伸所构成,所述本体相邻所述凸体的周边处是对应呈凹状。3 . The vapor chamber structure with a convex portion as claimed in claim 1 , wherein the convex portion has a plurality of convex bodies, and the convex bodies are directed from the condensation area to the opposite direction to the condensation area. 4 . It is formed by extending, and the periphery of the main body adjacent to the convex body is correspondingly concave. 4.如权利要求1所述的具有凸部的均温板结构,其特征在于,所述本体为一扁状管体。4 . The vapor chamber structure with a convex portion as claimed in claim 1 , wherein the body is a flat tube body. 5 . 5.如权利要求2所述的具有凸部的均温板结构,其特征在于,所述凸体具有一自由端,所述自由端与所述冷凝区相连接,所述凸体与所述冷凝区间具有所述毛细结构。5 . The vapor chamber structure with a convex portion according to claim 2 , wherein the convex body has a free end, the free end is connected with the condensation area, and the convex body is connected to the condensing area. 6 . The condensation section has the capillary structure. 6.如权利要求1所述的具有凸部的均温板结构,其特征在于,所述凸部具有多个凸体,所述凸体是由所述蒸发区向相反所述蒸发区的方向延伸所构成,所述本体相反所述凸体的另一侧处是对应呈凹状。6 . The vapor chamber structure with convex parts according to claim 1 , wherein the convex part has a plurality of convex bodies, and the convex bodies are directed from the evaporation area to the opposite direction to the evaporation area. 7 . Constructed by extension, the other side of the main body opposite to the convex body is correspondingly concave. 7.如权利要求1所述的具有凸部的均温板结构,其特征在于,所述凸部具有多个凸体,所述凸体是由所述冷凝区向相反所述冷凝区的方向延伸所构成,所述本体相反所述凸体的另一侧处是对应呈凹状。7 . The vapor chamber structure with a convex portion as claimed in claim 1 , wherein the convex portion has a plurality of convex bodies, and the convex bodies are directed from the condensation area to the opposite direction to the condensation area. 8 . Constructed by extension, the other side of the main body opposite to the convex body is correspondingly concave. 8.如权利要求1所述的具有凸部的均温板结构,其特征在于,所述凸部具有多个凸体,所述凸体是由该冷凝区向相反该冷凝区的方向延伸所构成,该本体相反所述凸体的另一侧处对应呈凹状。8 . The vapor chamber structure with a convex portion as claimed in claim 1 , wherein the convex portion has a plurality of convex bodies, and the convex bodies are formed by the condensation area extending in a direction opposite to the condensation area. 9 . It is formed, and the other side of the main body opposite to the convex body is correspondingly concave. 9.一种具有凸部的均温板结构制造方法,其特征在于,包含下列步骤:9. A method for manufacturing a vapor chamber structure with a convex portion, characterized in that it comprises the following steps: 提供一第一板体及一第二板体;providing a first plate body and a second plate body; 通过机械加工的方式选择于前述第一板体、第二板体其中任一成型至少一凸体;At least one convex body is selected from any one of the first plate body and the second plate body by machining; 将第一、二板体对应盖合,将其四周围封闭并进行抽真空与填入工作流体的作业。The first and second plate bodies are correspondingly covered, and the surrounding areas are closed, and the operations of vacuuming and filling the working fluid are carried out. 10.如权利要求9所述的具有凸部的均温板结构制造方法,其特征在于,所述机械加工是选择为冲压加工或压花加工或锻造加工或滚辗加工或刻印加工或铸造加工其中任一。10 . The method for manufacturing a vapor chamber structure with a convex portion according to claim 9 , wherein the machining is selected from stamping, embossing, forging, rolling, engraving, or casting. 11 . either. 11.如权利要求9所述的具有凸部的均温板结构制造方法,其特征在于,所述通过机械加工的方式选择于前述第一板体、第二板体其中任一成型至少一凸体此一步骤后还具有一步骤,于该第一板体、第二板体相对应的一侧成型毛细结构。11 . The method for manufacturing a vapor chamber structure with a convex portion as claimed in claim 9 , wherein at least one convex portion is selected from any one of the first plate body and the second plate body by machining. 12 . After this step, there is also a step of forming capillary structures on the corresponding sides of the first plate body and the second plate body. 12.一种具有凸部的均温板结构制造方法,其特征在于,包含下列步骤:12. A method for manufacturing a vapor chamber structure with a convex portion, characterized in that it comprises the following steps: 提供一扁平管体;providing a flat tube body; 通过机械加工的方式于前述管体内部一侧成型至少一凸体;At least one convex body is formed on the inner side of the aforementioned pipe body by means of machining; 将该管体两端封闭并进行抽真空与填入工作流体的作业。The two ends of the pipe body are closed and the operations of vacuuming and filling the working fluid are carried out. 13.如权利要求12所述的具有凸部的均温板结构制造方法,其特征在于,所述通过机械加工的方式于前述管体内部一侧成型至少一凸体此一步骤后还具有一步骤,于该管体内部成型一毛细结构。13 . The method for manufacturing a vapor chamber structure with a convex portion as claimed in claim 12 , wherein the step of forming at least one convex body on the inner side of the pipe body by machining also has a In the step, a capillary structure is formed inside the tube body. 14.如权利要求12所述的具有凸部的均温板结构制造方法,其特征在于,所述机械加工是选择为冲压加工或压花加工或锻造加工或滚辗加工或刻印加工或铸造加工其中任一。14. The method for manufacturing a vapor chamber structure with a convex portion according to claim 12, wherein the machining is selected from stamping, embossing, forging, rolling, engraving, or casting either.
CN201910841706.3A 2013-07-08 2013-07-08 Temperature-equalizing plate structure with convex part and manufacturing method thereof Pending CN110567303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910841706.3A CN110567303A (en) 2013-07-08 2013-07-08 Temperature-equalizing plate structure with convex part and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910841706.3A CN110567303A (en) 2013-07-08 2013-07-08 Temperature-equalizing plate structure with convex part and manufacturing method thereof
CN201310284895.1A CN104279899A (en) 2013-07-08 2013-07-08 Vapor structure and manufacturing method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201310284895.1A Division CN104279899A (en) 2013-07-08 2013-07-08 Vapor structure and manufacturing method thereof

Publications (1)

Publication Number Publication Date
CN110567303A true CN110567303A (en) 2019-12-13

Family

ID=52255033

Family Applications (5)

Application Number Title Priority Date Filing Date
CN201910841706.3A Pending CN110567303A (en) 2013-07-08 2013-07-08 Temperature-equalizing plate structure with convex part and manufacturing method thereof
CN201910105496.1A Pending CN109974495A (en) 2013-07-08 2013-07-08 Method for manufacturing a vapor chamber structure
CN201310284895.1A Pending CN104279899A (en) 2013-07-08 2013-07-08 Vapor structure and manufacturing method thereof
CN201710222607.8A Pending CN107289800A (en) 2013-07-08 2013-07-08 Temperature equalizing plate structure and manufacturing method thereof
CN201910105068.9A Pending CN109974494A (en) 2013-07-08 2013-07-08 Method for manufacturing a vapor chamber structure

Family Applications After (4)

Application Number Title Priority Date Filing Date
CN201910105496.1A Pending CN109974495A (en) 2013-07-08 2013-07-08 Method for manufacturing a vapor chamber structure
CN201310284895.1A Pending CN104279899A (en) 2013-07-08 2013-07-08 Vapor structure and manufacturing method thereof
CN201710222607.8A Pending CN107289800A (en) 2013-07-08 2013-07-08 Temperature equalizing plate structure and manufacturing method thereof
CN201910105068.9A Pending CN109974494A (en) 2013-07-08 2013-07-08 Method for manufacturing a vapor chamber structure

Country Status (1)

Country Link
CN (5) CN110567303A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021168914A1 (en) * 2020-02-25 2021-09-02 张于光 Temperature equalization plate radiator

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104713395B (en) * 2015-02-11 2017-01-04 上海卫星装备研究所 High resistance to pressure flat-plate heat pipe and processing method thereof
CN107782187A (en) * 2016-08-31 2018-03-09 浙江嘉熙科技有限公司 Two-sided flat phase transformation suppresses heat sink and its manufacture method
CN107231780A (en) * 2017-06-13 2017-10-03 奇鋐科技股份有限公司 Heat sink and manufacturing method thereof
CN107809880A (en) * 2017-06-13 2018-03-16 奇鋐科技股份有限公司 Method for manufacturing heat dissipation unit
CN109891178A (en) * 2017-09-19 2019-06-14 华为技术有限公司 Thin vapor chambers formed by stamping process
US10746479B2 (en) * 2018-02-09 2020-08-18 General Electric Company Additively manufactured structures for thermal and/or mechanical systems, and methods for manufacturing the structures
TWI687644B (en) * 2018-10-12 2020-03-11 宏達國際電子股份有限公司 Heat transferring module and manufacturing method thereof
CN110285699A (en) * 2019-07-26 2019-09-27 联德精密材料(中国)股份有限公司 Composite vapor chamber and manufacturing method thereof
CN112444151B (en) * 2019-09-03 2022-01-11 广州力及热管理科技有限公司 Metal oxide slurry for manufacturing capillary structure of uniform temperature plate element
CN112444152B (en) * 2019-09-03 2022-01-11 广州力及热管理科技有限公司 Chain-shaped copper metal capillary structure and manufacturing method thereof
TWI701992B (en) * 2019-10-31 2020-08-11 建準電機工業股份有限公司 Temperature-uniformizing board
CN112888267B (en) * 2021-02-05 2022-09-20 华南理工大学 Ultrathin flexible vapor chamber and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101839427A (en) * 2010-04-07 2010-09-22 华南理工大学 Large-size direct type LED backlight source and preparation method
CN101846471A (en) * 2010-05-15 2010-09-29 中山伟强科技有限公司 Soaking plate
CN202405251U (en) * 2011-09-21 2012-08-29 奇鋐科技股份有限公司 heat sink
CN102865763A (en) * 2011-07-07 2013-01-09 王勤文 Capillary forming method for uniform temperature plate and structure thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1784137A (en) * 2004-11-29 2006-06-07 迈萪科技股份有限公司 Curved vapor chamber with metal mesh microstructure and its manufacturing method
US20090308576A1 (en) * 2008-06-17 2009-12-17 Wang Cheng-Tu Heat pipe with a dual capillary structure and manufacturing method thereof
US20120279687A1 (en) * 2011-05-05 2012-11-08 Celsia Technologies Taiwan, I Flat-type heat pipe and wick structure thereof
CN103134363A (en) * 2011-11-22 2013-06-05 奇鋐科技股份有限公司 Heat pipe structure and manufacturing method thereof
CN203337002U (en) * 2013-05-21 2013-12-11 泰硕电子股份有限公司 Vapor chamber with supporting structure
CN203432427U (en) * 2013-07-08 2014-02-12 奇鋐科技股份有限公司 Vapor structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101839427A (en) * 2010-04-07 2010-09-22 华南理工大学 Large-size direct type LED backlight source and preparation method
CN101846471A (en) * 2010-05-15 2010-09-29 中山伟强科技有限公司 Soaking plate
CN102865763A (en) * 2011-07-07 2013-01-09 王勤文 Capillary forming method for uniform temperature plate and structure thereof
CN202405251U (en) * 2011-09-21 2012-08-29 奇鋐科技股份有限公司 heat sink

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021168914A1 (en) * 2020-02-25 2021-09-02 张于光 Temperature equalization plate radiator

Also Published As

Publication number Publication date
CN104279899A (en) 2015-01-14
CN109974495A (en) 2019-07-05
CN107289800A (en) 2017-10-24
CN109974494A (en) 2019-07-05

Similar Documents

Publication Publication Date Title
CN110567303A (en) Temperature-equalizing plate structure with convex part and manufacturing method thereof
TWI407071B (en) Thin heat pipe structure and manufacturing method thereof
TWI398616B (en) Micro - temperature plate structure improvement
CN104976909A (en) Vapor structure and manufacturing method thereof
US20150026981A1 (en) Manufacturing mehtod of vapor chamber structure
US10107557B2 (en) Integrated heat dissipation device
JP3186291U (en) Soaking plate structure
US20100071879A1 (en) Method for manufacturing a plate-type heat pipe and a plate-type heat pipe obtained thereby
CN107421364B (en) Temperature equalizing plate structure and manufacturing method thereof
TWI443944B (en) Thin hot plate structure
JP2011009720A (en) Vapor chamber and method of manufacturing the same
US20120305223A1 (en) Thin heat pipe structure and manufacturing method thereof
US20100126701A1 (en) Plate-type heat pipe and method for manufacturing the same
CN102202488A (en) Heat-pipe heat radiation apparatus
JP3196200U (en) Soaking plate support structure
US9802240B2 (en) Thin heat pipe structure and manufacturing method thereof
TW201423017A (en) Thin heat pipe manufacturing method
TW201719101A (en) Heat dissipation device
CN107306486B (en) Integrated heat dissipation device
CN102778156A (en) Thin heat pipe structure and manufacturing method thereof
TWI541486B (en) Heat pipe structure and manufacturing method thereof
CN203224159U (en) Heat pipe structure
CN103217038A (en) Improved heat pipe structure
CN103217039B (en) heat pipe cooling structure
CN104034192B (en) Heat pipe structure

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination