CN110398782B - A Joint Regularization Inversion Method for Gravity Data and Gravity Gradient Data - Google Patents
A Joint Regularization Inversion Method for Gravity Data and Gravity Gradient Data Download PDFInfo
- Publication number
- CN110398782B CN110398782B CN201910648983.2A CN201910648983A CN110398782B CN 110398782 B CN110398782 B CN 110398782B CN 201910648983 A CN201910648983 A CN 201910648983A CN 110398782 B CN110398782 B CN 110398782B
- Authority
- CN
- China
- Prior art keywords
- gravity
- data
- inversion
- formula
- result
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V7/00—Measuring gravitational fields or waves; Gravimetric prospecting or detecting
- G01V7/02—Details
- G01V7/06—Analysis or interpretation of gravimetric records
Landscapes
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Geophysics (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
本发明涉及一种重力数据和重力梯度数据联合正则化反演方法,包括如下步骤:步骤1:获取重力数据,对重力数据进行反演计算,获得反演结果;步骤2:对步骤1获得的反演结果m取绝对值,进行归一化处理,对于结果中的零值,设置为一个极小值,处理后的结果作为加权矩阵;步骤3:获得重力梯度数据,将重力梯度数据和所述加权矩阵同时应用到反演计算中,获得重力梯度数据和加权矩阵联合反演的反演结果。本发明有效的利用了重力数据包含的地质信息,利用重力数据构建加权矩阵,将加权矩阵应用到重力梯度反演计算,提高了反演结果的分辨率,反演结果底部边界更清晰、准确。
The invention relates to a joint regularization inversion method for gravity data and gravity gradient data, comprising the following steps: step 1: acquiring gravity data, performing inversion calculation on the gravity data, and obtaining an inversion result; The inversion result m takes the absolute value and normalizes it. For the zero value in the result, it is set to a minimum value, and the processed result is used as a weighting matrix; Step 3: Obtain the gravity gradient data, and compare the gravity gradient data with all The above weighting matrix is simultaneously applied to the inversion calculation, and the inversion result of the joint inversion of the gravity gradient data and the weighting matrix is obtained. The invention effectively utilizes the geological information contained in the gravity data, constructs a weighted matrix by using the gravity data, applies the weighted matrix to the gravity gradient inversion calculation, improves the resolution of the inversion result, and makes the bottom boundary of the inversion result clearer and more accurate.
Description
技术领域technical field
本发明涉及位场数据反演方法技术领域,具体是一种重力数据和重力梯度数据联合正则化反演方法。The invention relates to the technical field of potential field data inversion methods, in particular to a joint regularization inversion method of gravity data and gravity gradient data.
背景技术Background technique
重力数据是通过测量位场的垂直分量获得的,重力梯度数据则是通过测量重力场在三个方向的变化获得,若以笛卡尔坐标系为例,垂直向下用Z轴正方向表示,重力数据是重力场在Z轴方向的一阶偏导数,重力梯度数据则是重力场在X、Y和Z轴三个方向的二阶偏导数。在频率域对重力数据和重力梯度数据进行比较,可以发现,重力数据包含较多的低频信息,重力梯度数据则包含较多的高频信息。因此,将重力和重力梯度数据同时应用到反演计算中,可以实现信息的互补,并提高反演效果。The gravity data is obtained by measuring the vertical component of the potential field, and the gravity gradient data is obtained by measuring the change of the gravity field in three directions. If the Cartesian coordinate system is taken as an example, the vertical downward direction is expressed by the positive direction of the Z axis, and the gravity The data are the first-order partial derivatives of the gravity field in the Z-axis direction, and the gravity gradient data are the second-order partial derivatives of the gravity field in the three directions of the X, Y, and Z axes. Comparing the gravity data and the gravity gradient data in the frequency domain, it can be found that the gravity data contains more low-frequency information, and the gravity gradient data contains more high-frequency information. Therefore, the simultaneous application of gravity and gravity gradient data to the inversion calculation can achieve information complementarity and improve the inversion effect.
由于位场缺少深度方向的分辨率,所以在重力数据和重力梯度数据反演中,需要引入深度加权函数。深度加权函数的设置与数据衰减速率有关系,重力数据随距离衰减速率正比于r-2,重力梯度随距离衰减速率正比于r-3,其中,r表示两个质量块之间的距离。但是,在大部分重力和重力梯度联合反演方法中,对重力和重力梯度数据采用同一深度加权函数来抵消衰减速率,没有考虑两者随距离衰减速率的不同。同时,在常见的重力和重力梯度数据联合反演中,一般将重力数据和重力梯度数据直接构成一个矩阵,参与到反演计算中,由于重力数据量级低于重力梯度数据,且在同一矩阵中,不同分量会互相影响,采用这种方法,不能很好的将重力数据和重力梯度数据中包含的地质信息提取出来,导致反演结果的垂直分辨率不高。Since the potential field lacks the resolution in the depth direction, it is necessary to introduce a depth weighting function in the inversion of gravity data and gravity gradient data. The setting of the depth weighting function is related to the data decay rate. The decay rate of gravity data with distance is proportional to r-2, and the decay rate of gravity gradient with distance is proportional to r-3, where r represents the distance between two mass blocks. However, in most joint inversion methods of gravity and gravity gradient, the same depth weighting function is used for gravity and gravity gradient data to offset the decay rate, and the difference in decay rate with distance is not considered. At the same time, in the common joint inversion of gravity and gravity gradient data, the gravity data and gravity gradient data are generally directly formed into a matrix and participate in the inversion calculation. Because the magnitude of gravity data is lower than that of gravity gradient data, and in the same matrix In this method, the geological information contained in the gravity data and gravity gradient data cannot be extracted well, resulting in a low vertical resolution of the inversion results.
发明内容SUMMARY OF THE INVENTION
针对现有技术的不足,本发明的目的提供一种重力数据和重力梯度数据联合正则化反演方法,其能够解决重力数据和重力梯度数据联合反演中反演结果的垂直分辨率不高的问题。In view of the deficiencies of the prior art, the purpose of the present invention is to provide a joint regularization inversion method of gravity data and gravity gradient data, which can solve the problem that the vertical resolution of the inversion results in the joint inversion of gravity data and gravity gradient data is not high. question.
实现本发明的目的的技术方案为:一种重力数据和重力梯度数据联合正则化反演方法,包括如下步骤:The technical scheme for realizing the object of the present invention is: a joint regularization inversion method for gravity data and gravity gradient data, comprising the following steps:
步骤1:获取重力数据,对重力数据进行反演计算,获得反演结果,对重力数据进行反演的目标函数φd为公式(1):Step 1: Acquire gravity data, perform inversion calculation on the gravity data, and obtain the inversion result. The objective function φ d of inverting the gravity data is formula (1):
其中,表示二-范数的平方运算,d表示观测数据,A表示灵敏度矩阵,m表示模型参数,Aw=AW-1,mw=Wm,W表示深度加权函数,是一个对角矩阵;in, Represents the square operation of the two-norm, d represents the observation data, A represents the sensitivity matrix, m represents the model parameter, A w =AW -1 , m w =Wm, and W represents the depth weighting function, which is a diagonal matrix;
步骤2:对步骤1获得的反演结果m取绝对值,进行归一化处理,对于结果中的零值,设置为一个极小值,处理后的结果作为加权矩阵;Step 2: Take the absolute value of the inversion result m obtained in Step 1, and perform normalization processing. For the zero value in the result, set it as a minimum value, and the processed result is used as a weighting matrix;
步骤3:获得重力梯度数据,将重力梯度数据和所述加权矩阵同时应用到反演计算中,获得重力梯度数据和加权矩阵联合反演的反演结果。Step 3: Obtain the gravity gradient data, apply the gravity gradient data and the weighting matrix to the inversion calculation at the same time, and obtain the inversion result of the joint inversion of the gravity gradient data and the weighting matrix.
进一步地,所述步骤1中,对重力数据进行反演计算的具体过程包括:Further, in the step 1, the specific process of inverting the gravity data includes:
(1)用i表示迭代次数,最大迭代次数设置为n,i的初始值为0,i=0,1,2,...,n,确定初始模型m0的值,得到公式(2):(1) The number of iterations is represented by i, the maximum number of iterations is set to n, the initial value of i is 0, i=0, 1, 2, ..., n, determine the value of the initial model m 0 , and obtain formula (2) :
mw0=Wm0------(2)m w0 =Wm 0 ------(2)
(2)按公式(3)计算初始时目标函数的梯度I0:(2) Calculate the initial gradient I 0 of the objective function according to formula (3):
I0=Aw(Awmw0-d)------(3)I 0 =A w (A w m w0 -d)------(3)
对于第一次迭代计算,搜索方向为d0=-I0;For the first iterative calculation, the search direction is d 0 =-I 0 ;
(3)按公式(4)计算第i次搜索步长k(i):(3) Calculate the i-th search step size k (i) according to formula (4) :
其中,di表示第i次迭代的观测数据,Ii表示第i次迭代对应的目标函数的梯度;Among them, d i represents the observation data of the ith iteration, and I i represents the gradient of the objective function corresponding to the ith iteration;
(7)按公式(5)计算第i次迭代的结果mi,并按公式(6)计算出中间变量r:(7) Calculate the result mi of the ith iteration according to formula (5), and calculate the intermediate variable r according to formula (6):
其中,mw(i-1)表示第i-1次迭代的结果,mw(i)为中间变量;Among them, mw(i-1) represents the result of the i-1th iteration, and mw(i) is an intermediate variable;
r=Ami-d------(6)r=Am i -d------(6)
(8)当小于等于预设值或者迭代次数达到最大迭代次数n时,终止迭代,否则继续按步骤(6)进行;(8) When When it is less than or equal to the preset value or the number of iterations reaches the maximum number of iterations n, the iteration is terminated, otherwise, proceed to step (6);
(6)计算第i+1次迭代对应的目标函数的梯度Ii+1,计算中间参数设定新的搜索方向为di+1=-Ii+1+βi+1di,并跳转至步骤(3)处理。(6) Calculate the gradient I i+1 of the objective function corresponding to the i+1th iteration, and calculate the intermediate parameters Set the new search direction as d i+1 =-I i+1 +β i+1 d i , and jump to the processing of step (3).
进一步地,所述步骤3中,对重力梯度数据和所述加权矩阵同时应用到反演计算中,通过正则化方法加入约束条件,对重力梯度数据和所述加权矩阵进行联合反演的目标函数φ为公式(7):Further, in the
φ=φd+αφs------(7)φ=φ d +αφ s ------(7)
其中,φs表示稳定函数,按公式(8)计算:Among them, φ s represents the stability function, which is calculated according to formula (8):
φs=αs∫∫∫Vm2dv+αx∫∫∫Vmx 2dv+αy∫∫∫Vmy 2dv+αz∫∫∫Vmz 2dv------(8)φ s = α s ∫∫∫ V m 2 d v +α x ∫∫∫ V m x 2 d v +α y ∫∫∫ V m y 2 d v +α z ∫ ∫∫ V m z 2 d v − -----(8)
其中,αs、αx、αy、αz表示各个分量的权重,为常数,mx、my、mz表示模型参数m在x、y、z三个方向的一阶偏导数,V表示积分区域,在目标函数φ中引入加权函数W,因此,公式(7)的目标函数φ变为公式(9):Among them, α s , α x , α y , and α z represent the weights of each component, which are constants, m x , my y , and m z represent the first-order partial derivatives of the model parameter m in the three directions of x, y, and z, and V represents the integral area, and the weighting function W is introduced into the objective function φ, so the objective function φ of formula (7) becomes formula (9):
公式(9)即为重力梯度数据和加权矩阵应用到反演计算中的目标函数,采用共轭梯度算法求解公式(9),得到反演结果,该反演结果即是重力数据和重力梯度数据联合正则化反演后的反演结果。Formula (9) is the objective function that the gravity gradient data and the weighting matrix are applied to the inversion calculation. The conjugate gradient algorithm is used to solve the formula (9), and the inversion result is obtained. The inversion result is the gravity data and gravity gradient data. Inversion results after joint regularization inversion.
本发明的有益效果为:本发明有效的利用了重力数据包含的地质信息,利用重力数据构建加权矩阵,将加权矩阵应用到重力梯度反演计算,提高了反演结果的分辨率,反演结果底部边界更清晰、准确。The beneficial effects of the invention are as follows: the invention effectively utilizes the geological information contained in the gravity data, constructs a weighted matrix by using the gravity data, applies the weighted matrix to the gravity gradient inversion calculation, improves the resolution of the inversion results, and the inversion results Bottom border is sharper and more accurate.
附图说明Description of drawings
图1为本发明的流程示意图;Fig. 1 is the schematic flow chart of the present invention;
图2为采用统方法实现重力数据和重力梯度数据联合反演结果;Figure 2 shows the results of joint inversion of gravity data and gravity gradient data using the traditional method;
图3为本发明的重力数据和重力梯度数据联合反演结果。FIG. 3 is a joint inversion result of gravity data and gravity gradient data according to the present invention.
具体实施方案specific implementation
下面,结合附图以及具体实施方案,对本发明做进一步描述:Below, in conjunction with the accompanying drawings and specific embodiments, the present invention is further described:
如图1至图3所示,一种重力数据和重力梯度数据联合正则化反演方法,包括如下步骤:As shown in Figures 1 to 3, a joint regularization inversion method for gravity data and gravity gradient data includes the following steps:
步骤1:获取重力数据,对重力数据进行反演计算,其目标函数φd如公式(1),也即重力数据反演按公式(1)进行计算:Step 1: Acquire gravity data, perform inversion calculation on gravity data, and its objective function φ d is as in formula (1), that is, the inversion of gravity data is calculated according to formula (1):
其中,表示二-范数的平方运算,d表示观测数据,是一个向量,大小为n1×1,n1表示观测点个数,A表示灵敏度矩阵,可以采用现有的通用计算公式得到,其大小为n1×n2,n2表示测区划分的小长方体个数,Aij为A中的元素,表示编号为i的小长方体在编号为j的测点引起的重力或重力梯度值,密度为1g/cm3,m表示模型参数,为向量,也即是本步骤通过公式(1)需要得到的反演结果,φd表示拟合函数。in, Represents the square operation of the two-norm, d represents the observation data, is a vector, the size is n 1 × 1, n 1 represents the number of observation points, A represents the sensitivity matrix, which can be obtained by using the existing general calculation formula, its size is n 1 ×n 2 , n 2 represents the number of small cuboids divided by the survey area, A ij is the element in A, and represents the gravity or gravity gradient value caused by the small cuboid number i at the measuring point number j, the density is 1g/cm 3 , m represents the model parameter, and is a vector, that is, the inversion result that needs to be obtained by formula (1) in this step, and φ d represents the fitting function.
由于重力数据随距离衰减速率正比于r-2,重力梯度随距离衰减速率正比于r-3,需要引入深度加权函数W来抵消这一影响,得到公式(2):Since the decay rate of gravity data with distance is proportional to r-2, and the decay rate of gravity gradient with distance is proportional to r-3, the depth weighting function W needs to be introduced to offset this effect, and formula (2) is obtained:
其中,Aw=AW-1,mw=Wm,W是一个对角矩阵,采用共轭梯度算法对公式(2)进行求解,得到m,具体过程如下:Among them, A w =AW -1 , m w =Wm, W is a diagonal matrix, the conjugate gradient algorithm is used to solve the formula (2), and m is obtained, and the specific process is as follows:
(1)用i表示迭代次数,最大迭代次数设置为n,i的初始值为0,也即i=0,1,2,...,n,确定初始模型m0的值,在缺少先验信息的情况下,一般取0值,从而得到公式(3):(1) The number of iterations is represented by i, the maximum number of iterations is set to n, the initial value of i is 0, that is, i=0, 1, 2, ..., n, and the value of the initial model m 0 is determined. In the case of verification information, generally take the value of 0, so as to obtain formula (3):
mw0=Wm0------(3)m w0 =Wm 0 ------(3)
(2)按公式(4)计算初始时目标函数的梯度I0:(2) Calculate the initial gradient I 0 of the objective function according to formula (4):
I0=Aw(Awmwi-d)------(4)I 0 =A w (A w m wi -d)------(4)
对于第一次迭代计算,搜索方向为d0=-I0;For the first iterative calculation, the search direction is d 0 =-I 0 ;
(3)按公式(5)计算第i次搜索步长k(i):(3) Calculate the i-th search step k (i) according to formula (5) :
其中,di表示第i次迭代的观测数据,Ii表示第i次迭代对应的目标函数的梯度;Among them, d i represents the observation data of the ith iteration, and I i represents the gradient of the objective function corresponding to the ith iteration;
(4)计算第i次迭代的结果mi,如公式(6),若mi小于等于预设值,则表明A中的元素的取值符合地质信息,并按公式(7)计算出中间变量r:(4) Calculate the result mi of the ith iteration, as in formula (6), if m i is less than or equal to the preset value, it means that the value of the element in A conforms to the geological information, and the intermediate value is calculated according to formula (7). variable r:
其中,mw(i-1)表示第i-1次迭代的结果,mw(i)为中间变量;Among them, mw(i-1) represents the result of the i-1th iteration, and mw(i) is an intermediate variable;
r=Ami-d------(7)r=Am i -d------(7)
(5)当小于等于预设的极小值(例如10-6或更小)或者迭代次数达到最大迭代次数n时,终止迭代,否则继续按步骤(6)(5) When If it is less than or equal to the preset minimum value (for example, 10 -6 or less) or the number of iterations reaches the maximum number of iterations n, terminate the iteration, otherwise continue to step (6)
进行:conduct:
(6)计算第i+1次迭代对应的目标函数的梯度Ii+1,计算中间参数设定新的搜索方向为di+1=-Ii+1+βi+1di,并跳转至步骤(3)处理。(6) Calculate the gradient I i+1 of the objective function corresponding to the i+1th iteration, and calculate the intermediate parameters Set the new search direction as d i+1 =-I i+1 +β i+1 d i , and jump to the processing of step (3).
步骤2:对步骤1获得的反演结果m取绝对值,进行归一化处理,对于结果中的零值,设置为一个极小值(例如10-6或更小),处理后的结果作为加权矩阵;Step 2: Take the absolute value of the inversion result m obtained in Step 1, and perform normalization processing. For the zero value in the result, set it to a minimum value (for example, 10-6 or less), and the processed result is used as weighting matrix;
步骤3:获得重力梯度数据,将重力梯度数据和步骤2得到的加权矩阵同时应用到反演计算中,获得反演结果。Step 3: Obtain gravity gradient data, apply the gravity gradient data and the weighting matrix obtained in
本步骤中的反演计算采用光滑反演算法进行计算,具体过程如下:The inversion calculation in this step adopts the smooth inversion algorithm to calculate, and the specific process is as follows:
通过正则化方法加入约束条件,其目标函数φ为公式(8):Constraints are added through the regularization method, and the objective function φ is formula (8):
φ=φd+αφs------(8)φ=φ d +αφ s ------(8)
其中,φs表示稳定函数,按公式(9)计算:Among them, φ s represents the stability function, which is calculated according to formula (9):
φs=αs∫∫∫Vm2dv+αx∫∫∫Vmx 2dv+αy∫∫∫Vmy 2dv+αz∫∫∫Vmz 2dv------(9)φ s = α s ∫∫∫ V m 2 d v +α x ∫∫∫ V m x 2 d v +α y ∫∫∫ V m y 2 d v +α z ∫ ∫∫ V m z 2 d v − -----(9)
其中,αs、αx、αy、αz表示各个分量的权重,是系数,为常数,可以预设或根据经验值给出,mx、my、mz表示模型参数m在x、y、z三个方向的一阶偏导数,V表示积分区域,φs也可以用矩阵形式表示,如公式(10):Among them, α s , α x , α y , and α z represent the weights of each component, which are coefficients and constants, which can be preset or given according to empirical values, and m x , my y , and m z represent the model parameters m in x, The first-order partial derivatives in the three directions of y and z, V represents the integral area, and φ s can also be represented in matrix form, such as formula (10):
Wi=αiDi,i=x,y,z,其中,Wi表示差分算子,Di是依据不同方向有限差分算子计算得到的矩阵,在目标函数中引入加权函数W,因此,公式(8)的目标函数φ变为公式(11):Wi = α i D i , i = x, y, z, where Wi represents the difference operator, and D i is the matrix calculated according to the finite difference operator in different directions , and the weight function W is introduced into the objective function, so , the objective function φ of formula (8) becomes formula (11):
公式(11)即为重力梯度数据和加权矩阵应用到反演计算中的目标函数,同样,采用共轭梯度算法求解公式(11),得到反演结果,该反演结果也即是本发明的最终反演结果,即是重力数据和重力梯度数据联合正则化反演后的反演结果,具体过程与步骤1求解目标函数一致,具体过程不赘述了。Formula (11) is the objective function that the gravity gradient data and the weighting matrix are applied to the inversion calculation. Similarly, the conjugate gradient algorithm is used to solve the formula (11), and the inversion result is obtained, and the inversion result is also the present invention. The final inversion result is the inversion result after the joint regularization inversion of the gravity data and the gravity gradient data. The specific process is the same as that of step 1 to solve the objective function, and the specific process will not be repeated.
通过以上描述可知,本发明有效的利用了重力数据包含的地质信息,利用重力数据构建加权矩阵,将加权矩阵应用到重力梯度反演计算,提高了反演结果的分辨率,反演结果底部边界更清晰、准确。It can be seen from the above description that the present invention effectively utilizes the geological information contained in the gravity data, constructs a weighted matrix by using the gravity data, applies the weighted matrix to the inversion calculation of the gravity gradient, improves the resolution of the inversion result, and the bottom boundary of the inversion result is clearer and more accurate.
如图2和图3所示,是对美国Vinton盐丘实际重力和重力梯度数据进行反演的结果图,图2和图3中左侧一列为水平剖面,横纵坐标表示东西向和南北向位置坐标,图2和图3中的中间一列和右侧一列为垂直剖面,纵坐标表示深度,横坐标表示水平位置。图2中分别给出了重力数据gz和四组不同重力梯度分量组合(gzz、gxx|gyy|gzz、gxx|gxy|gyy|gzz、gxx|gxy|gxz|gyy|gyz|gzz)联合反演的结果,图3中则给出了对应分量组合采用本发明方法反演获得的结果。As shown in Figure 2 and Figure 3, it is the result of inversion of the actual gravity and gravity gradient data of the Vinton Salt Dome in the United States. The left side of Figure 2 and Figure 3 is a horizontal section, and the abscissa and ordinate represent the east-west and north-south directions. Position coordinates, the middle column and the right column in Figure 2 and Figure 3 are vertical sections, the ordinate represents the depth, and the abscissa represents the horizontal position. Fig. 2 shows the gravity data gz and four different combinations of gravity gradient components (g zz , g xx |g yy |g zz , g xx |gxy|g yy |g zz , g xx |g xy |g xz ) |g yy |g yz |g zz ) joint inversion results, and Fig. 3 shows the results obtained by using the method of the present invention for the corresponding component combination.
相比于现有的对重力数据和重力梯度数据进行联合反演的方法,本发明的反演结果在深部边界更清晰,反演结果收敛更好,反演结果分辨率提升。Compared with the existing method for joint inversion of gravity data and gravity gradient data, the inversion result of the present invention is clearer in the deep boundary, the convergence of the inversion result is better, and the resolution of the inversion result is improved.
本说明书所公开的实施例只是对本发明单方面特征的一个例证,本发明的保护范围不限于此实施例,其他任何功能等效的实施例均落入本发明的保护范围内。对于本领域的技术人员来说,可根据以上描述的技术方案以及构思,做出其它各种相应的改变以及变形,而所有的这些改变以及变形都应该属于本发明权利要求的保护范围之内。The embodiment disclosed in this specification is only an illustration of the unilateral feature of the present invention, and the protection scope of the present invention is not limited to this embodiment, and any other functionally equivalent embodiments fall within the protection scope of the present invention. For those skilled in the art, various other corresponding changes and deformations can be made according to the technical solutions and concepts described above, and all these changes and deformations should fall within the protection scope of the claims of the present invention.
Claims (3)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910648983.2A CN110398782B (en) | 2019-07-17 | 2019-07-17 | A Joint Regularization Inversion Method for Gravity Data and Gravity Gradient Data |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910648983.2A CN110398782B (en) | 2019-07-17 | 2019-07-17 | A Joint Regularization Inversion Method for Gravity Data and Gravity Gradient Data |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN110398782A CN110398782A (en) | 2019-11-01 |
| CN110398782B true CN110398782B (en) | 2021-04-23 |
Family
ID=68325699
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201910648983.2A Expired - Fee Related CN110398782B (en) | 2019-07-17 | 2019-07-17 | A Joint Regularization Inversion Method for Gravity Data and Gravity Gradient Data |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN110398782B (en) |
Families Citing this family (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN111399074B (en) * | 2020-04-28 | 2022-08-12 | 中国自然资源航空物探遥感中心 | A combined three-dimensional inversion method of gravity and gravity gradient moduli |
| CN112147709B (en) * | 2020-08-03 | 2022-07-29 | 中国海洋石油集团有限公司 | Gravity gradient data three-dimensional inversion method based on partial smoothness constraint |
| CN112199859B (en) * | 2020-10-26 | 2023-08-08 | 东北大学 | Gravity gradient data joint inversion method |
| CN112558164A (en) * | 2020-12-08 | 2021-03-26 | 广州海洋地质调查局 | Magnetotelluric regularization inversion method based on deviation principle and processing terminal |
| CN112835122B (en) * | 2021-01-05 | 2022-01-25 | 吉林大学 | Discontinuous three-dimensional joint inversion method based on smooth focusing regularization |
| CN113504575B (en) * | 2021-07-09 | 2022-05-03 | 吉林大学 | Joint Inversion Method Based on Weight Intersection and Multiple Cross Gradient Constraints |
| CN113514900B (en) * | 2021-07-12 | 2022-05-17 | 吉林大学 | Joint Inversion Method of Gravity and Gravity Gradient in Spherical Coordinate System Based on Density Constraint |
| CN113591030B (en) * | 2021-08-17 | 2024-01-30 | 东北大学 | Gravity gradient data sensitivity matrix compression and calling method based on multiple GPUs |
| CN113552620A (en) * | 2021-09-07 | 2021-10-26 | 中国地震局地球物理研究所 | Step length calculation method and system suitable for waveform inversion |
| CN114779361B (en) * | 2022-04-14 | 2025-05-13 | 西安石油大学 | A gravity identification method for basement faults in sedimentary basins based on regularized inversion |
| CN115220119B (en) * | 2022-06-21 | 2023-02-24 | 广州海洋地质调查局 | A Gravity Inversion Method Applicable to Large-Scale Data |
Family Cites Families (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1518134B1 (en) * | 2002-06-28 | 2011-09-28 | Gedex Inc. | System and method for surveying underground density distributions |
| WO2012027848A1 (en) * | 2010-09-03 | 2012-03-08 | Geosoft Inc. | Method and system for modeling anomalous density zones in geophysical exploration |
| US10242126B2 (en) * | 2012-01-06 | 2019-03-26 | Technoimaging, Llc | Method of simultaneous imaging of different physical properties using joint inversion of multiple datasets |
| CN108984939A (en) * | 2018-07-30 | 2018-12-11 | 中南大学 | Three-dimensional Gravity field of force forward modeling method based on 3D Gauss-FFT |
| CN108845353B (en) * | 2018-08-21 | 2020-01-03 | 同济大学 | Method and device for heavy-seismic joint inversion |
| CN109471190B (en) * | 2018-11-12 | 2019-10-22 | 吉林大学 | A Joint Inversion Method of Different Height Gravity Data and Borehole Gravity Data |
| CN109633762B (en) * | 2019-01-07 | 2020-03-06 | 吉林大学 | Method for joint inversion of gravity and magnetic data based on correlation constraint conditions of sine functions |
-
2019
- 2019-07-17 CN CN201910648983.2A patent/CN110398782B/en not_active Expired - Fee Related
Also Published As
| Publication number | Publication date |
|---|---|
| CN110398782A (en) | 2019-11-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN110398782B (en) | A Joint Regularization Inversion Method for Gravity Data and Gravity Gradient Data | |
| CN105334542B (en) | Any Density Distribution complex geologic body gravitational field is quick, high accuracy forward modeling method | |
| CN112147709B (en) | Gravity gradient data three-dimensional inversion method based on partial smoothness constraint | |
| CN103335814B (en) | Correction method for inclination angle measurement error data of experimental model in wind tunnel | |
| CN111597753B (en) | Data depth change characteristic self-adaptive two-dimensional resistivity inversion method and system | |
| CN119024456B (en) | A joint inversion method and system for tunnel multi-source data based on structural consistency | |
| CN116184507B (en) | Calculation method and device for thickness of hidden volcanic rock and readable storage medium | |
| CN113238227B (en) | Improved least square phase unwrapping method and system combined with deep learning | |
| CN113109883A (en) | Method for forward modeling satellite gravity field based on isoparametric transformation global discrete grid spherical coordinates | |
| CN119986831A (en) | A sparse inversion method for magnetization intensity vector under strong remanent magnetization conditions | |
| CN117706623A (en) | A microseismic velocity inversion method driven by deep learning and wave equations | |
| CN113866827A (en) | Method, system, medium and device for explanatory velocity modeling seismic imaging | |
| CN114167511A (en) | Continuous-fraction expansion downward continuation-based bit field data rapid inversion method | |
| CN115984103A (en) | Depth map splicing method and system for sampling CAD model and matching point set | |
| CN112130199A (en) | An optimized least squares inverse time migration imaging method | |
| CN105807323B (en) | A kind of method for determining magnetic target position using small subdomain recognizer | |
| CN107748834B (en) | A kind of quick, high resolution numerical simulation method calculating fluctuating inspection surface magnetic field | |
| CN119087527A (en) | Method and device for magnetic field offset imaging | |
| CN117934748B (en) | Gravity anomaly intelligent inversion method based on depth three-view | |
| CN116794735B (en) | Aeromagnetic vector gradient data equivalent source multi-component joint denoising method and device | |
| CN110794469B (en) | Gravity inversion method based on minimum geological feature unit constraint | |
| CN114200541B (en) | Three-dimensional gravity-magnetic joint inversion method based on cosine dot product gradient constraint | |
| CN116299702A (en) | CNN-based frequency domain low-frequency expansion multi-scale full waveform inversion method | |
| CN113268903B (en) | An extremely high-precision full-field psf test and modeling method | |
| CN113866834A (en) | An Inversion Method of Field Source Center Position Based on Entropy Filtering |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20210423 |
|
| CF01 | Termination of patent right due to non-payment of annual fee |