CN118759600A - A prospecting prediction method suitable for tectonic altered rock type gold deposits - Google Patents
A prospecting prediction method suitable for tectonic altered rock type gold deposits Download PDFInfo
- Publication number
- CN118759600A CN118759600A CN202411053989.2A CN202411053989A CN118759600A CN 118759600 A CN118759600 A CN 118759600A CN 202411053989 A CN202411053989 A CN 202411053989A CN 118759600 A CN118759600 A CN 118759600A
- Authority
- CN
- China
- Prior art keywords
- data
- area
- nodes
- mining area
- ore
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V9/00—Prospecting or detecting by methods not provided for in groups G01V1/00 - G01V8/00
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/213—Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods
- G06F18/2135—Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods based on approximation criteria, e.g. principal component analysis
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/23—Clustering techniques
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/25—Fusion techniques
- G06F18/253—Fusion techniques of extracted features
Landscapes
- Engineering & Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Evolutionary Computation (AREA)
- Evolutionary Biology (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Computational Biology (AREA)
- Artificial Intelligence (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geophysics (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及矿区探测的技术领域,具体为一种适用于构造蚀变岩型金矿的找矿预测方法。The invention relates to the technical field of mining area detection, and in particular to a prospecting prediction method suitable for tectonic altered rock type gold deposits.
背景技术Background Art
金矿是重要的矿产资源,其开采对国家和地方经济具有重要意义。准确预测金矿的位置和规模,可以提高资源开发的效率和成功率,通过预测金矿的分布,可以更好地规划和管理矿产资源,减少盲目开采和资源浪,了解矿体的位置和规模有助于制定科学的开采计划,减少对环境的影响,降低环境污染和破坏风险;Gold mines are important mineral resources, and their mining is of great significance to the national and local economies. Accurately predicting the location and scale of gold mines can improve the efficiency and success rate of resource development. By predicting the distribution of gold mines, mineral resources can be better planned and managed, reducing blind mining and resource waste. Understanding the location and scale of ore bodies helps to formulate scientific mining plans, reduce the impact on the environment, and reduce environmental pollution and damage risks;
现阶段,针对构造蚀变岩型金矿的找矿预测面临着以下难题:At present, prospecting and prediction of tectonic altered rock type gold deposits faces the following challenges:
某些地区的数据可能不足,尤其是偏远或难以接近的地区,这会影响对矿体的准确预测;Data may be insufficient in some areas, particularly remote or inaccessible areas, which can affect accurate predictions of ore bodies;
将地质、地球物理、化学和遥感数据进行有效整合是一项挑战,不同技术的数据可能需要转换和校正;It is a challenge to effectively integrate geological, geophysical, chemical and remote sensing data, and data from different techniques may need to be converted and corrected;
地质构造可能非常复杂,例如断裂和褶皱的重叠,增加了矿体预测的难度,构造活动和变形可能改变原有的矿化体位置和形态,需要考虑构造演变的影响。The geological structure may be very complex. For example, the overlap of faults and folds increases the difficulty of ore body prediction. Tectonic activity and deformation may change the location and morphology of the original mineralized body, and the impact of tectonic evolution needs to be considered.
发明内容Summary of the invention
鉴于上述存在的问题,提出了本发明。In view of the above-mentioned problems, the present invention is proposed.
为解决上述技术问题,本发明提供如下技术方案:一种适用于构造蚀变岩型金矿的找矿预测方法,包括以下步骤,In order to solve the above technical problems, the present invention provides the following technical solutions: a prospecting prediction method applicable to tectonic altered rock type gold deposits, comprising the following steps:
基于成矿地质体和构造特征确定成矿条件,包括,Determine the mineralization conditions based on the mineralization geological bodies and structural characteristics, including:
利用多源数据融合算法实现矿体数据的融合,以及对融合后的数据信息进行特征分析,具体为:The multi-source data fusion algorithm is used to realize the fusion of ore body data and to perform feature analysis on the fused data information, specifically:
对融合后的数据进行逐层分析,计算降维特征矩阵,并根据计算的降维特征矩阵进行加权组合;Analyze the fused data layer by layer, calculate the reduced dimension feature matrix, and perform weighted combination based on the calculated reduced dimension feature matrix;
基于融合后的数据构建矿区的三维空间模型,包括,Construct a 3D spatial model of the mining area based on the fused data, including:
利用地理转换算法将融合后的数据转换成三维地理坐标,以及根据三维地理坐标生成空间网络,具体为:The fused data is converted into three-dimensional geographic coordinates using a geographic transformation algorithm, and a spatial network is generated based on the three-dimensional geographic coordinates, specifically:
利用聚类算法智能识别数据密度,动态调整空间网络节点,计算节点之间的欧式距离来确定网络空间的边,最后根据节点特征差异构建加权边;The clustering algorithm is used to intelligently identify data density, dynamically adjust spatial network nodes, calculate the Euclidean distance between nodes to determine the edges of the network space, and finally construct weighted edges based on the differences in node characteristics;
利用三维空间模型实现对存在矿化的区域的定位,包括,Use 3D spatial models to locate areas where mineralization exists, including:
对当前矿化区域进行区域分段,以及通过分析矿体沿倾伏方向的延伸实现矿区定位,具体为:The current mineralized area is segmented and the mining area is located by analyzing the extension of the ore body along the dip direction, specifically:
计算当前矿区的厚度T、金品位G,同时利用矿体的厚度以及走向数据,分析矿体沿倾伏方向的变化,最后利用G I S工具绘制靶区地图,预测找矿位置,同时利用实际勘探数据,完成靶区的确定;Calculate the thickness T and gold grade G of the current mining area, and use the thickness and strike data of the ore body to analyze the changes in the ore body along the dip direction. Finally, use the GIS tool to draw a target area map, predict the prospecting location, and use the actual exploration data to complete the determination of the target area.
通过应用趋势外推法计算体含矿率,完成定位的矿区的定量估算。By applying the trend extrapolation method to calculate the body mineral content, a quantitative estimate of the located mining area can be completed.
作为本发明所述一种适用于构造蚀变岩型金矿的找矿预测方法的一种优选方案,其中:所述利用多源数据融合算法实现矿体数据的融合,具体如下:As a preferred solution of the prospecting prediction method for tectonic altered rock type gold deposits described in the present invention, the fusion of ore body data is achieved by using a multi-source data fusion algorithm, which is specifically as follows:
将遥感数据、地震数据以及地质数据进行融合,则有,By integrating remote sensing data, seismic data and geological data, we can obtain:
F=w1·R+w2·S+w3·GF= w1 ·R+ w2 ·S+ w3 ·G
其中,w1、w2、w3分别表示遥感数据、地震数据以及地质数据的权重系数,且满足公式w1+w2+w3=1,R表示收集到的遥感数据,是通过卫星遥感技术收集的,S表示地震数据,是基于数据库采集的,G表示地质数据,是通过地质人员进行现场岩石、矿物采样收集的。Among them, w 1 , w 2 , and w 3 represent the weight coefficients of remote sensing data, seismic data, and geological data, respectively, and satisfy the formula w 1 +w 2 +w 3 =1. R represents the collected remote sensing data, which is collected through satellite remote sensing technology. S represents seismic data, which is collected based on the database. G represents geological data, which is collected through on-site rock and mineral sampling by geologists.
作为本发明所述一种适用于构造蚀变岩型金矿的找矿预测方法的一种优选方案,其中:所述对融合后的数据信息进行特征分析,则有,As a preferred solution of the prospecting prediction method for tectonic altered rock type gold deposits described in the present invention, wherein: the feature analysis of the fused data information is performed, then,
根据融合后的数据F,基于遥感数据、地震数据以及地质数据分成三层,对每层数据进行主成分分析,则有,According to the fused data F, it is divided into three layers based on remote sensing data, seismic data and geological data. The principal component analysis is performed on each layer of data, and then,
Zi=Fi′·Wi Zi = Fi ′· Wi
Fi′=Fi-μFi ′ = Fi -μ
其中,Fi′表示第i层数据中心化后的数据,Wi表示第i层的特征向量矩阵,Fi表示融合后的数据F的第i层数据,i=1,2,...,n表示融合后的数据的索引层数,分别代表遥感数据、地震数据以及地质数据,μ表示融合后数据的均值,Zi表示第i层的降维特征矩阵;Wherein, Fi ′ represents the centralized data in the i-th layer data, Wi represents the eigenvector matrix of the i-th layer, Fi represents the i-th layer data of the fused data F, i=1,2,...,n represents the index layer number of the fused data, representing remote sensing data, seismic data and geological data respectively, μ represents the mean of the fused data, and Zi represents the dimension reduction feature matrix of the i-th layer;
根据计算的降维特征矩阵,对数据进行加权组合,进而完成数据信息的特征分析,则有,According to the calculated dimensionality reduction feature matrix, the data is weighted and combined to complete the feature analysis of the data information, then we have:
其中,wi表示第i层数据的权重系数,且满足公式w1+w2+w3+....+wn=1,Zi表示第i层的降维特征矩阵,Z表示加权组合后的特征矩阵,用于完成数据信息的特征分析,进而确定成矿条件。Among them, w i represents the weight coefficient of the i-th layer of data, and satisfies the formula w 1 +w 2 +w 3 +....+ wn =1, Zi represents the dimensionality reduction feature matrix of the i-th layer, and Z represents the feature matrix after weighted combination, which is used to complete the feature analysis of data information and then determine the mineralization conditions.
作为本发明所述一种适用于构造蚀变岩型金矿的找矿预测方法的一种优选方案,其中:所述地理转换算法具体实现如下:As a preferred solution of the prospecting prediction method for tectonic altered rock type gold deposits described in the present invention, the geographic conversion algorithm is specifically implemented as follows:
利用地理转换算法将融合后的数据F转换成对应的三维地理坐标F(x,y,z),然后根据转换后的三维地理坐标,生成空间网络,则有,The fused data F is converted into the corresponding three-dimensional geographic coordinates F(x, y, z) using the geographic conversion algorithm, and then a spatial network is generated based on the converted three-dimensional geographic coordinates. Then,
利用三维地理坐标中的数据点作为空间网络的网络节点(xi,yi,zi);Using data points in three-dimensional geographic coordinates as network nodes (x i , y i , z i ) of the spatial network;
在空间网络节点生成之前,先利用聚类算法自动识别数据的密集区域中的潜在威胁,则有,Before the spatial network nodes are generated, clustering algorithms are used to automatically identify potential threats in dense data areas.
Ck={F(xi,yi,zi)|argminj||F(xi,yi,zi)-μj}C k ={F(x i ,y i ,z i )|argmin j ||F(x i ,y i ,z i )-μ j }
其中,F(xi,yi,zi)表示第i个数据点的三维地理坐标,μj表示第j个聚类中心,Ck表示第k个聚类中心,通过计算的聚类中心,自动识别数据的密集区域,动态调整节点连接。Among them, F( xi , yi , zi ) represents the three-dimensional geographic coordinates of the i-th data point, μj represents the j-th cluster center, and Ck represents the k-th cluster center. By calculating the cluster center, the dense area of the data is automatically identified and the node connection is dynamically adjusted.
作为本发明所述一种适用于构造蚀变岩型金矿的找矿预测方法的一种优选方案,其中:所述根据三维地理坐标生成空间网络具体构建如下:As a preferred solution of the prospecting prediction method for tectonic altered rock type gold deposits described in the present invention, the spatial network generated according to the three-dimensional geographic coordinates is specifically constructed as follows:
当网络节点确定之后,计算节点之间的欧式几何距离,则有,Once the network nodes are determined, the Euclidean distance between the nodes is calculated, and then,
其中,(xi,yi,zi)、(xj,yj,zj)分别表示第i个以及第j个节点坐标,dij表示两节点之间的欧式距离;Among them, (x i ,y i , zi ) and (x j ,y j ,z j ) represent the coordinates of the i-th and j-th nodes respectively, and d ij represents the Euclidean distance between two nodes;
根据计算的欧氏距离确定空间网络的边,则有,According to the calculated Euclidean distance, the edges of the spatial network are determined, then,
当计算的欧式距离满足公式dij≥α·std(dij)时,表示当前两个节点之间需要建立一条边;When the calculated Euclidean distance satisfies the formula d ij ≥ α·std(d ij ), it means that an edge needs to be established between the current two nodes;
其中,α表示调整系数,由实施人员根据实际应用条件自行设定,std(dij)表示两节点之间欧氏距离的标准差;Among them, α represents the adjustment coefficient, which is set by the implementer according to the actual application conditions, and std(d ij ) represents the standard deviation of the Euclidean distance between two nodes;
利用节点特征差异构建加权边,则有,Using the difference in node features to construct weighted edges, we have:
wij(t)=wij×(1+f(t))w ij (t) = w ij × (1 + f (t))
d=dij·wij(t)d=d ij ·wi ij (t)
其中,fi、fj分别表示节点特征值,由融合后的数据中的特征矩阵决定,β表示特征系数,由实施人员根据实际应用场景自行设定,f(t)表示时间函数,用于反映数据随时间序列的变化趋势,wij表示两节点之间的边权重,wij(t)表示时间函数作用下的两节点之间的边权重,dij表示两节点之间的欧式距离,d表示空间网络两节点之间的边长,当所有节点之间的边都构建完成之后,则表示当前矿区的空间网络生成,进而将生成的空间网络组合形成三维空间模型。Among them, fi and fj represent the node eigenvalues, which are determined by the feature matrix in the fused data, β represents the characteristic coefficient, which is set by the implementers according to the actual application scenario, f(t) represents the time function, which is used to reflect the changing trend of data with time series, w ij represents the edge weight between two nodes, w ij (t) represents the edge weight between two nodes under the action of the time function, dij represents the Euclidean distance between two nodes, d represents the edge length between two nodes in the spatial network, and when the edges between all nodes are constructed, it means that the spatial network of the current mining area is generated, and then the generated spatial networks are combined to form a three-dimensional spatial model.
作为本发明所述一种适用于构造蚀变岩型金矿的找矿预测方法的一种优选方案,其中:所述对当前矿化区域进行区域分段具体实现如下:As a preferred solution of the prospecting prediction method for tectonic altered rock type gold deposits described in the present invention, the regional segmentation of the current mineralized area is specifically implemented as follows:
将矿区数据应用于三维空间模型中,计算当前矿区的厚度T、金品位G以及二者之间的乘积T×G,同时设定富矿段阈值KF、贫矿段阈值KP以及矿化段阈值K,具体如下:The mining area data is applied to the three-dimensional spatial model to calculate the thickness T, gold grade G and the product T×G of the current mining area. At the same time, the rich ore section threshold K F , the poor ore section threshold K P and the mineralized section threshold K are set as follows:
当矿区的厚度与金品位二者之间的乘积满足公式T×G≥KF时,表示当前矿化区域为富矿段区域;When the product of the thickness of the mining area and the gold grade satisfies the formula T× G≥KF , it means that the current mineralized area is a rich ore section;
当矿区的厚度与金品位二者之间的乘积满足公式T×G≤KP时,表示当前矿化区域为贫矿段区域When the product of the thickness of the mining area and the gold grade satisfies the formula T× G≤KP , it means that the current mineralized area is a lean ore section.
当矿区的厚度与金品位二者之间的乘积满足公式KP<T×G<KF时,表示当前矿化区域为矿化区域。When the product of the thickness and gold grade of the mining area satisfies the formula KP <T×G< KF , it means that the current mineralized area is a mineralized area.
作为本发明所述一种适用于构造蚀变岩型金矿的找矿预测方法的一种优选方案,其中:所述通过应用趋势外推法计算体含矿率是通过构建趋势线方程计算体含矿率,具体计算如下:As a preferred solution of the prospecting prediction method for tectonic altered rock type gold deposits described in the present invention, wherein: the calculation of the body ore content by applying the trend extrapolation method is to calculate the body ore content by constructing a trend line equation, and the specific calculation is as follows:
利用当前矿区的厚度T以及金品位G数据,构建趋势线方程,则有,Using the thickness T and gold grade G data of the current mining area, we can construct a trend line equation:
y=k·X+by=k·X+b
其中,X表示当前矿区的位置变量,k、b分别表示趋势线方程的斜率和截距,y则表示预测的矿化参数,包括,矿区的厚度以及金品位;Among them, X represents the location variable of the current mining area, k and b represent the slope and intercept of the trend line equation respectively, and y represents the predicted mineralization parameters, including the thickness and gold grade of the mining area;
利用预测的矿化参数,计算矿区的体含矿率,则有,Using the predicted mineralization parameters, the body ore content of the mining area is calculated, and then,
其中,R表示计算的体含矿率,Ti表示第i个区块的厚度,Gi表示第i个区块的金品位,Vi表示第i个区块的体积。Where R represents the calculated volume mineralization rate, Ti represents the thickness of the ith block, Gi represents the gold grade of the ith block, and Vi represents the volume of the ith block.
本发明的有益效果:本发明通过将地质、地球物理和地球化学数据整合到三维空间模型中,提高了矿化区定位的精度;利用趋势外推和体含矿率计算,能够定量估算矿产储量,为矿石分布提供可靠预测;沿倾伏方向分段识别富矿段和贫矿段,有效确定勘探靶区,优化资源分配。Beneficial effects of the present invention: The present invention improves the accuracy of mineralized area positioning by integrating geological, geophysical and geochemical data into a three-dimensional spatial model; utilizes trend extrapolation and volume ore content calculation to quantitatively estimate mineral reserves and provide reliable predictions for ore distribution; identifies rich ore sections and poor ore sections in sections along the inclination direction, effectively determines exploration targets, and optimizes resource allocation.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。其中:In order to more clearly illustrate the technical solutions of the embodiments of the present invention, the following briefly introduces the drawings required for describing the embodiments. Obviously, the drawings described below are only some embodiments of the present invention. For ordinary technicians in this field, other drawings can be obtained based on these drawings without creative work. Among them:
图1为本发明一种适用于构造蚀变岩型金矿的找矿预测方法的整体方法步骤结构示意图。FIG1 is a schematic diagram of the overall method steps of a prospecting prediction method applicable to tectonic altered rock type gold deposits of the present invention.
图2为本发明一种适用于构造蚀变岩型金矿的找矿预测系统的整体组成结构示意图。FIG2 is a schematic diagram of the overall composition structure of a prospecting prediction system suitable for tectonic altered rock type gold deposits according to the present invention.
具体实施方式DETAILED DESCRIPTION
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合说明书附图对本发明的具体实施方式做详细的说明,显然所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明的保护的范围。In order to make the above-mentioned purposes, features and advantages of the present invention more obvious and easy to understand, the specific implementation methods of the present invention are described in detail below in conjunction with the drawings of the specification. Obviously, the described embodiments are part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by ordinary persons in the art without creative work should fall within the scope of protection of the present invention.
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其他不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似推广,因此本发明不受下面公开的具体实施例的限制。In the following description, many specific details are set forth to facilitate a full understanding of the present invention, but the present invention may also be implemented in other ways different from those described herein, and those skilled in the art may make similar generalizations without violating the connotation of the present invention. Therefore, the present invention is not limited to the specific embodiments disclosed below.
其次,此处所称的“一个实施例”或“实施例”是指可包含于本发明至少一个实现方式中的特定特征、结构或特性。在本说明书中不同地方出现的“在一个实施例中”并非均指同一个实施例,也不是单独的或选择性的与其他实施例互相排斥的实施例。Secondly, the term "one embodiment" or "embodiment" as used herein refers to a specific feature, structure, or characteristic that may be included in at least one implementation of the present invention. The term "in one embodiment" that appears in different places in this specification does not necessarily refer to the same embodiment, nor does it refer to a separate or selective embodiment that is mutually exclusive with other embodiments.
本发明结合示意图进行详细描述,在详述本发明实施例时,为便于说明,表示器件结构的剖面图会不依一般比例作局部放大,而且所述示意图只是示例,其在此不应限制本发明保护的范围。此外,在实际制作中应包含长度、宽度及深度的三维空间尺寸。The present invention is described in detail with reference to schematic diagrams. When describing the embodiments of the present invention, for the sake of convenience, the cross-sectional diagrams showing the device structure will not be partially enlarged according to the general scale, and the schematic diagrams are only examples, which should not limit the scope of protection of the present invention. In addition, in actual production, the three-dimensional dimensions of length, width and depth should be included.
同时在本发明的描述中,需要说明的是,术语“第一、第二或第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。Meanwhile, in the description of the present invention, it should be noted that the terms "first, second or third" are only used for descriptive purposes and cannot be understood as indicating or implying relative importance.
本发明中除非另有明确的规定和限定,术语“安装、相连、连接”应做广义理解,例如:可以是固定连接、可拆卸连接或一体式连接;同样可以是机械连接、电连接或直接连接,也可以通过中间媒介间接相连,也可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。In the present invention, unless otherwise clearly specified and limited, the terms "install, connect, connect" should be understood in a broad sense, for example: it can be a fixed connection, a detachable connection or an integral connection; it can also be a mechanical connection, an electrical connection or a direct connection, or it can be indirectly connected through an intermediate medium, or it can be the internal communication of two components. For ordinary technicians in this field, the specific meanings of the above terms in the present invention can be understood according to specific circumstances.
实施例1Example 1
参照图1,为本发明的第一个实施例,提供了一种适用于构造蚀变岩型金矿的找矿预测方法,包括以下步骤,1, which is a first embodiment of the present invention, provides a prospecting prediction method applicable to tectonic altered rock type gold deposits, comprising the following steps:
S1:基于成矿地质体和构造特征确定成矿条件。S1: Determine the mineralization conditions based on the mineralization geological bodies and structural characteristics.
具体的,基于成矿地质体和构造特征确定成矿条件是通过整合多源数据信息,对成矿地质体和构造特征进行分析,进而完成成矿条件的确定,整合多源数据信息是通过将遥感数据、地震数据以及地质数据整合,根据整合后的数据特征分析,实现成矿条件的确定。Specifically, the determination of mineralization conditions based on mineralization geological bodies and structural characteristics is achieved by integrating multi-source data information, analyzing the mineralization geological bodies and structural characteristics, and then determining the mineralization conditions. The integration of multi-source data information is achieved by integrating remote sensing data, seismic data and geological data, and analyzing the characteristics of the integrated data to achieve the determination of mineralization conditions.
进一步的,整合多源数据信息是利用多源数据融合算法将遥感数据、地震数据以及地质数据进行融合,并通过对融合后的数据信息进行特征分析,实现成矿条件的确定,具体如下:Furthermore, the integration of multi-source data information is to use the multi-source data fusion algorithm to fuse remote sensing data, seismic data and geological data, and to determine the mineralization conditions by performing feature analysis on the fused data information, as follows:
将遥感数据、地震数据以及地质数据进行融合,则有,By integrating remote sensing data, seismic data and geological data, we can obtain:
F=w1·R+w2·S+w3·GF= w1 ·R+ w2 ·S+ w3 ·G
其中,w1、w2、w3分别表示遥感数据、地震数据以及地质数据的权重系数,且满足公式w1+w2+w3=1,R表示收集到的遥感数据,是通过卫星遥感技术收集的,S表示地震数据,是基于数据库采集的,G表示地质数据,是通过地质人员进行现场岩石、矿物采样收集的;Among them, w 1 , w 2 , w 3 represent the weight coefficients of remote sensing data, seismic data and geological data respectively, and satisfy the formula w 1 +w 2 +w 3 =1, R represents the collected remote sensing data, which is collected through satellite remote sensing technology, S represents seismic data, which is collected based on the database, and G represents geological data, which is collected through on-site rock and mineral sampling by geologists;
对融合后的数据信息进行特征分析,则有,Performing feature analysis on the fused data information, we have:
根据融合后的数据F,基于遥感数据、地震数据以及地质数据分成三层,对每层数据进行主成分分析,则有,According to the fused data F, it is divided into three layers based on remote sensing data, seismic data and geological data. The principal component analysis is performed on each layer of data, and then,
Zi=Fi′·Wi Zi = Fi ′· Wi
Fi′=Fi-μFi ′ = Fi -μ
其中,Fi′表示第i层数据中心化后的数据,Wi表示第i层的特征向量矩阵,Fi表示融合后的数据F的第i层数据,i=1,2,...,n表示融合后的数据的索引层数,分别代表遥感数据、地震数据以及地质数据,μ表示融合后数据的均值,Zi表示第i层的降维特征矩阵;Wherein, Fi ′ represents the centralized data in the i-th layer data, Wi represents the eigenvector matrix of the i-th layer, Fi represents the i-th layer data of the fused data F, i=1,2,...,n represents the index layer number of the fused data, representing remote sensing data, seismic data and geological data respectively, μ represents the mean of the fused data, and Zi represents the dimension reduction feature matrix of the i-th layer;
根据计算的降维特征矩阵,对数据进行加权组合,进而完成数据信息的特征分析,则有,According to the calculated dimensionality reduction feature matrix, the data is weighted and combined to complete the feature analysis of the data information, then we have:
其中,wi表示第i层数据的权重系数,且满足公式w1+w2+w3+....+wn=1,Zi表示第i层的降维特征矩阵,Z表示加权组合后的特征矩阵,用于完成数据信息的特征分析,进而确定成矿条件。Among them, w i represents the weight coefficient of the i-th layer of data, and satisfies the formula w 1 +w 2 +w 3 +....+ wn =1, Zi represents the dimensionality reduction feature matrix of the i-th layer, and Z represents the feature matrix after weighted combination, which is used to complete the feature analysis of data information and then determine the mineralization conditions.
S2:基于融合后的数据构建矿区的三维空间模型。S2: Construct a three-dimensional spatial model of the mining area based on the fused data.
具体的,基于融合后的数据构建矿区的三维空间模型是将数据转换成三维空间模型数据格式,并生成空间网络,并根据生成的空间网络构建三维空间模型,确定矿体的空间分布和形态,为后续对矿区的定位提取数据基础。Specifically, constructing a three-dimensional spatial model of the mining area based on the fused data is to convert the data into a three-dimensional spatial model data format, generate a spatial network, and construct a three-dimensional spatial model based on the generated spatial network to determine the spatial distribution and morphology of the ore body, thereby extracting data for the subsequent positioning of the mining area.
进一步的,将数据转换成三维空间模型数据格式是利用地理转换算法将融合后的数据F转换成对应的三维地理坐标F(x,y,z),然后根据转换后的三维地理坐标,生成空间网络,则有,Furthermore, the data is converted into a three-dimensional spatial model data format by using a geographic conversion algorithm to convert the fused data F into corresponding three-dimensional geographic coordinates F (x, y, z), and then a spatial network is generated based on the converted three-dimensional geographic coordinates. Then,
利用三维地理坐标中的数据点作为空间网络的网络节点(xi,yi,zi);Using data points in three-dimensional geographic coordinates as network nodes (x i , y i , z i ) of the spatial network;
在空间网络节点生成之前,先利用聚类算法自动识别数据的密集区域中的潜在威胁,提高网络结构的智能化,则有,Before the spatial network nodes are generated, clustering algorithms are used to automatically identify potential threats in dense data areas to improve the intelligence of the network structure.
Ck={F(xi,yi,zi)|argminj||F(xi,yi,zi)-μj}C k ={F(x i ,y i ,z i )|argmin j ||F(x i ,y i ,z i )-μ j }
其中,F(xi,yi,zi)表示第i个数据点的三维地理坐标,μj表示第j个聚类中心,Ck表示第k个聚类中心,通过计算的聚类中心,自动识别数据的密集区域,动态调整节点连接;Among them, F( xi , yi , zi ) represents the three-dimensional geographic coordinates of the i-th data point, μj represents the j-th cluster center, and Ck represents the k-th cluster center. Through the calculated cluster centers, the dense areas of data are automatically identified and the node connections are dynamically adjusted;
当网络节点确定之后,计算节点之间的欧式几何距离,则有,Once the network nodes are determined, the Euclidean distance between the nodes is calculated, and then,
其中,(xi,yi,zi)、(xj,yj,zj)分别表示第i个以及第j个节点坐标,dij表示两节点之间的欧式距离;Among them, (x i ,y i , zi ) and (x j ,y j ,z j ) represent the coordinates of the i-th and j-th nodes respectively, and d ij represents the Euclidean distance between two nodes;
根据计算的欧氏距离确定空间网络的边,则有,According to the calculated Euclidean distance, the edges of the spatial network are determined, then,
当计算的欧式距离满足公式dij≥α·std(dij)时,表示当前两个节点之间需要建立一条边;When the calculated Euclidean distance satisfies the formula d ij ≥ α·std(d ij ), it means that an edge needs to be established between the current two nodes;
其中,α表示调整系数,由实施人员根据实际应用条件自行设定,std(dij)表示两节点之间欧氏距离的标准差;Among them, α represents the adjustment coefficient, which is set by the implementer according to the actual application conditions, and std(d ij ) represents the standard deviation of the Euclidean distance between two nodes;
利用节点特征差异构建加权边,则有,Using the difference in node features to construct weighted edges, we have:
wij(t)=wij×(1+f(t))w ij (t) = w ij × (1 + f (t))
d=dij·wij(t)d=d ij ·wi ij (t)
其中,fi、fj分别表示节点特征值,由融合后的数据中的特征矩阵决定,β表示特征系数,由实施人员根据实际应用场景自行设定,f(t)表示时间函数,用于反映数据随时间序列的变化趋势,wij表示两节点之间的边权重,wij(t)表示时间函数作用下的两节点之间的边权重,dij表示两节点之间的欧式距离,d表示空间网络两节点之间的边长,当所有节点之间的边都构建完成之后,则表示当前矿区的空间网络生成,进而将生成的空间网络组合形成三维空间模型。Among them, fi and fj represent the node eigenvalues, which are determined by the feature matrix in the fused data, β represents the characteristic coefficient, which is set by the implementers according to the actual application scenario, f(t) represents the time function, which is used to reflect the changing trend of data with time series, w ij represents the edge weight between two nodes, w ij (t) represents the edge weight between two nodes under the action of the time function, dij represents the Euclidean distance between two nodes, d represents the edge length between two nodes in the spatial network, and when the edges between all nodes are constructed, it means that the spatial network of the current mining area is generated, and then the generated spatial networks are combined to form a three-dimensional spatial model.
更进一步的,确定矿体的空间分布和形态是利用生成的三维空间模型确定矿体的空间分布和形态,具体如下:Furthermore, the spatial distribution and morphology of the ore body are determined by using the generated three-dimensional spatial model, as follows:
利用生成的三维空间模型,通过体积渲染技术将矿体的三维形态显示于终端设备中;Using the generated three-dimensional spatial model, the three-dimensional shape of the ore body is displayed on the terminal device through volume rendering technology;
同时利用等值面技术识别当前矿体的边界;At the same time, the boundary of the current ore body is identified using isosurface technology;
基于确定的边界以及矿体形态,并根据当前应用场景,由实施人员选择矿体的截面进行特征分析,进而完成矿体在不同层次上的分布情况;Based on the determined boundaries and ore body morphology, and according to the current application scenario, the implementer selects the cross section of the ore body for feature analysis, and then completes the distribution of the ore body at different levels;
最后调整模型参数以提高精度,同时利用历史数据进行模型的数据验证,以确保分析的矿体分布的准确性。Finally, the model parameters are adjusted to improve accuracy, and historical data are used to verify the model to ensure the accuracy of the analyzed ore body distribution.
S3:利用三维空间模型实现对存在矿化的区域的定位。S3: Use three-dimensional spatial models to locate areas where mineralization exists.
具体的,利用三维空间模型实现对存在矿化的区域的定位是利用三维空间模型分析模型中矿化相关的地质特征,根据地质特征与矿化阈值的对比,对矿化区域实现定准定位。Specifically, the use of a three-dimensional space model to locate a mineralized area is to use the three-dimensional space model to analyze the geological features related to the mineralization in the model, and to accurately locate the mineralized area based on the comparison between the geological features and the mineralization threshold.
进一步的,利用三维空间模型分析模型中矿化相关的地质特征是将矿区数据应用于三维空间模型中,计算当前矿区的厚度T、金品位G以及二者之间的乘积T×G,同时设定富矿段阈值KF、贫矿段阈值KP以及矿化段阈值K,具体如下:Furthermore, the use of the three-dimensional spatial model to analyze the geological characteristics related to mineralization in the model is to apply the mining area data to the three-dimensional spatial model, calculate the thickness T, gold grade G and the product T×G of the current mining area, and set the rich ore section threshold K F , the poor ore section threshold K P and the mineralized section threshold K, as follows:
当矿区的厚度与金品位二者之间的乘积满足公式T×G≥KF时,表示当前矿化区域为富矿段区域;When the product of the thickness of the mining area and the gold grade satisfies the formula T× G≥KF , it means that the current mineralized area is a rich ore section;
当矿区的厚度与金品位二者之间的乘积满足公式T×G≤KP时,表示当前矿化区域为贫矿段区域When the product of the thickness of the mining area and the gold grade satisfies the formula T× G≤KP , it means that the current mineralized area is a lean ore section.
当矿区的厚度与金品位二者之间的乘积满足公式KP<T×G<KF时,表示当前矿化区域为矿化区域。When the product of the thickness and gold grade of the mining area satisfies the formula KP <T×G< KF , it means that the current mineralized area is a mineralized area.
应说明的是,当前矿区的厚度是通过勘探数据中的钻孔间距和岩芯长度进行计算的,具体如下:It should be noted that the thickness of the current mining area is calculated using the drill hole spacing and core length in the exploration data, as follows:
其中,L表示岩芯的垂直长度,θ表示倾角;Where L represents the vertical length of the core and θ represents the inclination angle;
当前矿区的金品位是基于矿石样品的含金量分析进行计算的,具体如下:The current gold grade of the mine is calculated based on the gold content analysis of ore samples, as follows:
其中,Wore表示矿石样品的总重量,Wgold表示样品中黄金的重量。Among them, Wore represents the total weight of the ore sample, and Wgold represents the weight of gold in the sample.
更进一步的,矿化区域实现精准定位是通过分析矿体沿倾伏方向的变化,同时利用地质模型进行倾斜分析,确定矿体沿倾斜方向的延伸,根据矿化区域和倾伏方向,确定找矿靶区,同时结合勘探数据,优化矿区定位。Furthermore, accurate positioning of the mineralized area is achieved by analyzing the changes in the ore body along the inclination direction, and using the geological model to perform inclination analysis to determine the extension of the ore body along the inclination direction. According to the mineralized area and the inclination direction, the prospecting target area is determined, and the exploration data is combined to optimize the positioning of the mining area.
具体的,确定矿体沿倾斜方向的延伸是利用矿体的厚度以及走向数据,分析矿体沿倾伏方向的变化,具体如下:Specifically, the extension of the ore body along the inclination direction is determined by using the thickness and strike data of the ore body to analyze the changes of the ore body along the inclination direction, as follows:
D=(x,y)=(L·cos(φ),L·sin(φ))D=(x,y)=(L·cos(φ),L·sin(φ))
L=T·cos(θ)L=T·cos(θ)
其中,(x,y)表示水平坐标,D表示矿体在水平面上的位移,L表示岩芯的垂直长度,θ表示倾角,φ表示走向数据,T表示当前矿区的厚度;Among them, (x, y) represents the horizontal coordinate, D represents the displacement of the ore body on the horizontal plane, L represents the vertical length of the core, θ represents the dip angle, φ represents the strike data, and T represents the thickness of the current mining area;
针对靶区的定位是根据计算的矿体沿倾斜方向的延伸,并将矿化区域和倾伏方向,利用G I S工具绘制靶区地图,预测找矿位置,同时利用实际勘探数据,完成靶区的确定,进而实现矿区的精准定位。The positioning of the target area is based on the calculated extension of the ore body along the inclination direction, and the mineralized area and inclination direction are mapped using GIS tools to predict the prospecting location. At the same time, the actual exploration data is used to complete the determination of the target area, thereby achieving accurate positioning of the mining area.
S4:通过应用趋势外推法计算体含矿率,完成定位的矿区的定量估算。S4: Calculate the volume mineralization rate by applying the trend extrapolation method to complete the quantitative estimation of the located mining area.
具体的,通过应用趋势外推法计算体含矿率是通过构建趋势线方程计算体含矿率,具体计算如下:Specifically, the calculation of the body mineralization rate by applying the trend extrapolation method is to calculate the body mineralization rate by constructing a trend line equation, and the specific calculation is as follows:
利用当前矿区的厚度T以及金品位G数据,构建趋势线方程,则有,Using the thickness T and gold grade G data of the current mining area, we can construct a trend line equation:
y=k·X+by=k·X+b
其中,X表示当前矿区的位置变量,k、b分别表示趋势线方程的斜率和截距,y则表示预测的矿化参数,包括,矿区的厚度以及金品位;Among them, X represents the location variable of the current mining area, k and b represent the slope and intercept of the trend line equation respectively, and y represents the predicted mineralization parameters, including the thickness and gold grade of the mining area;
利用预测的矿化参数,计算矿区的体含矿率,则有,Using the predicted mineralization parameters, the body ore content of the mining area is calculated, and then,
其中,R表示计算的体含矿率,Ti表示第i个区块的厚度,Gi表示第i个区块的金品位,Vi表示第i个区块的体积。Where R represents the calculated volume mineralization rate, Ti represents the thickness of the ith block, Gi represents the gold grade of the ith block, and Vi represents the volume of the ith block.
应说明的是,为了进一步提高趋势线方程的准确性,通过使用矿区历史数据对趋势线方程进行优化验证,通过输入的历史数据,对线性方程的斜率以及截距进行调整,以确保计算的矿区的体含矿率的准确度。It should be noted that in order to further improve the accuracy of the trend line equation, the trend line equation is optimized and verified by using the historical data of the mining area. The slope and intercept of the linear equation are adjusted through the input historical data to ensure the accuracy of the calculated volume ore content of the mining area.
实施例2Example 2
参照图2,为本发明的第二个实施例,提供了一种适用于构造蚀变岩型金矿的找矿预测系统,包括,成矿条件确定模块,三维空间模型构建模块,矿化区域定位模块以及矿区定量估算模块;2 , which is a second embodiment of the present invention, provides a prospecting prediction system suitable for tectonic altered rock type gold deposits, including a mineralization condition determination module, a three-dimensional space model construction module, a mineralized area positioning module and a mining area quantitative estimation module;
具体的,成矿条件确定模块,用于基于成矿地质体和构造特征确定成矿条件;三维空间模型构建模块,用于基于融合后的数据构建矿区的三维空间模型;矿化区域定位模块,用于利用三维空间模型实现对存在矿化的区域的定位;矿区定量估算模块,通过应用趋势外推法计算体含矿率,完成定位的矿区的定量估算。Specifically, the mineralization condition determination module is used to determine the mineralization conditions based on the mineralization geological body and structural characteristics; the three-dimensional space model construction module is used to construct a three-dimensional space model of the mining area based on the fused data; the mineralized area positioning module is used to use the three-dimensional space model to locate the area where mineralization exists; the mining area quantitative estimation module calculates the body ore content by applying the trend extrapolation method to complete the quantitative estimation of the located mining area.
进一步的,成矿条件确定模块,是系统的基础,它首先收集并分析目标区域的地质勘探数据、遥感影像、地球物理勘探资料以及历史采矿记录等多源信息。这些信息通过高级的数据处理算法(如机器学习、数据挖掘等)进行综合分析,以识别出潜在的成成矿地质体(如岩性、构造带、岩浆活动等)和成矿构造特征(如断裂、褶皱、蚀变带等)。通过对比已知金矿区的地质特征,该模块能够确定目标区域是否具备相似的成矿条件,进而筛选出高潜力成矿区域;Furthermore, the mineralization condition determination module is the foundation of the system. It first collects and analyzes multi-source information such as geological exploration data, remote sensing images, geophysical exploration data, and historical mining records in the target area. This information is comprehensively analyzed through advanced data processing algorithms (such as machine learning, data mining, etc.) to identify potential mineralization geological bodies (such as lithology, structural belts, magmatic activity, etc.) and mineralization structural features (such as faults, folds, alteration zones, etc.). By comparing the geological characteristics of known gold mining areas, the module can determine whether the target area has similar mineralization conditions, and then screen out high-potential mineralization areas;
三维空间模型构建模块,基于成矿条件确定模块的输出结果,三维空间模型构建模块将融合地质勘探数据、地形地貌数据、地下水位数据等多维度信息,利用三维建模软件(如ArcG I S、GOCAD等)构建出矿区的精细三维空间模型。该模型不仅包含地表的形态特征,还深入地下,展示岩石结构、断裂系统、蚀变带等关键地质要素的三维分布。通过可视化技术,研究人员可以直观地查看和分析矿区的地质结构,为后续的矿化区域定位提供精确的空间框架;The three-dimensional spatial model construction module, based on the output results of the mineralization condition determination module, will integrate geological exploration data, topographic data, groundwater level data and other multi-dimensional information, and use three-dimensional modeling software (such as ArcG I S, GOCAD, etc.) to construct a detailed three-dimensional spatial model of the mining area. This model not only includes the morphological characteristics of the surface, but also goes deep underground to show the three-dimensional distribution of key geological elements such as rock structure, fracture system, and alteration zone. Through visualization technology, researchers can intuitively view and analyze the geological structure of the mining area, providing an accurate spatial framework for the subsequent positioning of the mineralized area;
矿化区域定位模块,利用三维空间模型,结合地质统计学方法和地球物理反演技术,对潜在矿化区域进行精准定位。通过模拟矿液运移、沉淀和富集过程,该模块能够预测矿体在空间上的分布规律。同时,利用遥感技术和地面调查数据,识别出与矿化相关的蚀变矿物组合、地球化学异常等信息,进一步缩小矿化区域的范围。最终,通过综合分析和多源信息融合,确定矿化区域的具体位置和规模;The mineralized area positioning module uses a three-dimensional spatial model, combined with geostatistical methods and geophysical inversion technology, to accurately locate potential mineralized areas. By simulating the migration, precipitation and enrichment of ore fluids, this module can predict the spatial distribution of ore bodies. At the same time, remote sensing technology and ground survey data are used to identify information such as altered mineral assemblages and geochemical anomalies related to mineralization, further narrowing the scope of the mineralized area. Finally, through comprehensive analysis and multi-source information fusion, the specific location and scale of the mineralized area are determined;
矿区定量估算模块,在矿化区域定位的基础上,矿区定量估算模块采用趋势外推法和其他统计预测方法(如克里金插值、地质统计学模拟等),对定位的矿区进行定量估算。该模块首先收集矿区内已知矿体的品位、厚度、形态等参数数据,建立矿体特征的数学模型。然后,通过模型外推至整个矿化区域,计算体含矿率(即单位体积岩石中的有用矿物含量),并据此估算出矿区的总资源量。此外,该模块还考虑地质不确定性因素,进行资源量的概率评估,为矿山开发提供可靠的资源评估依据The mining area quantitative estimation module uses trend extrapolation and other statistical prediction methods (such as Kriging interpolation, geostatistical simulation, etc.) to make quantitative estimates of the located mining areas based on the positioning of the mineralized areas. This module first collects parameter data such as grade, thickness, and morphology of known ore bodies in the mining area to establish a mathematical model of the ore body characteristics. Then, the model is extrapolated to the entire mineralized area, the body mineral content (that is, the content of useful minerals in a unit volume of rock) is calculated, and the total resources of the mining area are estimated accordingly. In addition, this module also takes into account geological uncertainty factors and conducts a probabilistic assessment of resource quantities, providing a reliable basis for resource assessment for mine development.
应说明的是,通过以上四个模块的紧密协作和相互影响,该系统能够实现对蚀变岩型金矿的全面找矿预测,为金矿勘查和开发提供强有力的技术支持It should be noted that through the close cooperation and mutual influence of the above four modules, the system can realize the comprehensive prospecting prediction of altered rock type gold deposits and provide strong technical support for gold mine exploration and development.
更进一步的,功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-On l y Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。Furthermore, if the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium. Based on this understanding, the technical solution of the present invention, or the part that contributes to the prior art or the part of the technical solution, can be embodied in the form of a software product, which is stored in a storage medium and includes several instructions for a computer device (which can be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the methods of various embodiments of the present invention. The aforementioned storage medium includes: various media that can store program codes, such as a USB flash drive, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk.
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,“计算机可读介质”可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。The logic and/or steps represented in the flowchart or otherwise described herein, for example, can be considered as an ordered list of executable instructions for implementing logical functions, and can be embodied in any computer-readable medium for use by an instruction execution system, device or apparatus (such as a computer-based system, a system including a processor, or other system that can fetch instructions from an instruction execution system, device or apparatus and execute instructions), or in conjunction with such instruction execution systems, devices or apparatuses. For the purposes of this specification, "computer-readable medium" can be any device that can contain, store, communicate, propagate or transmit a program for use by an instruction execution system, device or apparatus, or in conjunction with such instruction execution systems, devices or apparatuses.
计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置)、便携式计算机盘盒(磁装置)、随机存取存储器(RAM)、只读存储器(ROM)、可擦除可编辑只读存储器(EPROM或闪速存储器)、光纤装置以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得程序,然后将其存储在计算机存储器中。More specific examples of computer-readable media (a non-exhaustive list) include the following: an electrical connection with one or more wires (electronic device), a portable computer disk case (magnetic device), a random access memory (RAM), a read-only memory (ROM), an erasable and programmable read-only memory (EPROM or flash memory), an optical fiber device, and a portable compact disk read-only memory (CDROM). In addition, the computer-readable medium may even be a paper or other suitable medium on which the program is printed, since the program may be obtained electronically, for example, by optically scanning the paper or other medium, followed by editing, deciphering or, if necessary, processing in another suitable manner, and then stored in a computer memory.
此外,为了提供示例性实施方案的简练描述,可以不描述实际实施方案的所有特征(即,与当前考虑的执行本发明的最佳模式不相关的那些特征,或于实现本发明不相关的那些特征)。Additionally, in order to provide a concise description of exemplary embodiments, all features of an actual embodiment (ie, those features that are not relevant to the best mode presently contemplated for carrying out the invention or those that are not relevant to implementing the invention) may not be described.
应理解的是,在任何实际实施方式的开发过程中,如在任何工程或设计项目中,可做出大量的具体实施方式决定。这样的开发努力可能是复杂的且耗时的,但对于那些得益于此公开内容的普通技术人员来说,不需要过多实验,开发努力将是一个设计、制造和生产的常规工作。It should be understood that in the development of any actual implementation, as in any engineering or design project, numerous implementation-specific decisions may be made. Such a development effort may be complex and time-consuming, but for those of ordinary skill having the benefit of this disclosure, the development effort will be a routine task of design, fabrication, and production without undue experimentation.
应说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。It should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention rather than to limit it. Although the present invention has been described in detail with reference to the preferred embodiments, those skilled in the art should understand that the technical solutions of the present invention may be modified or replaced by equivalents without departing from the spirit and scope of the technical solutions of the present invention, which should all be included in the scope of the claims of the present invention.
Claims (7)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202411053989.2A CN118759600B (en) | 2024-08-02 | 2024-08-02 | A prospecting prediction method suitable for tectonic altered rock type gold deposits |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202411053989.2A CN118759600B (en) | 2024-08-02 | 2024-08-02 | A prospecting prediction method suitable for tectonic altered rock type gold deposits |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN118759600A true CN118759600A (en) | 2024-10-11 |
| CN118759600B CN118759600B (en) | 2025-07-08 |
Family
ID=92938067
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202411053989.2A Active CN118759600B (en) | 2024-08-02 | 2024-08-02 | A prospecting prediction method suitable for tectonic altered rock type gold deposits |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN118759600B (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN120579083A (en) * | 2025-08-04 | 2025-09-02 | 有色金属矿产地质调查中心 | A method and system for predicting prospecting target areas based on altered mineral analysis |
| CN120508782B (en) * | 2025-07-15 | 2025-09-30 | 湖南省自然资源调查所 | Gold mine investigation intelligent detection system based on deep learning |
Citations (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104991287A (en) * | 2015-07-27 | 2015-10-21 | 中国地质调查局武汉地质调查中心 | Indo-China peninsula metallogenic belt typical area copper-gold deposit remote sensing exploration model establishment method |
| CN107633556A (en) * | 2017-09-22 | 2018-01-26 | 辽宁工程技术大学 | It is a kind of quantitatively to obtain the probabilistic method of three dimensional ore deposit geological model |
| CN110334882A (en) * | 2019-07-17 | 2019-10-15 | 中国地质大学(北京) | A method and device for quantitative prediction of concealed ore bodies |
| RU2784695C1 (en) * | 2022-04-28 | 2022-11-29 | Общество с ограниченной ответственностью "Газпромнефть-ГЕО" (ООО "ГПН-ГЕО") | Method for performing seismic surveys |
| WO2023045245A1 (en) * | 2021-09-23 | 2023-03-30 | 中国石油集团东方地球物理勘探有限责任公司 | Comprehensive geophysical exploration system for high-temperature geothermal field, and geothermal sweet spot area evaluation method |
| CN115879648A (en) * | 2023-02-21 | 2023-03-31 | 中国地质科学院 | Machine learning-based ternary deep mineralization prediction method and system |
| CN115983505A (en) * | 2023-03-20 | 2023-04-18 | 山东黄金地质矿产勘查有限公司 | Solid mineral three-dimensional ore formation prediction method and device |
| US20230204810A1 (en) * | 2021-12-23 | 2023-06-29 | Chengdu University Of Technology | Finite element-based ore deposit drilling information processing and analysis method and device |
| WO2023185734A1 (en) * | 2022-03-28 | 2023-10-05 | 中国矿业大学 | Mine digital model construction method based on three-dimensional point cloud database |
| CN117471546A (en) * | 2023-10-31 | 2024-01-30 | 山东省地质矿产勘查开发局第六地质大队(山东省第六地质矿产勘查院) | Black rock-based gold ore prospecting method |
| CN117830561A (en) * | 2024-01-03 | 2024-04-05 | 山东省地质矿产勘查开发局第六地质大队(山东省第六地质矿产勘查院) | Gold ore prospecting method based on three-dimensional geological modeling |
| CN117876623A (en) * | 2024-03-11 | 2024-04-12 | 云南省有色地质局三0六队 | Mineral resource investigation digital terrain model generation method |
| CN118070971A (en) * | 2024-03-13 | 2024-05-24 | 中国地质科学院矿产资源研究所 | Three-dimensional quantitative prediction method, computer equipment, medium and product for hidden ores |
| WO2024109419A1 (en) * | 2022-11-23 | 2024-05-30 | 河南理工大学 | Elevation information-fused processing method for remote sensing images |
| CN118296381A (en) * | 2024-04-10 | 2024-07-05 | 中国地质大学(武汉) | Solid mineral multi-scale progressive prospecting prediction method based on geological big data |
-
2024
- 2024-08-02 CN CN202411053989.2A patent/CN118759600B/en active Active
Patent Citations (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104991287A (en) * | 2015-07-27 | 2015-10-21 | 中国地质调查局武汉地质调查中心 | Indo-China peninsula metallogenic belt typical area copper-gold deposit remote sensing exploration model establishment method |
| CN107633556A (en) * | 2017-09-22 | 2018-01-26 | 辽宁工程技术大学 | It is a kind of quantitatively to obtain the probabilistic method of three dimensional ore deposit geological model |
| CN110334882A (en) * | 2019-07-17 | 2019-10-15 | 中国地质大学(北京) | A method and device for quantitative prediction of concealed ore bodies |
| WO2023045245A1 (en) * | 2021-09-23 | 2023-03-30 | 中国石油集团东方地球物理勘探有限责任公司 | Comprehensive geophysical exploration system for high-temperature geothermal field, and geothermal sweet spot area evaluation method |
| US20230204810A1 (en) * | 2021-12-23 | 2023-06-29 | Chengdu University Of Technology | Finite element-based ore deposit drilling information processing and analysis method and device |
| WO2023185734A1 (en) * | 2022-03-28 | 2023-10-05 | 中国矿业大学 | Mine digital model construction method based on three-dimensional point cloud database |
| RU2784695C1 (en) * | 2022-04-28 | 2022-11-29 | Общество с ограниченной ответственностью "Газпромнефть-ГЕО" (ООО "ГПН-ГЕО") | Method for performing seismic surveys |
| WO2024109419A1 (en) * | 2022-11-23 | 2024-05-30 | 河南理工大学 | Elevation information-fused processing method for remote sensing images |
| CN115879648A (en) * | 2023-02-21 | 2023-03-31 | 中国地质科学院 | Machine learning-based ternary deep mineralization prediction method and system |
| CN115983505A (en) * | 2023-03-20 | 2023-04-18 | 山东黄金地质矿产勘查有限公司 | Solid mineral three-dimensional ore formation prediction method and device |
| CN117471546A (en) * | 2023-10-31 | 2024-01-30 | 山东省地质矿产勘查开发局第六地质大队(山东省第六地质矿产勘查院) | Black rock-based gold ore prospecting method |
| CN117830561A (en) * | 2024-01-03 | 2024-04-05 | 山东省地质矿产勘查开发局第六地质大队(山东省第六地质矿产勘查院) | Gold ore prospecting method based on three-dimensional geological modeling |
| CN117876623A (en) * | 2024-03-11 | 2024-04-12 | 云南省有色地质局三0六队 | Mineral resource investigation digital terrain model generation method |
| CN118070971A (en) * | 2024-03-13 | 2024-05-24 | 中国地质科学院矿产资源研究所 | Three-dimensional quantitative prediction method, computer equipment, medium and product for hidden ores |
| CN118296381A (en) * | 2024-04-10 | 2024-07-05 | 中国地质大学(武汉) | Solid mineral multi-scale progressive prospecting prediction method based on geological big data |
Non-Patent Citations (7)
| Title |
|---|
| ZOHEIR B A: "Field and remote sensing studies of the eastern Arabian Shield: implications for base and precious metals prospectively of the Ar Rayn terrane", ARABIAN JOURNAL OF GEOSCIENCES, vol. 15, no. 6, 20 October 2022 (2022-10-20) * |
| 丁建华;肖克炎;娄德波;李楠;: "大比例尺三维矿产预测", 地质与勘探, no. 06, 28 November 2009 (2009-11-28) * |
| 何珊: "基于RS&GIS的多源数据成矿预测研究——以西藏洛扎地区为例", 中国优秀硕士全文数据库, no. 2019, 15 January 2019 (2019-01-15) * |
| 孙晓敏 等: "地震方法在胶东地区西林断裂带深部金矿找矿预测中的应用与指示", 物探与化探, vol. 48, no. 4, 30 June 2024 (2024-06-30), pages 979 - 985 * |
| 彭省临;邵拥军;张建东;: "金属矿山隐伏矿找矿预测理论与方法", 地质通报, no. 04, 15 April 2011 (2011-04-15) * |
| 林鹏: "胶东唐家沟金矿床地质特征及找矿潜力研究", 世界有色金属, no. 15, 5 August 2021 (2021-08-05), pages 45 - 46 * |
| 胡桥;陈建平;田业;: "三维成矿预测与预测评价――以东昆仑成矿带红旗沟―深水潭金矿为例", 现代地质, no. 02, 15 April 2018 (2018-04-15) * |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN120508782B (en) * | 2025-07-15 | 2025-09-30 | 湖南省自然资源调查所 | Gold mine investigation intelligent detection system based on deep learning |
| CN120579083A (en) * | 2025-08-04 | 2025-09-02 | 有色金属矿产地质调查中心 | A method and system for predicting prospecting target areas based on altered mineral analysis |
Also Published As
| Publication number | Publication date |
|---|---|
| CN118759600B (en) | 2025-07-08 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Qi et al. | Prediction of open stope hangingwall stability using random forests | |
| Wellmann et al. | Towards incorporating uncertainty of structural data in 3D geological inversion | |
| CN118759600A (en) | A prospecting prediction method suitable for tectonic altered rock type gold deposits | |
| MX2015004001A (en) | Propagating fracture plane updates. | |
| CN116797755B (en) | Modeling method for multi-time-space three-dimensional geological structure of mixed rock zone | |
| US11391856B2 (en) | Stochastic dynamic time warping for automated stratigraphic correlation | |
| Mahmoudi et al. | Optimisation of geotechnical surveys using a BIM-based geostatistical analysis | |
| Dagasan et al. | Pilot point optimization of mining boundaries for lateritic metal deposits: Finding the trade-off between dilution and ore loss | |
| Liu et al. | Study of a high-precision complex 3D geological modelling method based on a fine KNN and kriging coupling algorithm: a case study for Jiangsu, China | |
| CN117746242A (en) | A remote sensing prospecting method and device, equipment and medium based on a remote sensing prospecting model for polymetallic deposits | |
| CN119989670B (en) | Geological attribute modeling method and system based on joint constraints of multi-source information | |
| Artun et al. | An Integrated Workflow for Data Analytics-Assisted Reservoir Management with Incomplete Well Log Data | |
| McGaughey et al. | Geological models, rock properties, and the 3D inversion of geophysical data | |
| Sarkheil et al. | The fracture network modeling in naturally fractured reservoirs using artificial neural network based on image loges and core measurements | |
| Hazrathosseini et al. | Geometric quality assessment of in situ blocks in dimension stone quarries | |
| WO2022087332A1 (en) | Reservoir characterization using rock geochemistry for lithostratigraphic interpretation of a subterranean formation | |
| Zhang et al. | Height of Hydraulic Fracture Zone Based on PSO_LSSVM Model | |
| US11899150B2 (en) | Velocity model for sediment-basement interface using seismic and potential fields data | |
| CN118736100A (en) | A method, device, equipment, medium and program for establishing a crack model diagram | |
| Lin | Method and realization of efficient extraction of basic geological data from two‐dimensional mine drawings | |
| CN118568446B (en) | Comprehensive geological exploration information management system | |
| Yan et al. | Data-knowledge enhanced large geological model | |
| CN119783870B (en) | Quantitative prediction method and system of mineral resources based on knowledge embedding | |
| Sun et al. | 3D geological modeling of tunnel alignment in the complex mountainous region of Yongshan, China, based on multisource data fusion | |
| Li et al. | Collapse Pressure Prediction and Uncertainty Analysis Based on Mechanism and Data Hybrid-Driven |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |