CN118643735A - Soil compartment pressure prediction model transfer learning method, device, equipment and storage medium - Google Patents
Soil compartment pressure prediction model transfer learning method, device, equipment and storage medium Download PDFInfo
- Publication number
- CN118643735A CN118643735A CN202410672680.5A CN202410672680A CN118643735A CN 118643735 A CN118643735 A CN 118643735A CN 202410672680 A CN202410672680 A CN 202410672680A CN 118643735 A CN118643735 A CN 118643735A
- Authority
- CN
- China
- Prior art keywords
- prediction model
- compartment pressure
- soil
- pressure prediction
- soil compartment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/27—Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0464—Convolutional networks [CNN, ConvNet]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/096—Transfer learning
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2119/00—Details relating to the type or aim of the analysis or the optimisation
- G06F2119/14—Force analysis or force optimisation, e.g. static or dynamic forces
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- Software Systems (AREA)
- Artificial Intelligence (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Mathematical Physics (AREA)
- Computational Linguistics (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Data Mining & Analysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Medical Informatics (AREA)
- Computer Hardware Design (AREA)
- Geometry (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Description
技术领域Technical Field
本发明涉及盾构掘进技术领域,尤其涉及一种土舱压力预测模型迁移学习方法、装置、设备及存储介质。The present invention relates to the technical field of shield tunneling, and in particular to a soil compartment pressure prediction model transfer learning method, device, equipment and storage medium.
背景技术Background Art
盾构机土舱压力是盾构隧道掘进的关键参数,在维持隧道掌子面的稳定性和防止地表沉降方面发挥着关键作用。现有中设置土舱压力预测数据模型来实现土舱压力的精准预测,然而这些模型在跨区间的盾构机工程中泛化能力较差,即在A工程中训练的模型在B工程的预测效果差,一方面,这是由于不同盾构工程采用的盾构机几何形状、地质条件和开挖参数控制协议不一致,盾构机土舱压力空间分布在不同工程中表现出不同的模式,数据集之间存在较大的概率分布差异;另一方面,目标预测区间没有足够的标记数据进行训练。至今,鲜有一种解决土舱压力预测模型的泛化能力的迁移学习方法。The soil compartment pressure of the shield machine is a key parameter in shield tunneling, and plays a key role in maintaining the stability of the tunnel face and preventing surface settlement. In the existing practice, soil compartment pressure prediction data models are set up to achieve accurate prediction of soil compartment pressure. However, these models have poor generalization ability in cross-interval shield machine projects, that is, the model trained in project A has poor prediction effect in project B. On the one hand, this is due to the inconsistent geometry, geological conditions and excavation parameter control protocols of the shield machines used in different shield projects. The spatial distribution of the soil compartment pressure of the shield machine shows different patterns in different projects, and there are large probability distribution differences between data sets; on the other hand, there is not enough labeled data for training in the target prediction interval. So far, there is rarely a transfer learning method to solve the generalization ability of the soil compartment pressure prediction model.
发明内容Summary of the invention
本发明提供一种土舱压力预测模型迁移学习方法、装置、设备及存储介质,用以解决现有技术中土舱压力预测模型的的泛化能力较差的缺陷,实现提高土舱压力预测模型的的泛化能力的技术效果。The present invention provides a soil compartment pressure prediction model transfer learning method, device, equipment and storage medium, which are used to solve the defect of poor generalization ability of the soil compartment pressure prediction model in the prior art and achieve the technical effect of improving the generalization ability of the soil compartment pressure prediction model.
本发明提供一种土舱压力预测模型迁移学习方法,包括如下步骤:The present invention provides a soil compartment pressure prediction model transfer learning method, comprising the following steps:
获取多个源域的第一样本数据和多个目标域的第二样本数据;其中,所述第一样本数据和所述第二样本数据经过无量纲化处理;Acquire a plurality of first sample data of source domains and a plurality of second sample data of target domains; wherein the first sample data and the second sample data are dimensionless processed;
将所述第一样本数据和所述第二样本数据输入源域的基础土舱压力预测模型中进行迭代训练,得到源域的土舱压力预测模型;其中,所述基础土舱压力预测模型中设置有最大平均差异适配层;Inputting the first sample data and the second sample data into a basic soil compartment pressure prediction model of a source domain for iterative training, thereby obtaining a soil compartment pressure prediction model of the source domain; wherein a maximum average difference adaptation layer is provided in the basic soil compartment pressure prediction model;
将所述源域的土舱压力预测模型迁移至目标域中,并基于所述第二样本数据对所述土舱压力预测模型的参数进行调整,得到目标域的土舱压力预测模型。The soil compartment pressure prediction model of the source domain is migrated to the target domain, and the parameters of the soil compartment pressure prediction model are adjusted based on the second sample data to obtain the soil compartment pressure prediction model of the target domain.
根据本发明提供的一种土舱压力预测模型迁移学习方法,所述第一样本数据包括第一训练数据和第一标签数据,所述第二样本数据包括第二训练数据和第二标签数据;所述将所述第一样本数据和所述第二样本数据输入源域的基础土舱压力预测模型中进行迭代训练,包括:According to a soil compartment pressure prediction model transfer learning method provided by the present invention, the first sample data includes first training data and first label data, and the second sample data includes second training data and second label data; the first sample data and the second sample data are input into the basic soil compartment pressure prediction model of the source domain for iterative training, comprising:
将所述第一训练数据和所述第二训练数据输入至所述基础土舱压力预测模型进行处理,得到所述第一训练数据对应的土舱压力预测数据、所述第一训练数据在所述最大平均差异适配层的第一输出值和所述第二训练数据在所述最大平均差异适配层的第二输出值;Inputting the first training data and the second training data into the basic soil compartment pressure prediction model for processing, obtaining soil compartment pressure prediction data corresponding to the first training data, a first output value of the first training data at the maximum average difference adaptation layer, and a second output value of the second training data at the maximum average difference adaptation layer;
根据所述土舱压力预测数据、所述第一标签数据、所述第一输出值和所述第二输出值计算训练损失值;Calculate a training loss value according to the soil cabin pressure prediction data, the first label data, the first output value, and the second output value;
根据所述训练损失值对所述基础土舱压力预测模型将进行迭代训练。The basic soil compartment pressure prediction model will be iteratively trained according to the training loss value.
根据本发明提供的一种土舱压力预测模型迁移学习方法,所述根据所述土舱压力预测数据、所述第一标签数据、所述第一输出值和所述第二输出值计算训练损失值,包括:根据所述土舱压力预测数据、所述第一标签数据计算第一损失值;According to a soil compartment pressure prediction model transfer learning method provided by the present invention, the calculating of the training loss value according to the soil compartment pressure prediction data, the first label data, the first output value and the second output value includes: calculating the first loss value according to the soil compartment pressure prediction data and the first label data;
根据所述第一输出值和所述第二输出值计算第二损失值;Calculate a second loss value according to the first output value and the second output value;
根据所述第一损失值和所述第二损失值计算所述训练损失值。The training loss value is calculated according to the first loss value and the second loss value.
根据本发明提供的一种土舱压力预测模型迁移学习方法,所述土舱压力预测模型包括参数特征卷积模块、时序特征提取模块、特征串联预测模块和最大平均差异适配层;所述参数特征卷积模块的输出端和所述时序特征提取模块的输出端分别与所述特征串联预测模块的输入端连接,所述最大平均差异适配层设置在所述特征串联预测模块中。According to a soil compartment pressure prediction model transfer learning method provided by the present invention, the soil compartment pressure prediction model includes a parameter feature convolution module, a time series feature extraction module, a feature series prediction module and a maximum average difference adaptation layer; the output end of the parameter feature convolution module and the output end of the time series feature extraction module are respectively connected to the input end of the feature series prediction module, and the maximum average difference adaptation layer is arranged in the feature series prediction module.
根据本发明提供的一种土舱压力预测模型迁移学习方法,在基于所述第二样本数据对所述土舱压力预测模型的参数进行调整,得到目标域的土舱压力预测模型之后,所述方法还包括:According to a soil compartment pressure prediction model transfer learning method provided by the present invention, after adjusting the parameters of the soil compartment pressure prediction model based on the second sample data to obtain the soil compartment pressure prediction model of the target domain, the method further includes:
获取目标域中,距离当前时刻在预设时间步长范围内的第一施工参数、第一地质参数和第一土舱压力参数,以及获取当前时间步长的第二施工参数和第二地质参数;Acquire a first construction parameter, a first geological parameter, and a first soil compartment pressure parameter within a preset time step range from the current moment in the target domain, and acquire a second construction parameter and a second geological parameter of the current time step;
分别对所述第一施工参数、所述第一地质参数、所述第一土舱压力参数、所述第二施工参数和所述第二地质参数进行无量纲化处理,将无量纲化处理后的所述第一施工参数和所述第一地质参数输入所述参数特征卷积模块进行处理,得到第三输出值;以及performing dimensionless processing on the first construction parameter, the first geological parameter, the first soil compartment pressure parameter, the second construction parameter, and the second geological parameter respectively, and inputting the dimensionless-processed first construction parameter and the first geological parameter into the parameter feature convolution module for processing to obtain a third output value; and
将无量纲化处理后的所述第一土舱压力参数输入所述时序特征提取模块进行处理,得到第四输出值;Inputting the dimensionless processed first soil compartment pressure parameter into the time series feature extraction module for processing to obtain a fourth output value;
将无量纲化处理后的所述第二施工参数和所述第二地质参数,以及所述第三输出值和所述第四输出值输入至所述特征串联预测模块进行处理,得到当前时间步长的目标土舱压力预测值。The dimensionless processed second construction parameter and the second geological parameter, as well as the third output value and the fourth output value are input into the characteristic series prediction module for processing to obtain a predicted value of the target soil compartment pressure at the current time step.
根据本发明提供的一种土舱压力预测模型迁移学习方法,在所述获取多个源域的第一样本数据和多个目标域的第二样本数据之前,所述方法还包括:According to a soil compartment pressure prediction model transfer learning method provided by the present invention, before obtaining a plurality of first sample data in source domains and a plurality of second sample data in target domains, the method further includes:
获取所述源域和所述目标域的多个原始施工参数和原始土舱压力参数;Acquire a plurality of original construction parameters and original soil compartment pressure parameters of the source domain and the target domain;
获取所述原始施工参数和所述原始土舱压力参数对应的无量纲化处理策略;Obtaining a dimensionless processing strategy corresponding to the original construction parameters and the original soil compartment pressure parameters;
通过所述对应的无量纲化处理策略,分别对所述原始施工参数和所述原始土舱压力参数进行无量纲化处理,得到所述第一样本数据和所述第二样本数据。The original construction parameters and the original soil compartment pressure parameters are respectively dimensionally processed by the corresponding dimensionless processing strategy to obtain the first sample data and the second sample data.
根据本发明提供的一种土舱压力预测模型迁移学习方法,所述原始土舱压力参数所对应的无量纲化处理策略为通过描述土舱压力空间分布的物理特征函数,得到均值项、上下梯度项、左右梯度项及局部异质项的特征系数,并根据所述特征系数计算对应的无量纲值。According to a soil cabin pressure prediction model transfer learning method provided by the present invention, the dimensionless processing strategy corresponding to the original soil cabin pressure parameters is to obtain the characteristic coefficients of the mean term, the upper and lower gradient terms, the left and right gradient terms and the local heterogeneous terms through the physical characteristic function that describes the spatial distribution of the soil cabin pressure, and calculate the corresponding dimensionless value based on the characteristic coefficients.
本发明还提供一种土舱压力预测模型迁移学习装置,包括如下模块:The present invention also provides a soil compartment pressure prediction model transfer learning device, comprising the following modules:
第一获取模块,配置为获取多个源域的第一样本数据和多个目标域的第二样本数据;其中,所述第一样本数据和所述第二样本数据经过无量纲化处理;A first acquisition module is configured to acquire first sample data of a plurality of source domains and second sample data of a plurality of target domains; wherein the first sample data and the second sample data are dimensionless processed;
训练模块,配置为将所述第一样本数据和所述第二样本数据输入源域的基础土舱压力预测模型中进行迭代训练,得到源域的土舱压力预测模型;其中,所述基础土舱压力预测模型中设置有最大平均差异适配层;A training module is configured to input the first sample data and the second sample data into a basic soil compartment pressure prediction model of a source domain for iterative training to obtain a soil compartment pressure prediction model of the source domain; wherein the basic soil compartment pressure prediction model is provided with a maximum average difference adaptation layer;
迁移模块,配置为将所述源域的土舱压力预测模型迁移至目标域中,并基于所述第二样本数据对所述土舱压力预测模型的参数进行调整,得到目标域的土舱压力预测模型。The migration module is configured to migrate the soil compartment pressure prediction model of the source domain to the target domain, and adjust the parameters of the soil compartment pressure prediction model based on the second sample data to obtain the soil compartment pressure prediction model of the target domain.
本发明还提供一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现如上述任一种所述土舱压力预测模型迁移学习方法。The present invention also provides an electronic device, comprising a memory, a processor, and a computer program stored in the memory and executable on the processor, wherein when the processor executes the program, the soil compartment pressure prediction model transfer learning method as described in any one of the above is implemented.
本发明还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如上述任一种所述土舱压力预测模型迁移学习方法。The present invention also provides a non-transitory computer-readable storage medium having a computer program stored thereon. When the computer program is executed by a processor, the soil compartment pressure prediction model transfer learning method as described in any one of the above is implemented.
本发明还提供一种计算机程序产品,包括计算机程序,所述计算机程序被处理器执行时实现如上述任一种所述土舱压力预测模型迁移学习方法。The present invention also provides a computer program product, comprising a computer program, wherein when the computer program is executed by a processor, the computer program implements any of the soil compartment pressure prediction model transfer learning methods described above.
本发明提供的一种土舱压力预测模型迁移学习方法、装置、设备及存储介质,将经过无量纲化处理后的第一样本数据和第二样本数据输入到源域的基础土舱压力预测模型中进行迭代训练,得到源域的土舱压力预测模型,再将源域的土舱压力预测模型迁移至目标域中,并基于第二样本数据对土舱压力预测模型的参数进行调整,得到目标域的土舱压力预测模型。无量纲化处理能用一个合适的变量替代样本数据中的物理量的单位移除,实现数据的特征对齐并消除某些参数阈值范围的影响,为后续的迁移提供数据基础,提高土舱压力预测模型的泛化能力,同时,在基础土舱压力预测模型中设置有最大平均差异适配层,最大平均差异适配层能够拉进源域和目标域之间的分布差异,可提高土舱压力预测模型的泛化能力,实现同一模型的跨区域预测,并能有效提高模型预测准确度。The present invention provides a soil cabin pressure prediction model transfer learning method, device, equipment and storage medium, which inputs the first sample data and the second sample data after dimensionless processing into the basic soil cabin pressure prediction model of the source domain for iterative training to obtain the soil cabin pressure prediction model of the source domain, and then migrates the soil cabin pressure prediction model of the source domain to the target domain, and adjusts the parameters of the soil cabin pressure prediction model based on the second sample data to obtain the soil cabin pressure prediction model of the target domain. The dimensionless processing can replace the unit removal of the physical quantity in the sample data with a suitable variable, realize the feature alignment of the data and eliminate the influence of certain parameter threshold ranges, provide a data basis for subsequent migration, and improve the generalization ability of the soil cabin pressure prediction model. At the same time, a maximum average difference adaptation layer is set in the basic soil cabin pressure prediction model, and the maximum average difference adaptation layer can pull in the distribution difference between the source domain and the target domain, which can improve the generalization ability of the soil cabin pressure prediction model, realize cross-regional prediction of the same model, and effectively improve the prediction accuracy of the model.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了更清楚地说明本发明或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the present invention or the prior art, the following briefly introduces the drawings required for use in the embodiments or the description of the prior art. Obviously, the drawings described below are some embodiments of the present invention. For ordinary technicians in this field, other drawings can be obtained based on these drawings without paying creative work.
图1是本发明提供的土舱压力预测模型迁移学习方法的流程示意图之一。FIG1 is one of the flow charts of the soil compartment pressure prediction model transfer learning method provided by the present invention.
图2是本发明提供的土舱压力预测模型迁移学习方法的迁移架构示意图。FIG2 is a schematic diagram of the migration architecture of the soil compartment pressure prediction model migration learning method provided by the present invention.
图3是本发明提供的实施例中步骤120的流程示意图。FIG. 3 is a schematic flow chart of step 120 in the embodiment provided by the present invention.
图4是本发明提供的土舱压力预测模型迁移学习方法的流程示意图之二。FIG. 4 is a second flow chart of the soil compartment pressure prediction model transfer learning method provided by the present invention.
图5是本发明提供的实施例中计算目标土舱压力预测值的示意图。FIG. 5 is a schematic diagram of calculating a predicted value of a target soil compartment pressure in an embodiment provided by the present invention.
图6是本申请提供的实施例中参数与无量纲化处理策略的映射图。FIG. 6 is a mapping diagram of parameters and dimensionless processing strategies in the embodiment provided by the present application.
图7是本发明提供的土舱压力预测模型迁移学习装置的结构示意图。FIG. 7 is a schematic diagram of the structure of the soil compartment pressure prediction model transfer learning device provided by the present invention.
图8是本发明提供的电子设备的结构示意图。FIG8 is a schematic diagram of the structure of an electronic device provided by the present invention.
具体实施方式DETAILED DESCRIPTION
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明中的附图,对本发明中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purpose, technical solution and advantages of the present invention clearer, the technical solution of the present invention will be clearly and completely described below in conjunction with the drawings of the present invention. Obviously, the described embodiments are part of the embodiments of the present invention, not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by ordinary technicians in this field without creative work are within the scope of protection of the present invention.
下面结合图1-图5描述本发明的土舱压力预测模型迁移学习方法。The soil compartment pressure prediction model transfer learning method of the present invention is described below in conjunction with Figures 1 to 5.
图1是根据一示例性实施例示出的一种土舱压力预测模型迁移学习方法的流程图。如图1所示,在一示例性实施例中,该一种土舱压力预测模型迁移学习方法,包括步骤110至步骤130,详细介绍如下。Fig. 1 is a flow chart of a soil compartment pressure prediction model transfer learning method according to an exemplary embodiment. As shown in Fig. 1, in an exemplary embodiment, the soil compartment pressure prediction model transfer learning method includes steps 110 to 130, which are described in detail as follows.
步骤110,获取多个源域的第一样本数据和多个目标域的第二样本数据;其中,所述第一样本数据和所述第二样本数据经过无量纲化处理。Step 110, obtaining a plurality of first sample data of source domains and a plurality of second sample data of target domains; wherein the first sample data and the second sample data are dimensionless processed.
本发明实施例中,由于各工程盾构机型号和/或施工区域不同,导致盾构机测量参数含义与个数不一致,这给迁移学习模型造成了困难,即原始数据特征与特征维度不一致,本发明在训练模型时,对各项数据进行了无量纲化处理,无量纲化(nondimensionalize/dimensionless)是指通过一个合适的变量替代,将一个涉及物理量的方程的部分或全部的单位移除,以达到简化实验或者计算的目的。通过无量纲化处理的数据,实现数据的特征对齐并消除某些参数阈值范围的影响,为后续的迁移提供数据基础。In the embodiment of the present invention, due to the different models and/or construction areas of shield machines in various projects, the meaning and number of shield machine measurement parameters are inconsistent, which creates difficulties for the transfer learning model, that is, the original data features are inconsistent with the feature dimensions. When training the model, the present invention performs dimensionless processing on each data. Dimensionless (nondimensionalize/dimensionless) refers to removing part or all of the units of an equation involving physical quantities by replacing them with a suitable variable to achieve the purpose of simplifying experiments or calculations. Through dimensionless data, data feature alignment is achieved and the influence of certain parameter threshold ranges is eliminated, providing a data basis for subsequent migration.
源域中具有较多的第一样本数据的,目标域则处于工程初期,仅有少量带有标签数据的第二样本数据,需要将源域的土舱压力预测模型进行迁移的工程任务。The source domain has more first sample data, while the target domain is in the early stage of the project and has only a small amount of second sample data with labeled data. It is an engineering task that requires migrating the soil compartment pressure prediction model of the source domain.
步骤120,将所述第一样本数据和所述第二样本数据输入源域的基础土舱压力预测模型中进行迭代训练,得到源域的土舱压力预测模型;其中,所述基础土舱压力预测模型中设置有最大平均差异适配层。Step 120: input the first sample data and the second sample data into a basic soil compartment pressure prediction model of a source domain for iterative training to obtain a soil compartment pressure prediction model of the source domain; wherein a maximum average difference adaptation layer is provided in the basic soil compartment pressure prediction model.
本发明实施例中,将大量的第一样本数据和少量的第二样本数据输入源域的基础土舱压力预测模型中进行迭代训练,得到源域的土舱压力预测模型,基础土舱压力预测模型中设置有最大平均差异适配层(Maximum Mean Discrepancy,MMD),基础土舱压力预测模型采用CNN-GRU(Convolutional Neural Network-Gated Recurrent Unit)模型。In an embodiment of the present invention, a large amount of first sample data and a small amount of second sample data are input into a basic soil cabin pressure prediction model in a source domain for iterative training to obtain a soil cabin pressure prediction model in the source domain. A maximum mean discrepancy adaptation layer (Maximum Mean Discrepancy, MMD) is provided in the basic soil cabin pressure prediction model, and the basic soil cabin pressure prediction model adopts a CNN-GRU (Convolutional Neural Network-Gated Recurrent Unit) model.
步骤130,将所述源域的土舱压力预测模型迁移至目标域中,并基于所述第二样本数据对所述土舱压力预测模型的参数进行调整,得到目标域的土舱压力预测模型。Step 130 : Migrate the soil compartment pressure prediction model of the source domain to the target domain, and adjust the parameters of the soil compartment pressure prediction model based on the second sample data to obtain the soil compartment pressure prediction model of the target domain.
本发明实施例中,将训练得到的源域的土舱压力预测模型迁移至目标域中,并通过少量的第二样本数据对土舱压力预测模型的参数进行微调,得到目标域的土舱压力预测模型,源域的土舱压力预测模型与目标域的土舱压力预测模型的模型结构相同,仅在具体的参数中存在不同。In an embodiment of the present invention, the soil cabin pressure prediction model of the source domain obtained through training is migrated to the target domain, and the parameters of the soil cabin pressure prediction model are fine-tuned through a small amount of second sample data to obtain the soil cabin pressure prediction model of the target domain. The soil cabin pressure prediction model of the source domain and the soil cabin pressure prediction model of the target domain have the same model structure and differ only in specific parameters.
本发明实施例中,如图2所示,将经过无量纲化处理后的第一样本数据和第二样本数据输入到源域的基础土舱压力预测模型中进行迭代训练,得到源域的土舱压力预测模型,再将源域的土舱压力预测模型迁移至目标域中,并基于第二样本数据对土舱压力预测模型的参数进行调整,得到目标域的土舱压力预测模型。无量纲化处理能用一个合适的变量替代样本数据中的物理量的单位移除,实现数据的特征对齐并消除某些参数阈值范围的影响,为后续的迁移提供数据基础,提高土舱压力预测模型的泛化能力,同时,在基础土舱压力预测模型中设置有最大平均差异适配层,最大平均差异适配层能够拉进源域和目标域之间的分布差异,可提高土舱压力预测模型的泛化能力,实现同一模型的跨区域预测,并能有效提高模型预测准确度。In an embodiment of the present invention, as shown in FIG2 , the first sample data and the second sample data after dimensionless processing are input into the basic soil cabin pressure prediction model of the source domain for iterative training to obtain the soil cabin pressure prediction model of the source domain, and then the soil cabin pressure prediction model of the source domain is migrated to the target domain, and the parameters of the soil cabin pressure prediction model are adjusted based on the second sample data to obtain the soil cabin pressure prediction model of the target domain. Dimensionless processing can replace the unit removal of the physical quantity in the sample data with a suitable variable, realize the feature alignment of the data and eliminate the influence of certain parameter threshold ranges, provide a data basis for subsequent migration, and improve the generalization ability of the soil cabin pressure prediction model. At the same time, a maximum average difference adaptation layer is set in the basic soil cabin pressure prediction model, and the maximum average difference adaptation layer can pull in the distribution difference between the source domain and the target domain, which can improve the generalization ability of the soil cabin pressure prediction model, realize cross-regional prediction of the same model, and effectively improve the prediction accuracy of the model.
在本发明的一示例性实施例中,所述第一样本数据包括第一训练数据和第一标签数据,所述第二样本数据包括第二训练数据和第二标签数据;请参阅图3,在步骤120所述将所述第一样本数据和所述第二样本数据输入源域的基础土舱压力预测模型中进行迭代训练,包括步骤310至步骤330,详细介绍如下。In an exemplary embodiment of the present invention, the first sample data includes first training data and first label data, and the second sample data includes second training data and second label data; please refer to Figure 3, in step 120, the first sample data and the second sample data are input into the basic soil compartment pressure prediction model of the source domain for iterative training, including steps 310 to 330, which are described in detail as follows.
步骤310,将所述第一训练数据和所述第二训练数据输入至所述基础土舱压力预测模型进行处理,得到所述第一训练数据对应的土舱压力预测数据、所述第一训练数据在所述最大平均差异适配层的第一输出值和所述第二训练数据在所述最大平均差异适配层的第二输出值。Step 310: input the first training data and the second training data into the basic soil compartment pressure prediction model for processing to obtain the soil compartment pressure prediction data corresponding to the first training data, the first output value of the first training data at the maximum average difference adaptation layer, and the second output value of the second training data at the maximum average difference adaptation layer.
本发明实施例中,如图2所示,将大量的源域中的第一训练数据和少量的目标域的第二训练数据输入到基础土舱压力预测模型进行训练,第一训练数据经过基础土舱压力预测模型的处理后,最终输出预测的土舱压力预测数据,第一训练数据具有对应的第一标签数据,第一标签数据为第一训练数据所对应的真实的土舱压力经过无量纲化处理后的数据。In an embodiment of the present invention, as shown in FIG2 , a large amount of first training data in a source domain and a small amount of second training data in a target domain are input into a basic soil compartment pressure prediction model for training. After the first training data is processed by the basic soil compartment pressure prediction model, predicted soil compartment pressure prediction data is finally output. The first training data has corresponding first label data, and the first label data is the data of the actual soil compartment pressure corresponding to the first training data after dimensionless processing.
第一训练数据和第二训练数据在经过最大平均差异适配层时,会得到对应的输出值。When the first training data and the second training data pass through the maximum mean difference adaptation layer, corresponding output values will be obtained.
步骤320,根据所述土舱压力预测数据、所述第一标签数据、所述第一输出值和所述第二输出值计算训练损失值。Step 320: Calculate a training loss value based on the soil compartment pressure prediction data, the first label data, the first output value, and the second output value.
本发明实施例中,根据第一标签数据,经过基础土舱压力预测模型处理后得到的土舱压力预测数据、第一输出值和第二输出值计算训练损失值。在模型训练过程中,训练损失值包括源域的第一样本数据产生的分类损失以及具有MMD度量的最大平均差异适配层产生的源域和目标域之间的差异这两部分,从而拉进源域和目标域之间的分布差异。In the embodiment of the present invention, the training loss value is calculated based on the first label data, the soil compartment pressure prediction data obtained after being processed by the basic soil compartment pressure prediction model, the first output value, and the second output value. During the model training process, the training loss value includes the classification loss generated by the first sample data of the source domain and the difference between the source domain and the target domain generated by the maximum mean difference adaptation layer with MMD metric, thereby narrowing the distribution difference between the source domain and the target domain.
步骤330,根据所述训练损失值对所述基础土舱压力预测模型将进行迭代训练。Step 330: iteratively train the basic soil compartment pressure prediction model according to the training loss value.
本发明实施例中,根据训练损失值对基础土舱压力预测模型将进行迭代训练。当训练损失值小于设置的损失阈值时,结束训练。In the embodiment of the present invention, the foundation soil compartment pressure prediction model is iteratively trained according to the training loss value. When the training loss value is less than the set loss threshold, the training is terminated.
在本发明的一示例性实施例中,在步骤320土舱压力预测模型迁移学习所述根据所述土舱压力预测数据、所述第一标签数据、所述第一输出值和所述第二输出值计算训练损失值,包括下列步骤,详细介绍如下。In an exemplary embodiment of the present invention, in step 320, the soil compartment pressure prediction model transfer learning calculates the training loss value according to the soil compartment pressure prediction data, the first label data, the first output value and the second output value, including the following steps, which are described in detail as follows.
根据所述土舱压力预测数据、所述第一标签数据计算第一损失值。A first loss value is calculated according to the soil compartment pressure prediction data and the first label data.
根据所述第一输出值和所述第二输出值计算第二损失值。A second loss value is calculated according to the first output value and the second output value.
根据所述第一损失值和所述第二损失值计算所述训练损失值。The training loss value is calculated according to the first loss value and the second loss value.
本发明实施例中,如图2所示,在得到土舱压力预测数据后,根据其与第一标签数据计算第一损失值LC。再根据第一输出值和第二输出值计算第二损失值LMMD,再根据第一损失值和第二损失值计算训练损失值L(Train Loss)。In the embodiment of the present invention, as shown in FIG2 , after the predicted data of the soil compartment pressure is obtained, the first loss value LC is calculated based on the predicted data and the first label data, the second loss value L MMD is calculated based on the first output value and the second output value, and the training loss value L (Train Loss) is calculated based on the first loss value and the second loss value.
具体的,训练损失值的计算公式如下所示。Specifically, the calculation formula for the training loss value is as follows.
L=LC+λLMMD L= LC + λLMMD
其中,λ表示超参数。通过上述计算训练损失值的公式,能够尽量减少损失,不仅得到最小化域之间的距离(或最大化域混淆),而且还得到一个有利于训练强分类器的表示,这样的表示能够学习容易跨域迁移的强分类器。Among them, λ represents a hyperparameter. Through the above formula for calculating the training loss value, the loss can be minimized as much as possible, not only minimizing the distance between domains (or maximizing domain confusion), but also obtaining a representation that is conducive to training a strong classifier. Such a representation can learn a strong classifier that is easy to transfer across domains.
本申请实施例中,仅使用源域的样本数据直接训练分类器通常会导致对源域的分布的过拟合,从而导致在目标域识别时测试时性能下降。因此,本发明学习一种能够最小化源域分布和目标域分布之间距离的表示,可以在源域的样本数据上训练分类器,并以最小的精度损失直接将其应用于目标域。为了最小化源域与目标域的分布之间的域差异,考虑标准分布距离度量,即最大平均差异(MMD)。运用一个特征映射函数(·),通过XS表示源域的第一样本数据集,第一样本数据集中具有多个第一样本数据xs,通过XT表示目标域的第二样本数据集,第二样本数据集中具有多个第二样本数据xt,计算源域中的第一样本数据xs∈XS和目标域的第二样本数据xt∈XT的最大平均差异,即可得到对应的第二损失值,第二损失值的计算公式如下所示。In the embodiment of the present application, directly training the classifier using only the sample data of the source domain usually leads to overfitting of the distribution of the source domain, thereby resulting in performance degradation during testing when identifying the target domain. Therefore, the present invention learns a representation that can minimize the distance between the source domain distribution and the target domain distribution, and can train the classifier on the sample data of the source domain and directly apply it to the target domain with minimal accuracy loss. In order to minimize the domain difference between the distribution of the source domain and the target domain, the standard distribution distance metric, namely the maximum mean difference (MMD), is considered. Using a feature mapping function (·), X S represents the first sample data set of the source domain, and the first sample data set has multiple first sample data x s , and X T represents the second sample data set of the target domain, and the second sample data set has multiple second sample data x t . The maximum average difference between the first sample data x s ∈ X S in the source domain and the second sample data x t ∈ X T in the target domain is calculated, and the corresponding second loss value can be obtained. The calculation formula of the second loss value is as follows.
第一损失值的计算公式如下所示。 The calculation formula for the first loss value is as follows.
上述公式中,N表示土舱压力预测数据的数量,表示第i个样本数据所对应的标签数据,表示第i个样本数据的土舱压力预测数据,|XS|表示第一样本数据集中的第一样本数据个数,|XT|表示第二样本数据集中的第二样本数据个数。 In the above formula, N represents the number of predicted data of soil tank pressure. Represents the label data corresponding to the i-th sample data, represents the predicted data of the soil compartment pressure of the i-th sample data, |X S | represents the number of first sample data in the first sample data set, and |X T | represents the number of second sample data in the second sample data set.
在本发明的一示例性实施例中,请参阅图3,土舱压力预测模型迁移学习所述土舱压力预测模型包括参数特征卷积模块、时序特征提取模块、特征串联预测模块和最大平均差异适配层;所述参数特征卷积模块的输出端和所述时序特征提取模块的输出端分别与所述特征串联预测模块的输入端连接,所述最大平均差异适配层设置在所述特征串联预测模块中。In an exemplary embodiment of the present invention, please refer to Figure 3, the soil compartment pressure prediction model transfer learning includes a parameter feature convolution module, a time series feature extraction module, a feature series prediction module and a maximum average difference adaptation layer; the output end of the parameter feature convolution module and the output end of the time series feature extraction module are respectively connected to the input end of the feature series prediction module, and the maximum average difference adaptation layer is arranged in the feature series prediction module.
本发明实施例中,土舱压力预测模型的模型结构如图2所示,其主要由三个模块构成:参数特征卷积模块、时序特征提取模块和特征串联预测模块。其中参数特征卷积模块由卷积层、池化层和全连接层组成。卷积层设置2层,采用二维卷积(Conv2D),用于提取施工参数和地质参数的关联特征。池化层后需连接Dropout层,以减小参数的冗余度,防止模型过拟合。全连接层设置4层,用于学习关联特征的非线性。时序特征提取模块由GRU层(门控循环单元)和全连接层组成。GRU层设置2层,时序特征提取模块中的全连接层的结构与参数特征卷积模块中的全连接层的结构相同。特征串联预测模块由串联层和全连接层组成,能够将输入的特征进行融合,最大平均差异适配层设置在特征串联预测模块的串联层和全连接层之间,特征串联预测模块中的全连接层设置4层。In an embodiment of the present invention, the model structure of the soil compartment pressure prediction model is shown in FIG2, which is mainly composed of three modules: a parameter feature convolution module, a time series feature extraction module, and a feature series prediction module. The parameter feature convolution module is composed of a convolution layer, a pooling layer, and a fully connected layer. The convolution layer is set to 2 layers, and a two-dimensional convolution (Conv2D) is used to extract the associated features of the construction parameters and the geological parameters. The Dropout layer needs to be connected after the pooling layer to reduce the redundancy of the parameters and prevent the model from overfitting. The fully connected layer is set to 4 layers, which is used to learn the nonlinearity of the associated features. The time series feature extraction module is composed of a GRU layer (gated recurrent unit) and a fully connected layer. The GRU layer is set to 2 layers, and the structure of the fully connected layer in the time series feature extraction module is the same as the structure of the fully connected layer in the parameter feature convolution module. The feature series prediction module is composed of a series layer and a fully connected layer, which can fuse the input features. The maximum average difference adaptation layer is set between the series layer and the fully connected layer of the feature series prediction module, and the fully connected layer in the feature series prediction module is set to 4 layers.
在将源域的土舱压力预测模型迁移到目标域的土舱压力预测模型,并对模型的参数进行调整时,首先冻结模型中除特征串联预测模块中的全连接层和最大平均差异适配层以外的所有参数,并使用目标域中带标签数据的第二样本数据来更新特征串联预测模块中的全连接层和最大平均差异适配层的参数。然后,使用目标域的测试样本数据来计算土舱压力预测模型在目标域的决定系数R2。通过这种方法,这样可以将土舱压力预测模型在源域所学习到的知识迁移到目标域中,并且只需要少量的目标域的第二样本数据来进行微调(Finetune)。When migrating the soil cabin pressure prediction model in the source domain to the soil cabin pressure prediction model in the target domain and adjusting the parameters of the model, first freeze all parameters in the model except the fully connected layer and the maximum average difference adaptation layer in the feature series prediction module, and use the second sample data with labeled data in the target domain to update the parameters of the fully connected layer and the maximum average difference adaptation layer in the feature series prediction module. Then, use the test sample data in the target domain to calculate the determination coefficient R2 of the soil cabin pressure prediction model in the target domain. In this way, the knowledge learned by the soil cabin pressure prediction model in the source domain can be migrated to the target domain, and only a small amount of second sample data in the target domain is needed for fine-tuning (Finetune).
土舱压力预测模型涉及的超参数还包括各模块网络的超参数,如各模块输入数据的维度和各层的尺寸、数量及激活函数等,和模型训练和优化的超参数,如学习率和回合数等。The hyperparameters involved in the soil cabin pressure prediction model also include the hyperparameters of each module network, such as the dimension of the input data of each module and the size, number and activation function of each layer, and the hyperparameters of model training and optimization, such as learning rate and number of rounds.
在本发明的一示例性实施例中,请参阅图4,在步骤130土舱压力预测模型迁移学习基于所述第二样本数据对所述土舱压力预测模型的参数进行调整,得到目标域的土舱压力预测模型之后,所述方法还包括步骤410至步骤440,详细介绍如下。In an exemplary embodiment of the present invention, please refer to Figure 4. In step 130, the soil cabin pressure prediction model transfer learning adjusts the parameters of the soil cabin pressure prediction model based on the second sample data to obtain the soil cabin pressure prediction model of the target domain. The method also includes steps 410 to 440, which are described in detail as follows.
步骤410,获取目标域中,距离当前时刻在预设时间步长范围内的第一施工参数、第一地质参数和第一土舱压力参数,以及获取当前时间步长的第二施工参数和第二地质参数。Step 410, obtaining a first construction parameter, a first geological parameter, and a first soil compartment pressure parameter in the target domain within a preset time step range from the current moment, and obtaining a second construction parameter and a second geological parameter of the current time step.
本发明实施例中,如图5所示,在得到目标域的土舱压力预测模型后,获取目标域中,距离当前时刻在预设时间步长范围内的第一施工参数、第一地质参数和第一土舱压力参数,预设时间步长范围如图5所示的时间步长q-(Q-1)至q-1,同时获取当前时间步长的第二施工参数和第二地质参数,如图5所示的时间步长q。具体的,预设时间步长范围可设置为距离当前时刻8个时间步长(min)。In the embodiment of the present invention, as shown in FIG5, after the soil compartment pressure prediction model of the target domain is obtained, the first construction parameter, the first geological parameter and the first soil compartment pressure parameter in the target domain within the preset time step range from the current moment are obtained, and the preset time step range is the time step q-(Q-1) to q-1 shown in FIG5, and the second construction parameter and the second geological parameter of the current time step are obtained at the same time, such as the time step q shown in FIG5. Specifically, the preset time step range can be set to 8 time steps (min) from the current moment.
步骤420,分别对所述第一施工参数、所述第一地质参数、所述第一土舱压力参数、所述第二施工参数和所述第二地质参数进行无量纲化处理,将无量纲化处理后的所述第一施工参数和所述第一地质参数输入所述参数特征卷积模块进行处理,得到第三输出值。Step 420, respectively perform dimensionless processing on the first construction parameter, the first geological parameter, the first soil compartment pressure parameter, the second construction parameter and the second geological parameter, and input the dimensionless processed first construction parameter and the first geological parameter into the parameter feature convolution module for processing to obtain a third output value.
本发明实施例中,分别对获取到的各个参数进行无量纲化处理,在图5中,经过无量纲化处理后的施工参数和地质参数统一表示为特征参数,表示在时间步长Q的第M个特征参数。经过无量纲化处理土舱压力参数为对应的时间步长的土舱压力空间特征系数无量纲化值(Ua、Ub、Uc、Ud)。In the embodiment of the present invention, each parameter obtained is dimensionally processed. In FIG5 , the construction parameters and geological parameters after dimensionally processed are uniformly expressed as characteristic parameters. It represents the Mth characteristic parameter at the time step Q. After dimensionless processing, the soil cabin pressure parameter is the dimensionless value of the soil cabin pressure spatial characteristic coefficient (U a , U b , U c , U d ) of the corresponding time step.
再将无量纲化处理后的第一施工参数和第一地质参数输入所述参数特征卷积模块进行处理,得到第三输出值。The dimensionless first construction parameter and the first geological parameter are then input into the parameter feature convolution module for processing to obtain a third output value.
步骤430,将无量纲化处理后的所述第一土舱压力参数输入所述时序特征提取模块进行处理,得到第四输出值。Step 430: Input the dimensionless processed first soil compartment pressure parameter into the time series feature extraction module for processing to obtain a fourth output value.
本发明实施例中,同时将无量纲化处理后的第一土舱压力参数输入时序特征提取模块进行处理,得到第四输出值。In the embodiment of the present invention, the dimensionless first soil compartment pressure parameter is simultaneously input into the time series feature extraction module for processing to obtain a fourth output value.
步骤440,将无量纲化处理后的所述第二施工参数和所述第二地质参数,以及所述第三输出值和所述第四输出值输入至所述特征串联预测模块进行处理,得到当前时间步长的目标土舱压力预测值。Step 440: Input the dimensionless processed second construction parameter and the second geological parameter, as well as the third output value and the fourth output value into the characteristic series prediction module for processing to obtain a predicted value of the target soil compartment pressure at the current time step.
本发明实施例中,将无量纲化处理后的第二施工参数和第二地质参数,以及第三输出值和第四输出值输入至特征串联预测模块的串联词进行特征融合,并经由最大平均差异适配层和全连接层进行处理,得到当前时间步长的目标土舱压力预测值。特征串联预测模块所输出的结果为对应的土舱压力空间特征函数(Ua、Ub、Uc、Ud),将其进行特征参数导引,即可得到最终的目标土舱压力预测值。In the embodiment of the present invention, the dimensionless second construction parameter and the second geological parameter, as well as the third output value and the fourth output value are input into the concatenation words of the feature series prediction module for feature fusion, and are processed through the maximum average difference adaptation layer and the full connection layer to obtain the target soil cabin pressure prediction value of the current time step. The result output by the feature series prediction module is the corresponding soil cabin pressure spatial characteristic function (U a , U b , U c , U d ), which is guided by the characteristic parameters to obtain the final target soil cabin pressure prediction value.
在本发明的另一实施例中,还可将经过无量纲化处理后的第二地质参数、第二施工参数中的主动调控值,以及第三输出值和第四输出值输入特征串联预测模块中进行处理,得到目标土舱压力预测值。施工参数和地质参数与后续的施工参数和地质数据相同,在此不进行赘述。In another embodiment of the present invention, the dimensionless processed second geological parameter, the active control value in the second construction parameter, and the third output value and the fourth output value can also be input into the characteristic series prediction module for processing to obtain the target soil compartment pressure prediction value. The construction parameters and geological parameters are the same as the subsequent construction parameters and geological data, and are not described in detail here.
在本发明的一示例性实施例中,土舱压力预测模型迁移学习在步骤110所述获取多个源域的第一样本数据和多个目标域的第二样本数据之前,所述方法还包括下列步骤,详细介绍如下。In an exemplary embodiment of the present invention, before the soil compartment pressure prediction model transfer learning obtains the first sample data of multiple source domains and the second sample data of multiple target domains in step 110, the method further includes the following steps, which are described in detail as follows.
获取所述源域和所述目标域的多个原始施工参数和原始土舱压力参数。A plurality of original construction parameters and original soil compartment pressure parameters of the source domain and the target domain are obtained.
获取所述原始施工参数和所述原始土舱压力参数对应的无量纲化处理策略。A dimensionless processing strategy corresponding to the original construction parameters and the original soil compartment pressure parameters is obtained.
通过所述对应的无量纲化处理策略,分别对所述原始施工参数和所述原始土舱压力参数进行无量纲化处理,得到所述第一样本数据和所述第二样本数据。The original construction parameters and the original soil compartment pressure parameters are respectively dimensionally processed by the corresponding dimensionless processing strategy to obtain the first sample data and the second sample data.
本发明实施例中,原始施工参数包括膨润土流量、泡沫液体流量、泡沫空气流量、A/C组油缸压力偏心距、B/D组油缸压力偏心距、推进速度与刀盘转速、上卸料门开度、下卸料门开度、螺旋机转速、刀盘转矩、泡沫枪压力、上下油缸行程、左右油缸行程、侧滚、倾角。原始施工参数可分为主动调控值与被动调控值两类,其中主动调控值包括膨润土流量、泡沫液体流量、泡沫空气流量、A/C组油缸压力偏心距、B/D组油缸压力偏心距、推进速度与刀盘转速、上卸料门开度、下卸料门开度、螺旋机转速。被动调控值包括刀盘转矩、泡沫枪压力、上下油缸行程、左右油缸行程、侧滚、倾角。原始土舱压力参数为土舱压力。各个原始施工参数和原始土舱压力参数所对应的无量纲化处理策略如图6所示。In the embodiment of the present invention, the original construction parameters include bentonite flow, foam liquid flow, foam air flow, A/C group cylinder pressure eccentricity, B/D group cylinder pressure eccentricity, propulsion speed and cutter head speed, upper discharge door opening, lower discharge door opening, screw machine speed, cutter head torque, foam gun pressure, upper and lower cylinder strokes, left and right cylinder strokes, roll, and inclination. The original construction parameters can be divided into two categories: active control values and passive control values, wherein the active control values include bentonite flow, foam liquid flow, foam air flow, A/C group cylinder pressure eccentricity, B/D group cylinder pressure eccentricity, propulsion speed and cutter head speed, upper discharge door opening, lower discharge door opening, and screw machine speed. Passive control values include cutter head torque, foam gun pressure, upper and lower cylinder strokes, left and right cylinder strokes, roll, and inclination. The original soil compartment pressure parameter is the soil compartment pressure. The dimensionless processing strategy corresponding to each original construction parameter and the original soil compartment pressure parameter is shown in Figure 6.
原始地质参数包括埋深、地下水位、静止土压力、掌子面抗压强度、掌子面标准贯入度,原始地质参数无需进行无量纲化处理。The original geological parameters include burial depth, groundwater level, static soil pressure, tunnel face compressive strength, and tunnel face standard penetration. The original geological parameters do not need to be dimensionally processed.
本发明实施例中,在构建第一样本数据和第二样本数据时,在源域内,将预设时间步长范围内的原始地质参数和经过无量纲化处理后的原始施工参数,以及与预设时间步长范围相邻的后一个时间步长的原始地质参数和经过无量纲化处理后的原始施工参数作为一个第一样本数据的第一训练数据。即如预设时间步长范围为8时,将8个时间步长和第9个时间步长的原始地质参数和经过无量纲化处理后的原始施工参数作为一个第一训练数据。将对应的预设时间步长范围内的经过无量纲化处理后的原始土舱压力数据,以及与预设时间步长范围相邻的后一个时间步长的经过无量纲化处理后的原始土舱压力数据作为第一标签数据。In the embodiment of the present invention, when constructing the first sample data and the second sample data, in the source domain, the original geological parameters and the original construction parameters after dimensionless processing within the preset time step range, and the original geological parameters and the original construction parameters after dimensionless processing of the next time step adjacent to the preset time step range are used as the first training data of the first sample data. That is, when the preset time step range is 8, the original geological parameters and the original construction parameters after dimensionless processing of the 8th time step and the 9th time step are used as the first training data. The original soil compartment pressure data after dimensionless processing within the corresponding preset time step range, and the original soil compartment pressure data after dimensionless processing of the next time step adjacent to the preset time step range are used as the first label data.
在目标域内,将预设时间步长范围内的原始地质参数和经过无量纲化处理后的原始施工参数,以及与预设时间步长范围相邻的后一个时间步长的原始地质参数和经过无量纲化处理后的原始施工参数作为一个第二样本数据的第二训练数据。将对应的预设时间步长范围内的经过无量纲化处理后的原始土舱压力数据,以及与预设时间步长范围相邻的后一个时间步长的经过无量纲化处理后的原始土舱压力数据作为第二标签数据。In the target domain, the original geological parameters and the dimensionless original construction parameters within the preset time step range, as well as the original geological parameters and the dimensionless original construction parameters of the next time step adjacent to the preset time step range are used as second training data of a second sample data. The dimensionless original soil compartment pressure data within the corresponding preset time step range, as well as the dimensionless original soil compartment pressure data of the next time step adjacent to the preset time step range are used as second label data.
将训练样本输入到基础土舱压力预测模型中进行训练时,训练样本中的数据输入到基础土舱压力预测模型的各个模块的流程与前述步骤410至步骤440类似。When the training samples are input into the basic soil compartment pressure prediction model for training, the process of inputting the data in the training samples into each module of the basic soil compartment pressure prediction model is similar to the aforementioned steps 410 to 440.
在本发明的一示例性实施例中,所述原始土舱压力参数所对应的无量纲化处理策略为通过描述土舱压力空间分布的物理特征函数,得到均值项、上下梯度项、左右梯度项及局部异质项的特征系数,并根据所述特征系数计算对应的无量纲值。In an exemplary embodiment of the present invention, the dimensionless processing strategy corresponding to the original soil compartment pressure parameters is to obtain the characteristic coefficients of the mean term, the upper and lower gradient terms, the left and right gradient terms and the local heterogeneous terms by describing the physical characteristic function of the spatial distribution of the soil compartment pressure, and calculate the corresponding dimensionless values based on the characteristic coefficients.
本发明实施例中,构建了适用于描述土舱压力空间分布的物理特征函数,可对土舱压力空间分布特征进行解耦,从而实现预测目标变量的无量纲化化。该物理特征函数将土舱压力分为四项,包括均值项、上下梯度项、左右梯度项及局部异质项,如下列公式所示。In the embodiment of the present invention, a physical characteristic function suitable for describing the spatial distribution of soil cabin pressure is constructed, which can decouple the spatial distribution characteristics of soil cabin pressure, thereby realizing the dimensionless prediction of the target variable. The physical characteristic function divides the soil cabin pressure into four items, including the mean item, the upper and lower gradient item, the left and right gradient item, and the local heterogeneous item, as shown in the following formula.
P(θ,r)=[a+bcos(θ)+csin(θ)+dcos(θ)]g(r)P(θ,r)=[a+bcos(θ)+csin(θ)+dcos(θ)]g(r)
上述公式中:P(θ,r)表示土舱压力,坐标系是以土压舱几何中心为极点、竖直向上为极轴的极坐标系;θ为极角;r为极径;g(r)为径向系数;a、b、c、d分别为土舱压力场的均值项、上下梯度项、左右梯度项及局部异质项的特征系数。计算土舱压力空间特征系数无量纲化值Ua、Ub、Uc、Ud的计算公式如下所示。In the above formula: P(θ, r) represents the soil tank pressure, the coordinate system is a polar coordinate system with the geometric center of the soil tank as the pole and the vertical upward as the polar axis; θ is the polar angle; r is the polar diameter; g(r) is the radial coefficient; a, b, c, d are the characteristic coefficients of the mean term, upper and lower gradient term, left and right gradient term and local heterogeneous term of the soil tank pressure field respectively. The calculation formulas for the dimensionless values of the spatial characteristic coefficients of the soil tank pressure Ua , Ub , Uc , Ud are shown below.
Ua=a/静止土压力。U a = a/static earth pressure.
Ub=b/静止土压力。U b = b/static earth pressure.
Uc=c/静止土压力。U c = c/static earth pressure.
Ud=d/静止土压力。U d = d/static earth pressure.
基于此过程,将每分钟的土舱压力参数进行无量纲化处理,得到每分钟土舱压力空间分布物理特征函数的特征系数的无量纲化值。Based on this process, the soil cabin pressure parameters per minute are dimensionally processed to obtain the dimensionless values of the characteristic coefficients of the physical characteristic functions of the spatial distribution of the soil cabin pressure per minute.
下面对本发明提供的土舱压力预测模型迁移学习装置进行描述,下文描述的土舱压力预测模型迁移学习装置与上文描述的土舱压力预测模型迁移学习方法可相互对应参照。需要说明的是,下文实施例所提供的装置与上述实施例所提供的方法属于同一构思,其中各个模块和单元执行操作的具体方式已经在方法实施例中进行了详细描述,此处不再赘述。The soil compartment pressure prediction model transfer learning device provided by the present invention is described below. The soil compartment pressure prediction model transfer learning device described below and the soil compartment pressure prediction model transfer learning method described above can be referred to each other. It should be noted that the device provided in the following embodiment and the method provided in the above embodiment belong to the same concept, and the specific way in which each module and unit performs the operation has been described in detail in the method embodiment, which will not be repeated here.
在本发明的一个示例性实施例中,请参阅图7,图7是根据一示例性实施例示出的一种土舱压力预测模型迁移学习装置,包括下列模块。In an exemplary embodiment of the present invention, please refer to FIG. 7 , which is a soil compartment pressure prediction model transfer learning device shown according to an exemplary embodiment, including the following modules.
第一获取模块710,配置为获取多个源域的第一样本数据和多个目标域的第二样本数据;其中,所述第一样本数据和所述第二样本数据经过无量纲化处理。The first acquisition module 710 is configured to acquire first sample data of multiple source domains and second sample data of multiple target domains; wherein the first sample data and the second sample data are dimensionless processed.
训练模块720,配置为将所述第一样本数据和所述第二样本数据输入源域的基础土舱压力预测模型中进行迭代训练,得到源域的土舱压力预测模型;其中,所述基础土舱压力预测模型中设置有最大平均差异适配层。The training module 720 is configured to input the first sample data and the second sample data into the basic soil compartment pressure prediction model of the source domain for iterative training to obtain the soil compartment pressure prediction model of the source domain; wherein the basic soil compartment pressure prediction model is provided with a maximum average difference adaptation layer.
迁移模块730,配置为将所述源域的土舱压力预测模型迁移至目标域中,并基于所述第二样本数据对所述土舱压力预测模型的参数进行调整,得到目标域的土舱压力预测模型。The migration module 730 is configured to migrate the soil compartment pressure prediction model of the source domain to the target domain, and adjust the parameters of the soil compartment pressure prediction model based on the second sample data to obtain the soil compartment pressure prediction model of the target domain.
在本发明的一个示例性实施例中,所述第一样本数据包括第一训练数据和第一标签数据,所述第二样本数据包括第二训练数据和第二标签数据;训练模块720,包括下列子模块。In an exemplary embodiment of the present invention, the first sample data includes first training data and first label data, and the second sample data includes second training data and second label data; the training module 720 includes the following submodules.
输入子模块,配置为将所述第一训练数据和所述第二训练数据输入至所述基础土舱压力预测模型进行处理,得到所述第一训练数据对应的土舱压力预测数据、所述第一训练数据在所述最大平均差异适配层的第一输出值和所述第二训练数据在所述最大平均差异适配层的第二输出值。The input submodule is configured to input the first training data and the second training data into the basic soil compartment pressure prediction model for processing, so as to obtain the soil compartment pressure prediction data corresponding to the first training data, the first output value of the first training data at the maximum average difference adaptation layer, and the second output value of the second training data at the maximum average difference adaptation layer.
计算子模块,配置为根据所述土舱压力预测数据、所述第一标签数据、所述第一输出值和所述第二输出值计算训练损失值。A calculation submodule is configured to calculate a training loss value based on the soil compartment pressure prediction data, the first label data, the first output value and the second output value.
训练子模块,配置为根据所述训练损失值对所述基础土舱压力预测模型将进行迭代训练。The training submodule is configured to iteratively train the basic soil compartment pressure prediction model according to the training loss value.
在本发明的一个示例性实施例中,计算子模块,包括下列子模块:In an exemplary embodiment of the present invention, the calculation submodule includes the following submodules:
第一计算单元,配置为根据所述土舱压力预测数据、所述第一标签数据计算第一损失值。The first calculation unit is configured to calculate a first loss value according to the soil compartment pressure prediction data and the first label data.
第二计算单元,配置为根据所述第一输出值和所述第二输出值计算第二损失值。The second calculation unit is configured to calculate a second loss value according to the first output value and the second output value.
第三计算单元,配置为根据所述第一损失值和所述第二损失值计算所述训练损失值。A third calculation unit is configured to calculate the training loss value according to the first loss value and the second loss value.
在本发明的一个示例性实施例中,所述土舱压力预测模型包括参数特征卷积模块、时序特征提取模块、特征串联预测模块和最大平均差异适配层;所述参数特征卷积模块的输出端和所述时序特征提取模块的输出端分别与所述特征串联预测模块的输入端连接,所述最大平均差异适配层设置在所述特征串联预测模块中。In an exemplary embodiment of the present invention, the soil compartment pressure prediction model includes a parameter feature convolution module, a time series feature extraction module, a feature series prediction module and a maximum average difference adaptation layer; the output end of the parameter feature convolution module and the output end of the time series feature extraction module are respectively connected to the input end of the feature series prediction module, and the maximum average difference adaptation layer is arranged in the feature series prediction module.
在本发明的一个示例性实施例中,土舱压力预测模型迁移学习装置,还包括下列模块。In an exemplary embodiment of the present invention, the soil compartment pressure prediction model transfer learning device also includes the following modules.
第二获取模块,配置为获取目标域中,距离当前时刻在预设时间步长范围内的第一施工参数、第一地质参数和第一土舱压力参数,以及获取当前时间步长的第二施工参数和第二地质参数。The second acquisition module is configured to acquire the first construction parameter, the first geological parameter and the first soil compartment pressure parameter in the target domain within a preset time step range from the current moment, and to acquire the second construction parameter and the second geological parameter of the current time step.
第一无量纲化处理模块,配置为分别对所述第一施工参数、所述第一地质参数、所述第一土舱压力参数、所述第二施工参数和所述第二地质参数进行无量纲化处理,将无量纲化处理后的所述第一施工参数和所述第一地质参数输入所述参数特征卷积模块进行处理,得到第三输出值。The first dimensionless processing module is configured to perform dimensionless processing on the first construction parameter, the first geological parameter, the first soil compartment pressure parameter, the second construction parameter and the second geological parameter respectively, and input the first construction parameter and the first geological parameter after dimensionless processing into the parameter feature convolution module for processing to obtain a third output value.
第一输入模块,配置为将无量纲化处理后的所述第一土舱压力参数输入所述时序特征提取模块进行处理,得到第四输出值。The first input module is configured to input the dimensionless processed first soil compartment pressure parameter into the time series feature extraction module for processing to obtain a fourth output value.
第二输入模块,配置为将无量纲化处理后的所述第二施工参数和所述第二地质参数,以及所述第三输出值和所述第四输出值输入至所述特征串联预测模块进行处理,得到当前时间步长的目标土舱压力预测值。The second input module is configured to input the dimensionless processed second construction parameter and the second geological parameter, as well as the third output value and the fourth output value into the characteristic series prediction module for processing to obtain the target soil compartment pressure prediction value of the current time step.
在本发明的一个示例性实施例中,土舱压力预测模型迁移学习装置,还包括下列模块。In an exemplary embodiment of the present invention, the soil compartment pressure prediction model transfer learning device also includes the following modules.
第二获取模块,配置为获取所述源域和所述目标域的多个原始施工参数和原始土舱压力参数。The second acquisition module is configured to acquire a plurality of original construction parameters and original soil compartment pressure parameters of the source domain and the target domain.
第三获取模块,配置为获取所述原始施工参数和所述原始土舱压力参数对应的无量纲化处理策略。The third acquisition module is configured to obtain the dimensionless processing strategy corresponding to the original construction parameters and the original soil compartment pressure parameters.
第二无量纲化处理模块,配置为通过所述对应的无量纲化处理策略,分别对所述原始施工参数和所述原始土舱压力参数进行无量纲化处理,得到所述第一样本数据和所述第二样本数据。The second dimensionless processing module is configured to perform dimensionless processing on the original construction parameters and the original soil compartment pressure parameters respectively through the corresponding dimensionless processing strategy to obtain the first sample data and the second sample data.
在本发明的一个示例性实施例中,所述土舱压力参数所对应的无量纲化处理策略为通过描述土舱压力空间分布的物理特征函数,得到均值项、上下梯度项、左右梯度项及局部异质项的特征系数,并根据所述特征系数计算对应的无量纲化值。In an exemplary embodiment of the present invention, the dimensionless processing strategy corresponding to the soil compartment pressure parameters is to obtain the characteristic coefficients of the mean term, the upper and lower gradient terms, the left and right gradient terms and the local heterogeneous terms by describing the physical characteristic function of the spatial distribution of the soil compartment pressure, and calculate the corresponding dimensionless values based on the characteristic coefficients.
图8示例了一种电子设备的实体结构示意图,如图8所示,该电子设备可以包括:处理器(processor)810、通信接口(Communications Interface)820、存储器(memory)830和通信总线840,其中,处理器810,通信接口820,存储器830通过通信总线840完成相互间的通信。处理器810可以调用存储器830中的逻辑指令,以执行土舱压力预测模型迁移学习方法,该方法包括:获取多个源域的第一样本数据和多个目标域的第二样本数据;其中,所述第一样本数据和所述第二样本数据经过无量纲化处理;将所述第一样本数据和所述第二样本数据输入源域的基础土舱压力预测模型中进行迭代训练,得到源域的土舱压力预测模型;其中,所述基础土舱压力预测模型中设置有最大平均差异适配层;将所述源域的土舱压力预测模型迁移至目标域中,并基于所述第二样本数据对所述土舱压力预测模型的参数进行调整,得到目标域的土舱压力预测模型。FIG8 illustrates a schematic diagram of the physical structure of an electronic device. As shown in FIG8 , the electronic device may include: a processor 810, a communication interface 820, a memory 830 and a communication bus 840, wherein the processor 810, the communication interface 820 and the memory 830 communicate with each other through the communication bus 840. The processor 810 may call the logic instructions in the memory 830 to execute the soil cabin pressure prediction model transfer learning method, which includes: obtaining a plurality of first sample data of source domains and a plurality of second sample data of target domains; wherein the first sample data and the second sample data are dimensionless processed; inputting the first sample data and the second sample data into the basic soil cabin pressure prediction model of the source domain for iterative training to obtain the soil cabin pressure prediction model of the source domain; wherein the basic soil cabin pressure prediction model is provided with a maximum average difference adaptation layer; migrating the soil cabin pressure prediction model of the source domain to the target domain, and adjusting the parameters of the soil cabin pressure prediction model based on the second sample data to obtain the soil cabin pressure prediction model of the target domain.
此外,上述的存储器830中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。In addition, the logic instructions in the above-mentioned memory 830 can be implemented in the form of a software functional unit and can be stored in a computer-readable storage medium when it is sold or used as an independent product. Based on such an understanding, the technical solution of the present invention, in essence, or the part that contributes to the prior art or the part of the technical solution, can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including a number of instructions for a computer device (which can be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in each embodiment of the present invention. The aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), disk or optical disk and other media that can store program codes.
另一方面,本发明还提供一种计算机程序产品,所述计算机程序产品包括计算机程序,计算机程序可存储在非暂态计算机可读存储介质上,所述计算机程序被处理器执行时,计算机能够执行上述各方法所提供的土舱压力预测模型迁移学习方法,该方法包括:获取多个源域的第一样本数据和多个目标域的第二样本数据;其中,所述第一样本数据和所述第二样本数据经过无量纲化处理;将所述第一样本数据和所述第二样本数据输入源域的基础土舱压力预测模型中进行迭代训练,得到源域的土舱压力预测模型;其中,所述基础土舱压力预测模型中设置有最大平均差异适配层;将所述源域的土舱压力预测模型迁移至目标域中,并基于所述第二样本数据对所述土舱压力预测模型的参数进行调整,得到目标域的土舱压力预测模型。On the other hand, the present invention also provides a computer program product, which includes a computer program, and the computer program can be stored on a non-transitory computer-readable storage medium. When the computer program is executed by a processor, the computer can execute the soil cabin pressure prediction model transfer learning method provided by the above methods, and the method includes: obtaining first sample data of multiple source domains and second sample data of multiple target domains; wherein the first sample data and the second sample data are dimensionless processed; the first sample data and the second sample data are input into the basic soil cabin pressure prediction model of the source domain for iterative training to obtain the soil cabin pressure prediction model of the source domain; wherein a maximum average difference adaptation layer is provided in the basic soil cabin pressure prediction model; the soil cabin pressure prediction model of the source domain is migrated to the target domain, and the parameters of the soil cabin pressure prediction model are adjusted based on the second sample data to obtain the soil cabin pressure prediction model of the target domain.
又一方面,本发明还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现以执行上述各方法提供的土舱压力预测模型迁移学习方法,该方法包括:获取多个源域的第一样本数据和多个目标域的第二样本数据;其中,所述第一样本数据和所述第二样本数据经过无量纲化处理;将所述第一样本数据和所述第二样本数据输入源域的基础土舱压力预测模型中进行迭代训练,得到源域的土舱压力预测模型;其中,所述基础土舱压力预测模型中设置有最大平均差异适配层;将所述源域的土舱压力预测模型迁移至目标域中,并基于所述第二样本数据对所述土舱压力预测模型的参数进行调整,得到目标域的土舱压力预测模型。On the other hand, the present invention also provides a non-transitory computer-readable storage medium having a computer program stored thereon, which, when executed by a processor, is implemented to execute the soil cabin pressure prediction model transfer learning method provided by the above-mentioned methods, the method comprising: obtaining first sample data of multiple source domains and second sample data of multiple target domains; wherein the first sample data and the second sample data are dimensionlessly processed; the first sample data and the second sample data are input into a basic soil cabin pressure prediction model of the source domain for iterative training to obtain a soil cabin pressure prediction model of the source domain; wherein a maximum average difference adaptation layer is provided in the basic soil cabin pressure prediction model; the soil cabin pressure prediction model of the source domain is migrated to the target domain, and the parameters of the soil cabin pressure prediction model are adjusted based on the second sample data to obtain a soil cabin pressure prediction model of the target domain.
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。The device embodiments described above are merely illustrative, wherein the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may be distributed on multiple network units. Some or all of the modules may be selected according to actual needs to achieve the purpose of the scheme of this embodiment. Those of ordinary skill in the art may understand and implement it without creative effort.
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。Through the description of the above implementation methods, those skilled in the art can clearly understand that each implementation method can be implemented by means of software plus a necessary general hardware platform, and of course, it can also be implemented by hardware. Based on this understanding, the above technical solution is essentially or the part that contributes to the prior art can be embodied in the form of a software product, and the computer software product can be stored in a computer-readable storage medium, such as ROM/RAM, a disk, an optical disk, etc., including a number of instructions for a computer device (which can be a personal computer, a server, or a network device, etc.) to execute the methods described in each embodiment or some parts of the embodiments.
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention, rather than to limit it. Although the present invention has been described in detail with reference to the aforementioned embodiments, those skilled in the art should understand that they can still modify the technical solutions described in the aforementioned embodiments, or make equivalent replacements for some of the technical features therein. However, these modifications or replacements do not deviate the essence of the corresponding technical solutions from the spirit and scope of the technical solutions of the embodiments of the present invention.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202410672680.5A CN118643735B (en) | 2024-05-28 | 2024-05-28 | Soil compartment pressure prediction model transfer learning method, device, equipment and storage medium |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202410672680.5A CN118643735B (en) | 2024-05-28 | 2024-05-28 | Soil compartment pressure prediction model transfer learning method, device, equipment and storage medium |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN118643735A true CN118643735A (en) | 2024-09-13 |
| CN118643735B CN118643735B (en) | 2025-04-01 |
Family
ID=92668605
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202410672680.5A Active CN118643735B (en) | 2024-05-28 | 2024-05-28 | Soil compartment pressure prediction model transfer learning method, device, equipment and storage medium |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN118643735B (en) |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20210012198A1 (en) * | 2018-05-31 | 2021-01-14 | Huawei Technologies Co., Ltd. | Method for training deep neural network and apparatus |
| CN114239859A (en) * | 2022-02-25 | 2022-03-25 | 杭州海康威视数字技术股份有限公司 | Time sequence data prediction method and device based on transfer learning and storage medium |
| CN114548152A (en) * | 2022-01-17 | 2022-05-27 | 上海交通大学 | A transfer learning-based residual life prediction method for marine sliding bearings |
| WO2023071217A1 (en) * | 2021-10-27 | 2023-05-04 | 中国华能集团清洁能源技术研究院有限公司 | Multi-working-condition process industrial fault detection and diagnosis method based on deep transfer learning |
| CN116306229A (en) * | 2023-01-16 | 2023-06-23 | 重庆邮电大学 | Power short-term load prediction method based on deep reinforcement learning and migration learning |
| CN117113034A (en) * | 2023-09-19 | 2023-11-24 | 中国建筑第四工程局有限公司 | Surface settlement prediction method for tunnel excavation based on deep learning and feature transfer learning |
-
2024
- 2024-05-28 CN CN202410672680.5A patent/CN118643735B/en active Active
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20210012198A1 (en) * | 2018-05-31 | 2021-01-14 | Huawei Technologies Co., Ltd. | Method for training deep neural network and apparatus |
| WO2023071217A1 (en) * | 2021-10-27 | 2023-05-04 | 中国华能集团清洁能源技术研究院有限公司 | Multi-working-condition process industrial fault detection and diagnosis method based on deep transfer learning |
| CN114548152A (en) * | 2022-01-17 | 2022-05-27 | 上海交通大学 | A transfer learning-based residual life prediction method for marine sliding bearings |
| CN114239859A (en) * | 2022-02-25 | 2022-03-25 | 杭州海康威视数字技术股份有限公司 | Time sequence data prediction method and device based on transfer learning and storage medium |
| CN116306229A (en) * | 2023-01-16 | 2023-06-23 | 重庆邮电大学 | Power short-term load prediction method based on deep reinforcement learning and migration learning |
| CN117113034A (en) * | 2023-09-19 | 2023-11-24 | 中国建筑第四工程局有限公司 | Surface settlement prediction method for tunnel excavation based on deep learning and feature transfer learning |
Non-Patent Citations (2)
| Title |
|---|
| LI C 等: "A multi-energy load forecasting method based on parallel architecture CNN-GRU and transfer learning for data deficient integrated energy systems", 《ENERGY》, 31 December 2022 (2022-12-31), pages 1 - 8 * |
| 刘克俭: "基于迁移学习的轴承故障诊断与寿命预测研究", 《中国优秀硕士学位论文全文数据库工程科技Ⅱ辑》, 15 May 2024 (2024-05-15), pages 029 - 382 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN118643735B (en) | 2025-04-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN108776969B (en) | Tumor segmentation method in breast ultrasound images based on fully convolutional network | |
| CN112085738B (en) | Image segmentation method based on generation countermeasure network | |
| CN109583340A (en) | A kind of video object detection method based on deep learning | |
| CN105913087A (en) | Object identification method based on optimal pooled convolutional neural network | |
| CN114415663A (en) | Path planning method and system based on deep reinforcement learning | |
| CN112541584B (en) | Deep neural network model parallel mode selection method | |
| CN116945177B (en) | Feeding robot feeding path planning method, feeding robot feeding path planning device, electronic equipment and medium | |
| CN112101364A (en) | A Semantic Segmentation Method Based on Incremental Learning of Parameter Importance | |
| CN118643735A (en) | Soil compartment pressure prediction model transfer learning method, device, equipment and storage medium | |
| CN111814462B (en) | Efficient lifelong relationship extraction method and system based on dynamic regularization | |
| CN112508851A (en) | Mud rock lithology recognition system based on CNN classification algorithm | |
| CN116427949A (en) | Autonomous intelligent control method and system for earth pressure balance of shield machine | |
| Zhang et al. | Semantic segmentation for remote sensing based on RGB images and lidar data using model-agnostic meta-learning and partical Swarm optimization | |
| CN115655263A (en) | Star extraction method based on attitude information | |
| CN118468455B (en) | Depth operator learning compressible flow field prediction method integrating radial basis | |
| CN111027220B (en) | Method for improving injection-production matching degree of oil field | |
| CN116187476B (en) | Lung lobe segmentation model training and lung lobe segmentation method and device based on mixed supervision | |
| CN116109650B (en) | Point cloud instance segmentation model training method and training device | |
| CN114842278B (en) | A visual servoing method based on image error weighted vector | |
| CN112037173A (en) | Chromosome detection method and device and electronic equipment | |
| CN112540404A (en) | Automatic speed analysis method and system based on deep learning | |
| CN115439485A (en) | Slice segmentation model training method and device, slice segmentation method and device | |
| CN113537458A (en) | Method, system and readable storage medium for constructing rational functional neural network | |
| CN113780309A (en) | Method and system for correcting linear array camera image of urban rail vehicle and storage medium | |
| AU2021101831A4 (en) | A Deep Neural Network Based Inverse Modeling Method for Multicomponent Reactive Transport |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |