CN118299022A - Informationized management system and method for surgical equipment - Google Patents
Informationized management system and method for surgical equipment Download PDFInfo
- Publication number
- CN118299022A CN118299022A CN202410667823.3A CN202410667823A CN118299022A CN 118299022 A CN118299022 A CN 118299022A CN 202410667823 A CN202410667823 A CN 202410667823A CN 118299022 A CN118299022 A CN 118299022A
- Authority
- CN
- China
- Prior art keywords
- scale
- frequency time
- time sequence
- usage frequency
- feature vector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H40/00—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
- G16H40/20—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the management or administration of healthcare resources or facilities, e.g. managing hospital staff or surgery rooms
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/213—Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/25—Fusion techniques
- G06F18/253—Fusion techniques of extracted features
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0464—Convolutional networks [CNN, ConvNet]
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/70—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2123/00—Data types
- G06F2123/02—Data types in the time domain, e.g. time-series data
Landscapes
- Engineering & Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Theoretical Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Biomedical Technology (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- General Engineering & Computer Science (AREA)
- Public Health (AREA)
- General Business, Economics & Management (AREA)
- Epidemiology (AREA)
- Primary Health Care (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Business, Economics & Management (AREA)
- Evolutionary Biology (AREA)
- Software Systems (AREA)
- Databases & Information Systems (AREA)
- Pathology (AREA)
- Mathematical Physics (AREA)
- Computing Systems (AREA)
- Molecular Biology (AREA)
- Computational Linguistics (AREA)
- Biophysics (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Medical Treatment And Welfare Office Work (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及信息化管理技术领域,具体地,涉及一种手术设备信息化管理系统及方法。The present invention relates to the technical field of information management, and in particular to an information management system and method for surgical equipment.
背景技术Background technique
手术设备在医疗领域中扮演着至关重要的角色,它们是医生进行手术操作的工具,直接影响到手术的进程和手术效果。优质的手术设备不仅可以提高手术的成功率和效率,还能减少手术中的风险和并发症。随着医疗技术的不断进步和医疗需求的增长,医院内的手术设备种类繁多、规模庞大,如何有效管理和维护这些手术设备,从而有效地进行资源规划和采购计划制定以满足医院手术需求,是医院管理者面临的挑战之一。Surgical equipment plays a vital role in the medical field. They are the tools used by doctors to perform surgical operations, which directly affect the progress and results of the operation. High-quality surgical equipment can not only improve the success rate and efficiency of the operation, but also reduce the risks and complications during the operation. With the continuous advancement of medical technology and the growth of medical needs, the types and scale of surgical equipment in hospitals are various. How to effectively manage and maintain these surgical equipment, so as to effectively carry out resource planning and procurement planning to meet the hospital's surgical needs, is one of the challenges faced by hospital managers.
传统上,医院通常根据经验以及常规的维护和定期的采购计划来管理手术设备,这种方式缺乏对手术设备使用情况的详细数据分析,无法准确了解设备的实际使用情况和需求变化,使得医院往往难以合理规划手术设备的资源分配和进行相应的采购,导致资源浪费和效率低下,同时还会存在采购滞后性的问题,从而影响手术过程的正常进行。Traditionally, hospitals usually manage surgical equipment based on experience, routine maintenance and regular procurement plans. This approach lacks detailed data analysis on the use of surgical equipment and cannot accurately understand the actual use of the equipment and demand changes. As a result, it is often difficult for hospitals to reasonably plan the resource allocation of surgical equipment and make corresponding purchases, resulting in waste of resources and inefficiency. At the same time, there will also be problems with procurement lags, which will affect the normal progress of the surgical process.
因此,期望一种优化的手术设备信息化管理方案。Therefore, an optimized information management solution for surgical equipment is desired.
发明内容Summary of the invention
提供该发明内容部分以便以简要的形式介绍构思,这些构思将在后面的具体实施方式部分被详细描述。该发明内容部分并不旨在标识要求保护的技术方案的关键特征或必要特征,也不旨在用于限制所要求的保护的技术方案的范围。This summary is provided to introduce concepts in a brief form that will be described in detail in the detailed description below. This summary is not intended to identify key features or essential features of the claimed technical solution, nor is it intended to limit the scope of the claimed technical solution.
第一方面,本发明提供了一种手术设备信息化管理方法,所述方法包括:In a first aspect, the present invention provides a method for information management of surgical equipment, the method comprising:
获取特定手术设备的历史使用数据;Obtain historical usage data for specific surgical equipment;
基于第一时间尺度对所述历史使用数据进行切分并统计使用频次以得到第一尺度使用频次时序输入向量;Segmenting the historical usage data based on a first time scale and counting the usage frequency to obtain a first scale usage frequency time series input vector;
基于第二时间尺度对所述历史使用数据进行切分并统计使用频次以得到第二尺度使用频次时序输入向量,其中,所述第一时间尺度不同于所述第二时间尺度;Segmenting the historical usage data based on a second time scale and counting the usage frequency to obtain a second-scale usage frequency time series input vector, wherein the first time scale is different from the second time scale;
通过基于深度神经网络的使用频次时域特征提取器分别对所述第一尺度使用频次时序输入向量和所述第二尺度使用频次时序输入向量进行特征提取以得到第一尺度使用频次时序关联特征向量和第二尺度使用频次时序关联特征向量;Performing feature extraction on the first-scale usage frequency time series input vector and the second-scale usage frequency time series input vector respectively through a usage frequency time domain feature extractor based on a deep neural network to obtain a first-scale usage frequency time series associated feature vector and a second-scale usage frequency time series associated feature vector;
使用多尺度特征融合器对所述第一尺度使用频次时序关联特征向量和所述第二尺度使用频次时序关联特征向量进行处理以得到多尺度使用频次时序关联特征;Using a multi-scale feature fuser to process the first-scale usage frequency temporal correlation feature vector and the second-scale usage frequency temporal correlation feature vector to obtain a multi-scale usage frequency temporal correlation feature;
基于所述多尺度使用频次时序关联特征,确定使用频次短时预测器以得到预测值,并确定是否生成提前采购提示;Based on the multi-scale usage frequency time series correlation characteristics, determining a usage frequency short-term predictor to obtain a prediction value, and determining whether to generate an advance purchase reminder;
其中,所述基于深度神经网络的使用频次时域特征提取器为基于一维卷积层的使用频次时域特征提取器;Wherein, the usage frequency time domain feature extractor based on deep neural network is a usage frequency time domain feature extractor based on one-dimensional convolution layer;
其中,其中,通过基于深度神经网络的使用频次时域特征提取器分别对所述第一尺度使用频次时序输入向量和所述第二尺度使用频次时序输入向量进行特征提取以得到第一尺度使用频次时序关联特征向量和第二尺度使用频次时序关联特征向量,包括:Among them, the first scale usage frequency time series input vector and the second scale usage frequency time series input vector are respectively subjected to feature extraction by a usage frequency time domain feature extractor based on a deep neural network to obtain a first scale usage frequency time series associated feature vector and a second scale usage frequency time series associated feature vector, including:
使用所述基于一维卷积层的使用频次时域特征提取器的各层在层的正向传递中对输入数据分别进行卷积处理、均值池化处理和非线性激活处理,以所述基于一维卷积层的使用频次时域特征提取器的最后一层的输出,为所述第一尺度使用频次时序关联特征向量和所述第二尺度使用频次时序关联特征向量,其中,所述基于一维卷积层的使用频次时域特征提取器的第一层的输入为所述第一尺度使用频次时序输入向量和所述第二尺度使用频次时序输入向量。Each layer of the one-dimensional convolutional layer-based frequency-of-use time-domain feature extractor performs convolution processing, mean pooling processing, and nonlinear activation processing on the input data in the forward pass of the layer, and the output of the last layer of the one-dimensional convolutional layer-based frequency-of-use time-domain feature extractor is the first-scale frequency-of-use time-series associated feature vector and the second-scale frequency-of-use time-series associated feature vector, wherein the input of the first layer of the one-dimensional convolutional layer-based frequency-of-use time-domain feature extractor is the first-scale frequency-of-use time-series input vector and the second-scale frequency-of-use time-series input vector.
可选地,使用多尺度特征融合器对所述第一尺度使用频次时序关联特征向量和所述第二尺度使用频次时序关联特征向量进行处理以得到多尺度使用频次时序关联特征,包括:对所述第一尺度使用频次时序关联特征向量和所述第二尺度使用频次时序关联特征向量进行特征优化以得到优化后第一尺度使用频次时序关联特征向量和优化后第二尺度使用频次时序关联特征向量;使用所述多尺度特征融合器对所述优化后第一尺度使用频次时序关联特征向量和所述优化后第二尺度使用频次时序关联特征向量进行处理以得到多尺度使用频次时序关联特征向量作为所述多尺度使用频次时序关联特征。Optionally, a multi-scale feature fusion device is used to process the first-scale usage frequency time series association feature vector and the second-scale usage frequency time series association feature vector to obtain a multi-scale usage frequency time series association feature, including: performing feature optimization on the first-scale usage frequency time series association feature vector and the second-scale usage frequency time series association feature vector to obtain an optimized first-scale usage frequency time series association feature vector and an optimized second-scale usage frequency time series association feature vector; using the multi-scale feature fusion device to process the optimized first-scale usage frequency time series association feature vector and the optimized second-scale usage frequency time series association feature vector to obtain a multi-scale usage frequency time series association feature vector as the multi-scale usage frequency time series association feature.
可选地,对所述第一尺度使用频次时序关联特征向量和所述第二尺度使用频次时序关联特征向量进行特征优化以得到优化后第一尺度使用频次时序关联特征向量和优化后第二尺度使用频次时序关联特征向量,包括:分别计算所述第一尺度使用频次时序关联特征向量和所述第二尺度使用频次时序关联特征向量的加权系数以得到第一加权系数和第二加权系数;以所述第一加权系数和所述第二加权系数作为加权因数对所述第一尺度使用频次时序关联特征向量和所述第二尺度使用频次时序关联特征向量进行加权优化以得到所述优化后第一尺度使用频次时序关联特征向量和所述优化后第二尺度使用频次时序关联特征向量。Optionally, feature optimization is performed on the first-scale usage frequency time series association feature vector and the second-scale usage frequency time series association feature vector to obtain an optimized first-scale usage frequency time series association feature vector and an optimized second-scale usage frequency time series association feature vector, including: respectively calculating weight coefficients of the first-scale usage frequency time series association feature vector and the second-scale usage frequency time series association feature vector to obtain a first weight coefficient and a second weight coefficient; and weighted optimization is performed on the first-scale usage frequency time series association feature vector and the second-scale usage frequency time series association feature vector using the first weight coefficient and the second weight coefficient as weighting factors to obtain the optimized first-scale usage frequency time series association feature vector and the optimized second-scale usage frequency time series association feature vector.
可选地,使用所述多尺度特征融合器对所述优化后第一尺度使用频次时序关联特征向量和所述优化后第二尺度使用频次时序关联特征向量进行处理以得到多尺度使用频次时序关联特征向量作为所述多尺度使用频次时序关联特征,包括:使用所述多尺度特征融合器以如下多尺度特征融合公式对所述优化后第一尺度使用频次时序关联特征向量和所述优化后第二尺度使用频次时序关联特征向量进行处理以得到所述多尺度使用频次时序关联特征向量;其中,所述多尺度特征融合公式为:Optionally, using the multi-scale feature fusion device to process the optimized first-scale usage frequency temporal association feature vector and the optimized second-scale usage frequency temporal association feature vector to obtain a multi-scale usage frequency temporal association feature vector as the multi-scale usage frequency temporal association feature, including: using the multi-scale feature fusion device to process the optimized first-scale usage frequency temporal association feature vector and the optimized second-scale usage frequency temporal association feature vector using the following multi-scale feature fusion formula to obtain the multi-scale usage frequency temporal association feature vector; wherein the multi-scale feature fusion formula is:
; ;
其中,和分别是所述优化后第一尺度使用频次时序关联特征向量和所述优化后第二尺度使用频次时序关联特征向量,是所述多尺度使用频次时序关联特征向量,表示向量的级联,是门限值,,是变换矩阵,是偏置向量,表示激活函数。in, and are respectively the optimized first scale usage frequency temporal correlation feature vector and the optimized second scale usage frequency temporal correlation feature vector, is the multi-scale usage frequency temporal correlation feature vector, represents the concatenation of vectors, is the threshold value, , is the transformation matrix, is the bias vector, express Activation function.
可选地,基于所述多尺度使用频次时序关联特征,确定使用频次短时预测器以得到预测值,并确定是否生成提前采购提示,包括:将所述多尺度使用频次时序关联特征向量通过基于解码器的手术设备使用频次短时预测器以得到预测值;基于所述预测值与预定阈值之间的比较,确定是否生成提前采购提示。Optionally, based on the multi-scale usage frequency temporal association characteristics, a usage frequency short-time predictor is determined to obtain a prediction value, and whether to generate an advance purchase prompt is determined, including: passing the multi-scale usage frequency temporal association feature vector through a decoder-based surgical equipment usage frequency short-time predictor to obtain a prediction value; based on a comparison between the prediction value and a predetermined threshold, determining whether to generate an advance purchase prompt.
第二方面,本发明提供了一种手术设备信息化管理系统,所述系统包括:In a second aspect, the present invention provides a surgical equipment information management system, the system comprising:
历史使用数据获取模块,用于获取特定手术设备的历史使用数据;A historical usage data acquisition module, used to acquire historical usage data of a specific surgical device;
第一时间尺度数据处理模块,用于基于第一时间尺度对所述历史使用数据进行切分并统计使用频次以得到第一尺度使用频次时序输入向量;A first time scale data processing module, configured to segment the historical usage data based on a first time scale and count usage frequencies to obtain a first scale usage frequency time series input vector;
第二时间尺度数据处理模块,用于基于第二时间尺度对所述历史使用数据进行切分并统计使用频次以得到第二尺度使用频次时序输入向量,其中,所述第一时间尺度不同于所述第二时间尺度;A second time scale data processing module, configured to segment the historical usage data based on a second time scale and count usage frequencies to obtain a second scale usage frequency time series input vector, wherein the first time scale is different from the second time scale;
使用频次时域特征提取模块,用于通过基于深度神经网络的使用频次时域特征提取器分别对所述第一尺度使用频次时序输入向量和所述第二尺度使用频次时序输入向量进行特征提取以得到第一尺度使用频次时序关联特征向量和第二尺度使用频次时序关联特征向量;A usage frequency time domain feature extraction module, used to extract features from the first scale usage frequency time series input vector and the second scale usage frequency time series input vector respectively through a usage frequency time domain feature extractor based on a deep neural network to obtain a first scale usage frequency time series associated feature vector and a second scale usage frequency time series associated feature vector;
多尺度特征融合模块,用于使用多尺度特征融合器对所述第一尺度使用频次时序关联特征向量和所述第二尺度使用频次时序关联特征向量进行处理以得到多尺度使用频次时序关联特征;A multi-scale feature fusion module, configured to use a multi-scale feature fuser to process the first-scale usage frequency temporal correlation feature vector and the second-scale usage frequency temporal correlation feature vector to obtain a multi-scale usage frequency temporal correlation feature;
提前采购提示生成模块,用于基于所述多尺度使用频次时序关联特征,确定使用频次短时预测器以得到预测值,并确定是否生成提前采购提示;An advance purchase reminder generating module, used to determine a usage frequency short-term predictor to obtain a prediction value based on the multi-scale usage frequency time series correlation characteristics, and determine whether to generate an advance purchase reminder;
其中,所述基于深度神经网络的使用频次时域特征提取器为基于一维卷积层的使用频次时域特征提取器;Wherein, the usage frequency time domain feature extractor based on deep neural network is a usage frequency time domain feature extractor based on one-dimensional convolution layer;
其中,所述使用频次时域特征提取模块,用于:使用所述基于一维卷积层的使用频次时域特征提取器的各层在层的正向传递中对输入数据分别进行卷积处理、均值池化处理和非线性激活处理,以所述基于一维卷积层的使用频次时域特征提取器的最后一层的输出,为所述第一尺度使用频次时序关联特征向量和所述第二尺度使用频次时序关联特征向量,其中,所述基于一维卷积层的使用频次时域特征提取器的第一层的输入为所述第一尺度使用频次时序输入向量和所述第二尺度使用频次时序输入向量。Among them, the usage frequency time domain feature extraction module is used to: use each layer of the usage frequency time domain feature extractor based on the one-dimensional convolution layer to perform convolution processing, mean pooling processing and nonlinear activation processing on the input data in the forward transmission of the layer, and use the output of the last layer of the usage frequency time domain feature extractor based on the one-dimensional convolution layer as the first-scale usage frequency time series associated feature vector and the second-scale usage frequency time series associated feature vector, wherein the input of the first layer of the usage frequency time domain feature extractor based on the one-dimensional convolution layer is the first-scale usage frequency time series input vector and the second-scale usage frequency time series input vector.
采用上述技术方案,通过基于第一时间尺度和第二时间尺度对获取的历史使用数据进行切分并统计使用频次以得到第二尺度使用频次时序输入向量;然后通过基于深度神经网络的使用频次时域特征提取器进行特征提取,并使用多尺度特征融合器进行处理以得到多尺度使用频次时序关联特征;基于所述多尺度使用频次时序关联特征,确定使用频次短时预测器以得到预测值,并确定是否生成提前采购提示。这样,可以实现对手术设备需求的预测和优化资源规划,以提前进行需求量较高的手术设备采购,从而改善医疗服务质量。By adopting the above technical solution, the acquired historical usage data is segmented based on the first time scale and the second time scale and the usage frequency is counted to obtain the second scale usage frequency time series input vector; then, the usage frequency time domain feature extractor based on the deep neural network is used to extract features, and the multi-scale feature fusion is used to process to obtain the multi-scale usage frequency time series correlation features; based on the multi-scale usage frequency time series correlation features, the usage frequency short-term predictor is determined to obtain the predicted value, and it is determined whether to generate an advance purchase prompt. In this way, the demand for surgical equipment can be predicted and resource planning can be optimized, so that surgical equipment with high demand can be purchased in advance, thereby improving the quality of medical services.
本发明的其他特征和优点将在随后的具体实施方式部分予以详细说明。Other features and advantages of the present invention will be described in detail in the following detailed description.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
结合附图并参考以下具体实施方式,本发明各实施例的上述和其他特征、优点及方面将变得更加明显。贯穿附图中,相同或相似的附图标记表示相同或相似的元素。应当理解附图是示意性的,原件和元素不一定按照比例绘制。在附图中:The above and other features, advantages and aspects of the embodiments of the present invention will become more apparent with reference to the following detailed description in conjunction with the accompanying drawings. Throughout the drawings, the same or similar reference numerals represent the same or similar elements. It should be understood that the drawings are schematic and the originals and elements are not necessarily drawn to scale. In the drawings:
图1是根据一示例性实施例示出的一种手术设备信息化管理方法的流程图。Fig. 1 is a flow chart showing a method for information management of surgical equipment according to an exemplary embodiment.
图2是根据一示例性实施例示出的一种手术设备信息化管理系统的框图。Fig. 2 is a block diagram of a surgical equipment information management system according to an exemplary embodiment.
图3是根据一示例性实施例示出的一种电子设备的框图。Fig. 3 is a block diagram of an electronic device according to an exemplary embodiment.
图4是根据一示例性实施例示出的一种手术设备信息化管理方法的应用场景图。Fig. 4 is an application scenario diagram of a surgical equipment information management method according to an exemplary embodiment.
具体实施方式Detailed ways
下面将参照附图更详细地描述本发明的实施例。虽然附图中显示了本发明的某些实施例,然而应当理解的是,本发明可以通过各种形式来实现,而且不应该被解释为限于这里阐述的实施例,相反提供这些实施例是为了更加透彻和完整地理解本发明。应当理解的是,本发明的附图及实施例仅用于示例性作用,并非用于限制本发明的保护范围。Embodiments of the present invention will be described in more detail below with reference to the accompanying drawings. Although certain embodiments of the present invention are shown in the accompanying drawings, it should be understood that the present invention can be implemented in various forms and should not be construed as being limited to the embodiments described herein, which are instead provided for a more thorough and complete understanding of the present invention. It should be understood that the drawings and embodiments of the present invention are only for exemplary purposes and are not intended to limit the scope of protection of the present invention.
应当理解,本发明的方法实施方式中记载的各个步骤可以按照不同的顺序执行,和/或并行执行。此外,方法实施方式可以包括附加的步骤和/或省略执行示出的步骤。本发明的范围在此方面不受限制。It should be understood that the various steps described in the method embodiments of the present invention may be performed in different orders and/or in parallel. In addition, the method embodiments may include additional steps and/or omit the steps shown. The scope of the present invention is not limited in this respect.
本文使用的术语“包括”及其变形是开放性包括,即“包括但不限于”。术语“基于”是“至少部分地基于”。术语“一个实施例”表示“至少一个实施例”;术语“另一实施例”表示“至少一个另外的实施例”;术语“一些实施例”表示“至少一些实施例”。其他术语的相关定义将在下文描述中给出。The term "including" and its variations used herein are open inclusions, i.e., "including but not limited to". The term "based on" means "based at least in part on". The term "one embodiment" means "at least one embodiment"; the term "another embodiment" means "at least one additional embodiment"; the term "some embodiments" means "at least some embodiments". The relevant definitions of other terms will be given in the following description.
需要注意,本发明中提及的“第一”、“第二”等概念仅用于对不同的装置、模块或单元进行区分,并非用于限定这些装置、模块或单元所执行的功能的顺序或者相互依存关系。It should be noted that the concepts such as "first" and "second" mentioned in the present invention are only used to distinguish different devices, modules or units, and are not used to limit the order or interdependence of the functions performed by these devices, modules or units.
需要注意,本发明中提及的“一个”、“多个”的修饰是示意性而非限制性的,本领域技术人员应当理解,除非在上下文另有明确指出,否则应该理解为“一个或多个”。It should be noted that the modifications of "one" and "plurality" mentioned in the present invention are illustrative rather than restrictive, and those skilled in the art should understand that, unless otherwise clearly indicated in the context, it should be understood as "one or more".
本发明实施方式中的多个装置之间所交互的消息或者信息的名称仅用于说明性的目的,而并不是用于对这些消息或信息的范围进行限制。The names of the messages or information exchanged between multiple devices in the embodiments of the present invention are only used for illustrative purposes, and are not used to limit the scope of these messages or information.
传统医院手术设备管理方法存在一些问题,这些问题主要体现在以下几个方面:There are some problems with the traditional hospital surgical equipment management methods, which are mainly reflected in the following aspects:
1. 缺乏详细数据分析:传统管理通常依赖于经验判断和定期维护计划,而不是基于实时数据和详细分析。这种方式可能导致对设备使用情况的理解不够准确,无法及时响应实际需求变化。1. Lack of detailed data analysis: Traditional management usually relies on experience and regular maintenance plans, rather than real-time data and detailed analysis. This approach may lead to an inaccurate understanding of equipment usage and an inability to respond to actual demand changes in a timely manner.
2. 资源分配不合理:由于缺乏对手术设备使用模式和需求的深入了解,医院可能无法有效地规划设备的资源分配,可能会导致某些设备过度使用而其他设备闲置,造成资源浪费。2. Improper resource allocation: Due to the lack of in-depth understanding of the usage patterns and needs of surgical equipment, hospitals may not be able to effectively plan the resource allocation of equipment, which may lead to overuse of some equipment and idleness of other equipment, resulting in waste of resources.
3. 采购计划滞后:传统的采购计划可能不够灵活,无法根据实际使用情况及时调整,导致新设备的采购滞后或过剩,影响手术的顺利进行和患者的治疗体验。3. Delayed procurement plans: Traditional procurement plans may not be flexible enough and cannot be adjusted in time according to actual usage, resulting in delayed or excessive procurement of new equipment, affecting the smooth progress of the operation and the patient's treatment experience.
4. 效率低下:缺乏信息化手段支持的设备管理,使得医护人员需要花费更多时间和精力在设备维护和调度上,降低了工作效率和医疗服务质量。4. Inefficiency: Lack of information technology support for equipment management requires medical staff to spend more time and energy on equipment maintenance and scheduling, reducing work efficiency and medical service quality.
为了解决这些问题,现代医院开始采用更加科学和精细化的设备管理方法。例如,通过建立医疗设备全生命周期管理,从申请购置、论证采购、安装调试、运行维护到淘汰报废,对设备进行全程跟踪和管理。此外,利用信息化手段,如医疗设备管理软件,可以实现设备的精细化管理,提高管理效率和效果。通过这些方法,医院可以更准确地了解设备的实际使用情况和需求变化,合理规划资源分配,及时进行采购,从而提高手术过程的效率和质量。In order to solve these problems, modern hospitals have begun to adopt more scientific and refined equipment management methods. For example, by establishing full life cycle management of medical equipment, the equipment is tracked and managed throughout the process, from application for purchase, demonstration of purchase, installation and commissioning, operation and maintenance to elimination and scrapping. In addition, the use of information technology, such as medical equipment management software, can achieve refined management of equipment and improve management efficiency and effectiveness. Through these methods, hospitals can more accurately understand the actual use of equipment and changes in demand, rationally plan resource allocation, and make purchases in a timely manner, thereby improving the efficiency and quality of the surgical process.
为了解决上述问题,本发明提供了一种手术设备信息化管理系统及方法,通过基于第一时间尺度和第二时间尺度对获取的历史使用数据进行切分并统计使用频次以得到第二尺度使用频次时序输入向量;然后通过基于深度神经网络的使用频次时域特征提取器进行特征提取,并使用多尺度特征融合器进行处理以得到多尺度使用频次时序关联特征;基于所述多尺度使用频次时序关联特征,确定使用频次短时预测器以得到预测值,并确定是否生成提前采购提示。这样,可以实现对手术设备需求的预测和优化资源规划,以提前进行需求量较高的手术设备采购,从而改善医疗服务质量。In order to solve the above problems, the present invention provides a surgical equipment information management system and method, which divides the acquired historical usage data based on the first time scale and the second time scale and counts the usage frequency to obtain the second scale usage frequency time series input vector; then extracts features through a usage frequency time domain feature extractor based on a deep neural network, and uses a multi-scale feature fusion device to process to obtain multi-scale usage frequency time series correlation features; based on the multi-scale usage frequency time series correlation features, determines a usage frequency short-term predictor to obtain a predicted value, and determines whether to generate an advance purchase prompt. In this way, the demand for surgical equipment can be predicted and resource planning can be optimized, so that surgical equipment with high demand can be purchased in advance, thereby improving the quality of medical services.
以下结合附图对本发明的具体实施方式进行详细说明。The specific implementation modes of the present invention are described in detail below with reference to the accompanying drawings.
图1是根据一示例性实施例示出的一种手术设备信息化管理方法的流程图,如图1所示,该方法包括:FIG. 1 is a flow chart of a surgical equipment information management method according to an exemplary embodiment. As shown in FIG. 1 , the method includes:
步骤101、获取特定手术设备的历史使用数据;Step 101, obtaining historical usage data of a specific surgical device;
步骤102、基于第一时间尺度对所述历史使用数据进行切分并统计使用频次以得到第一尺度使用频次时序输入向量;Step 102: segment the historical usage data based on a first time scale and count the usage frequency to obtain a first scale usage frequency time series input vector;
步骤103、基于第二时间尺度对所述历史使用数据进行切分并统计使用频次以得到第二尺度使用频次时序输入向量,其中,所述第一时间尺度不同于所述第二时间尺度;Step 103: segment the historical usage data based on a second time scale and count the usage frequency to obtain a second-scale usage frequency time series input vector, wherein the first time scale is different from the second time scale;
步骤104、通过基于深度神经网络的使用频次时域特征提取器分别对所述第一尺度使用频次时序输入向量和所述第二尺度使用频次时序输入向量进行特征提取以得到第一尺度使用频次时序关联特征向量和第二尺度使用频次时序关联特征向量;Step 104: extract features from the first-scale usage frequency time series input vector and the second-scale usage frequency time series input vector respectively by using a usage frequency time domain feature extractor based on a deep neural network to obtain a first-scale usage frequency time series associated feature vector and a second-scale usage frequency time series associated feature vector;
步骤105、使用多尺度特征融合器对所述第一尺度使用频次时序关联特征向量和所述第二尺度使用频次时序关联特征向量进行处理以得到多尺度使用频次时序关联特征;Step 105: Use a multi-scale feature fuser to process the first-scale usage frequency time series correlation feature vector and the second-scale usage frequency time series correlation feature vector to obtain a multi-scale usage frequency time series correlation feature;
步骤106、基于所述多尺度使用频次时序关联特征,确定使用频次短时预测器以得到预测值,并确定是否生成提前采购提示。Step 106: Based on the multi-scale usage frequency time series correlation characteristics, determine a usage frequency short-term predictor to obtain a prediction value, and determine whether to generate an advance purchase reminder.
其中,所述基于深度神经网络的使用频次时域特征提取器为基于一维卷积层的使用频次时域特征提取器。Among them, the usage frequency time domain feature extractor based on deep neural network is a usage frequency time domain feature extractor based on one-dimensional convolutional layer.
针对上述技术问题,本申请的技术构思为通过获取特定手术设备的历史使用数据,并在后端引入基于人工智能的数据处理和分析算法来进行这些历史使用数据中设备使用频次的时序分析,以此来对手术设备的使用情况、趋势和需求变化进行特征捕捉,从而实现对手术设备需求的预测和优化资源规划,以提前进行需求量较高的手术设备采购,从而改善医疗服务质量。In response to the above-mentioned technical problems, the technical concept of the present application is to obtain historical usage data of specific surgical equipment and introduce artificial intelligence-based data processing and analysis algorithms at the back end to perform time series analysis of the frequency of equipment usage in these historical usage data, so as to capture the characteristics of the usage, trends and demand changes of surgical equipment, thereby realizing the prediction of surgical equipment demand and optimizing resource planning, so as to purchase surgical equipment with higher demand in advance, thereby improving the quality of medical services.
具体地,在本申请的技术方案中,首先,获取特定手术设备的历史使用数据。接着,考虑到在实际进行特定手术设备的使用情况、趋势和需求变化的分析时,最主要需要关注的数据为设备使用频次,并且,考虑到这些设备使用频次数据在时间维度上具有着时序的动态变化规律。因此,为了能够更为全面和充分地捕获设备历史使用数据中的使用频次数据的时序特征,在本申请的技术方案中,基于第一时间尺度对所述历史使用数据进行切分并统计使用频次以得到第一尺度使用频次时序输入向量;并基于第二时间尺度对所述历史使用数据进行切分并统计使用频次以得到第二尺度使用频次时序输入向量,其中,所述第一时间尺度不同于所述第二时间尺度。应可以理解,通过在不同时间尺度上对特定手术设备的历史使用数据进行切分和统计,可以实现对设备使用频次的多维度时序分析,其中,不同的时间尺度反映了设备使用频次的不同时序特征和变化规律,比如短时间尺度更容易捕捉到设备使用频次的瞬时变化,而长时间尺度则更能体现手术设备使用频次的长期趋势和周期性规律。因此,综合考虑不同时间尺度上的手术设备历史使用频次数据,可以更全面地了解手术设备的使用情况,从而更好地描述手术设备的使用模式和规律,以便更准确地预测未来的使用需求和制定资源规划策略。Specifically, in the technical solution of the present application, first, the historical usage data of a specific surgical device is obtained. Next, considering that when actually analyzing the usage, trends, and demand changes of a specific surgical device, the most important data to pay attention to is the frequency of use of the device, and considering that these device usage frequency data have a dynamic change law of time series in the time dimension. Therefore, in order to be able to more comprehensively and fully capture the time series characteristics of the usage frequency data in the historical usage data of the equipment, in the technical solution of the present application, the historical usage data is segmented based on a first time scale and the usage frequency is counted to obtain a first-scale usage frequency time series input vector; and the historical usage data is segmented based on a second time scale and the usage frequency is counted to obtain a second-scale usage frequency time series input vector, wherein the first time scale is different from the second time scale. It should be understood that by segmenting and counting the historical usage data of specific surgical equipment at different time scales, a multi-dimensional time series analysis of the frequency of equipment use can be achieved. Different time scales reflect the different time series characteristics and changing laws of the frequency of equipment use. For example, short time scales are more likely to capture instantaneous changes in the frequency of equipment use, while long time scales can better reflect the long-term trend and cyclical laws of the frequency of surgical equipment use. Therefore, by comprehensively considering the historical frequency of surgical equipment use data at different time scales, we can have a more comprehensive understanding of the use of surgical equipment, thereby better describing the use patterns and laws of surgical equipment, so as to more accurately predict future use needs and formulate resource planning strategies.
然后,将所述第一尺度使用频次时序输入向量和所述第二尺度使用频次时序输入向量分别通过基于一维卷积层的使用频次时域特征提取器中进行特征挖掘,以分别提取出设备使用频次数据在时间维度上的不同时间尺度下的时序动态特征,从而得到第一尺度使用频次时序关联特征向量和第二尺度使用频次时序关联特征向量。也就是说,通过一维卷积操作,可以识别和提取不同时间尺度下的设备使用频次时序数据中的关键特征和时序变化规律,有助于更好地理解手术设备的使用规律和模式。Then, the first-scale usage frequency time series input vector and the second-scale usage frequency time series input vector are respectively subjected to feature mining in a usage frequency time domain feature extractor based on a one-dimensional convolution layer to respectively extract the time series dynamic features of the equipment usage frequency data at different time scales in the time dimension, thereby obtaining the first-scale usage frequency time series associated feature vector and the second-scale usage frequency time series associated feature vector. In other words, through the one-dimensional convolution operation, the key features and time series change laws in the equipment usage frequency time series data at different time scales can be identified and extracted, which helps to better understand the usage laws and patterns of surgical equipment.
在本发明的一个实施例中,使用所述基于一维卷积层的使用频次时域特征提取器的各层在层的正向传递中对输入数据分别进行卷积处理、均值池化处理和非线性激活处理,以所述基于一维卷积层的使用频次时域特征提取器的最后一层的输出,为所述第一尺度使用频次时序关联特征向量和所述第二尺度使用频次时序关联特征向量,其中,所述基于一维卷积层的使用频次时域特征提取器的第一层的输入为所述第一尺度使用频次时序输入向量和所述第二尺度使用频次时序输入向量In one embodiment of the present invention, each layer of the one-dimensional convolutional layer-based frequency-of-use time-domain feature extractor performs convolution processing, mean pooling processing, and nonlinear activation processing on the input data in the forward transfer of the layer, and the output of the last layer of the one-dimensional convolutional layer-based frequency-of-use time-domain feature extractor is the first-scale frequency-of-use time-series associated feature vector and the second-scale frequency-of-use time-series associated feature vector, wherein the input of the first layer of the one-dimensional convolutional layer-based frequency-of-use time-domain feature extractor is the first-scale frequency-of-use time-series input vector and the second-scale frequency-of-use time-series input vector.
进一步地,在本发明的一个实施例中,使用多尺度特征融合器对所述第一尺度使用频次时序关联特征向量和所述第二尺度使用频次时序关联特征向量进行处理以得到多尺度使用频次时序关联特征,包括:对所述第一尺度使用频次时序关联特征向量和所述第二尺度使用频次时序关联特征向量进行特征优化以得到优化后第一尺度使用频次时序关联特征向量和优化后第二尺度使用频次时序关联特征向量;使用所述多尺度特征融合器对所述优化后第一尺度使用频次时序关联特征向量和所述优化后第二尺度使用频次时序关联特征向量进行处理以得到多尺度使用频次时序关联特征向量作为所述多尺度使用频次时序关联特征。Further, in one embodiment of the present invention, a multi-scale feature fusion device is used to process the first-scale frequency of use time series association feature vector and the second-scale frequency of use time series association feature vector to obtain a multi-scale frequency of use time series association feature, including: performing feature optimization on the first-scale frequency of use time series association feature vector and the second-scale frequency of use time series association feature vector to obtain an optimized first-scale frequency of use time series association feature vector and an optimized second-scale frequency of use time series association feature vector; using the multi-scale feature fusion device to process the optimized first-scale frequency of use time series association feature vector and the optimized second-scale frequency of use time series association feature vector to obtain a multi-scale frequency of use time series association feature vector as the multi-scale frequency of use time series association feature.
其中,对所述第一尺度使用频次时序关联特征向量和所述第二尺度使用频次时序关联特征向量进行特征优化以得到优化后第一尺度使用频次时序关联特征向量和优化后第二尺度使用频次时序关联特征向量,包括:分别计算所述第一尺度使用频次时序关联特征向量和所述第二尺度使用频次时序关联特征向量的加权系数以得到第一加权系数和第二加权系数;以所述第一加权系数和所述第二加权系数作为加权因数对所述第一尺度使用频次时序关联特征向量和所述第二尺度使用频次时序关联特征向量进行加权优化以得到所述优化后第一尺度使用频次时序关联特征向量和所述优化后第二尺度使用频次时序关联特征向量。Among them, feature optimization is performed on the first-scale usage frequency temporal association feature vector and the second-scale usage frequency temporal association feature vector to obtain an optimized first-scale usage frequency temporal association feature vector and an optimized second-scale usage frequency temporal association feature vector, including: respectively calculating weighting coefficients of the first-scale usage frequency temporal association feature vector and the second-scale usage frequency temporal association feature vector to obtain a first weighting coefficient and a second weighting coefficient; and weighted optimization is performed on the first-scale usage frequency temporal association feature vector and the second-scale usage frequency temporal association feature vector using the first weighting coefficient and the second weighting coefficient as weighting factors to obtain the optimized first-scale usage frequency temporal association feature vector and the optimized second-scale usage frequency temporal association feature vector.
进一步地,考虑到所述优化后第一尺度使用频次时序关联特征向量和所述优化后第二尺度使用频次时序关联特征向量分别包含了有关于设备使用频次的时序数据在不同时间尺度下的时序动态特征信息,而不同时间尺度下的使用频次时序特征具有互补性。因此,为了能够更为准确地捕获特定手术设备的使用频次时序模式和变化趋势,在本申请的技术方案中,进一步使用多尺度特征融合器对所述优化后第一尺度使用频次时序关联特征向量和所述优化后第二尺度使用频次时序关联特征向量进行处理以得到多尺度使用频次时序关联特征向量。通过使用多尺度特征融合器能够融合不同时间尺度下提取的设备使用频次时序特征信息,从而获得更全面、更丰富的设备使用频次时序特征表示,涵盖不同时间尺度下的时序关键信息。这样,可以更全面地描述手术设备的使用复杂模式和规律,使模型更好地适应各种设备使用频次的变化和复杂情况,以此来进行相应的资源规划优化。Furthermore, considering that the optimized first-scale usage frequency time series association feature vector and the optimized second-scale usage frequency time series association feature vector respectively contain the time series dynamic feature information of the time series data of the equipment usage frequency at different time scales, and the usage frequency time series features at different time scales are complementary. Therefore, in order to more accurately capture the usage frequency time series pattern and change trend of specific surgical equipment, in the technical solution of the present application, a multi-scale feature fusion device is further used to process the optimized first-scale usage frequency time series association feature vector and the optimized second-scale usage frequency time series association feature vector to obtain a multi-scale usage frequency time series association feature vector. By using a multi-scale feature fusion device, the equipment usage frequency time series feature information extracted at different time scales can be fused, thereby obtaining a more comprehensive and richer equipment usage frequency time series feature representation, covering the key time series information at different time scales. In this way, the complex usage patterns and laws of surgical equipment can be described more comprehensively, so that the model can better adapt to the changes and complex situations of the usage frequency of various equipment, so as to perform corresponding resource planning optimization.
进一步地,使用所述多尺度特征融合器对所述优化后第一尺度使用频次时序关联特征向量和所述优化后第二尺度使用频次时序关联特征向量进行处理以得到多尺度使用频次时序关联特征向量作为所述多尺度使用频次时序关联特征,包括:Further, using the multi-scale feature fuser to process the optimized first-scale usage frequency time series association feature vector and the optimized second-scale usage frequency time series association feature vector to obtain a multi-scale usage frequency time series association feature vector as the multi-scale usage frequency time series association feature, including:
使用所述多尺度特征融合器以如下多尺度特征融合公式对所述优化后第一尺度使用频次时序关联特征向量和所述优化后第二尺度使用频次时序关联特征向量进行处理以得到所述多尺度使用频次时序关联特征向量;Using the multi-scale feature fuser to process the optimized first-scale usage frequency temporal association feature vector and the optimized second-scale usage frequency temporal association feature vector using the following multi-scale feature fusion formula to obtain the multi-scale usage frequency temporal association feature vector;
其中,所述多尺度特征融合公式为:Among them, the multi-scale feature fusion formula is:
; ;
其中,和分别是所述优化后第一尺度使用频次时序关联特征向量和所述优化后第二尺度使用频次时序关联特征向量,是所述多尺度使用频次时序关联特征向量,表示向量的级联,是门限值,,是变换矩阵,是偏置向量,表示激活函数。in, and are respectively the optimized first scale usage frequency temporal correlation feature vector and the optimized second scale usage frequency temporal correlation feature vector, is the multi-scale usage frequency temporal correlation feature vector, represents the concatenation of vectors, is the threshold value, , is the transformation matrix, is the bias vector, express Activation function.
在以上说明的技术方案中,所述第一尺度使用频次时序关联特征向量和所述第二尺度使用频次时序关联特征向量分别表达特定手术设备的历史使用数据在全局时域经由不同尺度划分出的不同尺度的局部时域下的局部时序关联特征,由此,所述第一尺度使用频次时序关联特征向量和所述第二尺度使用频次时序关联特征向量具有不同尺度局部时域下的不同时序关联模式对应的时序关联特征表达区分性。In the technical solution described above, the first-scale usage frequency temporal association feature vector and the second-scale usage frequency temporal association feature vector respectively express the local temporal association characteristics of the historical usage data of a specific surgical device in local time domains of different scales divided by different scales in the global time domain. Thus, the first-scale usage frequency temporal association feature vector and the second-scale usage frequency temporal association feature vector have temporal association feature expression distinctiveness corresponding to different temporal association patterns in local time domains of different scales.
这样,在使用多尺度特征融合器对所述第一尺度使用频次时序关联特征向量和所述第二尺度使用频次时序关联特征向量进行处理以得到所述多尺度使用频次时序关联特征向量,并将所述多尺度使用频次时序关联特征向量通过解码器进行解码时,期望在保持所述第一尺度使用频次时序关联特征向量和所述第二尺度使用频次时序关联特征向量的不同时序关联模式对应的时序关联特征表达区分性的同时,提升各自到解码器的解码回归概率密度域的概率映射确定性,以提升解码预测值的准确性。In this way, when the first-scale frequency-of-use temporal association feature vector and the second-scale frequency-of-use temporal association feature vector are processed using a multi-scale feature fuser to obtain the multi-scale frequency-of-use temporal association feature vector, and the multi-scale frequency-of-use temporal association feature vector is decoded through a decoder, it is expected that while maintaining the distinguishability of the temporal association feature expressions corresponding to different temporal association patterns of the first-scale frequency-of-use temporal association feature vector and the second-scale frequency-of-use temporal association feature vector, the probability mapping certainty of each to the decoding regression probability density domain of the decoder is improved to improve the accuracy of the decoding prediction value.
基于此,本申请的申请人分别计算所述第一尺度使用频次时序关联特征向量和所述第二尺度使用频次时序关联特征向量的加权系数,表示为:以如下优化公式分别计算所述第一尺度使用频次时序关联特征向量和所述第二尺度使用频次时序关联特征向量的加权系数以得到第一加权系数和第二加权系数;其中,所述优化公式为:Based on this, the applicant of the present application respectively calculates the weighted coefficients of the first-scale usage frequency temporal association feature vector and the second-scale usage frequency temporal association feature vector, which are expressed as follows: the weighted coefficients of the first-scale usage frequency temporal association feature vector and the second-scale usage frequency temporal association feature vector are respectively calculated using the following optimization formula to obtain the first weighted coefficient and the second weighted coefficient; wherein the optimization formula is:
; ;
; ;
其中,和分别是所述第一尺度使用频次时序关联特征向量和所述第二尺度使用频次时序关联特征向量的最大特征值,和是所述第一尺度使用频次时序关联特征向量和所述第二尺度使用频次时序关联特征向量的第个特征值,是特征向量的长度,表示以2为底的对数函数,且是权重超参数,和分别是第一加权系数和第二加权系数,表示计算以数值为幂的自然指数函数值;以所述第一加权系数和所述第二加权系数作为加权因数对所述第一尺度使用频次时序关联特征向量和所述第二尺度使用频次时序关联特征向量进行加权优化以得到所述优化后第一尺度使用频次时序关联特征向量和所述优化后第二尺度使用频次时序关联特征向量。in, and They are the first scale usage frequency temporal correlation feature vectors and the second scale usage frequency temporal correlation feature vector The maximum eigenvalue of and is the first scale usage frequency temporal correlation feature vector and the second scale usage frequency temporal correlation feature vector First The characteristic values, is the length of the eigenvector, represents the logarithmic function with base 2, and is the weight hyperparameter, and are the first weighting coefficient and the second weighting coefficient respectively, It represents calculating the value of a natural exponential function with a numerical value as a power; using the first weighting coefficient and the second weighting coefficient as weighting factors, weighted optimization is performed on the first scale usage frequency time series association feature vector and the second scale usage frequency time series association feature vector to obtain the optimized first scale usage frequency time series association feature vector and the optimized second scale usage frequency time series association feature vector.
具体地,分别通过所述第一尺度使用频次时序关联特征向量和所述第二尺度使用频次时序关联特征向量的时序关联特征表示在特征众包形式下的多数投票机制,来在所述第一尺度使用频次时序关联特征向量和所述第二尺度使用频次时序关联特征向量相对于解码回归概率空间的分布从属概率模型下寻求特征向量各自的单独信息期望最大化,这样,再通过以系数和对所述第一尺度使用频次时序关联特征向量和所述第二尺度使用频次时序关联特征向量进行加权来优化所述第一尺度使用频次时序关联特征向量和所述第二尺度使用频次时序关联特征向量,就可以基于所述第一尺度使用频次时序关联特征向量和所述第二尺度使用频次时序关联特征向量各自的特征值平均信息置信度进行相对于解码回归概率空间的分布联合估计,以在保持所述第一尺度使用频次时序关联特征向量和所述第二尺度使用频次时序关联特征向量的特征分布可区分性的同时提升其到解码回归密度域的概率映射确定性,以提升所述多尺度使用频次时序关联特征向量通过解码器得到的解码预测值的准确性。这样,能够更为准确地进行手术设备的需求预测,以此来帮助医院做出更合理的资源规划,以对于需求量较高的手术设备进行提前采购。Specifically, the first scale is used to associate the frequency time series feature vectors and the second scale usage frequency temporal correlation feature vector The temporal correlation feature of represents the majority voting mechanism in the form of feature crowdsourcing to use the frequency temporal correlation feature vector at the first scale and the second scale usage frequency temporal correlation feature vector Relative to the distribution of the decoding regression probability space, the independent information expectation of each feature vector is maximized under the subordinate probability model. In this way, the coefficient and The frequency-time correlation feature vector is used for the first scale and the second scale usage frequency temporal correlation feature vector Weighting is performed to optimize the first scale usage frequency temporal correlation feature vector and the second scale usage frequency temporal correlation feature vector , we can use the frequency-series correlation feature vector based on the first scale and the second scale usage frequency temporal correlation feature vector The average information confidence of each eigenvalue is jointly estimated relative to the distribution of the decoding regression probability space to maintain the first scale using the frequency time series associated eigenvector and the second scale usage frequency temporal correlation feature vector The distinguishability of the feature distribution is improved while improving the certainty of its probability mapping to the decoding regression density domain, so as to improve the accuracy of the decoded prediction value obtained by the decoder of the multi-scale usage frequency time series correlation feature vector. In this way, the demand for surgical equipment can be predicted more accurately, so as to help hospitals make more reasonable resource planning and purchase surgical equipment with higher demand in advance.
继而,再将所述多尺度使用频次时序关联特征向量通过基于解码器的手术设备使用频次短时预测器以得到预测值,也就是说,利用特定手术设备的历史使用频次多尺度时序融合特征来进行解码回归,以基于该手术设备的使用情况、趋势和需求变化来进行使用频次的短时预测。进而,基于所述预测值与预定阈值之间的比较,确定是否生成提前采购提示。特别地,响应于所述预测值大于所述预定阈值,确定生成提前采购提示。这样,能够基于手术设备的使用情况、趋势和需求变化来实现对手术设备需求的预测,从而帮助医院做出更合理的资源规划,改善医疗服务质量。Then, the multi-scale usage frequency time series associated feature vector is passed through a decoder-based surgical equipment usage frequency short-term predictor to obtain a predicted value. That is, the multi-scale time series fusion features of the historical usage frequency of a specific surgical device are used for decoding regression to perform a short-term prediction of the usage frequency based on the usage, trend, and demand changes of the surgical device. Furthermore, based on the comparison between the predicted value and a predetermined threshold, it is determined whether to generate an advance purchase prompt. In particular, in response to the predicted value being greater than the predetermined threshold, it is determined to generate an advance purchase prompt. In this way, the demand for surgical equipment can be predicted based on the usage, trend, and demand changes of surgical equipment, thereby helping hospitals to make more reasonable resource planning and improve the quality of medical services.
在本发明的一个实施例中,基于所述多尺度使用频次时序关联特征,确定使用频次短时预测器以得到预测值,并确定是否生成提前采购提示,包括:将所述多尺度使用频次时序关联特征向量通过基于解码器的手术设备使用频次短时预测器以得到预测值;基于所述预测值与预定阈值之间的比较,确定是否生成提前采购提示。In one embodiment of the present invention, based on the multi-scale usage frequency temporal association characteristics, a usage frequency short-term predictor is determined to obtain a prediction value, and it is determined whether to generate an advance purchase prompt, including: passing the multi-scale usage frequency temporal association feature vector through a decoder-based surgical equipment usage frequency short-term predictor to obtain a prediction value; based on a comparison between the prediction value and a predetermined threshold, determining whether to generate an advance purchase prompt.
综上所述,采用上述方案,通过获取特定手术设备的历史使用数据,并在后端引入基于人工智能的数据处理和分析算法来进行这些历史使用数据中设备使用频次的时序分析,以此来对手术设备的使用情况、趋势和需求变化进行特征捕捉,从而实现对手术设备需求的预测和优化资源规划,以提前进行需求量较高的手术设备采购,从而改善医疗服务质量。To summarize, the above solution is adopted to obtain the historical usage data of specific surgical equipment, and introduce artificial intelligence-based data processing and analysis algorithms at the back end to perform time series analysis of the frequency of equipment usage in these historical usage data. In this way, the usage, trends and demand changes of surgical equipment can be captured, thereby realizing the prediction of surgical equipment demand and optimizing resource planning, so as to purchase surgical equipment with higher demand in advance, thereby improving the quality of medical services.
图2是根据一示例性实施例示出的一种手术设备信息化管理系统的框图。如图2所示,该系统200包括:FIG2 is a block diagram of a surgical equipment information management system according to an exemplary embodiment. As shown in FIG2 , the system 200 includes:
历史使用数据获取模块201,用于获取特定手术设备的历史使用数据;A historical usage data acquisition module 201 is used to acquire historical usage data of a specific surgical device;
第一时间尺度数据处理模块202,用于基于第一时间尺度对所述历史使用数据进行切分并统计使用频次以得到第一尺度使用频次时序输入向量;A first time scale data processing module 202, configured to segment the historical usage data based on a first time scale and count usage frequencies to obtain a first scale usage frequency time series input vector;
第二时间尺度数据处理模块203,用于基于第二时间尺度对所述历史使用数据进行切分并统计使用频次以得到第二尺度使用频次时序输入向量,其中,所述第一时间尺度不同于所述第二时间尺度;A second time scale data processing module 203, configured to segment the historical usage data based on a second time scale and count usage frequencies to obtain a second scale usage frequency time series input vector, wherein the first time scale is different from the second time scale;
使用频次时域特征提取模块204,用于通过基于深度神经网络的使用频次时域特征提取器分别对所述第一尺度使用频次时序输入向量和所述第二尺度使用频次时序输入向量进行特征提取以得到第一尺度使用频次时序关联特征向量和第二尺度使用频次时序关联特征向量;A usage frequency time domain feature extraction module 204 is used to extract features from the first scale usage frequency time series input vector and the second scale usage frequency time series input vector respectively through a usage frequency time domain feature extractor based on a deep neural network to obtain a first scale usage frequency time series associated feature vector and a second scale usage frequency time series associated feature vector;
多尺度特征融合模块205,用于使用多尺度特征融合器对所述第一尺度使用频次时序关联特征向量和所述第二尺度使用频次时序关联特征向量进行处理以得到多尺度使用频次时序关联特征;A multi-scale feature fusion module 205, configured to use a multi-scale feature fuser to process the first-scale usage frequency temporal correlation feature vector and the second-scale usage frequency temporal correlation feature vector to obtain a multi-scale usage frequency temporal correlation feature;
提前采购提示生成模块206,用于基于所述多尺度使用频次时序关联特征,确定使用频次短时预测器以得到预测值,并确定是否生成提前采购提示。The advance purchase prompt generating module 206 is used to determine a usage frequency short-term predictor to obtain a prediction value based on the multi-scale usage frequency time series correlation characteristics, and determine whether to generate an advance purchase prompt.
在本发明的一个实施例中,所述基于深度神经网络的使用频次时域特征提取器为基于一维卷积层的使用频次时域特征提取器。In one embodiment of the present invention, the usage frequency time domain feature extractor based on deep neural network is a usage frequency time domain feature extractor based on one-dimensional convolutional layer.
在本发明的一个实施例中,所述使用频次时域特征提取模块204,用于:使用所述基于一维卷积层的使用频次时域特征提取器的各层在层的正向传递中对输入数据分别进行卷积处理、均值池化处理和非线性激活处理,以所述基于一维卷积层的使用频次时域特征提取器的最后一层的输出,为所述第一尺度使用频次时序关联特征向量和所述第二尺度使用频次时序关联特征向量,其中,所述基于一维卷积层的使用频次时域特征提取器的第一层的输入为所述第一尺度使用频次时序输入向量和所述第二尺度使用频次时序输入向量。In one embodiment of the present invention, the frequency usage time domain feature extraction module 204 is used to: use each layer of the frequency usage time domain feature extractor based on the one-dimensional convolution layer to perform convolution processing, mean pooling processing and nonlinear activation processing on the input data in the forward transfer of the layer, and use the output of the last layer of the frequency usage time domain feature extractor based on the one-dimensional convolution layer as the first-scale frequency usage time series associated feature vector and the second-scale frequency usage time series associated feature vector, wherein the input of the first layer of the frequency usage time domain feature extractor based on the one-dimensional convolution layer is the first-scale frequency usage time series input vector and the second-scale frequency usage time series input vector.
下面参考图3,其示出了适于用来实现本发明实施例的电子设备600的结构示意图。本发明实施例中的终端设备可以包括但不限于诸如移动电话、笔记本电脑、数字广播接收器、PDA(个人数字助理)、PAD(平板电脑)、PMP(便携式多媒体播放器)、车载终端(例如车载导航终端)等等的移动终端以及诸如数字TV、台式计算机等等的固定终端。图3示出的电子设备仅仅是一个示例,不应对本发明实施例的功能和使用范围带来任何限制。Referring to FIG3 below, it shows a schematic diagram of the structure of an electronic device 600 suitable for implementing an embodiment of the present invention. The terminal device in the embodiment of the present invention may include, but is not limited to, mobile terminals such as mobile phones, laptop computers, digital broadcast receivers, PDAs (personal digital assistants), PADs (tablet computers), PMPs (portable multimedia players), vehicle-mounted terminals (such as vehicle-mounted navigation terminals), etc., and fixed terminals such as digital TVs, desktop computers, etc. The electronic device shown in FIG3 is only an example and should not bring any limitation to the functions and scope of use of the embodiments of the present invention.
如图3所示,电子设备600可以包括处理装置(例如中央处理器、图形处理器等)601,其可以根据存储在只读存储器(ROM)602中的程序或者从存储装置608加载到随机访问存储器(RAM)603中的程序而执行各种适当的动作和处理。在RAM603中,还存储有电子设备600操作所需的各种程序和数据。处理装置601、ROM602以及RAM603通过总线604彼此相连。输入/输出(I/O)接口605也连接至总线604。As shown in FIG3 , the electronic device 600 may include a processing device (e.g., a central processing unit, a graphics processing unit, etc.) 601, which can perform various appropriate actions and processes according to a program stored in a read-only memory (ROM) 602 or a program loaded from a storage device 608 into a random access memory (RAM) 603. In the RAM 603, various programs and data required for the operation of the electronic device 600 are also stored. The processing device 601, the ROM 602, and the RAM 603 are connected to each other via a bus 604. An input/output (I/O) interface 605 is also connected to the bus 604.
通常,以下装置可以连接至I/O接口605:包括例如触摸屏、触摸板、键盘、鼠标、摄像头、麦克风、加速度计、陀螺仪等的输入装置606;包括例如液晶显示器(LCD)、扬声器、振动器等的输出装置607;包括例如磁带、硬盘等的存储装置608;以及通信装置609。通信装置609可以允许电子设备600与其他设备进行无线或有线通信以交换数据。虽然图3示出了具有各种装置的电子设备600,但是应理解的是,并不要求实施或具备所有示出的装置。可以替代地实施或具备更多或更少的装置。Typically, the following devices may be connected to the I/O interface 605: input devices 606 including, for example, a touch screen, a touchpad, a keyboard, a mouse, a camera, a microphone, an accelerometer, a gyroscope, etc.; output devices 607 including, for example, a liquid crystal display (LCD), a speaker, a vibrator, etc.; storage devices 608 including, for example, a magnetic tape, a hard disk, etc.; and communication devices 609. The communication device 609 may allow the electronic device 600 to communicate wirelessly or wired with other devices to exchange data. Although FIG. 3 shows an electronic device 600 with various devices, it should be understood that it is not required to implement or have all the devices shown. More or fewer devices may be implemented or have alternatively.
特别地,根据本发明的实施例,上文参考流程图描述的过程可以被实现为计算机软件程序。例如,本发明的实施例包括一种计算机程序产品,其包括承载在非暂态计算机可读介质上的计算机程序,该计算机程序包含用于执行流程图所示的方法的程序代码。在这样的实施例中,该计算机程序可以通过通信装置609从网络上被下载和安装,或者从存储装置608被安装,或者从ROM602被安装。在该计算机程序被处理装置601执行时,执行本发明实施例的方法中限定的上述功能。In particular, according to an embodiment of the present invention, the process described above with reference to the flowchart can be implemented as a computer software program. For example, an embodiment of the present invention includes a computer program product, which includes a computer program carried on a non-transitory computer-readable medium, and the computer program includes a program code for executing the method shown in the flowchart. In such an embodiment, the computer program can be downloaded and installed from the network through the communication device 609, or installed from the storage device 608, or installed from the ROM 602. When the computer program is executed by the processing device 601, the above-mentioned functions defined in the method of the embodiment of the present invention are executed.
需要说明的是,本发明上述的计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质或者是上述两者的任意组合。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子可以包括但不限于:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机访问存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本发明中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。而在本发明中,计算机可读信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读信号介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:电线、光缆、RF(射频)等等,或者上述的任意合适的组合。It should be noted that the computer-readable medium of the present invention can be a computer-readable signal medium or a computer-readable storage medium or any combination of the above two. The computer-readable storage medium can be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device or device, or any combination of the above. More specific examples of computer-readable storage media can include, but are not limited to: an electrical connection with one or more wires, a portable computer disk, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or flash memory), an optical fiber, a portable compact disk read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination of the above. In the present invention, a computer-readable storage medium can be any tangible medium containing or storing a program that can be used by or in combination with an instruction execution system, device or device. In the present invention, a computer-readable signal medium can include a data signal propagated in a baseband or as part of a carrier wave, which carries a computer-readable program code. This propagated data signal can take a variety of forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the above. The computer readable signal medium may also be any computer readable medium other than a computer readable storage medium, which may send, propagate or transmit a program for use by or in conjunction with an instruction execution system, apparatus or device. The program code contained on the computer readable medium may be transmitted using any suitable medium, including but not limited to: wires, optical cables, RF (radio frequency), etc., or any suitable combination of the above.
在一些实施方式中,客户端、服务器可以利用诸如HTTP(HyperTextTransferProtocol,超文本传输协议)之类的任何当前已知或未来研发的网络协议进行通信,并且可以与任意形式或介质的数字数据通信(例如,通信网络)互连。通信网络的示例包括局域网(“LAN”),广域网(“WAN”),网际网(例如,互联网)以及端对端网络(例如,ad hoc端对端网络),以及任何当前已知或未来研发的网络。In some embodiments, the client and the server may communicate using any currently known or future developed network protocol such as HTTP (HyperTextTransferProtocol), and may be interconnected with any form or medium of digital data communication (e.g., a communication network). Examples of communication networks include a local area network ("LAN"), a wide area network ("WAN"), an internet (e.g., the Internet), and a peer-to-peer network (e.g., an ad hoc peer-to-peer network), as well as any currently known or future developed network.
上述计算机可读介质可以是上述电子设备中所包含的;也可以是单独存在,而未装配入该电子设备中。The computer-readable medium may be included in the electronic device, or may exist independently without being incorporated into the electronic device.
可以以一种或多种程序设计语言或其组合来编写用于执行本发明的操作的计算机程序代码,上述程序设计语言包括但不限于面向对象的程序设计语言—诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言——诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(LAN)或广域网(WAN)——连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。Computer program code for performing the operations of the present invention may be written in one or more programming languages or a combination thereof, including, but not limited to, object-oriented programming languages, such as Java, Smalltalk, C++, and conventional procedural programming languages, such as "C" or similar programming languages. The program code may be executed entirely on the user's computer, partially on the user's computer, as a separate software package, partially on the user's computer and partially on a remote computer, or entirely on a remote computer or server. In the case of a remote computer, the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computer (e.g., via the Internet using an Internet service provider).
附图中的流程图和框图,图示了按照本发明各种实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,该模块、程序段、或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。The flow chart and block diagram in the accompanying drawings illustrate the possible architecture, function and operation of the system, method and computer program product according to various embodiments of the present invention. In this regard, each square box in the flow chart or block diagram can represent a module, a program segment or a part of a code, and the module, the program segment or a part of the code contains one or more executable instructions for realizing the specified logical function. It should also be noted that in some alternative implementations, the functions marked in the square box can also occur in a sequence different from that marked in the accompanying drawings. For example, two square boxes represented in succession can actually be executed substantially in parallel, and they can sometimes be executed in the opposite order, depending on the functions involved. It should also be noted that each square box in the block diagram and/or flow chart, and the combination of the square boxes in the block diagram and/or flow chart can be implemented with a dedicated hardware-based system that performs the specified function or operation, or can be implemented with a combination of dedicated hardware and computer instructions.
描述于本发明实施例中所涉及到的模块可以通过软件的方式实现,也可以通过硬件的方式来实现。其中,模块的名称在某种情况下并不构成对该模块本身的限定,例如,测试参数获取模块还可以被描述为“获取目标设备对应的设备测试参数的模块”。The modules involved in the embodiments of the present invention may be implemented by software or hardware. The name of a module does not limit the module itself in some cases. For example, a test parameter acquisition module may also be described as a "module for acquiring device test parameters corresponding to a target device".
本文中以上描述的功能可以至少部分地由一个或多个硬件逻辑部件来执行。例如,非限制性地,可以使用的示范类型的硬件逻辑部件包括:现场可编程门阵列(FPGA)、专用集成电路(ASIC)、专用标准产品(ASSP)、片上系统(SOC)、复杂可编程逻辑设备(CPLD)等等。The functions described above herein may be performed at least in part by one or more hardware logic components. For example, without limitation, exemplary types of hardware logic components that may be used include: field programmable gate arrays (FPGAs), application specific integrated circuits (ASICs), application specific standard products (ASSPs), systems on chip (SOCs), complex programmable logic devices (CPLDs), and the like.
在本发明的上下文中,机器可读介质可以是有形的介质,其可以包含或存储以供指令执行系统、装置或设备使用或与指令执行系统、装置或设备结合地使用的程序。机器可读介质可以是机器可读信号介质或机器可读储存介质。机器可读介质可以包括但不限于电子的、磁性的、光学的、电磁的、红外的、或半导体系统、装置或设备,或者上述内容的任何合适组合。机器可读存储介质的更具体示例会包括基于一个或多个线的电气连接、便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM或快闪存储器)、光纤、便捷式紧凑盘只读存储器(CD-ROM)、光学储存设备、磁储存设备、或上述内容的任何合适组合。In the context of the present invention, a machine-readable medium may be a tangible medium that may contain or store a program for use by or in conjunction with an instruction execution system, device, or equipment. A machine-readable medium may be a machine-readable signal medium or a machine-readable storage medium. A machine-readable medium may include, but is not limited to, electronic, magnetic, optical, electromagnetic, infrared, or semiconductor systems, devices, or equipment, or any suitable combination of the foregoing. A more specific example of a machine-readable storage medium may include an electrical connection based on one or more lines, a portable computer disk, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or flash memory), an optical fiber, a portable compact disk read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
图4是根据一示例性实施例示出的一种手术设备信息化管理方法的应用场景图。如图4所示,在该应用场景中,首先,获取特定手术设备的历史使用数据(例如,图4中所示意的C);然后,将获取的历史使用数据输入至部署有手术设备信息化管理算法的服务器(例如,图4中所示意的S)中,其中所述服务器能够基于手术设备信息化管理算法对所述历史使用数据进行处理,以确定是否生成提前采购提示。Fig. 4 is an application scenario diagram of a surgical equipment information management method according to an exemplary embodiment. As shown in Fig. 4, in this application scenario, first, the historical usage data of a specific surgical equipment is obtained (for example, C shown in Fig. 4); then, the obtained historical usage data is input into a server (for example, S shown in Fig. 4) that is deployed with a surgical equipment information management algorithm, wherein the server can process the historical usage data based on the surgical equipment information management algorithm to determine whether to generate an advance purchase reminder.
以上描述仅为本发明的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本发明中所涉及的公开范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离上述公开构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本发明中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。The above description is only a preferred embodiment of the present invention and an explanation of the technical principles used. Those skilled in the art should understand that the scope of disclosure involved in the present invention is not limited to the technical solution formed by a specific combination of the above technical features, but should also cover other technical solutions formed by any combination of the above technical features or their equivalent features without departing from the above disclosed concept. For example, the above features are replaced with the technical features with similar functions disclosed in the present invention (but not limited to) by each other.
此外,虽然采用特定次序描绘了各操作,但是这不应当理解为要求这些操作以所示出的特定次序或以顺序次序执行来执行。在一定环境下,多任务和并行处理可能是有利的。同样地,虽然在上面论述中包含了若干具体实现细节,但是这些不应当被解释为对本发明的范围的限制。在单独的实施例的上下文中描述的某些特征还可以组合地实现在单个实施例中。相反地,在单个实施例的上下文中描述的各种特征也可以单独地或以任何合适的子组合的方式实现在多个实施例中。In addition, although each operation is described in a specific order, this should not be construed as requiring these operations to be performed in the specific order shown or in a sequential order. Under certain circumstances, multitasking and parallel processing may be advantageous. Similarly, although some specific implementation details are included in the above discussion, these should not be construed as limiting the scope of the present invention. Some features described in the context of a separate embodiment can also be implemented in a single embodiment in combination. On the contrary, the various features described in the context of a single embodiment can also be implemented in multiple embodiments individually or in any suitable sub-combination mode.
尽管已经采用特定于结构特征和/或方法逻辑动作的语言描述了本主题,但是应当理解所附权利要求书中所限定的主题未必局限于上面描述的特定特征或动作。相反,上面所描述的特定特征和动作仅仅是实现权利要求书的示例形式。关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。Although the subject matter has been described in language specific to structural features and/or method logic actions, it should be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or actions described above. On the contrary, the specific features and actions described above are merely example forms of implementing the claims. Regarding the device in the above embodiment, the specific manner in which each module performs the operation has been described in detail in the embodiment related to the method, and will not be elaborated here.
Claims (6)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202410667823.3A CN118299022B (en) | 2024-05-28 | 2024-05-28 | Informationized management system and method for surgical equipment |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202410667823.3A CN118299022B (en) | 2024-05-28 | 2024-05-28 | Informationized management system and method for surgical equipment |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN118299022A true CN118299022A (en) | 2024-07-05 |
| CN118299022B CN118299022B (en) | 2024-08-16 |
Family
ID=91686747
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202410667823.3A Active CN118299022B (en) | 2024-05-28 | 2024-05-28 | Informationized management system and method for surgical equipment |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN118299022B (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN119027012A (en) * | 2024-10-28 | 2024-11-26 | 吉林大学 | Intelligent logistics distribution management system and method for operating room consumables |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7801591B1 (en) * | 2000-05-30 | 2010-09-21 | Vladimir Shusterman | Digital healthcare information management |
| WO2021196632A1 (en) * | 2020-03-30 | 2021-10-07 | 中国科学院深圳先进技术研究院 | Intelligent analysis system and method for panoramic digital pathological image |
| CN116415990A (en) * | 2023-06-09 | 2023-07-11 | 吉贝克信息技术(北京)有限公司 | Cloud computing-based self-service data analysis method, system and storage medium |
| CN117168861A (en) * | 2023-09-11 | 2023-12-05 | 滁州纽艾净化设备有限公司 | Abnormality monitoring method and abnormality monitoring system for sewage treatment equipment |
| CN117422917A (en) * | 2023-10-24 | 2024-01-19 | 吉林大学 | Hyperspectral remote sensing image classification method and related equipment |
| CN117788041A (en) * | 2023-12-05 | 2024-03-29 | 杭州电子科技大学 | Commodity sales predicting method, system and equipment based on multi-scale time sequence model |
-
2024
- 2024-05-28 CN CN202410667823.3A patent/CN118299022B/en active Active
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7801591B1 (en) * | 2000-05-30 | 2010-09-21 | Vladimir Shusterman | Digital healthcare information management |
| WO2021196632A1 (en) * | 2020-03-30 | 2021-10-07 | 中国科学院深圳先进技术研究院 | Intelligent analysis system and method for panoramic digital pathological image |
| CN116415990A (en) * | 2023-06-09 | 2023-07-11 | 吉贝克信息技术(北京)有限公司 | Cloud computing-based self-service data analysis method, system and storage medium |
| CN117168861A (en) * | 2023-09-11 | 2023-12-05 | 滁州纽艾净化设备有限公司 | Abnormality monitoring method and abnormality monitoring system for sewage treatment equipment |
| CN117422917A (en) * | 2023-10-24 | 2024-01-19 | 吉林大学 | Hyperspectral remote sensing image classification method and related equipment |
| CN117788041A (en) * | 2023-12-05 | 2024-03-29 | 杭州电子科技大学 | Commodity sales predicting method, system and equipment based on multi-scale time sequence model |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN119027012A (en) * | 2024-10-28 | 2024-11-26 | 吉林大学 | Intelligent logistics distribution management system and method for operating room consumables |
Also Published As
| Publication number | Publication date |
|---|---|
| CN118299022B (en) | 2024-08-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11620532B2 (en) | Method and apparatus for generating neural network | |
| CN110852438B (en) | Model generation method and device | |
| CN110009101B (en) | Method and apparatus for generating a quantized neural network | |
| CN118299022B (en) | Informationized management system and method for surgical equipment | |
| WO2020207174A1 (en) | Method and apparatus for generating quantized neural network | |
| CN118197648B (en) | Patient physical data remote collection and monitoring system and method | |
| CN115085196A (en) | Power load predicted value determination method, device, equipment and computer readable medium | |
| WO2020233228A1 (en) | Method and apparatus for pushing information | |
| CN118377787A (en) | Regional carbon emission accounting system and method | |
| CN118445734A (en) | Tokamak experimental data intelligent processing method and system | |
| WO2024109860A1 (en) | Interaction method and apparatus, electronic device and computer readable medium | |
| CN118520115A (en) | Information management system and method based on RPA and AI technology | |
| CN113807926A (en) | Recommendation information generating method, apparatus, electronic device and computer readable medium | |
| CN111414343B (en) | Log writing method, device, electronic equipment and medium | |
| WO2021068493A1 (en) | Method and apparatus for processing information | |
| CN118228200B (en) | Method, device and equipment for identifying abnormality of power equipment based on multimodal model | |
| CN112507676B (en) | Method and device for generating energy report, electronic equipment and computer readable medium | |
| CN118795521A (en) | Mobile target monitoring system based on satellite positioning and communication data transmission | |
| CN111898061B (en) | Method, apparatus, electronic device and computer readable medium for searching network | |
| CN118761443A (en) | Digital twin construction optimization method and system based on artificial intelligence | |
| CN110046670B (en) | Feature vector dimension reduction method and device | |
| CN118094228A (en) | Method, device, medium, electronic device and program product for determining training samples | |
| CN113780534B (en) | Compression method, image generation method, device, equipment and medium of network model | |
| CN115146657A (en) | Model training method, device, storage medium, client, server and system | |
| CN109669779B (en) | Method and device for determining cleaning path of data and cleaning data |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |