[go: up one dir, main page]

CN118138661A - A network aggregation switching device and method based on multi-source data protocol - Google Patents

A network aggregation switching device and method based on multi-source data protocol Download PDF

Info

Publication number
CN118138661A
CN118138661A CN202410254795.2A CN202410254795A CN118138661A CN 118138661 A CN118138661 A CN 118138661A CN 202410254795 A CN202410254795 A CN 202410254795A CN 118138661 A CN118138661 A CN 118138661A
Authority
CN
China
Prior art keywords
data
aggregation
data source
device data
network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202410254795.2A
Other languages
Chinese (zh)
Other versions
CN118138661B (en
Inventor
李晓春
张诗婕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Road Micro Technology Co ltd
Original Assignee
Beijing Road Micro Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Road Micro Technology Co ltd filed Critical Beijing Road Micro Technology Co ltd
Priority to CN202410254795.2A priority Critical patent/CN118138661B/en
Publication of CN118138661A publication Critical patent/CN118138661A/en
Application granted granted Critical
Publication of CN118138661B publication Critical patent/CN118138661B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/16Implementation or adaptation of Internet protocol [IP], of transmission control protocol [TCP] or of user datagram protocol [UDP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/08Protocols for interworking; Protocol conversion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/22Parsing or analysis of headers

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Communication Control (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

The invention discloses a network convergence switching device and method based on a multi-source data protocol, and relates to the technical field of network convergence. The aggregation degree among different data sources can be evaluated by calculating the data source aggregation index, so that whether the data sources are suitable for aggregation is judged, the consistency and the reliability of data in the aggregation process are guaranteed, the efficiency and the accuracy of data aggregation are improved, centralized management, unified monitoring and comprehensive analysis of the data can be realized by aggregating the data of the plurality of data sources, the utilization value and the application effect of the data are improved, the data format conversion and the standardization processing are carried out by the network aggregation switching device, the data can be transmitted to target equipment in the form of a target protocol, the condition that the target equipment needs to analyze the data of various different protocols one by one is avoided, and the efficiency of data transmission is improved.

Description

一种基于多源数据协议的网络汇聚交换装置及方法A network aggregation switching device and method based on multi-source data protocol

技术领域Technical Field

本发明涉及网络汇聚技术领域,具体为一种基于多源数据协议的网络汇聚交换装置及方法。The present invention relates to the technical field of network convergence, and in particular to a network convergence switching device and method based on a multi-source data protocol.

背景技术Background technique

随着信息技术的不断发展,企业、组织和个人之间的数据交流越来越频繁,数据源的数量和种类也越来越多。不同的数据源可能采用不同的数据协议,导致数据不能无缝集成和传输,给数据管理和应用带来了很大挑战。With the continuous development of information technology, data exchanges between enterprises, organizations and individuals are becoming more frequent, and the number and types of data sources are increasing. Different data sources may use different data protocols, resulting in data that cannot be seamlessly integrated and transmitted, which brings great challenges to data management and application.

例如公告号:CN103402262B公开了线型无线传感器网络汇聚方法,其中的线型占空比无线传感器网络汇聚包含时隙分配与汇聚调度,在时隙分配阶段,初始化工作周期Tinit为3的倍数,除BS外任意连续三个节点的工作时隙在时间轴上连续且各不相同;在汇聚调度阶段,除BS外任意节点初始模式下工作周期为Tinit,工作时隙设为τ,工作模式下工作周期Twork为3,工作时隙为((τ-1)mod3)+1,通过设定定时器在两种模式下动态切换,网络中节点以占空比方式调度,节省了节点能量,延长了网络寿命,并确定了完成汇聚的时间理论上界。非占空比无线传感器网络汇聚方法,周期性对网络中除BS外所有节点进行搜索和调度,在线型无线传感器网络模型下利用最短时间完成汇聚。用于线型无线传感器网络中的无碰撞汇聚应用。For example, announcement number: CN103402262B discloses a linear wireless sensor network aggregation method, wherein the linear duty cycle wireless sensor network aggregation includes time slot allocation and aggregation scheduling. In the time slot allocation stage, the initialization working cycle Tinit is a multiple of 3, and the working time slots of any three consecutive nodes except the BS are continuous and different on the time axis; in the aggregation scheduling stage, the working cycle of any node except the BS in the initial mode is Tinit, and the working time slot is set to τ. The working cycle Twork in the working mode is 3, and the working time slot is ((τ-1)mod3)+1. By setting a timer to dynamically switch between the two modes, the nodes in the network are scheduled in a duty cycle manner, which saves node energy, prolongs the network life, and determines the theoretical upper limit of the time to complete the aggregation. The non-duty cycle wireless sensor network aggregation method periodically searches and schedules all nodes in the network except the BS, and completes the aggregation in the shortest time under the linear wireless sensor network model. It is used for collision-free aggregation applications in linear wireless sensor networks.

基于上述方案发现,目前对网络汇聚方法方面还存在一些不足,具体体现在以下层面:无法有效地处理和整合来自不同源头的数据和支持复杂网络环境中的决策制定和操作执行。Based on the above solutions, it is found that there are still some shortcomings in the current network convergence methods, which are specifically reflected in the following aspects: it is impossible to effectively process and integrate data from different sources and support decision-making and operation execution in complex network environments.

发明内容Summary of the invention

针对现有技术的不足,本发明提供了一种基于多源数据协议的网络汇聚交换装置及方法,解决了上述背景技术的问题。In view of the deficiencies of the prior art, the present invention provides a network convergence switching device and method based on a multi-source data protocol, which solves the problems of the above-mentioned background technology.

为实现以上目的,本发明通过以下技术方案予以实现:一种基于多源数据协议的网络汇聚交换方法,包括以下步骤:S1.识别和连接不同协议的数据源,数据源包括网络设备、传感器和嵌入式设备,获取网络设备数据、传感器数据和嵌入式设备数据,将网络设备数据、传感器数据和嵌入式设备数据传输到汇聚节点;S2.基于网络设备数据、传感器数据和嵌入式设备数据,计算数据源聚合指数,用于衡量数据源聚合程度,评估不同协议的数据源的聚合程度,获取不同协议的数据源聚合程度的评估信息;S3.基于不同协议的数据源聚合程度的评估信息,将网络设备数据、传感器数据和嵌入式设备数据进行数据格式转换和标准化处理,转换为目标设备协议,通过网络汇聚交换装置使用目标协议将网络设备数据、传感器数据和嵌入式设备数据传输给目标设备;S4.通过网络汇聚交换装置对数据格式转换和标准化处理的网络设备数据、传感器数据和嵌入式设备数据进行整合和存储。To achieve the above objectives, the present invention is implemented through the following technical solutions: a network convergence and switching method based on a multi-source data protocol, comprising the following steps: S1. Identifying and connecting data sources of different protocols, the data sources include network devices, sensors and embedded devices, acquiring network device data, sensor data and embedded device data, and transmitting the network device data, sensor data and embedded device data to a convergence node; S2. Based on the network device data, sensor data and embedded device data, calculating a data source aggregation index, which is used to measure the degree of data source aggregation, evaluate the degree of aggregation of data sources of different protocols, and obtain evaluation information of the degree of aggregation of data sources of different protocols; S3. Based on the evaluation information of the degree of aggregation of data sources of different protocols, performing data format conversion and standardization processing on the network device data, sensor data and embedded device data, converting them into a target device protocol, and transmitting the network device data, sensor data and embedded device data to the target device using the target protocol through a network convergence and switching device; S4. Integrating and storing the network device data, sensor data and embedded device data that have undergone data format conversion and standardization processing through a network convergence and switching device.

进一步地,所述将网络设备数据、传感器数据和嵌入式设备数据传输到汇聚节点的具体过程如下:使用适配器将不同协议的数据源连接到网络汇聚交换装置,将网络设备数据、传感器数据和嵌入式设备数据安全地传输到汇聚节点;所述网络设备数据包括网络设备数据量、网络设备数据更新频率、网络设备数据完整度;所述传感器数据包括传感器数据量、传感器数据更新频率、传感器数据完整度;所述嵌入式设备数据包括嵌入式设备数据量、嵌入式设备数据更新频率、嵌入式设备数据完整度。Furthermore, the specific process of transmitting network device data, sensor data and embedded device data to the aggregation node is as follows: use an adapter to connect data sources of different protocols to the network aggregation switching device, and securely transmit the network device data, sensor data and embedded device data to the aggregation node; the network device data includes the network device data volume, network device data update frequency, and network device data integrity; the sensor data includes sensor data volume, sensor data update frequency, and sensor data integrity; the embedded device data includes embedded device data volume, embedded device data update frequency, and embedded device data integrity.

进一步地,所述基于网络设备数据、传感器数据和嵌入式设备数据,计算数据源聚合指数的具体计算过程如下:基于网络设备数据,分析网络设备数据的聚合符合程度,计算网络设备数据源聚合指数;基于传感器数据,分析传感器数据的聚合符合程度,计算传感器数据源聚合指数;基于嵌入式设备数据,分析嵌入式设备数据的聚合符合程度,计算嵌入式设备数据源聚合指数;基于网络设备数据源聚合指数,传感器数据源聚合指数,嵌入式设备数据源聚合指数,对网络设备数据源聚合指数,传感器数据源聚合指数,嵌入式设备数据源聚合指数分配权重,计算数据源聚合指数。Furthermore, the specific calculation process of calculating the data source aggregation index based on network device data, sensor data and embedded device data is as follows: based on network device data, analyzing the aggregation compliance of network device data, and calculating the network device data source aggregation index; based on sensor data, analyzing the aggregation compliance of sensor data, and calculating the sensor data source aggregation index; based on embedded device data, analyzing the aggregation compliance of embedded device data, and calculating the embedded device data source aggregation index; based on the network device data source aggregation index, sensor data source aggregation index, and embedded device data source aggregation index, assigning weights to the network device data source aggregation index, sensor data source aggregation index, and embedded device data source aggregation index, and calculating the data source aggregation index.

进一步地,所述对网络设备数据源聚合指数,传感器数据源聚合指数,嵌入式设备数据源聚合指数分配权重的具体过程如下:构建数据源聚合层次结构,对网络设备数据源聚合指数,传感器数据源聚合指数和嵌入式设备数据源聚合指数进行特征提取,比较网络设备数据源聚合指数,传感器数据源聚合指数和嵌入式设备数据源聚合指数对网络设备数据源聚合指数的影响程度;通过比较矩阵对网络设备数据源聚合指数,传感器数据源聚合指数和嵌入式设备数据源聚合指数进行归一化处理,得到网络设备数据源聚合指数,传感器数据源聚合指数和嵌入式设备数据源聚合指数的权重因子。Furthermore, the specific process of assigning weights to the network device data source aggregation index, the sensor data source aggregation index, and the embedded device data source aggregation index is as follows: constructing a data source aggregation hierarchy, performing feature extraction on the network device data source aggregation index, the sensor data source aggregation index, and the embedded device data source aggregation index, and comparing the degree of influence of the network device data source aggregation index, the sensor data source aggregation index, and the embedded device data source aggregation index on the network device data source aggregation index; normalizing the network device data source aggregation index, the sensor data source aggregation index, and the embedded device data source aggregation index through a comparison matrix to obtain weight factors of the network device data source aggregation index, the sensor data source aggregation index, and the embedded device data source aggregation index.

进一步地,数据源聚合指数的计算公式如下:Furthermore, the calculation formula of the data source aggregation index is as follows:

χ=Cnet*λ1+Csen*λ2+Cemb*λ3χ=Cnet*λ 1 +Csen*λ 2 +Cemb*λ 3 ;

式中,χ表示数据源聚合指数,Cnet表示网络设备数据源聚合指数,Csen表示传感器数据源聚合指数,Cemb表示嵌入式设备数据源聚合指数,λ1表示网络设备数据源聚合指数对应数据源聚合指数的权重因子,λ2表示传感器数据源聚合指数对应数据源聚合指数的权重因子,λ3表示嵌入式设备数据源聚合指数对应数据源聚合指数的权重因子。Where χ represents the data source aggregation index, Cnet represents the network device data source aggregation index, Csen represents the sensor data source aggregation index, Cemb represents the embedded device data source aggregation index, λ1 represents the weight factor of the network device data source aggregation index corresponding to the data source aggregation index, λ2 represents the weight factor of the sensor data source aggregation index corresponding to the data source aggregation index, and λ3 represents the weight factor of the embedded device data source aggregation index corresponding to the data source aggregation index.

进一步地,所述评估不同协议的数据源的聚合程度的具体过程如下:基于数据源聚合指数,与数据源聚合指数的阈值进行比较,计算数据源聚合指数与数据源聚合指数的阈值的差值,数据源聚合指数与数据源聚合指数的阈值的差值与数据源聚合指数允许的偏差值进行比较,计算数据源聚合符合系数。Furthermore, the specific process of evaluating the degree of aggregation of data sources of different protocols is as follows: based on the data source aggregation index, compare it with the threshold of the data source aggregation index, calculate the difference between the data source aggregation index and the threshold of the data source aggregation index, compare the difference between the data source aggregation index and the threshold of the data source aggregation index with the allowable deviation value of the data source aggregation index, and calculate the data source aggregation compliance coefficient.

进一步地,所述数据源聚合符合系数的具体计算公式如下:Furthermore, the specific calculation formula of the data source aggregation compliance coefficient is as follows:

式中,β表示数据源聚合符合系数,χ表示数据源聚合指数,χ1表示数据源聚合指数的阈值,Δχ表示数据源聚合指数允许的偏差值。In the formula, β represents the data source aggregation compliance coefficient, χ represents the data source aggregation index, χ1 represents the threshold of the data source aggregation index, and Δχ represents the allowable deviation value of the data source aggregation index.

进一步地,获取不同协议的数据源聚合程度的评估信息的具体过程如下:基于数据源聚合符合系数,与数据源聚合符合系数的标准值进行比较,若数据源聚合符合系数小于数据源聚合符合系数的标准值,则表示不同协议的数据源不聚合,对不同协议的数据源进行数据格式转换和标准化处理;若数据源聚合符合系数大于数据源聚合符合系数的标准值,则表示不同协议的数据源聚合。Furthermore, the specific process of obtaining evaluation information on the degree of aggregation of data sources of different protocols is as follows: based on the data source aggregation compliance coefficient, compare with the standard value of the data source aggregation compliance coefficient. If the data source aggregation compliance coefficient is less than the standard value of the data source aggregation compliance coefficient, it means that the data sources of different protocols are not aggregated, and the data sources of different protocols are converted into data formats and standardized; if the data source aggregation compliance coefficient is greater than the standard value of the data source aggregation compliance coefficient, it means that the data sources of different protocols are aggregated.

进一步地,所述基于不同协议的数据源聚合程度的评估信息,将网络设备数据、传感器数据和嵌入式设备数据进行数据格式转换和标准化处理的具体过程如下:基于不同协议的数据源聚合程度的评估信息,使用脚本编程语言Python对网络设备数据、传感器数据和嵌入式设备数据数据格式转换;将不同协议的数据源中的时间字段统一为相同的日期时间格式,将文本型数据转换为数值型数据,确保所有数据字段的数据类型一致,通过填充默认值、插值对缺失值进行处理。Furthermore, the specific process of converting and standardizing the data format of network device data, sensor data and embedded device data based on the evaluation information of the degree of aggregation of data sources of different protocols is as follows: based on the evaluation information of the degree of aggregation of data sources of different protocols, the data format of network device data, sensor data and embedded device data is converted using the scripting language Python; the time fields in data sources of different protocols are unified into the same date and time format, and text data is converted into numeric data to ensure that the data types of all data fields are consistent, and missing values are processed by filling in default values and interpolation.

一种基于多源数据协议的网络汇聚交换装置,包括数据采集传输模块,数据处理模块、数据转换模块、数据整合存储模块;所述数据采集模块用于识别和连接不同协议的数据源,数据源包括网络设备、传感器和嵌入式设备,获取网络设备数据、传感器数据和嵌入式设备数据,将网络设备数据、传感器数据和嵌入式设备数据传输到汇聚节点;所述数据传输模块用于基于网络设备数据、传感器数据和嵌入式设备数据,计算数据源聚合指数,用于衡量数据源聚合程度,评估不同协议的数据源的聚合程度,获取不同协议的数据源聚合程度的评估信息;所述数据转换模块用于基于不同协议的数据源聚合程度的评估信息,将网络设备数据、传感器数据和嵌入式设备数据进行数据格式转换和标准化处理,转换为目标设备协议,通过网络汇聚交换装置使用目标协议将网络设备数据、传感器数据和嵌入式设备数据传输给目标设备;所述数据整合存储模块用于通过网络汇聚交换装置对数据格式转换和标准化处理的网络设备数据、传感器数据和嵌入式设备数据进行整合和存储。A network convergence switching device based on multi-source data protocols comprises a data acquisition and transmission module, a data processing module, a data conversion module and a data integration storage module; the data acquisition module is used to identify and connect data sources of different protocols, the data sources include network devices, sensors and embedded devices, obtain network device data, sensor data and embedded device data, and transmit the network device data, sensor data and embedded device data to a convergence node; the data transmission module is used to calculate a data source aggregation index based on the network device data, sensor data and embedded device data, which is used to measure the degree of data source aggregation, evaluate the degree of aggregation of data sources of different protocols, and obtain evaluation information of the degree of aggregation of data sources of different protocols; the data conversion module is used to perform data format conversion and standardization processing on the network device data, sensor data and embedded device data based on the evaluation information of the degree of aggregation of data sources of different protocols, convert them into a target device protocol, and transmit the network device data, sensor data and embedded device data to the target device using the target protocol through the network convergence switching device; the data integration storage module is used to integrate and store the network device data, sensor data and embedded device data that have undergone data format conversion and standardization processing through the network convergence switching device.

本发明具有以下有益效果:The present invention has the following beneficial effects:

(1)、该一种基于多源数据协议的网络汇聚交换方法,通过计算数据源聚合指数,可以评估不同数据源之间的聚合程度,从而判断这些数据源是否适合用于聚合。这有助于保证数据在聚合过程中的一致性和可靠性,提高了数据聚合的效率和准确性,通过将多个数据源的数据汇聚到一起,可以实现数据的集中管理、统一监控和综合分析,提高数据的利用价值和应用效果。(1) This network aggregation and exchange method based on a multi-source data protocol can evaluate the aggregation degree between different data sources by calculating the data source aggregation index, thereby judging whether these data sources are suitable for aggregation. This helps to ensure the consistency and reliability of data during the aggregation process, improves the efficiency and accuracy of data aggregation, and can achieve centralized management, unified monitoring and comprehensive analysis of data by aggregating data from multiple data sources, thereby improving the utilization value and application effect of data.

(2)、该一种基于多源数据协议的网络汇聚交换装置,通过网络汇聚交换装置进行数据格式转换和标准化处理,可以将数据以目标协议的形式传输给目标设备,避免了目标设备需要逐个解析各种不同协议的数据的情况,提高了数据传输的效率。(2) The network convergence switching device based on a multi-source data protocol performs data format conversion and standardization processing through the network convergence switching device, and can transmit data to the target device in the form of a target protocol, thereby avoiding the situation where the target device needs to parse data of various different protocols one by one, thereby improving the efficiency of data transmission.

当然,实施本发明的任一产品并不一定需要同时达到以上所述的所有优点。Of course, any product implementing the present invention does not necessarily need to achieve all of the advantages described above at the same time.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

图1为本发明一种基于多源数据协议的网络汇聚交换方法流程图。FIG1 is a flow chart of a network convergence exchange method based on a multi-source data protocol according to the present invention.

图2为本发明一种基于多源数据协议的网络汇聚交换装置流程图。FIG. 2 is a flow chart of a network convergence switching device based on a multi-source data protocol according to the present invention.

具体实施方式Detailed ways

本申请实施例通过一种基于多源数据协议的网络汇聚交换装置及方法,有效地处理和整合来自不同源头的数据,以支持复杂网络环境中的决策制定和操作执行的问题。The embodiment of the present application uses a network convergence switching device and method based on a multi-source data protocol to effectively process and integrate data from different sources to support decision-making and operation execution in a complex network environment.

本申请实施例中的问题,总体思路如下:The overall idea of the problem in the embodiment of this application is as follows:

首先识别和连接不同协议的数据源,数据源包括网络设备、传感器和嵌入式设备,获取网络设备数据、传感器数据和嵌入式设备数据,将网络设备数据、传感器数据和嵌入式设备数据传输到汇聚节点。First, identify and connect data sources of different protocols, including network devices, sensors and embedded devices, obtain network device data, sensor data and embedded device data, and transmit the network device data, sensor data and embedded device data to the aggregation node.

基于网络设备数据、传感器数据和嵌入式设备数据,计算数据源聚合指数,用于衡量数据源聚合程度,评估不同协议的数据源的聚合程度,获取不同协议的数据源聚合程度的评估信息。Based on network device data, sensor data and embedded device data, the data source aggregation index is calculated to measure the degree of data source aggregation, evaluate the degree of aggregation of data sources of different protocols, and obtain evaluation information of the degree of aggregation of data sources of different protocols.

基于不同协议的数据源聚合程度的评估信息,将网络设备数据、传感器数据和嵌入式设备数据进行数据格式转换和标准化处理,转换为目标设备协议,通过网络汇聚交换装置使用目标协议将网络设备数据、传感器数据和嵌入式设备数据传输给目标设备。Based on the evaluation information of the degree of aggregation of data sources of different protocols, the network device data, sensor data and embedded device data are converted into data formats and standardized, and converted into the target device protocol. The network device data, sensor data and embedded device data are transmitted to the target device using the target protocol through the network aggregation switching device.

通过网络汇聚交换装置对数据格式转换和标准化处理的网络设备数据、传感器数据和嵌入式设备数据进行整合和存储。The network equipment data, sensor data and embedded device data that have been converted and standardized are integrated and stored through the network aggregation switching device.

请参阅图1,本发明实施例提供一种技术方案:一种基于多源数据协议的网络汇聚交换方法,包括以下步骤:S1.识别和连接不同协议的数据源,数据源包括网络设备、传感器和嵌入式设备,获取网络设备数据、传感器数据和嵌入式设备数据,将网络设备数据、传感器数据和嵌入式设备数据传输到汇聚节点;S2.基于网络设备数据、传感器数据和嵌入式设备数据,计算数据源聚合指数,用于衡量数据源聚合程度,评估不同协议的数据源的聚合程度,获取不同协议的数据源聚合程度的评估信息;S3.基于不同协议的数据源聚合程度的评估信息,将网络设备数据、传感器数据和嵌入式设备数据进行数据格式转换和标准化处理,转换为目标设备协议,通过网络汇聚交换装置使用目标协议将网络设备数据、传感器数据和嵌入式设备数据传输给目标设备;S4.通过网络汇聚交换装置对数据格式转换和标准化处理的网络设备数据、传感器数据和嵌入式设备数据进行整合和存储。Please refer to Figure 1. An embodiment of the present invention provides a technical solution: a network convergence and exchange method based on a multi-source data protocol, comprising the following steps: S1. Identify and connect data sources of different protocols, the data sources include network devices, sensors and embedded devices, obtain network device data, sensor data and embedded device data, and transmit the network device data, sensor data and embedded device data to a convergence node; S2. Based on the network device data, sensor data and embedded device data, calculate the data source aggregation index to measure the degree of data source aggregation, evaluate the degree of aggregation of data sources of different protocols, and obtain evaluation information of the degree of aggregation of data sources of different protocols; S3. Based on the evaluation information of the degree of aggregation of data sources of different protocols, perform data format conversion and standardization on the network device data, sensor data and embedded device data, convert them into a target device protocol, and transmit the network device data, sensor data and embedded device data to the target device using the target protocol through a network convergence and exchange device; S4. Integrate and store the network device data, sensor data and embedded device data that have undergone data format conversion and standardization through a network convergence and exchange device.

具体地,将网络设备数据、传感器数据和嵌入式设备数据传输到汇聚节点的具体过程如下:使用适配器将不同协议的数据源连接到网络汇聚交换装置,将网络设备数据、传感器数据和嵌入式设备数据安全地传输到汇聚节点;网络设备数据包括网络设备数据量、网络设备数据更新频率、网络设备数据完整度;传感器数据包括传感器数据量、传感器数据更新频率、传感器数据完整度;嵌入式设备数据包括嵌入式设备数据量、嵌入式设备数据更新频率、嵌入式设备数据完整度。Specifically, the specific process of transmitting network device data, sensor data and embedded device data to the aggregation node is as follows: use an adapter to connect data sources of different protocols to the network aggregation switching device, and securely transmit network device data, sensor data and embedded device data to the aggregation node; network device data includes network device data volume, network device data update frequency, and network device data integrity; sensor data includes sensor data volume, sensor data update frequency, and sensor data integrity; embedded device data includes embedded device data volume, embedded device data update frequency, and embedded device data integrity.

本实施方案中,网络设备数据、传感器数据和嵌入式设备数据传输到汇聚节点的过程为基于多源数据协议的网络汇聚交换方法提供了适配不同协议的数据源、安全传输数据、监测数据质量和提高数据处理效率等方面的帮助,从而实现数据的高效聚合和处理,提高系统的整体性能。In this implementation scheme, the process of transmitting network device data, sensor data and embedded device data to the aggregation node provides a network aggregation and switching method based on a multi-source data protocol with assistance in adapting data sources of different protocols, securely transmitting data, monitoring data quality and improving data processing efficiency, thereby achieving efficient aggregation and processing of data and improving the overall performance of the system.

具体地,基于网络设备数据、传感器数据和嵌入式设备数据,计算数据源聚合指数的具体计算过程如下:基于网络设备数据,分析网络设备数据的聚合符合程度,计算网络设备数据源聚合指数;基于传感器数据,分析传感器数据的聚合符合程度,计算传感器数据源聚合指数;基于嵌入式设备数据,分析嵌入式设备数据的聚合符合程度,计算嵌入式设备数据源聚合指数;基于网络设备数据源聚合指数,传感器数据源聚合指数,嵌入式设备数据源聚合指数,对网络设备数据源聚合指数,传感器数据源聚合指数,嵌入式设备数据源聚合指数分配权重,计算数据源聚合指数。Specifically, the specific calculation process of the data source aggregation index based on network device data, sensor data and embedded device data is as follows: based on network device data, analyze the aggregation compliance of network device data, and calculate the network device data source aggregation index; based on sensor data, analyze the aggregation compliance of sensor data, and calculate the sensor data source aggregation index; based on embedded device data, analyze the aggregation compliance of embedded device data, and calculate the embedded device data source aggregation index; based on the network device data source aggregation index, sensor data source aggregation index, and embedded device data source aggregation index, assign weights to the network device data source aggregation index, sensor data source aggregation index, and embedded device data source aggregation index, and calculate the data source aggregation index.

本实施方案中,基于网络设备数据,对网络设备依次编号为1,2,3...i...n,n表示网络设备总数,网络设备数据源聚合指数的计算公式如下:In this implementation scheme, based on the network device data, the network devices are numbered 1, 2, 3...i...n in sequence, where n represents the total number of network devices. The calculation formula for the network device data source aggregation index is as follows:

式中,Cnet表示网络设备数据源聚合指数,用于衡量网络设备数据源聚合程度,Nneti表示第i个网络设备数据量,Uneti表示第i个网络设备数据更新频率,Yneti表示第i个网络设备数据完整度,Nnet1表示网络设备数据量的标准值,Unet1表示网络设备数据更新频率的标准值,Ynet1表示网络设备数据完整度的标准值,ω1表示网络设备数据量的权重因子,ω2表示网络设备数据更新频率的权重因子,ω3表示网络设备数据完整度的权重因子。基于传感器数据,对传感器依次编号为1,2,3...j...m,m表示传感器总数量,传感器数据源聚合指数的计算公式如下:In the formula, Cnet represents the network device data source aggregation index, which is used to measure the degree of aggregation of network device data sources, Nnet i represents the amount of data of the ith network device, Unet i represents the update frequency of the ith network device data, Ynet i represents the integrity of the ith network device data, Nnet 1 represents the standard value of the amount of network device data, Unet 1 represents the standard value of the update frequency of network device data, Ynet 1 represents the standard value of the integrity of network device data, ω 1 represents the weight factor of the amount of network device data, ω 2 represents the weight factor of the update frequency of network device data, and ω 3 represents the weight factor of the integrity of network device data. Based on sensor data, sensors are numbered 1, 2, 3...j...m in sequence, and m represents the total number of sensors. The calculation formula of the sensor data source aggregation index is as follows:

式中,Csen表示传感器数据源聚合指数,用于衡量传感器数据源聚合程度,Nsenj表示第j个传感器数据量,Usenj表示第j个传感器数据更新频率,Ysenj表示第j个传感器数据完整度,Nsen1表示传感器数据量的标准值,Usen1表示传感器数据更新频率的标准值,Ysen1表示传感器数据完整度的标准值,ξ1表示传感器数据量的权重因子,ξ2表示传感器数据更新频率的权重因子,ξ3表示传感器数据完整度的权重因子;Wherein, Csen represents the aggregation index of sensor data source, which is used to measure the aggregation degree of sensor data source, Nsen j represents the data volume of the jth sensor, Usen j represents the update frequency of the jth sensor data, Ysen j represents the completeness of the jth sensor data, Nsen 1 represents the standard value of the sensor data volume, Usen 1 represents the standard value of the sensor data update frequency, Ysen 1 represents the standard value of the sensor data completeness, ξ 1 represents the weight factor of the sensor data volume, ξ 2 represents the weight factor of the sensor data update frequency, and ξ 3 represents the weight factor of the sensor data completeness;

基于嵌入式设备数据,对嵌入式设备依次编号为1,2,3...t...d,d表示嵌入式设备总数量,嵌入式设备数据源聚合指数的计算公式如下:Based on the embedded device data, the embedded devices are numbered 1, 2, 3...t...d in sequence, where d represents the total number of embedded devices. The calculation formula for the embedded device data source aggregation index is as follows:

式中,Cemb表示嵌入式设备数据源聚合指数,用于衡量嵌入式设备数据源聚合程度,Nembt表示第t个嵌入式设备数据量,Uembt表示第t个嵌入式设备数据更新频率,Yembt表示第t个嵌入式设备数据完整度,Nemb1表示嵌入式设备数据量的标准值,Uemb1表示嵌入式设备数据更新频率的标准值,Yemb1表示嵌入式设备数据完整度的标准值,δ1表示嵌入式设备数据量的权重因子,δ2表示嵌入式设备数据更新频率的权重因子,δ3表示嵌入式设备数据完整度的权重因子。Wherein, Cemb represents the aggregation index of embedded device data source, which is used to measure the aggregation degree of embedded device data source, Nemb t represents the amount of data of the tth embedded device, Uemb t represents the update frequency of the tth embedded device data, Yemb t represents the completeness of the tth embedded device data, Nemb 1 represents the standard value of the amount of embedded device data, Uemb 1 represents the standard value of the update frequency of embedded device data, Yemb 1 represents the standard value of the completeness of embedded device data, δ 1 represents the weight factor of the amount of embedded device data, δ 2 represents the weight factor of the update frequency of embedded device data, and δ 3 represents the weight factor of the completeness of embedded device data.

具体地,对网络设备数据源聚合指数,传感器数据源聚合指数,嵌入式设备数据源聚合指数分配权重的具体过程如下:构建数据源聚合层次结构,对网络设备数据源聚合指数,传感器数据源聚合指数和嵌入式设备数据源聚合指数进行特征提取,比较网络设备数据源聚合指数,传感器数据源聚合指数和嵌入式设备数据源聚合指数对网络设备数据源聚合指数的影响程度;通过比较矩阵对网络设备数据源聚合指数,传感器数据源聚合指数和嵌入式设备数据源聚合指数进行归一化处理,得到网络设备数据源聚合指数,传感器数据源聚合指数和嵌入式设备数据源聚合指数的权重因子。Specifically, the specific process of assigning weights to the network device data source aggregation index, sensor data source aggregation index, and embedded device data source aggregation index is as follows: construct a data source aggregation hierarchy, extract features from the network device data source aggregation index, sensor data source aggregation index, and embedded device data source aggregation index, and compare the degree of influence of the network device data source aggregation index, sensor data source aggregation index, and embedded device data source aggregation index on the network device data source aggregation index; normalize the network device data source aggregation index, sensor data source aggregation index, and embedded device data source aggregation index through a comparison matrix to obtain the weight factors of the network device data source aggregation index, sensor data source aggregation index, and embedded device data source aggregation index.

本实施方案中,根据计算出的权重因子,可以合理地分配不同数据源在数据聚合中的权重,使得在数据聚合过程中更加充分地利用各个数据源的信息;合理的权重因子可以使得数据聚合结果更加符合各个数据源的贡献度,从而提高数据聚合结果的准确性和可靠性;通过权重因子,可以制定合理的数据聚合策略,更加重视对数据贡献较大的数据源,在数据聚合过程中更多地利用其数据,从而优化数据聚合的效果。In this implementation, based on the calculated weight factors, the weights of different data sources in data aggregation can be reasonably allocated, so that the information of each data source can be more fully utilized in the data aggregation process; reasonable weight factors can make the data aggregation results more in line with the contribution of each data source, thereby improving the accuracy and reliability of the data aggregation results; through weight factors, reasonable data aggregation strategies can be formulated, more attention can be paid to data sources that contribute more to the data, and their data can be used more in the data aggregation process, thereby optimizing the effect of data aggregation.

具体地,数据源聚合指数的计算公式如下:Specifically, the calculation formula of the data source aggregation index is as follows:

χ=Cnet*λ1+Csen*λ2+Cemb*λ3χ=Cnet*λ 1 +Csen*λ 2 +Cemb*λ 3 ;

式中,χ表示数据源聚合指数,用于衡量数据源聚合程度,Cnet表示网络设备数据源聚合指数,Csen表示传感器数据源聚合指数,Cemb表示嵌入式设备数据源聚合指数,λ1表示网络设备数据源聚合指数对应数据源聚合指数的权重因子,λ2表示传感器数据源聚合指数对应数据源聚合指数的权重因子,λ3表示嵌入式设备数据源聚合指数对应数据源聚合指数的权重因子。Where χ represents the data source aggregation index, which is used to measure the degree of data source aggregation; Cnet represents the network device data source aggregation index; Csen represents the sensor data source aggregation index; Cemb represents the embedded device data source aggregation index; λ1 represents the weight factor of the network device data source aggregation index corresponding to the data source aggregation index; λ2 represents the weight factor of the sensor data source aggregation index corresponding to the data source aggregation index; and λ3 represents the weight factor of the embedded device data source aggregation index corresponding to the data source aggregation index.

本实施方案中,数据源聚合指数是由网络设备数据源聚合指数,传感器数据源聚合指数,嵌入式设备数据源聚合指数,与网络设备数据源聚合指数的权重因子,传感器数据源聚合指数的权重因子,嵌入式设备数据源聚合指数的权重因子乘积获得,提高数据聚合结果的准确性,优化数据聚合策略,从而使得数据聚合指数更加符合实际情况,为决策提供更加可靠的数据支持。In this implementation scheme, the data source aggregation index is obtained by multiplying the network device data source aggregation index, the sensor data source aggregation index, the embedded device data source aggregation index, and the weight factor of the network device data source aggregation index, the weight factor of the sensor data source aggregation index, and the weight factor of the embedded device data source aggregation index. This improves the accuracy of the data aggregation results and optimizes the data aggregation strategy, so that the data aggregation index is more in line with the actual situation and provides more reliable data support for decision-making.

具体地,评估不同协议的数据源的聚合程度的具体过程如下:基于数据源聚合指数,与数据源聚合指数的阈值进行比较,计算数据源聚合指数与数据源聚合指数的阈值的差值,数据源聚合指数与数据源聚合指数的阈值的差值与数据源聚合指数允许的偏差值进行比较,计算数据源聚合符合系数。Specifically, the specific process of evaluating the degree of aggregation of data sources of different protocols is as follows: based on the data source aggregation index, compare it with the threshold of the data source aggregation index, calculate the difference between the data source aggregation index and the threshold of the data source aggregation index, compare the difference between the data source aggregation index and the threshold of the data source aggregation index with the allowable deviation value of the data source aggregation index, and calculate the data source aggregation compliance coefficient.

本实施方案中,评估不同协议的数据源的聚合程度可以帮助确定不同数据源的重要性和贡献度,优化数据源的选择和分配,提高数据的利用率和聚合效果。同时,可以通过对聚合指数阈值的设定,根据具体应用场景对聚合要求进行精细化的控制,从而满足不同应用需求。总之,评估不同协议的数据源的聚合程度可以帮助提高多源数据协议的网络汇聚交换方法的效率和可靠性,实现更加智能化和自动化的数据汇聚处理。In this implementation scheme, evaluating the degree of aggregation of data sources of different protocols can help determine the importance and contribution of different data sources, optimize the selection and allocation of data sources, and improve data utilization and aggregation effect. At the same time, by setting the aggregation index threshold, the aggregation requirements can be finely controlled according to the specific application scenario to meet different application requirements. In short, evaluating the degree of aggregation of data sources of different protocols can help improve the efficiency and reliability of the network aggregation and exchange method of multi-source data protocols, and realize more intelligent and automated data aggregation processing.

具体地,数据源聚合符合系数的具体计算公式如下:Specifically, the specific calculation formula for the data source aggregation compliance coefficient is as follows:

式中,β表示数据源聚合符合系数,用于衡量数据源聚合符合程度,χ表示数据源聚合指数,χ1表示数据源聚合指数的阈值,Δχ表示数据源聚合指数允许的偏差值。In the formula, β represents the data source aggregation compliance coefficient, which is used to measure the degree of data source aggregation compliance, χ represents the data source aggregation index, χ1 represents the threshold of the data source aggregation index, and Δχ represents the allowable deviation value of the data source aggregation index.

本实施方案中,数据源聚合符合系数可以帮助评估数据源的聚合程度,优化数据源选择和分配,以及控制聚合要求,从而提升基于多源数据协议的网络汇聚交换方法的效率和可靠性。In this implementation, the data source aggregation compliance coefficient can help evaluate the aggregation degree of data sources, optimize data source selection and allocation, and control aggregation requirements, thereby improving the efficiency and reliability of the network aggregation exchange method based on the multi-source data protocol.

具体地,获取不同协议的数据源聚合程度的评估信息的具体过程如下:基于数据源聚合符合系数,与数据源聚合符合系数的标准值进行比较,若数据源聚合符合系数小于数据源聚合符合系数的标准值,则表示不同协议的数据源不聚合,对不同协议的数据源进行数据格式转换和标准化处理;若数据源聚合符合系数大于数据源聚合符合系数的标准值,则表示不同协议的数据源聚合。Specifically, the specific process of obtaining evaluation information on the degree of aggregation of data sources of different protocols is as follows: based on the data source aggregation compliance coefficient, compare with the standard value of the data source aggregation compliance coefficient. If the data source aggregation compliance coefficient is less than the standard value of the data source aggregation compliance coefficient, it means that the data sources of different protocols are not aggregated, and the data sources of different protocols are converted into data formats and standardized; if the data source aggregation compliance coefficient is greater than the standard value of the data source aggregation compliance coefficient, it means that the data sources of different protocols are aggregated.

本实施方案中,通过数据源聚合符合系数的标准值设定和比较,可以控制聚合要求,从而提高数据的利用率和聚合效果;获取不同协议的数据源聚合程度的评估信息可以帮助优化数据源的选择和分配策略,提高数据汇聚处理的效率和可靠性,进而提高数据的利用率和聚合效果。In this implementation scheme, by setting and comparing standard values of data source aggregation compliance coefficients, the aggregation requirements can be controlled, thereby improving data utilization and aggregation effects; obtaining evaluation information on the degree of aggregation of data sources of different protocols can help optimize the selection and allocation strategies of data sources, improve the efficiency and reliability of data aggregation processing, and thereby improve data utilization and aggregation effects.

具体地,基于不同协议的数据源聚合程度的评估信息,将网络设备数据、传感器数据和嵌入式设备数据进行数据格式转换和标准化处理的具体过程如下:基于不同协议的数据源聚合程度的评估信息,使用脚本编程语言Python对网络设备数据、传感器数据和嵌入式设备数据数据格式转换;将不同协议的数据源中的时间字段统一为相同的日期时间格式,将文本型数据转换为数值型数据,确保所有数据字段的数据类型一致,通过填充默认值、插值对缺失值进行处理。Specifically, based on the evaluation information of the degree of aggregation of data sources of different protocols, the specific process of data format conversion and standardization of network device data, sensor data and embedded device data is as follows: based on the evaluation information of the degree of aggregation of data sources of different protocols, the data format of network device data, sensor data and embedded device data is converted using the scripting language Python; the time fields in data sources of different protocols are unified into the same date and time format, and text data is converted into numeric data to ensure that the data types of all data fields are consistent, and missing values are processed by filling in default values and interpolation.

本实施方案中,基于不同协议的数据源聚合程度的评估信息,通过Python脚本对网络设备数据、传感器数据和嵌入式设备数据进行格式转换和标准化处理,有助于提高数据汇聚交换方法的效率、可靠性和可操作性,进而推动基于多源数据协议的网络汇聚交换方法的进一步优化和应用。In this implementation scheme, based on the evaluation information of the degree of aggregation of data sources of different protocols, the format conversion and standardization of network device data, sensor data and embedded device data are performed through Python scripts, which helps to improve the efficiency, reliability and operability of the data aggregation and exchange method, and further promotes the further optimization and application of the network aggregation and exchange method based on multi-source data protocols.

一种基于多源数据协议的网络汇聚交换装置,包括数据采集传输模块,数据处理模块、数据转换模块、数据整合存储模块;数据采集模块用于识别和连接不同协议的数据源,数据源包括网络设备、传感器和嵌入式设备,获取网络设备数据、传感器数据和嵌入式设备数据,将网络设备数据、传感器数据和嵌入式设备数据传输到汇聚节点;数据传输模块用于基于网络设备数据、传感器数据和嵌入式设备数据,计算数据源聚合指数,用于衡量数据源聚合程度,评估不同协议的数据源的聚合程度,获取不同协议的数据源聚合程度的评估信息;数据转换模块用于基于不同协议的数据源聚合程度的评估信息,将网络设备数据、传感器数据和嵌入式设备数据进行数据格式转换和标准化处理,转换为目标设备协议,通过网络汇聚交换装置使用目标协议将网络设备数据、传感器数据和嵌入式设备数据传输给目标设备;数据整合存储模块用于通过网络汇聚交换装置对数据格式转换和标准化处理的网络设备数据、传感器数据和嵌入式设备数据进行整合和存储。A network convergence switching device based on multi-source data protocols comprises a data acquisition and transmission module, a data processing module, a data conversion module and a data integration storage module; the data acquisition module is used to identify and connect data sources of different protocols, the data sources include network devices, sensors and embedded devices, obtain network device data, sensor data and embedded device data, and transmit the network device data, sensor data and embedded device data to a convergence node; the data transmission module is used to calculate the data source aggregation index based on the network device data, sensor data and embedded device data, which is used to measure the degree of data source aggregation, evaluate the degree of aggregation of data sources of different protocols, and obtain evaluation information of the degree of aggregation of data sources of different protocols; the data conversion module is used to convert and standardize the network device data, sensor data and embedded device data based on the evaluation information of the degree of aggregation of data sources of different protocols, convert them into a target device protocol, and transmit the network device data, sensor data and embedded device data to the target device using the target protocol through the network convergence switching device; the data integration storage module is used to integrate and store the network device data, sensor data and embedded device data that have been converted and standardized through the network convergence switching device.

本实施方案中,通过汇聚交换装置,可以将来自不同数据源、不同协议的数据进行整合和统一,使得数据具备一致的格式和结构,便于后续的处理和分析;汇聚交换装置能够将数据转换为目标设备协议,使得数据可以被目标设备所识别和应用,从而提高了数据的可用性和适用性;通过汇聚交换装置,可以优化数据传输过程,减少不同协议数据间的转换和处理时间,提高了数据传输的效率;汇聚交换装置能够减少数据处理的复杂性,统一数据格式和处理流程,降低了数据处理的成本和工作量;通过汇聚交换装置,可以实现对数据的标准化处理和加密传输,增强了数据的安全性和隐私保护。In this implementation scheme, through the convergence and switching device, data from different data sources and different protocols can be integrated and unified, so that the data has a consistent format and structure, which is convenient for subsequent processing and analysis; the convergence and switching device can convert the data into the target device protocol so that the data can be recognized and applied by the target device, thereby improving the availability and applicability of the data; through the convergence and switching device, the data transmission process can be optimized, the conversion and processing time between data of different protocols can be reduced, and the efficiency of data transmission can be improved; the convergence and switching device can reduce the complexity of data processing, unify the data format and processing flow, and reduce the cost and workload of data processing; through the convergence and switching device, standardized processing and encrypted transmission of data can be achieved, enhancing data security and privacy protection.

综上,本申请至少具有以下效果:In summary, this application has at least the following effects:

一种基于多源数据协议的网络汇聚交换方法,通过计算数据源聚合指数,可以评估不同数据源之间的聚合程度,从而判断这些数据源是否适合用于聚合。这有助于保证数据在聚合过程中的一致性和可靠性,提高了数据聚合的效率和准确性,通过将多个数据源的数据汇聚到一起,可以实现数据的集中管理、统一监控和综合分析,提高数据的利用价值和应用效果。A network aggregation and exchange method based on a multi-source data protocol can evaluate the aggregation degree between different data sources by calculating the data source aggregation index, so as to determine whether these data sources are suitable for aggregation. This helps to ensure the consistency and reliability of data in the aggregation process, improves the efficiency and accuracy of data aggregation, and can achieve centralized management, unified monitoring and comprehensive analysis of data by aggregating data from multiple data sources, thereby improving the utilization value and application effect of data.

本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。Those skilled in the art will appreciate that embodiments of the present invention may be provided as methods, systems, or computer program products. Therefore, the present invention may take the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, the present invention may take the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program code.

本发明是参照根据本发明实施例的系统、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。The present invention is described with reference to the flowchart and/or block diagram of the system, device (system), and computer program product according to the embodiment of the present invention. It should be understood that each process and/or box in the flowchart and/or block diagram, as well as the combination of the process and/or box in the flowchart and/or block diagram can be implemented by computer program instructions. These computer program instructions can be provided to a processor of a general-purpose computer, a special-purpose computer, an embedded processor or other programmable data processing device to produce a machine, so that the instructions executed by the processor of the computer or other programmable data processing device produce a device for implementing the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.

这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。These computer program instructions may also be stored in a computer-readable memory that can direct a computer or other programmable data processing device to work in a specific manner, so that the instructions stored in the computer-readable memory produce a manufactured product including an instruction device that implements the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.

这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。These computer program instructions may also be loaded onto a computer or other programmable data processing device so that a series of operational steps are executed on the computer or other programmable device to produce a computer-implemented process, whereby the instructions executed on the computer or other programmable device provide steps for implementing the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.

尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。Although the preferred embodiments of the present invention have been described, those skilled in the art may make other changes and modifications to these embodiments once they have learned the basic creative concept. Therefore, the appended claims are intended to be interpreted as including the preferred embodiments and all changes and modifications that fall within the scope of the present invention.

显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。Obviously, those skilled in the art can make various changes and modifications to the present invention without departing from the spirit and scope of the present invention. Thus, if these modifications and variations of the present invention fall within the scope of the claims of the present invention and their equivalents, the present invention is also intended to include these modifications and variations.

Claims (10)

1.一种基于多源数据协议的网络汇聚交换方法,其特征在于,包括以下步骤:1. A network convergence switching method based on a multi-source data protocol, characterized in that it comprises the following steps: S1.识别和连接不同协议的数据源,数据源包括网络设备、传感器和嵌入式设备,获取网络设备数据、传感器数据和嵌入式设备数据,将网络设备数据、传感器数据和嵌入式设备数据传输到汇聚节点;S1. Identify and connect data sources of different protocols, including network devices, sensors, and embedded devices, obtain network device data, sensor data, and embedded device data, and transmit the network device data, sensor data, and embedded device data to the aggregation node; S2.基于网络设备数据、传感器数据和嵌入式设备数据,计算数据源聚合指数,用于衡量数据源聚合程度,评估不同协议的数据源的聚合程度,获取不同协议的数据源聚合程度的评估信息;S2. Based on the network device data, sensor data and embedded device data, calculate the data source aggregation index to measure the degree of data source aggregation, evaluate the degree of aggregation of data sources of different protocols, and obtain evaluation information of the degree of aggregation of data sources of different protocols; S3.基于不同协议的数据源聚合程度的评估信息,将网络设备数据、传感器数据和嵌入式设备数据进行数据格式转换和标准化处理,转换为目标设备协议,通过网络汇聚交换装置使用目标协议将网络设备数据、传感器数据和嵌入式设备数据传输给目标设备;S3. Based on the evaluation information of the aggregation degree of data sources of different protocols, the network device data, sensor data and embedded device data are converted and standardized into the target device protocol, and the network device data, sensor data and embedded device data are transmitted to the target device using the target protocol through the network aggregation switching device; S4.通过网络汇聚交换装置对数据格式转换和标准化处理的网络设备数据、传感器数据和嵌入式设备数据进行整合和存储。S4. Integrate and store the network device data, sensor data and embedded device data that have undergone data format conversion and standardization processing through a network aggregation and switching device. 2.根据权利要求1所述的一种基于多源数据协议的网络汇聚交换方法,其特征在于:所述将网络设备数据、传感器数据和嵌入式设备数据传输到汇聚节点的具体过程如下:2. According to the network convergence and switching method based on multi-source data protocol of claim 1, it is characterized in that: the specific process of transmitting network device data, sensor data and embedded device data to the convergence node is as follows: 使用适配器将不同协议的数据源连接到网络汇聚交换装置,将网络设备数据、传感器数据和嵌入式设备数据安全地传输到汇聚节点;Use adapters to connect data sources of different protocols to the network aggregation switch device, and securely transmit network device data, sensor data, and embedded device data to the aggregation node; 所述网络设备数据包括网络设备数据量、网络设备数据更新频率、网络设备数据完整度;The network device data includes network device data volume, network device data update frequency, and network device data integrity; 所述传感器数据包括传感器数据量、传感器数据更新频率、传感器数据完整度;The sensor data includes sensor data volume, sensor data update frequency, and sensor data integrity; 所述嵌入式设备数据包括嵌入式设备数据量、嵌入式设备数据更新频率、嵌入式设备数据完整度。The embedded device data includes the amount of embedded device data, the frequency of updating the embedded device data, and the completeness of the embedded device data. 3.根据权利要求2所述的一种基于多源数据协议的网络汇聚交换方法,其特征在于:所述基于网络设备数据、传感器数据和嵌入式设备数据,计算数据源聚合指数的具体计算过程如下:3. According to the network convergence exchange method based on multi-source data protocol of claim 2, it is characterized in that: the specific calculation process of calculating the data source aggregation index based on network device data, sensor data and embedded device data is as follows: 基于网络设备数据,分析网络设备数据的聚合符合程度,计算网络设备数据源聚合指数;Based on the network device data, analyze the aggregation conformity of the network device data and calculate the aggregation index of the network device data source; 基于传感器数据,分析传感器数据的聚合符合程度,计算传感器数据源聚合指数;Based on the sensor data, analyze the aggregation conformity of the sensor data and calculate the aggregation index of the sensor data source; 基于嵌入式设备数据,分析嵌入式设备数据的聚合符合程度,计算嵌入式设备数据源聚合指数;Based on the embedded device data, analyze the aggregation conformity of the embedded device data and calculate the aggregation index of the embedded device data source; 基于网络设备数据源聚合指数,传感器数据源聚合指数,嵌入式设备数据源聚合指数,对网络设备数据源聚合指数,传感器数据源聚合指数,嵌入式设备数据源聚合指数分配权重,计算数据源聚合指数。Based on the network device data source aggregation index, the sensor data source aggregation index, and the embedded device data source aggregation index, weights are assigned to the network device data source aggregation index, the sensor data source aggregation index, and the embedded device data source aggregation index to calculate the data source aggregation index. 4.根据权利要求3所述的一种基于多源数据协议的网络汇聚交换方法,其特征在于:所述对网络设备数据源聚合指数,传感器数据源聚合指数,嵌入式设备数据源聚合指数分配权重的具体过程如下:4. According to the network convergence exchange method based on multi-source data protocol of claim 3, it is characterized in that: the specific process of allocating weights to the network device data source aggregation index, the sensor data source aggregation index, and the embedded device data source aggregation index is as follows: 构建数据源聚合层次结构,对网络设备数据源聚合指数,传感器数据源聚合指数和嵌入式设备数据源聚合指数进行特征提取,比较网络设备数据源聚合指数,传感器数据源聚合指数和嵌入式设备数据源聚合指数对网络设备数据源聚合指数的影响程度;Construct a data source aggregation hierarchy, extract features from the network device data source aggregation index, sensor data source aggregation index, and embedded device data source aggregation index, and compare the influence of the network device data source aggregation index, sensor data source aggregation index, and embedded device data source aggregation index on the network device data source aggregation index; 通过比较矩阵对网络设备数据源聚合指数,传感器数据源聚合指数和嵌入式设备数据源聚合指数进行归一化处理,得到网络设备数据源聚合指数,传感器数据源聚合指数和嵌入式设备数据源聚合指数的权重因子。The network device data source aggregation index, sensor data source aggregation index and embedded device data source aggregation index are normalized by comparing the matrix to obtain the weight factors of the network device data source aggregation index, sensor data source aggregation index and embedded device data source aggregation index. 5.根据权利要求3所述的一种基于多源数据协议的网络汇聚交换方法,其特征在于:数据源聚合指数的计算公式如下:5. According to the network convergence exchange method based on multi-source data protocol of claim 3, it is characterized in that: the calculation formula of the data source aggregation index is as follows: χ=Cnet*λ1+Csen*λ2+Cemb*λ3χ=Cnet*λ 1 +Csen*λ 2 +Cemb*λ 3 ; 式中,χ表示数据源聚合指数,Cnet表示网络设备数据源聚合指数,Csen表示传感器数据源聚合指数,Cemb表示嵌入式设备数据源聚合指数,λ1表示网络设备数据源聚合指数对应数据源聚合指数的权重因子,λ2表示传感器数据源聚合指数对应数据源聚合指数的权重因子,λ3表示嵌入式设备数据源聚合指数对应数据源聚合指数的权重因子。Where χ represents the data source aggregation index, Cnet represents the network device data source aggregation index, Csen represents the sensor data source aggregation index, Cemb represents the embedded device data source aggregation index, λ1 represents the weight factor of the network device data source aggregation index corresponding to the data source aggregation index, λ2 represents the weight factor of the sensor data source aggregation index corresponding to the data source aggregation index, and λ3 represents the weight factor of the embedded device data source aggregation index corresponding to the data source aggregation index. 6.根据权利要求5所述的一种基于多源数据协议的网络汇聚交换方法,其特征在于:所述评估不同协议的数据源的聚合程度的具体过程如下:6. A network convergence and exchange method based on multi-source data protocols according to claim 5, characterized in that: the specific process of evaluating the aggregation degree of data sources of different protocols is as follows: 基于数据源聚合指数,与数据源聚合指数的阈值进行比较,计算数据源聚合指数与数据源聚合指数的阈值的差值,数据源聚合指数与数据源聚合指数的阈值的差值与数据源聚合指数允许的偏差值进行比较,计算数据源聚合符合系数。Based on the data source aggregation index, it is compared with the threshold of the data source aggregation index, the difference between the data source aggregation index and the threshold of the data source aggregation index is calculated, the difference between the data source aggregation index and the threshold of the data source aggregation index is compared with the allowable deviation value of the data source aggregation index, and the data source aggregation compliance coefficient is calculated. 7.根据权利要求6所述的一种基于多源数据协议的网络汇聚交换方法,其特征在于:所述数据源聚合符合系数的具体计算公式如下:7. A network convergence and exchange method based on a multi-source data protocol according to claim 6, characterized in that: the specific calculation formula of the data source aggregation compliance coefficient is as follows: 式中,β表示数据源聚合符合系数,χ表示数据源聚合指数,χ1表示数据源聚合指数的阈值,Δχ表示数据源聚合指数允许的偏差值。Where β represents the data source aggregation compliance coefficient, χ represents the data source aggregation index, χ1 represents the threshold of the data source aggregation index, and Δχ represents the allowable deviation value of the data source aggregation index. 8.根据权利要求7所述的一种基于多源数据协议的网络汇聚交换方法,其特征在于:获取不同协议的数据源聚合程度的评估信息的具体过程如下:8. A network convergence and exchange method based on a multi-source data protocol according to claim 7, characterized in that: the specific process of obtaining evaluation information of the aggregation degree of data sources of different protocols is as follows: 基于数据源聚合符合系数,与数据源聚合符合系数的标准值进行比较,若数据源聚合符合系数小于数据源聚合符合系数的标准值,则表示不同协议的数据源不聚合,对不同协议的数据源进行数据格式转换和标准化处理;Based on the data source aggregation compliance coefficient, it is compared with the standard value of the data source aggregation compliance coefficient. If the data source aggregation compliance coefficient is less than the standard value of the data source aggregation compliance coefficient, it means that the data sources of different protocols are not aggregated, and the data formats of the data sources of different protocols are converted and standardized. 若数据源聚合符合系数大于数据源聚合符合系数的标准值,则表示不同协议的数据源聚合。If the data source aggregation compliance coefficient is greater than the standard value of the data source aggregation compliance coefficient, it indicates that data sources of different protocols are aggregated. 9.根据权利要求8所述的一种基于多源数据协议的网络汇聚交换方法,其特征在于:所述基于不同协议的数据源聚合程度的评估信息,将网络设备数据、传感器数据和嵌入式设备数据进行数据格式转换和标准化处理的具体过程如下:9. A network convergence and exchange method based on a multi-source data protocol according to claim 8, characterized in that: the specific process of converting and standardizing the network device data, sensor data and embedded device data based on the evaluation information of the aggregation degree of data sources of different protocols is as follows: 基于不同协议的数据源聚合程度的评估信息,使用脚本编程语言Python对网络设备数据、传感器数据和嵌入式设备数据数据格式转换;Based on the evaluation information of the aggregation degree of data sources with different protocols, the scripting programming language Python is used to convert the data formats of network device data, sensor data and embedded device data; 将不同协议的数据源中的时间字段统一为相同的日期时间格式,将文本型数据转换为数值型数据,确保所有数据字段的数据类型一致,通过填充默认值、插值对缺失值进行处理。Unify the time fields in data sources of different protocols into the same date and time format, convert text data into numeric data, ensure that the data types of all data fields are consistent, and handle missing values by filling in default values and interpolation. 10.一种基于多源数据协议的网络汇聚交换装置,应用如权利要求1-9任一项所述的一种基于多源数据协议的网络汇聚交换方法,其特征在于:包括数据采集传输模块,数据处理模块、数据转换模块、数据整合存储模块;10. A network convergence switching device based on a multi-source data protocol, using a network convergence switching method based on a multi-source data protocol as described in any one of claims 1 to 9, characterized in that: it includes a data acquisition and transmission module, a data processing module, a data conversion module, and a data integration and storage module; 所述数据采集模块用于识别和连接不同协议的数据源,数据源包括网络设备、传感器和嵌入式设备,获取网络设备数据、传感器数据和嵌入式设备数据,将网络设备数据、传感器数据和嵌入式设备数据传输到汇聚节点;The data acquisition module is used to identify and connect data sources of different protocols, including network devices, sensors and embedded devices, obtain network device data, sensor data and embedded device data, and transmit the network device data, sensor data and embedded device data to the aggregation node; 所述数据传输模块用于基于网络设备数据、传感器数据和嵌入式设备数据,计算数据源聚合指数,用于衡量数据源聚合程度,评估不同协议的数据源的聚合程度,获取不同协议的数据源聚合程度的评估信息;The data transmission module is used to calculate the data source aggregation index based on the network device data, sensor data and embedded device data, which is used to measure the degree of data source aggregation, evaluate the degree of aggregation of data sources of different protocols, and obtain evaluation information of the degree of aggregation of data sources of different protocols; 所述数据转换模块用于基于不同协议的数据源聚合程度的评估信息,将网络设备数据、传感器数据和嵌入式设备数据进行数据格式转换和标准化处理,转换为目标设备协议,通过网络汇聚交换装置使用目标协议将网络设备数据、传感器数据和嵌入式设备数据传输给目标设备;The data conversion module is used to convert and standardize the network device data, sensor data and embedded device data based on the evaluation information of the aggregation degree of data sources of different protocols, convert them into the target device protocol, and transmit the network device data, sensor data and embedded device data to the target device through the network convergence switching device using the target protocol; 所述数据整合存储模块用于通过网络汇聚交换装置对数据格式转换和标准化处理的网络设备数据、传感器数据和嵌入式设备数据进行整合和存储。The data integration storage module is used to integrate and store network device data, sensor data and embedded device data that have been processed through data format conversion and standardization through a network convergence switching device.
CN202410254795.2A 2024-03-06 2024-03-06 Network convergence switching device and method based on multi-source data protocol Active CN118138661B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410254795.2A CN118138661B (en) 2024-03-06 2024-03-06 Network convergence switching device and method based on multi-source data protocol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410254795.2A CN118138661B (en) 2024-03-06 2024-03-06 Network convergence switching device and method based on multi-source data protocol

Publications (2)

Publication Number Publication Date
CN118138661A true CN118138661A (en) 2024-06-04
CN118138661B CN118138661B (en) 2025-04-25

Family

ID=91239915

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410254795.2A Active CN118138661B (en) 2024-03-06 2024-03-06 Network convergence switching device and method based on multi-source data protocol

Country Status (1)

Country Link
CN (1) CN118138661B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN119788734A (en) * 2024-12-20 2025-04-08 南方电网数字电网科技(广东)有限公司 Power data transmission method and device, electronic equipment and storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9105000B1 (en) * 2013-12-10 2015-08-11 Palantir Technologies Inc. Aggregating data from a plurality of data sources
CN112417214A (en) * 2020-11-02 2021-02-26 中关村科学城城市大脑股份有限公司 Fusion method and system for multi-source heterogeneous data of urban brain scene
CN113722305A (en) * 2021-08-26 2021-11-30 广东电网有限责任公司 Analysis application system and method
CN115328946A (en) * 2022-10-13 2022-11-11 北方健康医疗大数据科技有限公司 Multimodal data aggregation method, device and electronic device
CN117472874A (en) * 2023-10-08 2024-01-30 联通数字科技有限公司 Government data resource integrated management system and method based on big data analysis

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9105000B1 (en) * 2013-12-10 2015-08-11 Palantir Technologies Inc. Aggregating data from a plurality of data sources
CN112417214A (en) * 2020-11-02 2021-02-26 中关村科学城城市大脑股份有限公司 Fusion method and system for multi-source heterogeneous data of urban brain scene
CN113722305A (en) * 2021-08-26 2021-11-30 广东电网有限责任公司 Analysis application system and method
CN115328946A (en) * 2022-10-13 2022-11-11 北方健康医疗大数据科技有限公司 Multimodal data aggregation method, device and electronic device
CN117472874A (en) * 2023-10-08 2024-01-30 联通数字科技有限公司 Government data resource integrated management system and method based on big data analysis

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陈鸿星;: "基于AHP权值计算的网络安全评估研究与仿真", 计算机仿真, no. 08, 15 August 2013 (2013-08-15) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN119788734A (en) * 2024-12-20 2025-04-08 南方电网数字电网科技(广东)有限公司 Power data transmission method and device, electronic equipment and storage medium
CN119788734B (en) * 2024-12-20 2025-11-04 南方电网数字电网科技(广东)有限公司 A method, apparatus, electronic device and storage medium for transmitting power data.

Also Published As

Publication number Publication date
CN118138661B (en) 2025-04-25

Similar Documents

Publication Publication Date Title
CN118394536A (en) Supply chain artificial intelligence processing method and system based on industrial Internet
CN118017509B (en) Large-scale power distribution network parallel optimization method based on digital twin space
CN116466672B (en) Data center machine room parameter regulation and control method based on artificial intelligence and related device
CN115543624A (en) Heterogeneous computing power arrangement scheduling method, system, equipment and storage medium
CN108052020B (en) A chemical process simulator for intelligent manufacturing
CN116244081B (en) Multi-core calculation integrated accelerator network topology structure control system
CN119168332B (en) A comprehensive robot dispatching system integrating multiple brands
CN112215326B (en) Distributed AI system
CN119539441A (en) A method for constructing a production business model based on the industrial Internet platform
CN116760772A (en) Control system and method for converging flow divider
CN118138661A (en) A network aggregation switching device and method based on multi-source data protocol
CN116362526B (en) Cloud edge cooperative resource management and control method and system for digital power plant
CN110826776B (en) An initial solution optimization method based on dynamic programming in the identification of distribution network line-variation relationships
CN119892905B (en) Micro-service scheduling method, device, equipment and storage medium under k8s cluster
CN118509443B (en) Industrial Internet of Things distributed data exchange storage system and method
CN120123387A (en) Multi-module data verification platform and method
CN114765617A (en) Multi-scene applicable intelligent energy management system based on edge calculation
CN118472930A (en) Load control method, load control device, computer apparatus, readable storage medium, and program product
CN116402238B (en) Production scheduling method, device and equipment for packaging order and storage medium
CN115473343B (en) Intelligent gateway multi-master-station parallel access test method
CN117578370A (en) Fault isolation method and system for power distribution network
CN117744984A (en) Electric energy meter automatic detection assembly line scheduling method, system and equipment
CN117729531A (en) Industrial identification analysis method, equipment and medium
CN118694620B (en) System and method for coordinated operation of power supply and communication equipment
CN119831299B (en) Factory digital transformation-oriented low-code intelligent application development method and system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Country or region after: China

Address after: 522, 5th Floor, Building 3, 186A Litang Road, Changping District, Beijing, 102218

Applicant after: Aiwei (Beijing) Technology Co.,Ltd.

Address before: 522, 5th Floor, Building 3, 186A Litang Road, Changping District, Beijing, 102218

Applicant before: Beijing Road Micro Technology Co.,Ltd.

Country or region before: China

CB02 Change of applicant information
CB02 Change of applicant information

Country or region after: China

Address after: Room 112, 1st Floor, 101 to 4th Floor, Building 8, No. 12 Changsheng Road, Changping District Science and Technology Park, Beijing 102299

Applicant after: Beijing Ewei Electronic Technology Co.,Ltd.

Address before: 522, 5th Floor, Building 3, 186A Litang Road, Changping District, Beijing, 102218

Applicant before: Aiwei (Beijing) Technology Co.,Ltd.

Country or region before: China

GR01 Patent grant
GR01 Patent grant