CN118035816A - Electroencephalogram signal classification method, device and storage medium - Google Patents
Electroencephalogram signal classification method, device and storage medium Download PDFInfo
- Publication number
- CN118035816A CN118035816A CN202410032904.6A CN202410032904A CN118035816A CN 118035816 A CN118035816 A CN 118035816A CN 202410032904 A CN202410032904 A CN 202410032904A CN 118035816 A CN118035816 A CN 118035816A
- Authority
- CN
- China
- Prior art keywords
- domain
- target
- neural network
- network model
- subject
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/16—Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/10—Pre-processing; Data cleansing
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0464—Convolutional networks [CNN, ConvNet]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/096—Transfer learning
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Software Systems (AREA)
- Computing Systems (AREA)
- Evolutionary Biology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Computational Mathematics (AREA)
- Pure & Applied Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Algebra (AREA)
- Databases & Information Systems (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及机器学习技术领域,尤其涉及一种脑电信号分类方法、装置和存储介质。The present invention relates to the field of machine learning technology, and in particular to an electroencephalogram (EEG) signal classification method, device and storage medium.
背景技术Background technique
脑机接口(Brain Computer Interface,BCI)使用户能够直接使用大脑信号与计算机进行通信。最常见的无创BCI方式脑电图(electroencephalogram,EEG)对噪声或伪影敏感,并且存在受试者间的个体差异性和受试者内的非平稳性。因此,难以在基于脑电图的脑机接口系统中建立一个适合不同受试者、不同会话、不同设备和不同任务的最佳通用模式识别模型。通常需要进行校准会话来收集新主体的一些训练数据,这既耗时又对用户不友好,还造成之前采集的脑电数据的浪费,更进一步还容易造成大脑疲乏,信号校准时间长。并且,较大的个体性差异导致了许多BCI系统分类准确率低。Brain Computer Interface (BCI) enables users to communicate with computers directly using brain signals. The most common non-invasive BCI method, electroencephalogram (EEG), is sensitive to noise or artifacts, and there are individual differences between subjects and non-stationarity within subjects. Therefore, it is difficult to establish an optimal general pattern recognition model suitable for different subjects, different sessions, different devices and different tasks in an EEG-based brain-computer interface system. Calibration sessions are usually required to collect some training data for new subjects, which is time-consuming and user-unfriendly, and also causes waste of previously collected EEG data. Furthermore, it is easy to cause brain fatigue and long signal calibration time. In addition, large individual differences lead to low classification accuracy in many BCI systems.
综上,相关技术中存在的技术问题有待得到改善。In summary, the technical problems existing in the relevant technologies need to be improved.
发明内容Summary of the invention
本发明实施例提供了一种脑电信号分类方法、装置和存储介质,有效地提高了分类准确率、减少了信号校准时间。The embodiments of the present invention provide a method, device and storage medium for classifying electroencephalogram (EEG) signals, which effectively improve the classification accuracy and reduce the signal calibration time.
一方面,本发明实施例提供了一种脑电信号分类方法,包括以下步骤:In one aspect, an embodiment of the present invention provides a method for classifying an electroencephalogram signal, comprising the following steps:
获取待分类目标域;Obtain the target domain to be classified;
将所述待分类目标域输入目标生成器,得到待分类迁移数据;Inputting the target domain to be classified into a target generator to obtain migration data to be classified;
将所述待分类迁移数据输入主体迁移神经网络模型,得到脑电信号分类结果;Inputting the to-be-classified migration data into the subject migration neural network model to obtain an EEG signal classification result;
其中,所述主体迁移神经网络模型通过以下步骤得到:The subject migration neural network model is obtained by the following steps:
获取黄金受试者的第一运动想象脑电信号和目标受试者的第二运动想象脑电信号,所述黄金受试者用于表征所述第一运动想象脑电信号在迁移前的分类模型中分类准确率高,所述目标受试者用于表征所述第二运动想象脑电信号在迁移前的分类模型中分类准确率低;Acquire a first motor imagery EEG signal of a gold subject and a second motor imagery EEG signal of a target subject, wherein the gold subject is used to characterize that the first motor imagery EEG signal has a high classification accuracy in a classification model before migration, and the target subject is used to characterize that the second motor imagery EEG signal has a low classification accuracy in a classification model before migration;
根据所述第一运动想象脑电信号和所述第二运动想象脑电信号,计算域集,所述域集包括第一源域和第一目标域;Calculate a domain set according to the first motor imagery EEG signal and the second motor imagery EEG signal, wherein the domain set includes a first source domain and a first target domain;
将所述第一源域输入预设神经网络模型,以使所述预设神经网络模型进行训练,得到所述主体迁移神经网络模型;Inputting the first source domain into a preset neural network model so that the preset neural network model is trained to obtain the subject transfer neural network model;
所述目标生成器通过以下步骤得到:The target generator is obtained by the following steps:
根据所述第一源域、所述第一目标域和所述主体迁移神经网络模型,对预设生成器进行训练,得到所述目标生成器。According to the first source domain, the first target domain and the subject transfer neural network model, the preset generator is trained to obtain the target generator.
在一些实施例中,所述获取黄金受试者的第一运动想象脑电信号和目标受试者的第二运动想象脑电信号,包括:In some embodiments, the step of acquiring the first motor imagery EEG signal of the gold subject and the second motor imagery EEG signal of the target subject comprises:
通过脑信号电极采集所述黄金受试者的所述第一运动想象脑电信号;Collecting the first motor imagery EEG signal of the gold subject through brain signal electrodes;
通过脑信号电极采集所述目标受试者的所述第二运动想象脑电信号。The second motor imagery EEG signal of the target subject is collected through brain signal electrodes.
在一些实施例中,所述根据所述第一运动想象脑电信号和所述第二运动想象脑电信号,计算域集,包括:In some embodiments, the calculating of the domain set according to the first motor imagery EEG signal and the second motor imagery EEG signal comprises:
根据所述第一运动想象脑电信号,计算第二源域;Calculating a second source domain according to the first motor imagery EEG signal;
根据所述第二运动想象脑电信号,计算第二目标域;calculating a second target domain according to the second motor imagery EEG signal;
根据所述第二源域和所述第二目标域,计算所述域集。The domain set is calculated according to the second source domain and the second target domain.
在一些实施例中,所述根据所述第二源域和所述第二目标域,计算所述域集,包括:In some embodiments, the calculating the domain set according to the second source domain and the second target domain comprises:
根据所述第二源域,计算第一参考矩阵;Calculating a first reference matrix according to the second source domain;
根据所述第一参考矩阵,对所述第二源域进行第一欧式对齐,得到所述第一源域;performing a first Euclidean alignment on the second source domain according to the first reference matrix to obtain the first source domain;
根据所述第二目标域,计算第二参考矩阵;Calculating a second reference matrix according to the second target domain;
根据所述第二参考矩阵,对所述第二目标域进行第二欧式对齐,得到所述第一目标域。According to the second reference matrix, a second Euclidean alignment is performed on the second target domain to obtain the first target domain.
在一些实施例中,所述主体迁移神经网络模型架构的构建步骤包括:In some embodiments, the steps of constructing the subject migration neural network model architecture include:
构建输入层,所述输入层的输出空间维度为1维;Constructing an input layer, wherein the output space dimension of the input layer is 1 dimension;
在所述输入层后,构建常规卷积层;After the input layer, a conventional convolutional layer is constructed;
在所述常规卷积层后,构建逐通道卷积层;After the conventional convolution layer, a channel-by-channel convolution layer is constructed;
在所述逐通道卷积层后,构建逐点卷积层;After the channel-by-channel convolution layer, a point-by-point convolution layer is constructed;
在所述逐点卷积层后,构建第一池化层;After the point-by-point convolution layer, construct a first pooling layer;
在所述第一池化层后,构建空间卷积层;After the first pooling layer, a spatial convolution layer is constructed;
在所述空间卷积层后,构建第二池化层;After the spatial convolution layer, construct a second pooling layer;
在所述第二池化层后,构建压缩层;After the second pooling layer, a compression layer is constructed;
在所述压缩层后,构建注意力层;After the compression layer, an attention layer is constructed;
在所述注意力层后,构建时间卷积层;After the attention layer, a temporal convolution layer is constructed;
在所述时间卷积层后,构建特征图截取层;After the temporal convolution layer, a feature map extraction layer is constructed;
在所述特征图截取层后,构建全连接层。After the feature map extraction layer, a fully connected layer is constructed.
在一些实施例中,所述根据所述第一源域、所述第一目标域和所述主体迁移神经网络模型,对预设生成器进行训练,得到所述目标生成器,包括:In some embodiments, the training of a preset generator according to the first source domain, the first target domain and the subject transfer neural network model to obtain the target generator includes:
将所述第一目标域输入所述预设生成器,得到第一迁移数据;Inputting the first target domain into the preset generator to obtain first migration data;
将所述第一源域和所述第一迁移数据输入所述主体迁移神经网络模型,得到所述交叉熵损失和所述主体迁移神经网络模型中每个关键层输出特征对应的均方误差;Inputting the first source domain and the first migration data into the subject migration neural network model to obtain the cross entropy loss and the mean square error corresponding to each key layer output feature in the subject migration neural network model;
将多项所述均方误差相加,计算风格损失;Add the mean square errors of the above multiple items to calculate the style loss;
将所述风格损失和所述交叉熵损失相加,计算总损失;Add the style loss and the cross entropy loss to calculate the total loss;
根据所述总损失,通过随机梯度下降算法对所述预设生成器进行训练,得到所述目标生成器。According to the total loss, the preset generator is trained by a stochastic gradient descent algorithm to obtain the target generator.
在一些实施例中,所述根据所述第二源域,计算第一参考矩阵,包括:In some embodiments, calculating a first reference matrix according to the second source domain includes:
根据所述第二源域,通过参考矩阵计算公式计算第一参考矩阵,所述参考矩阵计算公式为:According to the second source domain, a first reference matrix is calculated using a reference matrix calculation formula, where the reference matrix calculation formula is:
式中,为所述第一参考矩阵,xi为所述第二源域中第i个脑电信号,n为所述第二源域中脑电信号总数。In the formula, is the first reference matrix, xi is the ith EEG signal in the second source domain, and n is the total number of EEG signals in the second source domain.
另一方面,本发明实施例提供了一种脑电信号分类装置,包括:On the other hand, an embodiment of the present invention provides an electroencephalogram signal classification device, comprising:
第一模块,用于获取待分类目标域;The first module is used to obtain the target domain to be classified;
第二模块,用于将所述待分类目标域输入目标生成器,得到待分类迁移数据;The second module is used to input the target domain to be classified into a target generator to obtain migration data to be classified;
第三模块,用于将所述待分类迁移数据输入主体迁移神经网络模型,得到脑电信号分类结果;The third module is used to input the migration data to be classified into the subject migration neural network model to obtain the EEG signal classification result;
其中,所述主体迁移神经网络模型通过以下步骤得到:The subject migration neural network model is obtained by the following steps:
获取黄金受试者的第一运动想象脑电信号和目标受试者的第二运动想象脑电信号,所述黄金受试者用于表征所述第一运动想象脑电信号在迁移前的分类模型中分类准确率高,所述目标受试者用于表征所述第二运动想象脑电信号在迁移前的分类模型中分类准确率低;Acquire a first motor imagery EEG signal of a gold subject and a second motor imagery EEG signal of a target subject, wherein the gold subject is used to characterize that the first motor imagery EEG signal has a high classification accuracy in a classification model before migration, and the target subject is used to characterize that the second motor imagery EEG signal has a low classification accuracy in a classification model before migration;
根据所述第一运动想象脑电信号和所述第二运动想象脑电信号,计算域集,所述域集包括第一源域和第一目标域;Calculate a domain set according to the first motor imagery EEG signal and the second motor imagery EEG signal, wherein the domain set includes a first source domain and a first target domain;
将所述第一源域输入预设神经网络模型,以使所述预设神经网络模型进行训练,得到所述主体迁移神经网络模型;Inputting the first source domain into a preset neural network model so that the preset neural network model is trained to obtain the subject transfer neural network model;
所述目标生成器通过以下步骤得到:The target generator is obtained by the following steps:
根据所述第一源域、所述第一目标域和所述主体迁移神经网络模型,对预设生成器进行训练,得到所述目标生成器。According to the first source domain, the first target domain and the subject transfer neural network model, a preset generator is trained to obtain the target generator.
另一方面,本发明实施例提供了一种脑电信号分类装置,包括:On the other hand, an embodiment of the present invention provides an electroencephalogram signal classification device, comprising:
至少一个处理器;at least one processor;
至少一个存储器,用于存储至少一个程序;at least one memory for storing at least one program;
当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现上述的方法。When the at least one program is executed by the at least one processor, the at least one processor implements the above method.
另一方面,本发明实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现上述的方法。On the other hand, an embodiment of the present invention provides a computer-readable storage medium, wherein the computer-readable storage medium stores a computer program, and the computer program implements the above method when executed by a processor.
本发明所具有的有益效果如下:The beneficial effects of the present invention are as follows:
本发明首先获取待分类目标域,将待分类目标域输入目标生成器,得到待分类迁移数据,然后将待分类迁移数据输入主体迁移神经网络模型,得到脑电信号分类结果,实现了脑机接口迁移学习,提高了分类准确率、减少了信号校准时间。其中,主体迁移神经网络模型通过黄金受试者的第一运动想象脑电信号和目标受试者的第二运动想象脑电信号,计算包括第一源域和第一目标域的域集后,通过第一源域进行训练,进而提高模型分类的精准度,而目标生成器则是根据第一源域、第一目标域和主体迁移神经网络模型,对预设生成器进行训练得到,进而提高生成器迁移数据的准确度。The present invention first obtains the target domain to be classified, inputs the target domain to be classified into the target generator, obtains the migration data to be classified, and then inputs the migration data to be classified into the subject migration neural network model to obtain the EEG signal classification result, thereby realizing brain-computer interface migration learning, improving classification accuracy, and reducing signal calibration time. Among them, the subject migration neural network model calculates the domain set including the first source domain and the first target domain through the first motor imagery EEG signal of the golden subject and the second motor imagery EEG signal of the target subject, and then trains through the first source domain to improve the accuracy of model classification, while the target generator is obtained by training the preset generator according to the first source domain, the first target domain and the subject migration neural network model, thereby improving the accuracy of the generator migration data.
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。Other features and advantages of the present invention will be described in the following description, and partly become apparent from the description, or understood by practicing the present invention. The purpose and other advantages of the present invention can be realized and obtained by the structures particularly pointed out in the description, claims and drawings.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present application, the drawings required for use in the description of the embodiments will be briefly introduced below. Obviously, the drawings described below are only some embodiments of the present application. For ordinary technicians in this field, other drawings can be obtained based on these drawings without paying any creative work.
图1为本发明实施例一种脑电信号分类方法的流程图;FIG1 is a flow chart of a method for classifying EEG signals according to an embodiment of the present invention;
图2为本发明实施例一种获得主体迁移神经网络模型的流程图;FIG2 is a flow chart of obtaining a subject transfer neural network model according to an embodiment of the present invention;
图3为本发明实施例一种刺激受试者产生脑电信号的示意图;FIG3 is a schematic diagram of stimulating a subject to generate an electroencephalogram signal according to an embodiment of the present invention;
图4为本发明实施例一种采集脑电信号工作时序的示意图;FIG4 is a schematic diagram of a timing diagram of a brain electrical signal acquisition process according to an embodiment of the present invention;
图5为本发明实施例一种脑电信号采集仪器电极分布的示意图;FIG5 is a schematic diagram of electrode distribution of an electroencephalogram signal acquisition instrument according to an embodiment of the present invention;
图6为本发明实施例一种眼电信号采集仪器电极分布的示意图;FIG6 is a schematic diagram of electrode distribution of an electrooculographic signal acquisition instrument according to an embodiment of the present invention;
图7为本发明实施例一种主体迁移神经网络模型架构的示意图;FIG7 is a schematic diagram of a subject transfer neural network model architecture according to an embodiment of the present invention;
图8为本发明实施例一种注意力机制的示意图;FIG8 is a schematic diagram of an attention mechanism according to an embodiment of the present invention;
图9为本发明实施例一种生成器对特征图的处理过程的示意图;FIG9 is a schematic diagram of a process of processing a feature map by a generator according to an embodiment of the present invention;
图10为本发明实施例一种主体迁移神经网络模型测试结果的示意图。FIG10 is a schematic diagram of a test result of a subject transfer neural network model according to an embodiment of the present invention.
具体实施方式Detailed ways
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请实施例相一致的所有实施方式,它们仅是与如所附权利要求书中所详述的、本申请实施例的一些方面相一致的装置和方法的例子。In order to make the purpose, technical solutions and advantages of the present application clearer, the present application is further described in detail below in conjunction with the accompanying drawings and examples. It should be understood that the specific embodiments described herein are only used to explain the present application and are not intended to limit the present application. When the following description refers to the drawings, unless otherwise indicated, the same numbers in different drawings represent the same or similar elements. The embodiments described in the following exemplary embodiments do not represent all embodiments consistent with the embodiments of the present application. They are only examples of devices and methods consistent with some aspects of the embodiments of the present application as detailed in the attached claims.
可以理解,本申请所使用的术语“第一”、“第二”等可在本文中用于描述各种概念,但除非特别说明,这些概念不受这些术语限制。这些术语仅用于将一个概念与另一个概念区分。例如,在不脱离本申请实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“若”、“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。It is understood that the terms "first", "second", etc. used in this application can be used to describe various concepts in this article, but unless otherwise specified, these concepts are not limited by these terms. These terms are only used to distinguish one concept from another concept. For example, without departing from the scope of the embodiment of the present application, the first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information. Depending on the context, the words "if" and "if" as used herein can be interpreted as "at the time of" or "when" or "in response to determination".
本申请所使用的术语“至少一个”、“多个”、“每个”、“任一”等,至少一个包括一个、两个或两个以上,多个包括两个或两个以上,每个是指对应的多个中的每一个,任一是指多个中的任意一个。The terms "at least one", "multiple", "each", "any", etc. used in this application, at least one includes one, two or more, multiple includes two or more, each refers to each of the corresponding multiple, and any refers to any one of the multiple.
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中所使用的术语只是为了描述本申请实施例的目的,不是旨在限制本申请。Unless otherwise defined, all technical and scientific terms used herein have the same meaning as those commonly understood by those skilled in the art to which this application belongs. The terms used herein are only for the purpose of describing the embodiments of this application and are not intended to limit this application.
对本申请实施例进行进一步详细说明之前,对本申请实施例中涉及的名词和术语进行如下说明:Before further describing the embodiments of the present application in detail, the nouns and terms involved in the embodiments of the present application are described as follows:
迁移学习:一种机器学习领域的方法,是将从一个任务学到的知识应用于另一个相关的任务中。这种学习方式利用源领域的知识来改善目标领域的学习性能。脑电信号有很强的个体差异性,简单来说两人同样想象左手运动但是他们测量出的脑电信号差别很大,所以一个用于对受试者A脑电信号分类的模型用于分类受试者B的脑电信号任务上可能表现很差,迁移学习方法有助于解决此类问题。Transfer learning: A method in the field of machine learning that applies knowledge learned from one task to another related task. This learning method uses knowledge from the source field to improve learning performance in the target field. EEG signals have strong individual differences. Simply put, two people imagine the same left hand movement, but their measured EEG signals are very different. Therefore, a model used to classify the EEG signal of subject A may perform poorly in the task of classifying the EEG signal of subject B. Transfer learning methods can help solve such problems.
脑机接口(BCI):脑机接口是一种直接将人脑和外部设备(通常是计算机或其他智能系统)连接起来的技术。其目标是通过监测和解释大脑活动来实现与计算机或其他设备的直接通信,而无需通过传统的输入设备(例如键盘或鼠标)。Brain-computer interface (BCI): Brain-computer interface is a technology that directly connects the human brain and external devices (usually computers or other intelligent systems). Its goal is to achieve direct communication with computers or other devices by monitoring and interpreting brain activity without the need for traditional input devices (such as keyboards or mice).
BCI文盲:即目标受试者,在分类中表现较差(准确率低)的一些受试者。BCI illiterates: target subjects, some subjects who perform poorly (low accuracy) in classification.
黄金主体:即黄金受试者,相对于BCI文盲而言,在分类中表现较好(准确率高)的一些受试者。Golden subjects: golden subjects, which are subjects who perform better (with higher accuracy) in classification than BCI illiterates.
欧式对齐(EA):一种信号处理方法,在欧式空间对数据进行变换处理。Euclidean Alignment (EA): A signal processing method that transforms data in Euclidean space.
生成器(Generator):利用一维卷积层与上采样层对特征图进行变换的数据处理结构,结合主体迁移神经网络模型一同使用。Generator: A data processing structure that uses one-dimensional convolutional layers and upsampling layers to transform feature maps, used in conjunction with the subject transfer neural network model.
脑电图(EEG):是通过精密的电子仪器,从头皮上将脑部的自发性生物电位加以放大记录而获得的图形,是通过电极记录下来的脑细胞群的自发性、节律性电活动。常规脑电图、动态脑电图监测、视频脑电图监测。Electroencephalogram (EEG): It is a graph obtained by amplifying and recording the spontaneous biopotential of the brain from the scalp through a sophisticated electronic instrument. It is the spontaneous and rhythmic electrical activity of brain cell groups recorded by electrodes. Conventional EEG, dynamic EEG monitoring, and video EEG monitoring.
脑电信号:是脑神经组织的电生理活动在大脑皮层表面的总体反映,是大脑神经元突触后电位的综合。可以分为自发脑电和诱发脑电,自发脑电是指没有特定外界刺激时大脑神经细胞自发产生的电位变化,诱发脑电是指人为地对感觉器官施加光、声、电刺激所引起的脑电变化。大脑活动时电信号的变化活动数据可以形成脑电图。EEG signal: It is the overall reflection of the electrophysiological activity of brain nerve tissue on the surface of the cerebral cortex, and is the synthesis of the postsynaptic potential of brain neurons. It can be divided into spontaneous EEG and induced EEG. Spontaneous EEG refers to the potential changes that occur spontaneously in brain nerve cells without specific external stimulation, and induced EEG refers to the EEG changes caused by artificially applying light, sound, and electrical stimulation to the sensory organs. The activity data of the changes in electrical signals during brain activity can form an electroencephalogram.
本申请实施例提供的一种脑电信号分类方法可应用于终端中,也可应用于服务器中,还可以是运行于终端或服务器中的软件。在一些实施例中,终端可以是智能手机、平板电脑、笔记本电脑、台式计算机、智能音箱、智能手表以及车载终端等,但并不局限于此;服务器端可以配置成独立的物理服务器,也可以配置成多个物理服务器构成的服务器集群或者分布式系统,还可以配置成提供云服务、云数据库、云计算、云函数、云存储、网络服务、云通信、中间件服务、域名服务、安全服务、CDN以及大数据和人工智能平台等基础云计算服务的云服务器,服务器还可以是区块链网络中的一个节点服务器;软件可以是实现一种脑电信号分类方法的应用等,但并不局限于以上形式。The EEG signal classification method provided in the embodiment of the present application can be applied to a terminal, a server, or a software running in a terminal or a server. In some embodiments, the terminal can be a smart phone, a tablet computer, a laptop computer, a desktop computer, a smart speaker, a smart watch, and a car terminal, etc., but is not limited to this; the server side can be configured as an independent physical server, or a server cluster or distributed system composed of multiple physical servers, and can also be configured as a cloud server that provides basic cloud computing services such as cloud services, cloud databases, cloud computing, cloud functions, cloud storage, network services, cloud communications, middleware services, domain name services, security services, CDN, and big data and artificial intelligence platforms. The server can also be a node server in a blockchain network; the software can be an application that implements an EEG signal classification method, etc., but is not limited to the above forms.
本申请可用于众多通用或专用的计算机系统环境或配置中。例如:个人计算机、服务器计算机、手持设备或便携式设备、平板型设备、多处理器系统、基于微处理器的系统、置顶盒、可编程的消费电子设备、网络PC、小型计算机、大型计算机、包括以上任何系统或设备的分布式计算环境等等。本申请可以在由计算机执行的计算机可执行指令的一般上下文中描述,例如程序模块。一般地,程序模块包括执行特定任务或实现特定抽象数据类型的例程、程序、对象、组件、数据结构等等。也可以在分布式计算环境中实践本申请,在这些分布式计算环境中,由通过通信网络而被连接的远程处理设备来执行任务。在分布式计算环境中,程序模块可以位于包括存储设备在内的本地和远程计算机存储介质中。The present application can be used in many general or special computer system environments or configurations. For example: personal computers, server computers, handheld or portable devices, tablet devices, multiprocessor systems, microprocessor-based systems, set-top boxes, programmable consumer electronics, network PCs, minicomputers, mainframe computers, distributed computing environments including any of the above systems or devices, etc. The present application can be described in the general context of computer executable instructions executed by a computer, such as program modules. Generally, program modules include routines, programs, objects, components, data structures, etc. that perform specific tasks or implement specific abstract data types. The present application can also be practiced in distributed computing environments, in which tasks are performed by remote processing devices connected through a communication network. In a distributed computing environment, program modules can be located in local and remote computer storage media including storage devices.
下面结合附图对本申请实施例进行具体解释:The following is a detailed explanation of the embodiments of the present application in conjunction with the accompanying drawings:
如图1所示,本发明实施例提供了一种脑电信号分类方法,本实施例的方法可以包括但不限于以下步骤:As shown in FIG1 , an embodiment of the present invention provides a method for classifying EEG signals. The method of this embodiment may include but is not limited to the following steps:
步骤S11、获取待分类目标域;Step S11, obtaining the target domain to be classified;
步骤S12、将待分类目标域输入目标生成器,得到待分类迁移数据;Step S12, input the target domain to be classified into the target generator to obtain the migration data to be classified;
步骤S13、将待分类迁移数据输入主体迁移神经网络模型,得到脑电信号分类结果。Step S13: input the migration data to be classified into the subject migration neural network model to obtain the EEG signal classification result.
在本实施例中,可以先获取目标受试者的待分类运动想象脑电信号,然后将多个待分类运动想象脑电信号进行组合,得到待分类目标域,再将待分类目标域输入目标生成器,得到待分类迁移数据,最后将待分类迁移数据输入主体迁移神经网络模型,得到脑电信号分类结果。其中,脑电信号分类结果可以包括左手运动想象脑电信号、右手运动想象脑电信号、双脚运动想象信号、舌头运动想象信号。In this embodiment, the motor imagery EEG signal to be classified of the target subject can be obtained first, and then multiple motor imagery EEG signals to be classified are combined to obtain a target domain to be classified, and then the target domain to be classified is input into the target generator to obtain the migration data to be classified, and finally the migration data to be classified is input into the subject migration neural network model to obtain the EEG signal classification result. Among them, the EEG signal classification result can include the left hand motor imagery EEG signal, the right hand motor imagery EEG signal, the two feet motor imagery signal, and the tongue motor imagery signal.
在本实施例中,如图2所示,获得主体迁移神经网络模型的具体实施过程包括但不限于步骤S201-步骤S203:In this embodiment, as shown in FIG2 , the specific implementation process of obtaining the subject transfer neural network model includes but is not limited to steps S201 to S203:
步骤S201、获取黄金受试者的第一运动想象脑电信号和目标受试者的第二运动想象脑电信号,黄金受试者用于表征第一运动想象脑电信号在迁移前的分类模型中分类准确率高,目标受试者用于表征第二运动想象脑电信号在迁移前的分类模型中分类准确率低。Step S201, obtaining a first motor imagery EEG signal of a gold subject and a second motor imagery EEG signal of a target subject, wherein the gold subject is used to characterize that the first motor imagery EEG signal has a high classification accuracy in the classification model before migration, and the target subject is used to characterize that the second motor imagery EEG signal has a low classification accuracy in the classification model before migration.
在本实施例中,获取黄金受试者的第一运动想象脑电信号和目标受试者的第二运动想象脑电信号,可以是通过脑信号电极采集所述黄金受试者的第一运动想象脑电信号和通过脑信号电极采集所述目标受试者的第二运动想象脑电信号。In this embodiment, obtaining the first motor imagery EEG signal of the gold subject and the second motor imagery EEG signal of the target subject may be by collecting the first motor imagery EEG signal of the gold subject through brain signal electrodes and collecting the second motor imagery EEG signal of the target subject through brain signal electrodes.
在本实施例中,在获取黄金受试者或目标受试者的运动想象脑电信号中,要求受试者根据屏幕的指示进行预设动作的想象,使得受试者的脑部产生脑电信号,通过包含25个电极通道的脑电信号采集仪器采集脑电信号。即每执行一次获取过程,则指示受试者进行一次动作想象,进行一次脑电信号的采集,在执行多次获取过程后可以获得多个脑电信号。在本实施例中,可以根据实际需求将运动想象脑电信号分为多个类别,本实施例将运动想象脑电信号分为4类,包括左手运动想象脑电信号、右手运动想象脑电信号、双脚运动想象信号、舌头运动想象信号。在获取脑电信号过程中,如图3所示,可以使用显示设备向受试者展示图像与声音提示,包括左手想象运动提示、右手想象运动提示,双脚想象运动提示和舌头运动想象提示,以刺激受试者进行运动想象产生脑电信号。测试过程的时间及顺序如图4所示,在每一个测试中,受试者都坐在一个舒适的扶椅上,面前是电脑屏幕。测试开始时(t=0s),一个固定的十字会出现在黑色屏幕上,同时还有简短的声音提示音(Beep)。两秒过后(t=2s),一个作为提示指向左、右、下或者上(对应于四个类别左手运动、右手运动,双脚运动以及舌头运动)的箭头会出现在屏幕上约1.25s,促使受试者想象与图片对应的运动,每个受试者需要完成这个想象任务直到屏幕上的十字消失(t=6s),然后是短暂休息直到屏幕再次变黑。每一次测试的平均时间大约为8秒,期间屏幕的状态如图3所示。更多地,本实施例在执行一次8秒的脑电信号采集过程中,可以对每次采集所得的脑电信号都进行截取保留。示例性地,仅保留每个脑电信号的第1.5秒到第6秒的部分,将其他部分删除,从噪声分布来看每个脑电信号的第1.5秒到第6秒的部分具有较少的噪声且能最大化的保留运动想象期间所产生的脑电信号,其他部分的噪声较多因而具有更多的异常值,通过截取保留可以进行异常值筛除。其中截取的4.5s作为最终运动想象产生的脑电图(EEG)数据,最终得到的数据格式为(22,1,1125),22代表通道数即电极个数,1125代表时间点(采样率250hz×4.5s),250hz代表1s采集250次数据。1代表(特征空间的维度)特征图的数量。在本实施例中,在25个电极中,可以包括如图5所示22个脑信号电极用于采集EEG并生成脑电信号,和如图6所示3个电极采集眼电图(EOG)并生成眼电信号。在设备受限时,可以仅使用图5中的22个脑信号电极来采集脑电信号,EOG三电极不参与脑电信号的采集。以250Hz对信号进行采样(每秒250次采样),在0.5Hz和100Hz之间进行带通滤波,并使用额外的50Hz陷波滤波器以抑制线路噪声。In this embodiment, in obtaining the motor imagery EEG signal of the golden subject or the target subject, the subject is required to imagine the preset action according to the instruction of the screen, so that the subject's brain generates EEG signals, and the EEG signals are collected by an EEG signal acquisition instrument containing 25 electrode channels. That is, each time the acquisition process is performed, the subject is instructed to perform an action imagination and collect an EEG signal. After performing multiple acquisition processes, multiple EEG signals can be obtained. In this embodiment, the motor imagery EEG signal can be divided into multiple categories according to actual needs. In this embodiment, the motor imagery EEG signal is divided into 4 categories, including left-hand motor imagery EEG signal, right-hand motor imagery EEG signal, foot motor imagery signal, and tongue motor imagery signal. In the process of acquiring EEG signals, as shown in Figure 3, a display device can be used to show the subject images and sound prompts, including left-hand imagination movement prompts, right-hand imagination movement prompts, foot motor imagery prompts and tongue motor imagery prompts, to stimulate the subject to generate EEG signals by motor imagery. The time and sequence of the test process are shown in Figure 4. In each test, the subject sits in a comfortable armchair with a computer screen in front of him. At the beginning of the test (t=0s), a fixed cross will appear on the black screen, and there will be a short sound prompt (Beep). Two seconds later (t=2s), an arrow pointing to the left, right, down or up (corresponding to the four categories of left hand movement, right hand movement, foot movement and tongue movement) will appear on the screen for about 1.25s as a prompt, prompting the subject to imagine the movement corresponding to the picture. Each subject needs to complete this imagination task until the cross on the screen disappears (t=6s), followed by a short break until the screen turns black again. The average time for each test is about 8 seconds, and the state of the screen during this period is shown in Figure 3. In addition, in the process of performing an 8-second EEG signal acquisition, the EEG signal acquired each time can be intercepted and retained. Exemplarily, only the 1.5-second to 6-second portion of each EEG signal is retained, and the other portions are deleted. From the perspective of noise distribution, the 1.5-second to 6-second portion of each EEG signal has less noise and can maximize the retention of the EEG signal generated during motor imagery. The other portions have more noise and therefore have more outliers. Outliers can be screened out by intercepting and retaining. The intercepted 4.5s is used as the electroencephalogram (EEG) data generated by the final motor imagery, and the final data format is (22, 1, 1125), 22 represents the number of channels, i.e., the number of electrodes, 1125 represents the time point (sampling rate 250hz×4.5s), and 250hz represents 1s to collect 250 data. 1 represents the number of feature maps (dimension of feature space). In this embodiment, among the 25 electrodes, 22 brain signal electrodes as shown in FIG5 can be included for collecting EEG and generating EEG signals, and 3 electrodes as shown in FIG6 for collecting electrooculograms (EOG) and generating electrooculograms. When the equipment is limited, only the 22 brain signal electrodes in Figure 5 can be used to collect EEG signals, and the EOG three electrodes do not participate in the collection of EEG signals. The signal is sampled at 250Hz (250 samples per second), band-pass filtered between 0.5Hz and 100Hz, and an additional 50Hz notch filter is used to suppress line noise.
步骤S202、根据第一运动想象脑电信号和第二运动想象脑电信号,计算域集,域集包括第一源域和第一目标域。Step S202: Calculate a domain set according to the first motor imagery EEG signal and the second motor imagery EEG signal, where the domain set includes a first source domain and a first target domain.
在本实施例中,根据第一运动想象脑电信号和第二运动想象脑电信号,计算域集,可以是先根据第一运动想象脑电信号,计算第二源域,然后根据第二运动想象脑电信号,计算第二目标域,最后根据第二源域和第二目标域,计算域集。In this embodiment, the domain set is calculated based on the first motor imagery EEG signal and the second motor imagery EEG signal. The second source domain is first calculated based on the first motor imagery EEG signal, and then the second target domain is calculated based on the second motor imagery EEG signal. Finally, the domain set is calculated based on the second source domain and the second target domain.
在本实施例中,可以根据所有被试的脑电信号分类准确率选取分类准确率最高的受试者作为“黄金主体”,即黄金受试者,将其脑电信号及其标签作为第二源域,而目标受试者的脑电信号及其标签则为第二目标域。具体地,将受试者用户的脑电信号数据进行标号{S1,S2,S3,S4,S5,S6,S7,S8,S9,……},将其分别输入到迁移前的分类模型中进行分类预测分别得到准确率{Acc1,Acc2,Acc3,Acc4,Acc5,Acc6,Acc7,Acc8,Acc9,……}。取其中准确率最大的受试者作为黄金受试者,即argmax{Acc1,Acc2,Acc3,Acc4,Acc5,Acc6,Acc7,Acc8,Acc9,……},将黄金受试者的脑电信号作为第二源域Source domain{XS,YS},同时取目标受试者(即BCI文盲)的脑电信号作为第二目标域Target domain{XT,YT}。其中,在一次试验中获取得到的脑电信号x尺寸为(22,1,1125)及其标签y尺寸为(1),标签y可以是{0,1,2,3}中的一个数,分别代表左手,右手,双脚,舌头。n次试验得到的脑电信号及标签进行叠加得到n×(22,1,1125),即为XS,和n×(1),即为YS。In this embodiment, the subject with the highest classification accuracy can be selected as the "golden subject", i.e., the golden subject, based on the classification accuracy of the EEG signals of all subjects, and its EEG signal and its label are used as the second source domain, while the EEG signal of the target subject and its label are used as the second target domain. Specifically, the EEG signal data of the subject user are labeled {S1, S2, S3, S4, S5, S6, S7, S8, S9, ...}, and are respectively input into the classification model before migration for classification prediction to obtain the accuracy {Acc1, Acc2, Acc3, Acc4, Acc5, Acc6, Acc7, Acc8, Acc9, ...}. The subject with the highest accuracy is selected as the golden subject, i.e., argmax{Acc1, Acc2, Acc3, Acc4, Acc5, Acc6, Acc7, Acc8, Acc9, ...}, and the EEG signal of the golden subject is used as the second source domain {X S , Y S }, while the EEG signal of the target subject (i.e., BCI illiterate) is used as the second target domain {X T , Y T }. Among them, the size of the EEG signal x obtained in one experiment is (22, 1, 1125) and its label y size is (1), and the label y can be a number in {0, 1, 2, 3}, representing the left hand, right hand, feet, and tongue respectively. The EEG signals and labels obtained from n experiments are superimposed to obtain n×(22, 1, 1125), i.e., X S , and n×(1), i.e., Y S .
在本实施例中,根据第二源域和第二目标域,计算域集,可以是先根据第二源域,计算第一参考矩阵,然后根据第一参考矩阵,对第二源域进行第一欧式对齐,得到第一源域,再根据第二目标域,计算第二参考矩阵,最后根据第二参考矩阵,对第二目标域进行第二欧式对齐,得到第一目标域。In this embodiment, the domain set is calculated according to the second source domain and the second target domain. The first reference matrix is first calculated according to the second source domain, and then the first Euclidean alignment is performed on the second source domain according to the first reference matrix to obtain the first source domain. Then, the second reference matrix is calculated according to the second target domain, and finally, the second Euclidean alignment is performed on the second target domain according to the second reference matrix to obtain the first target domain.
在本实施例中,可以是先根据第二源域{XS,YS},通过参考矩阵计算公式计算第一参考矩阵,然后根据第一参考矩阵,通过欧式对齐计算公式对第二源域进行第一欧式对齐,得到对齐后的第一源域Source domainEA 其中,参考矩阵计算公式为:In this embodiment, the first reference matrix may be calculated according to the second source domain {X S , Y S } by using the reference matrix calculation formula, and then the first Euclidean alignment is performed on the second source domain according to the first reference matrix by using the Euclidean alignment calculation formula to obtain the aligned first source domain Source domain EA The reference matrix calculation formula is:
式中,为第一参考矩阵,xi为第二源域中第i个脑电信号,n为第二源域中脑电信号总数。In the formula, is the first reference matrix, xi is the ith EEG signal in the second source domain, and n is the total number of EEG signals in the second source domain.
欧式对齐计算公式为:The calculation formula for Euclidean alignment is:
式中,为对齐后的第i个脑电信号,/>为第一参考矩阵,xi为第二源域中第i个脑电信号。In the formula, is the ith EEG signal after alignment, /> is the first reference matrix, and xi is the i-th EEG signal in the second source domain.
在本实施例中,再根据第二目标域{XT,YT},通过上述参考矩阵计算公式计算第二参考矩阵,最后根据第二参考矩阵,通过上述欧式对齐计算公式对第二目标域进行第二欧式对齐,得到第一目标域Target domainEA 更多地,对齐后受试者所有n个对齐实验的均值协方差矩阵为:In this embodiment, the second reference matrix is calculated according to the second target domain {X T , Y T } by the reference matrix calculation formula, and finally, the second target domain is subjected to second Euclidean alignment according to the second reference matrix by the Euclidean alignment calculation formula to obtain the first target domain Target domain EA Furthermore, the mean covariance matrix of all n aligned experiments for the aligned subject is:
式中,I为均值协方差矩阵,为参考矩阵,xi为第i个脑电信号,n为第一源域或第一目标域中脑电信号总数。Where I is the mean covariance matrix, is the reference matrix, xi is the ith EEG signal, and n is the total number of EEG signals in the first source domain or the first target domain.
在本实施例中,第一源域和第一目标域的平均协方差矩阵等于对齐后的单位矩阵,两者协方差矩阵的分布更加相似,进一步提高了源域与目标域特征空间分布的相似度。在一定程度上实现了从黄金受试者到目标受试者的迁移。本实施例欧式对齐在欧几里德空间中对EEG试验进行转换和校准,它不需要来自受试者的任何标签信息,计算速度快,是一种良好的信号处理方式。In this embodiment, the average covariance matrix of the first source domain and the first target domain is equal to the unit matrix after alignment, and the distribution of the covariance matrices of the two is more similar, further improving the similarity of the feature space distribution of the source domain and the target domain. To a certain extent, the migration from the golden subject to the target subject is achieved. In this embodiment, the Euclidean alignment converts and calibrates the EEG test in the Euclidean space. It does not require any label information from the subject, has a fast calculation speed, and is a good signal processing method.
步骤S203、将第一源域输入预设神经网络模型,以使预设神经网络模型进行训练,得到主体迁移神经网络模型。Step S203: input the first source domain into the preset neural network model so that the preset neural network model is trained to obtain a subject transfer neural network model.
在本实施例中,将对齐后的第一源域的脑电信号数据输入到预设神经网络模型,得到预设神经网络模型输出的预测结果,并计算其与标签的损失函数。将预测结果与标签之间的距离来确定训练结束条件,采用随机梯度下降的方法来降低损失函数以达到优化网络的目的,直至预测结果和相应标签之间的距离小于预设的阈值或者训练次数达到预定值时结束对预设神经网络模型的训练,得到主体迁移神经网络模型。In this embodiment, the aligned EEG signal data of the first source domain is input into the preset neural network model to obtain the prediction result output by the preset neural network model, and the loss function between the prediction result and the label is calculated. The distance between the prediction result and the label is used to determine the training end condition, and the stochastic gradient descent method is used to reduce the loss function to achieve the purpose of optimizing the network, until the distance between the prediction result and the corresponding label is less than the preset threshold or the number of training times reaches a predetermined value, the training of the preset neural network model is terminated, and the subject transfer neural network model is obtained.
在本实施例中,主体迁移神经网络模型架构的构建步骤包括:In this embodiment, the steps of constructing the subject migration neural network model architecture include:
构建输入层,输入层的输出空间维度为1维;Construct the input layer, the output space dimension of the input layer is 1 dimension;
在输入层后,构建常规卷积层;After the input layer, a regular convolutional layer is constructed;
在常规卷积层后,构建逐通道卷积层;After the regular convolution layer, a channel-by-channel convolution layer is constructed;
在逐通道卷积层后,构建逐点卷积层;After the channel-by-channel convolution layer, a point-by-point convolution layer is constructed;
在逐点卷积层后,构建第一池化层;After the point-by-point convolution layer, the first pooling layer is constructed;
在第一池化层后,构建空间卷积层;After the first pooling layer, a spatial convolution layer is constructed;
在空间卷积层后,构建第二池化层;After the spatial convolution layer, the second pooling layer is constructed;
在第二池化层后,构建压缩层;After the second pooling layer, a compression layer is constructed;
在压缩层后,构建注意力层;After the compression layer, build the attention layer;
在注意力层后,构建时间卷积层;After the attention layer, a temporal convolution layer is constructed;
在时间卷积层后,构建特征图截取层;After the temporal convolution layer, a feature map extraction layer is constructed;
在特征图截取层后,构建全连接层。After the feature map extraction layer, a fully connected layer is constructed.
在本实施例中,主体迁移神经网络模型的架构如图7所示,主体迁移神经网络由输入层、常规卷积层、深度可分离卷积层、第一池化层、空间卷积层、第二池化层、压缩层、注意力层、时间卷积层、特征图截取层、全连接层组成,并按所述顺序依次连接。在本实施例中,在使用脑电信号对主体迁移神经网络模型进行训练时,主体神经网络模型通过输入层接收输入的脑电信号后,将其送入常规卷积层。常规卷积层中,采取二维卷积的方式对输入的脑电信号进行卷积,其中卷积核的尺寸为1×64,卷积步长为1×3,输出空间维度为16,即经过常规卷积层之后,输出特征图数量为16,常规卷积层输出的特征包含有脑电信号时间和空间上的特征。In this embodiment, the architecture of the subject transfer neural network model is shown in Figure 7. The subject transfer neural network consists of an input layer, a conventional convolution layer, a depth-separable convolution layer, a first pooling layer, a spatial convolution layer, a second pooling layer, a compression layer, an attention layer, a temporal convolution layer, a feature map interception layer, and a fully connected layer, and is connected in sequence in the described order. In this embodiment, when the subject transfer neural network model is trained using EEG signals, the subject neural network model receives the input EEG signal through the input layer and sends it to the conventional convolution layer. In the conventional convolution layer, the input EEG signal is convolved in a two-dimensional convolution manner, wherein the size of the convolution kernel is 1×64, the convolution step is 1×3, and the output space dimension is 16, that is, after passing through the conventional convolution layer, the number of output feature maps is 16, and the features output by the conventional convolution layer include the temporal and spatial features of the EEG signal.
在得到常规卷积层输出的特征图后,将其输入到深度可分离卷积层,包括逐通道卷积和逐点卷积。在逐通道卷积中,卷积核尺寸为22×1,卷积核步长为1×1,输出空间维度为16,输出特征图尺寸为16×1×1125。在逐点卷积中,卷积核尺寸为1×1,卷积核步长为1×1,输出空间维度为32,输出特征图尺寸为32×1×1125。逐通道卷积对通道的每一层进行了特征提取,结合逐点卷积后可以增强特征通道之间的信息交互,进一步提升网络性能。After obtaining the feature map output by the conventional convolution layer, it is input into the depthwise separable convolution layer, including channel-by-channel convolution and point-by-point convolution. In the channel-by-channel convolution, the convolution kernel size is 22×1, the convolution kernel step size is 1×1, the output spatial dimension is 16, and the output feature map size is 16×1×1125. In the point-by-point convolution, the convolution kernel size is 1×1, the convolution kernel step size is 1×1, the output spatial dimension is 32, and the output feature map size is 32×1×1125. Channel-by-channel convolution extracts features from each layer of the channel. Combined with point-by-point convolution, it can enhance the information interaction between feature channels and further improve network performance.
在得到深度可分离卷积层输出的特征图后,将其输入到第一池化层,第一池化层采用平均池化的方法将特征图尺寸压缩为32×1×140,池化步长为1×8输出特征空间维度为32。第一池化层实现了对特征的降维,压缩数据的同时减小了参数量,可以避免网络过拟合的问题。After obtaining the feature map output by the depthwise separable convolutional layer, it is input into the first pooling layer, which uses the average pooling method to compress the feature map size to 32×1×140, with a pooling step of 1×8 and an output feature space dimension of 32. The first pooling layer achieves dimensionality reduction of features, compresses data and reduces the number of parameters, which can avoid the problem of network overfitting.
在得到第一池化层输出的特征图后,将其输入到空间卷积层,卷积核的尺寸为1×16,卷积核的步长为1×1,输出特征空间维度为32,输出特征图尺寸为32×1×140。空间卷积进一步增强了脑电数据通道之间的信息交互,输出的特征图实现了对空间特征的强化。After obtaining the feature map output by the first pooling layer, it is input into the spatial convolution layer, the size of the convolution kernel is 1×16, the step size of the convolution kernel is 1×1, the output feature space dimension is 32, and the output feature map size is 32×1×140. Spatial convolution further enhances the information interaction between EEG data channels, and the output feature map realizes the enhancement of spatial features.
在得到空间卷积层输出的特征图后,将其输入到压缩层,压缩层的作用是将特征图尺寸从32×1×20转变为32×20,特征空间维度从这一层开始保持为1。更多地,可以通过滑动窗口方法压缩特征图,其中,窗长设置为16,滑动窗口的具体方法为:对于尺寸为32×20的特征图,将其第二个维度的数据依次截取索引为1-16,2-17,3-18,4-19,5-20的数据,每个滑动窗口得到的特征图尺寸为32×16。滑动窗口的设置可以提高模型的泛化能力,使得训练出来的网络效果更好。After obtaining the feature map output by the spatial convolution layer, it is input to the compression layer. The function of the compression layer is to transform the feature map size from 32×1×20 to 32×20, and the feature space dimension is kept at 1 from this layer. Furthermore, the feature map can be compressed by the sliding window method, where the window length is set to 16. The specific method of the sliding window is: for a feature map of size 32×20, the data of its second dimension is sequentially intercepted with indexes 1-16, 2-17, 3-18, 4-19, and 5-20, and the feature map size obtained by each sliding window is 32×16. The setting of the sliding window can improve the generalization ability of the model and make the trained network effect better.
在得到每个窗口输出的特征图后,依次将每个窗口的特征图输入到注意力层。在深度神经网络中,注意力机制是一种模仿人类大脑行为的方法,即选择性地关注一些重要元素而忽略其他元素。注意机制可以用三个组成部分来模拟:值(感官输入)、键(非意志线索)和查询(意志线索)。查询和键的交互产生了注意力集中,从而导致了值的选择。注意力层由查询Q、键K和值V组成,查询和键之间的交互产生注意分数。注意力层输出的特征图尺寸为32×16。如图8所示,注意力层可以使得主体迁移神经网络模型选择性地关注少数重要元素而忽略其他元素,即对于分类较为关键的元素上更为突出,而对分类预测不那么重要的地方则进行了一定程度上的忽视,从而进一步提高网络的分类性能。After obtaining the feature map output by each window, the feature map of each window is input into the attention layer in turn. In deep neural networks, the attention mechanism is a method to mimic the behavior of the human brain, that is, to selectively focus on some important elements and ignore other elements. The attention mechanism can be simulated by three components: value (sensory input), key (non-volitional clue) and query (volitional clue). The interaction between query and key produces attention concentration, which leads to the selection of value. The attention layer consists of query Q, key K and value V, and the interaction between query and key produces attention score. The feature map size output by the attention layer is 32×16. As shown in Figure 8, the attention layer can make the main transfer neural network model selectively focus on a few important elements and ignore other elements, that is, it is more prominent on the elements that are more critical for classification, while the less important parts of classification prediction are ignored to a certain extent, thereby further improving the classification performance of the network.
在得到注意力层输出的特征图后,将其输入到时间卷积层。时间卷积层由两个扩张的因果卷积构成,卷积核尺寸均为1×4,卷积核步长均为1×1,输出特征图尺寸为32。因果卷积在卷积的过程中引入了因果关系,即输出的每个元素只依赖于输入序列中不晚于它的元素。这种设计使得因果卷积能够处理时间序列数据,确保模型在预测未来时只能使用当前及之前的信息,而不会使用未来的信息,从而确保主体迁移神经网络模型在构建和训练过程中,符合脑电信号数据在时间顺序上进行数据建模的基本前后依赖关系。针对因果卷积历史信息覆盖范围小的特点,采用扩张的因果卷积来扩大感受野来改善。时间卷积层中输入特征图尺寸为32×16,这一层的处理方式是将其拆分为16个时间元素,每个元素为长度为32的向量的序列。时间卷积层采用扩张的因果卷积来处理这个序列,输出序列的每个元素都是通过卷积操作计算得到的,而计算每个元素时只使用输入序列中不晚于该元素的部分。因此,输出序列的最后一个元素是通过考虑整个输入序列的卷积操作计算得到的,可以采用特征图截取的方法得到时间卷积层的最终输出。After obtaining the feature map output by the attention layer, it is input into the temporal convolution layer. The temporal convolution layer consists of two dilated causal convolutions, with convolution kernel size of 1×4, convolution kernel step size of 1×1, and output feature map size of 32. Causal convolution introduces causality in the convolution process, that is, each element of the output depends only on the element that is not later than it in the input sequence. This design enables causal convolution to process time series data, ensuring that the model can only use current and previous information when predicting the future, and will not use future information, thereby ensuring that the subject transfer neural network model conforms to the basic before-after dependency relationship of EEG signal data in the temporal sequence during construction and training. In view of the small coverage of historical information in causal convolution, dilated causal convolution is used to expand the receptive field to improve it. The input feature map size in the temporal convolution layer is 32×16. The processing method of this layer is to split it into 16 time elements, each element is a sequence of vectors with a length of 32. The temporal convolution layer uses dilated causal convolution to process this sequence. Each element of the output sequence is calculated through the convolution operation, and only the part of the input sequence that is not later than the element is used to calculate each element. Therefore, the last element of the output sequence is calculated by considering the convolution operation of the entire input sequence. The final output of the temporal convolution layer can be obtained by the feature map interception method.
在得到时间卷积层输出的特征图后,将每个滑动窗口的时间卷积层的输出进行平均化,然后输入到全连接层。在全连接层中,通过softmax层的四分类输出得到最终的预测结果。示例性地,输出得到的预测结果可以包括左手运动想象、右手运动想象、双脚运动想象、舌头运动想象。After obtaining the feature map output by the temporal convolution layer, the output of the temporal convolution layer of each sliding window is averaged and then input into the fully connected layer. In the fully connected layer, the final prediction result is obtained through the four-classification output of the softmax layer. Exemplarily, the output prediction results may include left hand movement imagination, right hand movement imagination, both feet movement imagination, and tongue movement imagination.
在本实施例中,获得目标生成器的具体实施过程包括但不限于以下步骤:In this embodiment, the specific implementation process of obtaining the target generator includes but is not limited to the following steps:
根据第一源域、第一目标域和主体迁移神经网络模型,对预设生成器进行训练,得到目标生成器。According to the first source domain, the first target domain and the subject transfer neural network model, the preset generator is trained to obtain the target generator.
在本实施例中,根据第一源域、第一目标域和主体迁移神经网络模型,对预设生成器进行训练,得到目标生成器,可以是先将第一目标域输入预设生成器,得到第一迁移数据,然后将第一源域和第一迁移数据输入主体迁移神经网络模型,得到交叉熵损失和主体迁移神经网络模型中每个关键层输出特征对应的均方误差,将多项均方误差相加,计算风格损失,再将风格损失和交叉熵损失相加,计算总损失,最后根据总损失,通过随机梯度下降算法对预设生成器进行训练,得到目标生成器。In this embodiment, the preset generator is trained according to the first source domain, the first target domain and the main transfer neural network model to obtain the target generator. The first target domain can be first input into the preset generator to obtain the first transfer data, and then the first source domain and the first transfer data are input into the main transfer neural network model to obtain the cross entropy loss and the mean square error corresponding to the output feature of each key layer in the main transfer neural network model. Multiple mean square errors are added to calculate the style loss, and then the style loss and the cross entropy loss are added to calculate the total loss. Finally, according to the total loss, the preset generator is trained by the stochastic gradient descent algorithm to obtain the target generator.
在本实施例中,目标生成器处理流程如图9所示,目标生成器由编码器与解码器两部分组成。在编码过程中,首先采用卷积的形式对输入特征图进行下采样,然后对输出数据进行归一化与非线性激活,经过编码器之后特征图的尺寸缩小一倍,同时特征图数量扩大一倍。而在解码过程中,首先采用卷积的形式对输入特征图进行上采样,然后对输出特征图进行归一化。编码与解码的过程实际上是采用卷积的形式对特征图进行下采样与上采样,这样的方法可以加速生成器的训练,同时可以增加有效感受野的大小。更多地,特征图输入到生成器之后,特征图的尺寸保持不变,生成器的输出即为第一源域向第一目标域迁移的脑电信号数据。在本实施例中,可以先将第一目标域输入到预设生成器,得到第一迁移数据,然后将第一迁移数据与对齐后的第一源域分别输入到主体迁移神经网络模型,得到交叉熵损失和主体迁移神经网络模型中每个关键层输出特征对应的均方误差。其中,主体迁移神经网络模型中有一些关键的网络层如深度可分离卷积层、注意力层、时间卷积层,第一迁移数据与对齐后的第一源域经过这些关键层后均会输出对应的特征,可以计算第一迁移数据与对齐后的第一源域在这些层的输出特征之间的均方误差。可以理解的是,第一源域与第一目标域的脑电信号输入到主体迁移神经网络模型后,每一层输出的特征均是矩阵的形式。x、y表示第一源域与第一目标域分别送入主体迁移神经网络后,在关键层的输出矩阵。当在一个关键层的输出矩阵的数据量为n(即一个矩阵有n个数据)时,将x、y两个矩阵对应位置的数据作差后取平方再累加求和即为该层计算的均方误差。均方误差的计算公式为:In this embodiment, the target generator processing flow is shown in Figure 9, and the target generator consists of an encoder and a decoder. In the encoding process, the input feature map is first downsampled in the form of convolution, and then the output data is normalized and nonlinearly activated. After the encoder, the size of the feature map is doubled, and the number of feature maps is doubled. In the decoding process, the input feature map is first upsampled in the form of convolution, and then the output feature map is normalized. The encoding and decoding process is actually to downsample and upsample the feature map in the form of convolution. This method can accelerate the training of the generator and increase the size of the effective receptive field. More importantly, after the feature map is input into the generator, the size of the feature map remains unchanged, and the output of the generator is the EEG signal data migrated from the first source domain to the first target domain. In this embodiment, the first target domain can be first input into the preset generator to obtain the first migration data, and then the first migration data and the aligned first source domain are respectively input into the subject migration neural network model to obtain the cross entropy loss and the mean square error corresponding to the output feature of each key layer in the subject migration neural network model. Among them, there are some key network layers in the subject transfer neural network model, such as the depth-separable convolution layer, the attention layer, and the time convolution layer. The first migration data and the aligned first source domain will output corresponding features after passing through these key layers. The mean square error between the output features of the first migration data and the aligned first source domain in these layers can be calculated. It can be understood that after the EEG signals of the first source domain and the first target domain are input into the subject transfer neural network model, the features output by each layer are in the form of a matrix. x and y represent the output matrices of the key layers after the first source domain and the first target domain are respectively sent to the subject transfer neural network. When the amount of data in the output matrix of a key layer is n (that is, a matrix has n data), the data at the corresponding positions of the two matrices x and y are subtracted, squared, and then added up to obtain the mean square error calculated for the layer. The calculation formula for the mean square error is:
式中,MSE为均方误差,xi为从第一源域得到的输出矩阵中的第i个数据,yi为从第一目标域得到的输出矩阵中的第i个数据,n为输出矩阵的数据量。Where MSE is the mean square error, xi is the i-th data in the output matrix obtained from the first source domain, yi is the i-th data in the output matrix obtained from the first target domain, and n is the amount of data in the output matrix.
更多地,在每个关键层的输出均会进行一次均方误差的计算,将每一层计算得到的均方误差进行求和,得到风格损失。More importantly, a mean square error is calculated at the output of each key layer, and the mean square errors calculated at each layer are summed to obtain the style loss.
同时,将第一迁移数据输入到主体迁移神经网络模型后,得到第一目标域脑电信号的预测类别与第一目标域脑电信号的真实标签之间的交叉熵损失,可以通过交叉熵损失的计算公式计算预测类别和真实标签之间的距离。其中,交叉熵损失的计算公式为:At the same time, after the first migration data is input into the main migration neural network model, the cross entropy loss between the predicted category of the first target domain EEG signal and the true label of the first target domain EEG signal is obtained, and the distance between the predicted category and the true label can be calculated by the calculation formula of the cross entropy loss. Among them, the calculation formula of the cross entropy loss is:
式中,L为交叉熵损失,y为第一目标域脑电信号的预测类别,为第一目标域脑电信号的真实标签,Q为分类任务类别总数。Where L is the cross entropy loss, y is the predicted category of the EEG signal in the first target domain, is the true label of the EEG signal in the first target domain, and Q is the total number of classification task categories.
在本实施例中,在计算得到风格损失和交叉熵损失后,可以将风格损失和交叉熵损失相加,计算总损失,总损失衡量了迁移效果的优劣。最后根据总损失,通过随机梯度下降算法对预设生成器进行训练,得到目标生成器。从而最大化地实现从源域向目标域的迁移,即脑电信号数据实现从黄金受试者向BCI文盲(即目标受试者)的迁移。In this embodiment, after calculating the style loss and the cross entropy loss, the style loss and the cross entropy loss can be added to calculate the total loss, which measures the quality of the migration effect. Finally, according to the total loss, the preset generator is trained by the stochastic gradient descent algorithm to obtain the target generator. In this way, the migration from the source domain to the target domain is maximized, that is, the EEG signal data is migrated from the golden subject to the BCI illiterate (i.e., the target subject).
在本实施例中,使用BCI IV-2a数据集对主体迁移神经网络模型进行测试,得到测试结果如图10所示。其中,该数据集是脑机接口竞赛提供的一个公开的数据集,在脑机接口领域得到广泛应用。数据集由S1-S9代表的9名受试者的脑电信号数据组成,受试者在实验过程中需要进行四种不同的运动想象任务,即左手(1类)、右手(2类)、双脚(3类)和舌头(4类)运动想象。从测试结果可知,本实施例(EA-G-ATNN)的平均分类准确率达到75.54%,比EEGNet、DeepConvNet、FBCSP方法的平均分类准确率更高。In this embodiment, the subject transfer neural network model is tested using the BCI IV-2a data set, and the test results are shown in Figure 10. Among them, this data set is a public data set provided by the brain-computer interface competition and is widely used in the field of brain-computer interface. The data set consists of EEG signal data of 9 subjects represented by S1-S9. During the experiment, the subjects need to perform four different motor imagery tasks, namely left hand (1 category), right hand (2 categories), feet (3 categories) and tongue (4 categories) motor imagery. From the test results, it can be seen that the average classification accuracy of this embodiment (EA-G-ATNN) reaches 75.54%, which is higher than the average classification accuracy of EEGNet, DeepConvNet, and FBCSP methods.
实施本发明实施例的有益效果包括:本发明实施例首先获取待分类目标域,将待分类目标域输入目标生成器,得到待分类迁移数据,然后将待分类迁移数据输入主体迁移神经网络模型,得到脑电信号分类结果,实现了脑机接口迁移学习,提高了分类准确率、减少了信号校准时间。其中,主体迁移神经网络模型通过黄金受试者的第一运动想象脑电信号和目标受试者的第二运动想象脑电信号,计算包括第一源域和第一目标域的域集后,通过第一源域进行训练,进而提高模型分类的精准度,而目标生成器则是根据第一源域、第一目标域和主体迁移神经网络模型,对预设生成器进行训练得到,进而提高生成器迁移数据的准确度。The beneficial effects of implementing the embodiments of the present invention include: the embodiments of the present invention first obtain the target domain to be classified, input the target domain to be classified into the target generator, obtain the migration data to be classified, and then input the migration data to be classified into the subject migration neural network model to obtain the EEG signal classification result, thereby realizing brain-computer interface transfer learning, improving classification accuracy, and reducing signal calibration time. Among them, the subject migration neural network model calculates the domain set including the first source domain and the first target domain through the first motor imagery EEG signal of the golden subject and the second motor imagery EEG signal of the target subject, and then trains through the first source domain to improve the accuracy of model classification, while the target generator is obtained by training the preset generator according to the first source domain, the first target domain and the subject migration neural network model, thereby improving the accuracy of the generator migration data.
在本实施例中,所使用的主体迁移神经网络模型包括多卷积尺度、多卷积类型、多种数据处理方法,合理设计了网络层类型以及各卷积核的大小及步长,具有较高的识别准确率。训练主体迁移神经网络模型所用的训练集是基于采集所得的脑电信号进行欧式空间对齐后得到的,能够提高对主体迁移神经网络的训练效果。更多地,主体迁移神经网络模型中层与层之间还加入了残差连接、神经元随机失活、层与层之间非线性激活、归一化等技术来提高网络性能。在本实施例中,基于欧式对齐与生成器混合迁移学习方法的主体迁移神经网络模型在训练过程中不需要目标域的脑电信号数据。本实施例只需要采集少量目标域的脑电信号对生成器模型进行校准,这与传统的采集大量当前脑机接口使用者的脑电信号校准分类器相比能够节约大量时间,同时本实施例对BCI文盲的脑电信号识别准确率相比传统的分类器来说也有较大的提高。In this embodiment, the subject transfer neural network model used includes multiple convolution scales, multiple convolution types, and multiple data processing methods. The network layer type and the size and step size of each convolution kernel are reasonably designed, and it has a high recognition accuracy. The training set used for training the subject transfer neural network model is obtained after the Euclidean space alignment of the collected EEG signals, which can improve the training effect of the subject transfer neural network. Moreover, residual connections, random neuron inactivation, nonlinear activation between layers, normalization and other technologies are added between layers in the subject transfer neural network model to improve network performance. In this embodiment, the subject transfer neural network model based on the Euclidean alignment and generator hybrid transfer learning method does not require EEG signal data of the target domain during the training process. This embodiment only needs to collect a small amount of EEG signals from the target domain to calibrate the generator model, which can save a lot of time compared with the traditional collection of a large number of EEG signals of current brain-computer interface users to calibrate the classifier. At the same time, this embodiment has a greater improvement in the accuracy of EEG signal recognition for BCI illiterates compared with traditional classifiers.
本发明实施例还提供了一种脑电信号分类装置,包括:The embodiment of the present invention also provides an electroencephalogram signal classification device, comprising:
第一模块,用于获取待分类目标域;The first module is used to obtain the target domain to be classified;
第二模块,用于将待分类目标域输入目标生成器,得到待分类迁移数据;The second module is used to input the target domain to be classified into the target generator to obtain the migration data to be classified;
第三模块,用于将待分类迁移数据输入主体迁移神经网络模型,得到脑电信号分类结果;The third module is used to input the migration data to be classified into the subject migration neural network model to obtain the EEG signal classification result;
其中,主体迁移神经网络模型通过以下步骤得到:Among them, the subject transfer neural network model is obtained through the following steps:
获取黄金受试者的第一运动想象脑电信号和目标受试者的第二运动想象脑电信号,黄金受试者用于表征第一运动想象脑电信号在迁移前的分类模型中分类准确率高,目标受试者用于表征第二运动想象脑电信号在迁移前的分类模型中分类准确率低;Acquire a first motor imagery EEG signal of a gold subject and a second motor imagery EEG signal of a target subject, wherein the gold subject is used to characterize that the first motor imagery EEG signal has a high classification accuracy in the classification model before migration, and the target subject is used to characterize that the second motor imagery EEG signal has a low classification accuracy in the classification model before migration;
根据第一运动想象脑电信号和第二运动想象脑电信号,计算域集,域集包括第一源域和第一目标域;Calculate a domain set according to the first motor imagery EEG signal and the second motor imagery EEG signal, where the domain set includes a first source domain and a first target domain;
将第一源域输入预设神经网络模型,以使预设神经网络模型进行训练,得到主体迁移神经网络模型;Inputting the first source domain into a preset neural network model so that the preset neural network model is trained to obtain a subject transfer neural network model;
目标生成器通过以下步骤得到:The target generator is obtained by the following steps:
根据第一源域、第一目标域和主体迁移神经网络模型,对预设生成器进行训练,得到目标生成器。According to the first source domain, the first target domain and the subject transfer neural network model, the preset generator is trained to obtain the target generator.
上述方法实施例中的内容均适用于本装置实施例中,本装置实施例所具体实现的功能与上述方法实施例相同,并且达到的有益效果与上述方法实施例所达到的有益效果也相同。The contents of the above method embodiments are all applicable to the present device embodiments. The functions specifically implemented by the present device embodiments are the same as those of the above method embodiments, and the beneficial effects achieved are also the same as those achieved by the above method embodiments.
本发明实施例还提供了一种脑电信号分类装置,包括:The embodiment of the present invention also provides an electroencephalogram signal classification device, comprising:
至少一个处理器;at least one processor;
至少一个存储器,用于存储至少一个程序;at least one memory for storing at least one program;
当至少一个程序被至少一个处理器执行,使得至少一个处理器实现图1所示的方法。When at least one program is executed by at least one processor, the at least one processor implements the method shown in FIG. 1 .
上述方法实施例中的内容均适用于本装置实施例中,本装置实施例所具体实现的功能与上述方法实施例相同,并且达到的有益效果与上述方法实施例所达到的有益效果也相同。The contents of the above method embodiments are all applicable to the present device embodiments. The functions specifically implemented by the present device embodiments are the same as those of the above method embodiments, and the beneficial effects achieved are also the same as those achieved by the above method embodiments.
本发明实施例还提供了一种计算机可读存储介质,计算机可读存储介质存储有计算机程序,计算机程序被处理器执行时实现图1所示的方法。An embodiment of the present invention further provides a computer-readable storage medium, which stores a computer program. When the computer program is executed by a processor, the method shown in FIG. 1 is implemented.
上述方法实施例中的内容均适用于本存储介质实施例中,本存储介质实施例所具体实现的功能与上述方法实施例相同,并且达到的有益效果与上述方法实施例所达到的有益效果也相同。The contents of the above method embodiments are all applicable to the present storage medium embodiments. The functions specifically implemented by the present storage medium embodiments are the same as those of the above method embodiments, and the beneficial effects achieved are also the same as those achieved by the above method embodiments.
以上是对本发明的较佳实施进行了具体说明,但本发明并不局限于上述实施方式,熟悉本领域的技术人员在不违背本发明精神的前提下还可作出种种的等同变形或替换,这些等同的变形或替换均包含在本发明权利要求所限定的范围内。The above is a specific description of the preferred implementation of the present invention, but the present invention is not limited to the above-mentioned implementation mode. Technical personnel familiar with the field can also make various equivalent deformations or substitutions without violating the spirit of the present invention. These equivalent deformations or substitutions are all included in the scope defined by the claims of the present invention.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202410032904.6A CN118035816A (en) | 2024-01-09 | 2024-01-09 | Electroencephalogram signal classification method, device and storage medium |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202410032904.6A CN118035816A (en) | 2024-01-09 | 2024-01-09 | Electroencephalogram signal classification method, device and storage medium |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN118035816A true CN118035816A (en) | 2024-05-14 |
Family
ID=91003327
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202410032904.6A Pending CN118035816A (en) | 2024-01-09 | 2024-01-09 | Electroencephalogram signal classification method, device and storage medium |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN118035816A (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN114548166A (en) * | 2022-02-18 | 2022-05-27 | 广州大学 | A Riemannian Manifold-Based Spatial Transfer Learning Method for EEG Heterogeneous Labels |
| CN118717141A (en) * | 2024-09-03 | 2024-10-01 | 宁波数字孪生(东方理工)研究院 | Method and related device for detecting epilepsy signals in electroencephalogram signals |
| CN119167170A (en) * | 2024-09-04 | 2024-12-20 | 暨南大学 | A cross-temporal EEG motor imagery classification method based on transfer learning |
| CN119700136A (en) * | 2024-11-12 | 2025-03-28 | 上海交通大学 | EEG signal detection method based on separation of temporal correlation and auditory interference |
-
2024
- 2024-01-09 CN CN202410032904.6A patent/CN118035816A/en active Pending
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN114548166A (en) * | 2022-02-18 | 2022-05-27 | 广州大学 | A Riemannian Manifold-Based Spatial Transfer Learning Method for EEG Heterogeneous Labels |
| CN114548166B (en) * | 2022-02-18 | 2025-03-21 | 广州大学 | A Riemannian manifold-based method for transferring learning of heterogeneous label spaces of EEG signals |
| CN118717141A (en) * | 2024-09-03 | 2024-10-01 | 宁波数字孪生(东方理工)研究院 | Method and related device for detecting epilepsy signals in electroencephalogram signals |
| CN119167170A (en) * | 2024-09-04 | 2024-12-20 | 暨南大学 | A cross-temporal EEG motor imagery classification method based on transfer learning |
| CN119700136A (en) * | 2024-11-12 | 2025-03-28 | 上海交通大学 | EEG signal detection method based on separation of temporal correlation and auditory interference |
| CN119700136B (en) * | 2024-11-12 | 2025-09-19 | 上海交通大学 | EEG signal detection method based on separating temporal correlation and auditory interference |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Tao et al. | EEG-based emotion recognition via channel-wise attention and self attention | |
| Aggarwal et al. | Review of machine learning techniques for EEG based brain computer interface | |
| CN114533086B (en) | Motor imagery brain electrolysis code method based on airspace characteristic time-frequency transformation | |
| CN118035816A (en) | Electroencephalogram signal classification method, device and storage medium | |
| CN117520826B (en) | A multimodal emotion recognition method and system based on wearable devices | |
| Tang et al. | Motor imagery EEG recognition with KNN-based smooth auto-encoder | |
| Pan et al. | Emotion recognition based on EEG using generative adversarial nets and convolutional neural network | |
| CN112488002B (en) | Emotion recognition method and system based on N170 | |
| CN112656427A (en) | Electroencephalogram emotion recognition method based on dimension model | |
| CN111209885A (en) | A gesture information processing method, device, electronic device and storage medium | |
| CN110555468A (en) | Electroencephalogram signal identification method and system combining recursion graph and CNN | |
| CN107961007A (en) | A kind of electroencephalogramrecognition recognition method of combination convolutional neural networks and long memory network in short-term | |
| US20230101539A1 (en) | Physiological electric signal classification processing method and apparatus, computer device and storage medium | |
| Hamzah et al. | EEG-based emotion recognition systems; comprehensive study | |
| CN114145744B (en) | Cross-equipment forehead electroencephalogram emotion recognition based method and system | |
| CN110367976B (en) | Brain wave signal detection method, related device and storage medium | |
| CN117725464A (en) | Motor imagination task classification method based on brain partition enhanced attention convolutional network | |
| CN116636848A (en) | Depression detection method, system and electronic device based on EEG signal | |
| CN118766459A (en) | A method for emotion recognition of EEG signals integrating multi-scale residual attention network | |
| Somnathe et al. | Brain Computer Interaction Framework for Speech and Motor Impairment Using Deep Learning | |
| Sun et al. | MEEG-Transformer: transformer Network based on Multi-domain EEG for emotion recognition | |
| Al-Hamadani et al. | Normalized deep learning algorithms based information aggregation functions to classify motor imagery EEG signal | |
| CN117474370A (en) | Multi-information fusion learning quality analysis method, system, medium and terminal | |
| CN119538086B (en) | A multimodal emotion recognition system based on global-local spatiotemporal semantic alignment | |
| CN116776219A (en) | Method and device for classifying steady-state visual evoked potentials and electronic equipment |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination |