[go: up one dir, main page]

CN117813846A - Apparatus, method and computer program - Google Patents

Apparatus, method and computer program Download PDF

Info

Publication number
CN117813846A
CN117813846A CN202180101559.1A CN202180101559A CN117813846A CN 117813846 A CN117813846 A CN 117813846A CN 202180101559 A CN202180101559 A CN 202180101559A CN 117813846 A CN117813846 A CN 117813846A
Authority
CN
China
Prior art keywords
domain
artificial intelligence
machine learning
cross
pipeline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202180101559.1A
Other languages
Chinese (zh)
Inventor
T·苏布拉曼亚
H·桑内科
J·阿利-托尔帕
平静
I·亚当
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nokia Shanghai Bell Co Ltd
Nokia Solutions and Networks Oy
Original Assignee
Nokia Shanghai Bell Co Ltd
Nokia Solutions and Networks Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Shanghai Bell Co Ltd, Nokia Solutions and Networks Oy filed Critical Nokia Shanghai Bell Co Ltd
Publication of CN117813846A publication Critical patent/CN117813846A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/06Testing, supervising or monitoring using simulated traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/02Standardisation; Integration
    • H04L41/022Multivendor or multi-standard integration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/02Standardisation; Integration
    • H04L41/0226Mapping or translating multiple network management protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0894Policy-based network configuration management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/16Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks using machine learning or artificial intelligence
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/40Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks using virtualisation of network functions or resources, e.g. SDN or NFV entities

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

An apparatus comprising means configured to: facilitating cross-domain network service related machine learning or artificial intelligence pipeline reliability functionality, wherein the cross-domain machine learning or artificial intelligence pipeline is used to control a cognitive autonomous network comprising at least two domains.

Description

装置、方法和计算机程序Device, method and computer program

技术领域Technical Field

本公开涉及用于提供用于适用于但不排他地认知自治网络的跨域可信人工智能应用的框架的装置、方法和计算机程序。The present disclosure relates to apparatus, methods, and computer programs for providing a framework for cross-domain trusted artificial intelligence applications applicable to, but not exclusively, cognitive autonomous networks.

背景技术Background Art

通信系统可以被视为通过在通信路径中涉及的各个实体之间提供载波来实现两个或更多个实体(诸如通信设备、基站和/或其他节点)之间的通信会话的设施。A communication system may be viewed as a facility that enables communication sessions between two or more entities (such as communication devices, base stations, and/or other nodes) by providing carrier waves between the various entities involved in the communication path.

通信系统可以是无线通信系统。无线系统的示例包括基于诸如由3GPP提供的那些的无线电标准操作的公共陆地移动网络(PLMN)、基于卫星的通信系统和不同的无线局域网(例如无线局域网(WLAN))。无线系统通常可以被划分为小区,因此通常被称为蜂窝系统。The communication system may be a wireless communication system. Examples of wireless systems include public land mobile networks (PLMNs) operating based on radio standards such as those provided by 3GPP, satellite-based communication systems, and different wireless local area networks (e.g., wireless local area networks (WLANs)). Wireless systems can typically be divided into cells and are therefore often referred to as cellular systems.

通信系统和相关联的设备通常根据给定的标准或规范来操作,该标准或规范规定了与系统相关联的各种实体被允许做什么以及应该如何被实现。应当被使用用于连接的通信协议和/或参数也通常被定义。标准的示例是所谓的5G标准。Communication systems and associated devices typically operate according to a given standard or specification that specifies what the various entities associated with the system are allowed to do and how it should be implemented. The communication protocols and/or parameters that should be used for the connection are also typically defined. An example of a standard is the so-called 5G standard.

需要提供使通信服务提供方(CSP)能够控制和优化通信系统元件的复杂网络的控制系统。There is a need to provide a control system that enables a communication service provider (CSP) to control and optimize a complex network of communication system elements.

被采用的当前方法中的一个是闭环自动化和机器学习,它可以被内置到自组织网络(SON)中,使运营方能够自动优化无线电接入网络中的每个小区。One of the current approaches being adopted is closed-loop automation and machine learning, which can be built into self-organizing networks (SONs), enabling operators to automatically optimize each cell in a radio access network.

发明内容Summary of the invention

根据第一方面,提供了一种装置,包括被配置为促进跨域网络服务相关的机器学习或人工智能管道可信度功能的部件,其中该跨域机器学习或人工智能管道用于包括至少两个域的认知自治网络的控制。According to a first aspect, an apparatus is provided, comprising components configured to facilitate machine learning or artificial intelligence pipeline credibility functions related to cross-domain network services, wherein the cross-domain machine learning or artificial intelligence pipeline is used for control of a cognitive autonomous network including at least two domains.

被配置为促进跨域网络服务相关的机器学习或人工智能管道可信度功能的部件可以被配置为促进以下至少一项,其中该跨域机器学习或人工智能管道用于包括至少两个域的认知自治网络的控制:定义跨域网络服务相关的机器学习或人工智能管道可信度;配置跨域网络服务相关的机器学习或人工智能管道可信度;测量跨域网络服务相关的机器学习或人工智能管道可信度;以及报告与跨域网络服务相关的机器学习或人工智能管道可信度。A component configured to facilitate cross-domain network service-related machine learning or artificial intelligence pipeline credibility functionality may be configured to facilitate at least one of the following, wherein the cross-domain machine learning or artificial intelligence pipeline is used for control of a cognitive autonomous network comprising at least two domains: defining cross-domain network service-related machine learning or artificial intelligence pipeline credibility; configuring cross-domain network service-related machine learning or artificial intelligence pipeline credibility; measuring cross-domain network service-related machine learning or artificial intelligence pipeline credibility; and reporting machine learning or artificial intelligence pipeline credibility associated with cross-domain network services.

跨域网络服务相关的机器学习或人工智能管道可信度函数可以包括以下至少一项:公平性;可解释性;以及鲁棒性。The machine learning or artificial intelligence pipeline credibility function associated with cross-domain network services may include at least one of the following: fairness; explainability; and robustness.

被配置为促进跨域网络服务相关的机器学习或人工智能管道可信度功能的部件可以被配置为用于以下项,其中跨域机器学习或人工智能管道用于包括至少两个域的认知自治网络的控制:获得跨域机器学习或人工智能质量可信度,跨域机器学习或人工智能质量可信度被配置为:覆盖域特定的机器学习或人工智能质量可信度要求、以及跨域网络服务相关的机器学习或人工智能管道的约束;将跨域机器学习或人工智能质量可信度转化为用于至少两个域中的至少一个域的至少一个域特定的机器学习或人工智能质量可信度;以及提供用于至少两个域中的至少一个域的至少一个域特定的机器学习或人工智能质量可信度。Components configured to facilitate cross-domain network service-related machine learning or artificial intelligence pipeline credibility functions can be configured for the following items, where the cross-domain machine learning or artificial intelligence pipeline is used for controlling a cognitive autonomous network including at least two domains: obtaining cross-domain machine learning or artificial intelligence quality credibility, the cross-domain machine learning or artificial intelligence quality credibility is configured to: cover domain-specific machine learning or artificial intelligence quality credibility requirements, and constraints of the cross-domain network service-related machine learning or artificial intelligence pipeline; convert the cross-domain machine learning or artificial intelligence quality credibility into at least one domain-specific machine learning or artificial intelligence quality credibility for at least one domain of the at least two domains; and provide at least one domain-specific machine learning or artificial intelligence quality credibility for at least one domain of the at least two domains.

被配置为将跨域机器学习或人工智能可信度质量转化为用于至少两个域中的至少一个域的至少一个域特定的机器学习或人工智能可信度质量的部件可以被配置为基于跨域网络服务的风险水平将跨域机器学习或人工智能可信度质量转化为至少一个域特定的机器学习或人工智能可信度质量。A component configured to convert cross-domain machine learning or artificial intelligence credibility quality into at least one domain-specific machine learning or artificial intelligence credibility quality for at least one of at least two domains can be configured to convert the cross-domain machine learning or artificial intelligence credibility quality into at least one domain-specific machine learning or artificial intelligence credibility quality based on the risk level of the cross-domain network service.

被配置为将跨域机器学习或人工智能可信度质量转化为用于至少两个域中的至少一个域的至少一个域特定的机器学习或人工智能可信度质量的部件可以被配置为基于用于跨域网络的至少一个服务水平协议要求,将跨域机器学习或人工智能可信度质量转化为至少一个域特定的机器学习或人工智能可信度质量,其中至少一个服务水平协议包括以下至少一项:服务类型;服务优先级;以及至少一项关键性能指标度量。A component configured to convert cross-domain machine learning or artificial intelligence credibility quality into at least one domain-specific machine learning or artificial intelligence credibility quality for at least one of at least two domains can be configured to convert the cross-domain machine learning or artificial intelligence credibility quality into at least one domain-specific machine learning or artificial intelligence credibility quality based on at least one service level agreement requirement for a cross-domain network, wherein at least one service level agreement includes at least one of the following: service type; service priority; and at least one key performance indicator metric.

被配置为提供用于至少两个域中的至少一个域的至少一个域特定的机器学习或人工智能可信度质量的部件可以被配置为:生成跨域可信度机器学习或人工智能配置或委托请求并将其传递给至少一个域特定的机器学习或人工智能可信度功能,该跨域可信度机器学习或人工智能配置或委托请求被配置为控制至少一个域特定的机器学习或人工智能可信度功能,以配置用于至少两个域中的至少一个域的机器学习或人工智能管道;以及基于用于至少两个域中的至少一个域的机器学习或人工智能管道的配置的实现,从至少一个域特定的机器学习或人工智能可信度功能获得跨域可信度机器学习或人工智能配置或委托响应。A component configured to provide at least one domain-specific machine learning or artificial intelligence credibility quality for at least one domain of at least two domains can be configured to: generate a cross-domain credibility machine learning or artificial intelligence configuration or delegation request and pass it to at least one domain-specific machine learning or artificial intelligence credibility function, the cross-domain credibility machine learning or artificial intelligence configuration or delegation request being configured to control at least one domain-specific machine learning or artificial intelligence credibility function to configure a machine learning or artificial intelligence pipeline for at least one domain of at least two domains; and obtain a cross-domain credibility machine learning or artificial intelligence configuration or delegation response from at least one domain-specific machine learning or artificial intelligence credibility function based on the implementation of the configuration of the machine learning or artificial intelligence pipeline for at least one domain of at least two domains.

被配置为提供用于至少两个域中的至少一个域的至少一个域特定的机器学习或人工智能可信度质量的部件可以被配置为:生成跨域可信度机器学习或人工智能配置或委托请求并将其传递给至少一个域特定的策略管理器,跨域可信度机器学习或人工智能配置或委托请求被配置为控制至少一个域特定的机器学习或人工智能可信度功能,以配置用于至少两个域中的至少一个域的机器学习或人工智能管道;以及基于用于至少两个域中的至少一个域的所述机器学习或人工智能管道的配置的实现,从至少一个域策略管理器获得跨域可信度机器学习或人工智能配置或委托响应。A component configured to provide at least one domain-specific machine learning or artificial intelligence credibility quality for at least one domain of at least two domains can be configured to: generate a cross-domain credibility machine learning or artificial intelligence configuration or delegation request and pass it to at least one domain-specific policy manager, the cross-domain credibility machine learning or artificial intelligence configuration or delegation request being configured to control at least one domain-specific machine learning or artificial intelligence credibility function to configure a machine learning or artificial intelligence pipeline for at least one domain of at least two domains; and obtain a cross-domain credibility machine learning or artificial intelligence configuration or delegation response from at least one domain policy manager based on the implementation of the configuration of the machine learning or artificial intelligence pipeline for at least one domain of at least two domains.

跨域可信度机器学习或人工智能配置或委托请求可以包括:域范围参数,被配置为标识该请求正在寻址的域;管道标识参数,被配置为标识该请求正在寻址的域特定的机器学习或人工智能管道;类别标识参数,被配置为标识该至少一个域特定的机器学习或人工智能可信度质量。A cross-domain trustworthy machine learning or artificial intelligence configuration or delegation request may include: a domain scope parameter configured to identify the domain to which the request is being addressed; a pipeline identification parameter configured to identify the domain-specific machine learning or artificial intelligence pipeline to which the request is being addressed; and a category identification parameter configured to identify the at least one domain-specific machine learning or artificial intelligence trustworthiness quality.

跨域可信度机器学习或人工智能配置或委托请求还可以包括以下至少一项:期望的公平性参数,被配置为指示用于域特定的机器学习或人工智能管道的相对公平性水平;期望的可解释性参数,被配置为指示用于域特定的机器学习或人工智能管道的期望的可解释性水平;期望的技术鲁棒性参数,被配置为指示用于域特定的机器学习或人工智能管道的期望的技术鲁棒性水平;以及期望的对抗鲁棒性参数,被配置为指示用于域特定的机器学习或人工智能管道的期望的对抗鲁棒性水平。The cross-domain trustworthy machine learning or artificial intelligence configuration or delegation request may also include at least one of the following: an expected fairness parameter configured to indicate a relative fairness level for a domain-specific machine learning or artificial intelligence pipeline; an expected explainability parameter configured to indicate an expected explainability level for a domain-specific machine learning or artificial intelligence pipeline; an expected technical robustness parameter configured to indicate an expected technical robustness level for a domain-specific machine learning or artificial intelligence pipeline; and an expected adversarial robustness parameter configured to indicate an expected adversarial robustness level for a domain-specific machine learning or artificial intelligence pipeline.

被配置为促进跨域网络服务相关的机器学习或人工智能管道可信度功能的部件可以被配置为用于以下项,其中跨域机器学习或人工智能管道用于包括至少两个域的认知自治网络的控制:生成跨域可信度机器学习或人工智能能力信息请求并将其传递给至少一个域特定的机器学习或人工智能可信度功能,该跨域可信度机器学习或人工智能能力信息请求被配置为控制至少一个域特定的机器学习或人工智能可信度功能,以实现用于至少两个域中的至少一个域的机器学习或人工智能管道的能力发现;以及从至少一个域特定的机器学习或人工智能可信度功能获得跨域可信度机器学习或人工智能能力信息响应,报告针对用于至少两个域中的至少一个域的机器学习或人工智能管道的能力发现。A component configured to facilitate machine learning or artificial intelligence pipeline trustworthiness functions related to cross-domain network services can be configured for the following items, where the cross-domain machine learning or artificial intelligence pipeline is used for control of a cognitive autonomous network including at least two domains: generating a cross-domain trustworthiness machine learning or artificial intelligence capability information request and passing it to at least one domain-specific machine learning or artificial intelligence trustworthiness function, wherein the cross-domain trustworthiness machine learning or artificial intelligence capability information request is configured to control at least one domain-specific machine learning or artificial intelligence trustworthiness function to enable capability discovery of a machine learning or artificial intelligence pipeline for at least one of the at least two domains; and obtaining a cross-domain trustworthiness machine learning or artificial intelligence capability information response from at least one domain-specific machine learning or artificial intelligence trustworthiness function, reporting capability discovery for a machine learning or artificial intelligence pipeline for at least one of the at least two domains.

跨域可信度机器学习或人工智能能力信息请求可以包括:域范围参数,被配置为标识该请求正在寻址的域;以及范围参数,被配置为标识该请求正在寻址的域特定的机器学习或人工智能管道。A cross-domain trustworthy machine learning or artificial intelligence capability information request may include: a domain scope parameter configured to identify the domain to which the request is being addressed; and a scope parameter configured to identify a domain-specific machine learning or artificial intelligence pipeline to which the request is being addressed.

该跨域可信度机器学习或人工智能能力信息请求还可以包括管道阶段参数,该管道阶段参数被配置为标识该请求正在寻址的域特定的机器学习或人工智能管道的阶段。The cross-domain trustworthiness machine learning or artificial intelligence capability information request may also include a pipeline stage parameter, which is configured to identify the stage of the domain-specific machine learning or artificial intelligence pipeline that the request is addressing.

被配置为促进跨域网络服务相关的机器学习或人工智能管道可信度功能的部件还可以被配置为用于以下项,其中跨域机器学习或人工智能管道用于包括至少两个域的认知自治网络的控制:从网络运营方获得跨域可信度人工智能报告请求或订阅;基于来自网络运营方的所述跨域可信度人工智能报告请求或订阅,生成域特定的可信度人工智能报告请求或订阅并将其传递给至少一个域特定的机器学习或人工智能管道可信度功能,其中域特定的可信度人工智能报告请求或订阅被配置为控制至少一个域特定的机器学习或人工智能管道可信度功能,以提供至少一个域特定的机器学习或人工智能管道报告响应或通知;从至少一个域特定的机器学习或人工智能管道可信度功能接收机器学习或人工智能能力信息和/或至少一个域特定的机器学习或人工智能管道报告响应或通知;将从至少一个域特定的机器学习或人工智能管道接收的机器学习或人工智能能力信息和/或至少一个域特定的机器学习或人工智能管道报告存储在跨域信任知识数据库中;基于至少一个域特定的机器学习或人工智能管道报告响应或通知,生成并传递跨域可信度人工智能报告。Components configured to facilitate machine learning or artificial intelligence pipeline credibility functions associated with cross-domain network services may also be configured for the following items, wherein the cross-domain machine learning or artificial intelligence pipeline is used to control a cognitive autonomous network comprising at least two domains: obtaining a cross-domain credibility artificial intelligence report request or subscription from a network operator; generating a domain-specific credibility artificial intelligence report request or subscription based on the cross-domain credibility artificial intelligence report request or subscription from the network operator and passing it to at least one domain-specific machine learning or artificial intelligence pipeline credibility function, wherein the domain-specific credibility artificial intelligence report request or subscription is configured to control at least one domain-specific machine learning or artificial intelligence pipeline credibility function to provide at least one domain-specific machine learning or artificial intelligence pipeline report response or notification; receiving machine learning or artificial intelligence capability information and/or at least one domain-specific machine learning or artificial intelligence pipeline report response or notification from at least one domain-specific machine learning or artificial intelligence pipeline credibility function; storing the machine learning or artificial intelligence capability information and/or at least one domain-specific machine learning or artificial intelligence pipeline report received from at least one domain-specific machine learning or artificial intelligence pipeline in a cross-domain trust knowledge database; generating and passing a cross-domain credibility artificial intelligence report based on at least one domain-specific machine learning or artificial intelligence pipeline report response or notification.

跨域可信度人工智能报告请求可以包括:域范围参数,被配置为标识该请求正在寻址的域;范围参数,被配置为标识该请求正在寻址的域特定的机器学习或人工智能管道;以及管道阶段参数,被配置为标识该请求正在寻址的域特定机器学习或人工智能管道的阶段。跨域可信度人工智能报告请求还可以包括以下至少一项:公平性度量参数的列表,被配置为标识要被报告的公平性度量;公平度量解释的列表,被配置为标识要被报告的公平性度量解释;可解释性度量的列表,被配置为标识要被报告的可解释性度量;解释的列表,被配置为标识要被报告的解释;技术鲁棒性度量的列表,被配置为标识要被报告的技术鲁棒性度量;技术鲁棒性度量解释的列表,被配置为标识要被报告的技术鲁棒性度量解释;对抗鲁棒性度量的列表,被配置为标识要被报告的对抗鲁棒性度量;对抗鲁棒性度量解释的列表,被配置为标识要被报告的对抗鲁棒性度量解释;开始时间参数,被配置为标识用于报告的开始时间;结束时间参数,被配置为标识用于报告的结束时间;以及报告间隔参数,被配置为标识用于报告的周期间隔。A cross-domain credibility AI report request may include: a domain scope parameter configured to identify the domain to which the request is being addressed; a scope parameter configured to identify a domain-specific machine learning or AI pipeline to which the request is being addressed; and a pipeline stage parameter configured to identify a stage of a domain-specific machine learning or AI pipeline to which the request is being addressed. The cross-domain trustworthy AI report request may also include at least one of the following: a list of fairness metric parameters, configured to identify fairness metrics to be reported; a list of fairness metric explanations, configured to identify fairness metric explanations to be reported; a list of explainability metrics, configured to identify explainability metrics to be reported; a list of explanations, configured to identify explanations to be reported; a list of technical robustness metrics, configured to identify technical robustness metrics to be reported; a list of technical robustness metric explanations, configured to identify technical robustness metric explanations to be reported; a list of adversarial robustness metrics, configured to identify adversarial robustness metrics to be reported; a list of adversarial robustness metric explanations, configured to identify adversarial robustness metric explanations to be reported; a start time parameter, configured to identify a start time for reporting; an end time parameter, configured to identify an end time for reporting; and a reporting interval parameter, configured to identify a periodic interval for reporting.

跨域可信度人工智能报告订阅可以包括:域范围参数,被配置为标识该订阅正在寻址的域;范围参数,被配置为标识该订阅正在寻址的域特定的机器学习或人工智能管道;以及管道阶段参数,被配置为标识该订阅正在寻址的域特定的机器学习或人工智能管道的阶段。A cross-domain credibility AI report subscription may include: a domain scope parameter configured to identify the domain that the subscription is addressing; a scope parameter configured to identify the domain-specific machine learning or AI pipeline that the subscription is addressing; and a pipeline stage parameter configured to identify the stage of the domain-specific machine learning or AI pipeline that the subscription is addressing.

跨域可信度人工智能报告订阅还可以包括以下至少一项:公平性度量参数的列表,被配置为标识要被报告的公平性度量;可解释性度量的列表,被配置用于标识要被报告的可解释性度量;技术鲁棒性度量的列表,被配置为标识要被报告的技术鲁棒性度量;对抗鲁棒性度量的列表,被配置为标识要被报告的对抗鲁棒性度量;以及交叉报告阈值参数,被配置为标识度量或度量解释针对其被报告的阈值。The cross-domain trustworthy AI report subscription may also include at least one of the following: a list of fairness metric parameters, configured to identify fairness metrics to be reported; a list of explainability metrics, configured to identify explainability metrics to be reported; a list of technical robustness metrics, configured to identify technical robustness metrics to be reported; a list of adversarial robustness metrics, configured to identify adversarial robustness metrics to be reported; and a cross-reporting threshold parameter, configured to identify a threshold against which a metric or metric interpretation is reported.

根据第二方面,提供了一种方法,包括:促进跨域网络服务相关的机器学习或人工智能管道可信度功能,其中该跨域机器学习或人工智能管道用于包括至少两个域的认知自治网络的控制。According to a second aspect, a method is provided, comprising: facilitating machine learning or artificial intelligence pipeline credibility functions related to cross-domain network services, wherein the cross-domain machine learning or artificial intelligence pipeline is used for control of a cognitive autonomous network including at least two domains.

促进跨域网络服务相关的机器学习或人工智能管道可信度功能可以包括促进以下至少一项,其中该跨域机器学习或人工智能管道用于包括至少两个域的认知自治网络的控制:定义跨域网络服务相关的机器学习或人工智能管道可信度;配置跨域网络服务相关的机器学习或人工智能管道可信度;测量跨域网络服务相关的机器学习或人工智能管道可信度;以及报告与跨域网络服务相关的机器学习或人工智能管道可信度。Facilitating cross-domain network service-related machine learning or artificial intelligence pipeline trustworthiness functionality may include facilitating at least one of the following, where the cross-domain machine learning or artificial intelligence pipeline is used to control a cognitive autonomous network that includes at least two domains: defining cross-domain network service-related machine learning or artificial intelligence pipeline trustworthiness; configuring cross-domain network service-related machine learning or artificial intelligence pipeline trustworthiness; measuring cross-domain network service-related machine learning or artificial intelligence pipeline trustworthiness; and reporting machine learning or artificial intelligence pipeline trustworthiness associated with cross-domain network services.

跨域网络服务相关的机器学习或人工智能管道可信度函数可以包括以下至少一项:公平性;可解释性;以及鲁棒性。The machine learning or artificial intelligence pipeline credibility function associated with cross-domain network services may include at least one of the following: fairness; explainability; and robustness.

促进跨域网络服务相关的机器学习或人工智能管道可信度功能可以包括,其中跨域机器学习或人工智能管道用于包括至少两个域的认知自治网络的控制:获得跨域机器学习或人工智能质量可信度,跨域机器学习或人工智能质量可信度被配置为:覆盖域特定的机器学习或人工智能质量可信度要求和跨域网络服务相关的机器学习或人工智能管道的约束;将跨域机器学习或人工智能质量可信度转化为用于至少两个域中的至少一个域的至少一个域特定的机器学习或人工智能质量可信度;以及提供用于至少两个域中的至少一个域的至少一个域特定的机器学习或人工智能质量可信度。Functionality for facilitating cross-domain network service-related machine learning or artificial intelligence pipeline credibility may include, where the cross-domain machine learning or artificial intelligence pipeline is used for control of a cognitive autonomous network comprising at least two domains: obtaining cross-domain machine learning or artificial intelligence quality credibility, the cross-domain machine learning or artificial intelligence quality credibility being configured to: cover domain-specific machine learning or artificial intelligence quality credibility requirements and constraints of the cross-domain network service-related machine learning or artificial intelligence pipeline; converting the cross-domain machine learning or artificial intelligence quality credibility into at least one domain-specific machine learning or artificial intelligence quality credibility for at least one domain of the at least two domains; and providing at least one domain-specific machine learning or artificial intelligence quality credibility for at least one domain of the at least two domains.

将跨域机器学习或人工智能可信度质量转化为用于至少两个域中的至少一个域的至少一个域特定的机器学习或人工智能可信度质量可以包括基于跨域网络服务的风险水平将跨域机器学习或人工智能可信度质量转化为至少一个域特定的机器学习或人工智能可信度质量。Converting the cross-domain machine learning or artificial intelligence credibility quality into at least one domain-specific machine learning or artificial intelligence credibility quality for at least one domain of at least two domains may include converting the cross-domain machine learning or artificial intelligence credibility quality into at least one domain-specific machine learning or artificial intelligence credibility quality based on the risk level of the cross-domain network service.

将跨域机器学习或人工智能可信度质量转化为用于至少两个域中的至少一个域的至少一个域特定的机器学习或人工智能可信度质量可以包括基于用于跨域网络的至少一个服务水平协议要求,将跨域机器学习或人工智能可信度质量转化为至少一个域特定的机器学习或人工智能可信度质量,其中至少一个服务水平协议包括以下至少一项:服务类型;服务优先级;以及至少一项关键性能指标度量。Converting the cross-domain machine learning or artificial intelligence credibility quality into at least one domain-specific machine learning or artificial intelligence credibility quality for at least one domain of at least two domains may include converting the cross-domain machine learning or artificial intelligence credibility quality into at least one domain-specific machine learning or artificial intelligence credibility quality based on at least one service level agreement requirement for the cross-domain network, wherein at least one service level agreement includes at least one of the following: service type; service priority; and at least one key performance indicator metric.

提供用于至少两个域中的至少一个域的至少一个域特定的机器学习或人工智能可信度质量可以包括:生成跨域可信度机器学习或人工智能配置或委托请求并将其传递给至少一个域特定的机器学习或人工智能可信度功能,该跨域可信度机器学习或人工智能配置或委托请求被配置为控制至少一个域特定的机器学习或人工智能可信度功能,以配置用于至少两个域中的至少一个域的机器学习或人工智能管道;以及基于用于至少两个域中的至少一个域的机器学习或人工智能管道的配置的实现,从至少一个域特定的机器学习或人工智能可信度功能获得跨域可信度机器学习或人工智能配置或委托响应。Providing at least one domain-specific machine learning or artificial intelligence credibility quality for at least one domain of at least two domains may include: generating a cross-domain credibility machine learning or artificial intelligence configuration or delegation request and passing it to at least one domain-specific machine learning or artificial intelligence credibility function, the cross-domain credibility machine learning or artificial intelligence configuration or delegation request being configured to control at least one domain-specific machine learning or artificial intelligence credibility function to configure a machine learning or artificial intelligence pipeline for at least one domain of at least two domains; and obtaining a cross-domain credibility machine learning or artificial intelligence configuration or delegation response from at least one domain-specific machine learning or artificial intelligence credibility function based on the implementation of the configuration of the machine learning or artificial intelligence pipeline for at least one domain of at least two domains.

提供用于至少两个域中的至少一个域的至少一个域特定的机器学习或人工智能可信度质量可以包括:生成跨域可信度机器学习或人工智能配置或委托请求并将其传递给至少一个域特定的策略管理器,跨域可信度机器学习或人工智能配置或委托请求被配置为控制至少一个域特定的机器学习或人工智能可信度功能,以配置用于至少两个域中的至少一个域的机器学习或人工智能管道;以及基于用于至少两个域中的至少一个域的所述机器学习或人工智能管道的配置的实现,从至少一个域策略管理器获得跨域可信度机器学习或人工智能配置或委托响应。Providing at least one domain-specific machine learning or artificial intelligence credibility quality for at least one domain of at least two domains may include: generating a cross-domain credibility machine learning or artificial intelligence configuration or delegation request and passing it to at least one domain-specific policy manager, the cross-domain credibility machine learning or artificial intelligence configuration or delegation request being configured to control at least one domain-specific machine learning or artificial intelligence credibility function to configure a machine learning or artificial intelligence pipeline for at least one domain of at least two domains; and obtaining a cross-domain credibility machine learning or artificial intelligence configuration or delegation response from at least one domain policy manager based on the implementation of the configuration of the machine learning or artificial intelligence pipeline for at least one domain of at least two domains.

跨域可信度机器学习或人工智能配置或委托请求可以包括:域范围参数,被配置为标识该请求正在寻址的域;管道标识参数,被配置为标识该请求正在寻址的域特定的机器学习或人工智能管道;类别标识参数,被配置为标识该至少一个域特定的机器学习或人工智能可信度质量。A cross-domain trustworthy machine learning or artificial intelligence configuration or delegation request may include: a domain scope parameter configured to identify the domain to which the request is being addressed; a pipeline identification parameter configured to identify the domain-specific machine learning or artificial intelligence pipeline to which the request is being addressed; and a category identification parameter configured to identify the at least one domain-specific machine learning or artificial intelligence trustworthiness quality.

跨域可信度机器学习或人工智能配置或委托请求还可以包括以下至少一项:期望的公平性参数,被配置为指示用于域特定的机器学习或人工智能管道的相对公平性水平;期望的可解释性参数,被配置为指示用于域特定的机器学习或人工智能管道的期望的可解释性水平;期望的技术鲁棒性参数,被配置为指示用于域特定的机器学习或人工智能管道的期望的技术鲁棒性水平;以及期望的对抗鲁棒性参数,被配置为指示用于域特定的机器学习或人工智能管道的期望的对抗鲁棒性水平。The cross-domain trustworthy machine learning or artificial intelligence configuration or delegation request may also include at least one of the following: an expected fairness parameter configured to indicate a relative fairness level for a domain-specific machine learning or artificial intelligence pipeline; an expected explainability parameter configured to indicate an expected explainability level for a domain-specific machine learning or artificial intelligence pipeline; an expected technical robustness parameter configured to indicate an expected technical robustness level for a domain-specific machine learning or artificial intelligence pipeline; and an expected adversarial robustness parameter configured to indicate an expected adversarial robustness level for a domain-specific machine learning or artificial intelligence pipeline.

促进跨域网络服务相关的机器学习或人工智能管道可信度功能可以包括,其中跨域机器学习或人工智能管道用于包括至少两个域的认知自治网络的控制:生成跨域可信度机器学习或人工智能能力信息请求并将其传递给至少一个域特定的机器学习或人工智能可信度功能,该跨域可信度机器学习或人工智能能力信息请求被配置为控制至少一个域特定的机器学习或人工智能可信度功能,以实现用于至少两个域中的至少一个域的机器学习或人工智能管道的能力发现;以及从至少一个域特定的机器学习或人工智能可信度功能获得跨域可信度机器学习或人工智能能力信息响应,报告针对用于至少两个域中的至少一个域的机器学习或人工智能管道的能力发现。Facilitating cross-domain network service-related machine learning or artificial intelligence pipeline trustworthiness functions may include, where the cross-domain machine learning or artificial intelligence pipeline is used for control of a cognitive autonomous network including at least two domains: generating a cross-domain trustworthiness machine learning or artificial intelligence capability information request and passing it to at least one domain-specific machine learning or artificial intelligence trustworthiness function, the cross-domain trustworthiness machine learning or artificial intelligence capability information request being configured to control at least one domain-specific machine learning or artificial intelligence trustworthiness function to enable capability discovery of the machine learning or artificial intelligence pipeline for at least one of the at least two domains; and obtaining a cross-domain trustworthiness machine learning or artificial intelligence capability information response from the at least one domain-specific machine learning or artificial intelligence trustworthiness function, reporting capability discovery for the machine learning or artificial intelligence pipeline for at least one of the at least two domains.

跨域可信度机器学习或人工智能能力信息请求可以包括:域范围参数,被配置为标识该请求正在寻址的域;以及范围参数,被配置为标识该请求正在寻址的域特定的机器学习或人工智能管道。A cross-domain trustworthy machine learning or artificial intelligence capability information request may include: a domain scope parameter configured to identify the domain to which the request is being addressed; and a scope parameter configured to identify a domain-specific machine learning or artificial intelligence pipeline to which the request is being addressed.

该跨域可信度机器学习或人工智能能力信息请求还可以包括管道阶段参数,该管道阶段参数被配置为标识该请求正在寻址的域特定的机器学习或人工智能管道的阶段。The cross-domain trustworthiness machine learning or artificial intelligence capability information request may also include a pipeline stage parameter, which is configured to identify the stage of the domain-specific machine learning or artificial intelligence pipeline that the request is addressing.

促进跨域网络服务相关的机器学习或人工智能管道可信度功能还可以包括,其中跨域机器学习或人工智能管道用于包括至少两个域的认知自治网络的控制:从网络运营方获得跨域可信度人工智能报告请求或订阅;基于来自网络运营方的所述跨域可信度人工智能报告请求或订阅,生成域特定的可信度人工智能报告请求或订阅并将其传递给至少一个域特定的机器学习或人工智能管道可信度功能,其中域特定的可信度人工智能报告请求或订阅被配置为控制至少一个域特定的机器学习或人工智能管道可信度功能,以提供至少一个域特定的机器学习或人工智能管道报告响应或通知;从至少一个域特定的机器学习或人工智能管道可信度功能接收机器学习或人工智能能力信息和/或至少一个域特定的机器学习或人工智能管道报告响应或通知;将从至少一个域特定的机器学习或人工智能管道接收的机器学习或人工智能能力信息和/或至少一个域特定的机器学习或人工智能管道报告存储在跨域信任知识数据库中;基于至少一个域特定的机器学习或人工智能管道报告响应或通知,生成并传递跨域可信度人工智能报告。Facilitating machine learning or artificial intelligence pipeline credibility functions associated with cross-domain network services may also include, where the cross-domain machine learning or artificial intelligence pipeline is used to control a cognitive autonomous network including at least two domains: obtaining a cross-domain credibility artificial intelligence report request or subscription from a network operator; based on the cross-domain credibility artificial intelligence report request or subscription from the network operator, generating a domain-specific credibility artificial intelligence report request or subscription and passing it to at least one domain-specific machine learning or artificial intelligence pipeline credibility function, wherein the domain-specific credibility artificial intelligence report request or subscription is configured to control at least one domain-specific machine learning or artificial intelligence pipeline credibility function to provide at least one domain-specific machine learning or artificial intelligence pipeline report response or notification; receiving machine learning or artificial intelligence capability information and/or at least one domain-specific machine learning or artificial intelligence pipeline report response or notification from at least one domain-specific machine learning or artificial intelligence pipeline credibility function; storing the machine learning or artificial intelligence capability information and/or at least one domain-specific machine learning or artificial intelligence pipeline report received from at least one domain-specific machine learning or artificial intelligence pipeline in a cross-domain trust knowledge database; generating and passing a cross-domain credibility artificial intelligence report based on at least one domain-specific machine learning or artificial intelligence pipeline report response or notification.

跨域可信度人工智能报告请求可以包括:域范围参数,被配置为标识该请求正在寻址的域;范围参数,被配置为标识该请求正在寻址的域特定的机器学习或人工智能管道;以及管道阶段参数,被配置为标识该请求正在寻址的域特定机器学习或人工智能管道的阶段。跨域可信度人工智能报告请求还可以包括以下至少一项:公平性度量参数的列表,被配置为标识要被报告的公平性度量;公平度量解释的列表,被配置为标识要被报告的公平性度量解释;可解释性度量的列表,被配置为标识要被报告的可解释性度量;解释的列表,被配置为标识要被报告的解释;技术鲁棒性度量的列表,被配置为标识要被报告的技术鲁棒性度量;技术鲁棒性度量解释的列表,被配置为标识要被报告的技术鲁棒性度量解释;对抗鲁棒性度量的列表,被配置为标识要被报告的对抗鲁棒性度量;对抗鲁棒性度量解释的列表,被配置为标识要被报告的对抗鲁棒性度量解释;开始时间参数,被配置为标识用于报告的开始时间;结束时间参数,被配置为标识用于报告的结束时间;以及报告间隔参数,被配置为标识用于报告的周期间隔。A cross-domain credibility AI report request may include: a domain scope parameter configured to identify the domain to which the request is being addressed; a scope parameter configured to identify a domain-specific machine learning or AI pipeline to which the request is being addressed; and a pipeline stage parameter configured to identify a stage of a domain-specific machine learning or AI pipeline to which the request is being addressed. The cross-domain trustworthy AI report request may also include at least one of the following: a list of fairness metric parameters, configured to identify fairness metrics to be reported; a list of fairness metric explanations, configured to identify fairness metric explanations to be reported; a list of explainability metrics, configured to identify explainability metrics to be reported; a list of explanations, configured to identify explanations to be reported; a list of technical robustness metrics, configured to identify technical robustness metrics to be reported; a list of technical robustness metric explanations, configured to identify technical robustness metric explanations to be reported; a list of adversarial robustness metrics, configured to identify adversarial robustness metrics to be reported; a list of adversarial robustness metric explanations, configured to identify adversarial robustness metric explanations to be reported; a start time parameter, configured to identify a start time for reporting; an end time parameter, configured to identify an end time for reporting; and a reporting interval parameter, configured to identify a periodic interval for reporting.

跨域可信度人工智能报告订阅可以包括:域范围参数,被配置为标识该订阅正在寻址的域;范围参数,被配置为标识该订阅正在寻址的域特定的机器学习或人工智能管道;以及管道阶段参数,被配置为标识该订阅正在寻址的域特定的机器学习或人工智能管道的阶段。A cross-domain credibility AI report subscription may include: a domain scope parameter configured to identify the domain that the subscription is addressing; a scope parameter configured to identify the domain-specific machine learning or AI pipeline that the subscription is addressing; and a pipeline stage parameter configured to identify the stage of the domain-specific machine learning or AI pipeline that the subscription is addressing.

跨域可信度人工智能报告订阅还可以包括以下至少一项:公平性度量参数的列表,被配置为标识要被报告的公平性度量;可解释性度量的列表,被配置用于标识要被报告的可解释性度量;技术鲁棒性度量的列表,被配置为标识要被报告的技术鲁棒性度量;对抗鲁棒性度量的列表,被配置为标识要被报告的对抗鲁棒性度量;以及交叉报告阈值参数,被配置为标识度量或度量解释针对其被报告的阈值。The cross-domain trustworthy AI report subscription may also include at least one of the following: a list of fairness metric parameters, configured to identify fairness metrics to be reported; a list of explainability metrics, configured to identify explainability metrics to be reported; a list of technical robustness metrics, configured to identify technical robustness metrics to be reported; a list of adversarial robustness metrics, configured to identify adversarial robustness metrics to be reported; and a cross-reporting threshold parameter, configured to identify a threshold against which a metric or metric interpretation is reported.

根据第三方面,提供了一种装置,包括至少一个处理器和至少一个存储器,该至少一个存储器包括用于一个或多个程序的计算机代码,该至少一个存储器和计算机代码与至少一个处理器一起被配置为使该装置至少:促进跨域网络服务相关的机器学习或人工智能管道可信度功能,其中该跨域机器学习或人工智能管道用于包括至少两个域的认知自治网络的控制。According to a third aspect, a device is provided, comprising at least one processor and at least one memory, the at least one memory comprising computer code for one or more programs, the at least one memory and the computer code together with the at least one processor being configured to enable the device to at least: facilitate machine learning or artificial intelligence pipeline credibility functions related to cross-domain network services, wherein the cross-domain machine learning or artificial intelligence pipeline is used for control of a cognitive autonomous network comprising at least two domains.

被引起以促进跨域网络服务相关的机器学习或人工智能管道可信度功能的该装置可以被引起以促进以下至少一项,其中该跨域机器学习或人工智能管道用于包括至少两个域的认知自治网络的控制:定义跨域网络服务相关的机器学习或人工智能管道可信度;配置跨域网络服务相关的机器学习或人工智能管道可信度;测量跨域网络服务相关的机器学习或人工智能管道可信度;以及报告与跨域网络服务相关的机器学习或人工智能管道可信度。The device caused to facilitate cross-domain network service-related machine learning or artificial intelligence pipeline credibility functions can be caused to facilitate at least one of the following, wherein the cross-domain machine learning or artificial intelligence pipeline is used for control of a cognitive autonomous network comprising at least two domains: defining cross-domain network service-related machine learning or artificial intelligence pipeline credibility; configuring cross-domain network service-related machine learning or artificial intelligence pipeline credibility; measuring cross-domain network service-related machine learning or artificial intelligence pipeline credibility; and reporting machine learning or artificial intelligence pipeline credibility related to cross-domain network services.

跨域网络服务相关的机器学习或人工智能管道可信度函数可以包括以下至少一项:公平性;可解释性;以及鲁棒性。The machine learning or artificial intelligence pipeline credibility function associated with cross-domain network services may include at least one of the following: fairness; explainability; and robustness.

被引起以促进跨域网络服务相关的机器学习或人工智能管道可信度功能的该装置可以被引起以,其中跨域机器学习或人工智能管道用于包括至少两个域的认知自治网络的控制:获得跨域机器学习或人工智能质量可信度,跨域机器学习或人工智能质量可信度被配置为:覆盖域特定的机器学习或人工智能质量可信度要求和跨域网络服务相关的机器学习或人工智能管道的约束;将跨域机器学习或人工智能质量可信度转化为用于至少两个域中的至少一个域的至少一个域特定的机器学习或人工智能质量可信度;以及提供用于至少两个域中的至少一个域的至少一个域特定的机器学习或人工智能质量可信度。The device caused to facilitate cross-domain network service-related machine learning or artificial intelligence pipeline credibility functions can be caused to: obtain cross-domain machine learning or artificial intelligence quality credibility, and the cross-domain machine learning or artificial intelligence quality credibility is configured to: cover domain-specific machine learning or artificial intelligence quality credibility requirements and constraints of cross-domain network service-related machine learning or artificial intelligence pipelines; convert the cross-domain machine learning or artificial intelligence quality credibility into at least one domain-specific machine learning or artificial intelligence quality credibility for at least one domain of the at least two domains; and provide at least one domain-specific machine learning or artificial intelligence quality credibility for at least one domain of the at least two domains.

被引起以将跨域机器学习或人工智能可信度质量转化为用于至少两个域中的至少一个域的至少一个域特定的机器学习或人工智能可信度质量的该装置可以被引起以基于跨域网络服务的风险水平将跨域机器学习或人工智能可信度质量转化为至少一个域特定的机器学习或人工智能可信度质量。The device, which is caused to convert the cross-domain machine learning or artificial intelligence credibility quality into at least one domain-specific machine learning or artificial intelligence credibility quality for at least one domain of at least two domains, can be caused to convert the cross-domain machine learning or artificial intelligence credibility quality into at least one domain-specific machine learning or artificial intelligence credibility quality based on the risk level of the cross-domain network service.

被引起以将跨域机器学习或人工智能可信度质量转化为用于至少两个域中的至少一个域的至少一个域特定的机器学习或人工智能可信度质量的该装置可以被引起以基于用于跨域网络的至少一个服务水平协议要求,将跨域机器学习或人工智能可信度质量转化为至少一个域特定的机器学习或人工智能可信度质量,其中至少一个服务水平协议包括以下至少一项:服务类型;服务优先级;以及至少一项关键性能指标度量。The device, which is caused to convert cross-domain machine learning or artificial intelligence credibility quality into at least one domain-specific machine learning or artificial intelligence credibility quality for at least one domain of at least two domains, can be caused to convert the cross-domain machine learning or artificial intelligence credibility quality into at least one domain-specific machine learning or artificial intelligence credibility quality based on at least one service level agreement requirement for a cross-domain network, wherein at least one service level agreement includes at least one of the following: service type; service priority; and at least one key performance indicator metric.

被引起以提供用于至少两个域中的至少一个域的至少一个域特定的机器学习或人工智能可信度质量的该装置可以被引起以:生成跨域可信度机器学习或人工智能配置或委托请求并将其传递给至少一个域特定的机器学习或人工智能可信度功能,该跨域可信度机器学习或人工智能配置或委托请求被配置为控制至少一个域特定的机器学习或人工智能可信度功能,以配置用于至少两个域中的至少一个域的机器学习或人工智能管道;以及基于用于至少两个域中的至少一个域的机器学习或人工智能管道的配置的实现,从至少一个域特定的机器学习或人工智能可信度功能获得跨域可信度机器学习或人工智能配置或委托响应。The device, which is caused to provide at least one domain-specific machine learning or artificial intelligence credibility quality for at least one domain of at least two domains, can be caused to: generate a cross-domain credibility machine learning or artificial intelligence configuration or delegation request and pass it to at least one domain-specific machine learning or artificial intelligence credibility function, the cross-domain credibility machine learning or artificial intelligence configuration or delegation request being configured to control at least one domain-specific machine learning or artificial intelligence credibility function to configure a machine learning or artificial intelligence pipeline for at least one domain of at least two domains; and obtain a cross-domain credibility machine learning or artificial intelligence configuration or delegation response from at least one domain-specific machine learning or artificial intelligence credibility function based on the implementation of the configuration of the machine learning or artificial intelligence pipeline for at least one domain of at least two domains.

被引起以提供用于至少两个域中的至少一个域的至少一个域特定的机器学习或人工智能可信度质量的该装置可以被引起以:生成跨域可信度机器学习或人工智能配置或委托请求并将其传递给至少一个域特定的策略管理器,跨域可信度机器学习或人工智能配置或委托请求被配置为控制至少一个域特定的机器学习或人工智能可信度功能,以配置用于至少两个域中的至少一个域的机器学习或人工智能管道;以及基于用于至少两个域中的至少一个域的所述机器学习或人工智能管道的配置的实现,从至少一个域策略管理器获得跨域可信度机器学习或人工智能配置或委托响应。The device, which is caused to provide at least one domain-specific machine learning or artificial intelligence credibility quality for at least one domain of at least two domains, can be caused to: generate a cross-domain credibility machine learning or artificial intelligence configuration or delegation request and pass it to at least one domain-specific policy manager, the cross-domain credibility machine learning or artificial intelligence configuration or delegation request being configured to control at least one domain-specific machine learning or artificial intelligence credibility function to configure a machine learning or artificial intelligence pipeline for at least one domain of at least two domains; and obtain a cross-domain credibility machine learning or artificial intelligence configuration or delegation response from at least one domain policy manager based on the implementation of the configuration of the machine learning or artificial intelligence pipeline for at least one domain of at least two domains.

跨域可信度机器学习或人工智能配置或委托请求可以包括:域范围参数,被配置为标识该请求正在寻址的域;管道标识参数,被配置为标识该请求正在寻址的域特定的机器学习或人工智能管道;类别标识参数,被配置为标识该至少一个域特定的机器学习或人工智能可信度质量。A cross-domain trustworthy machine learning or artificial intelligence configuration or delegation request may include: a domain scope parameter configured to identify the domain to which the request is being addressed; a pipeline identification parameter configured to identify the domain-specific machine learning or artificial intelligence pipeline to which the request is being addressed; and a category identification parameter configured to identify the at least one domain-specific machine learning or artificial intelligence trustworthiness quality.

跨域可信度机器学习或人工智能配置或委托请求还可以包括以下至少一项:期望的公平性参数,被配置为指示用于域特定的机器学习或人工智能管道的相对公平性水平;期望的可解释性参数,被配置为指示用于域特定的机器学习或人工智能管道的期望的可解释性水平;期望的技术鲁棒性参数,被配置为指示用于域特定的机器学习或人工智能管道的期望的技术鲁棒性水平;以及期望的对抗鲁棒性参数,被配置为指示用于域特定的机器学习或人工智能管道的期望的对抗鲁棒性水平。The cross-domain trustworthy machine learning or artificial intelligence configuration or delegation request may also include at least one of the following: an expected fairness parameter configured to indicate a relative fairness level for a domain-specific machine learning or artificial intelligence pipeline; an expected explainability parameter configured to indicate an expected explainability level for a domain-specific machine learning or artificial intelligence pipeline; an expected technical robustness parameter configured to indicate an expected technical robustness level for a domain-specific machine learning or artificial intelligence pipeline; and an expected adversarial robustness parameter configured to indicate an expected adversarial robustness level for a domain-specific machine learning or artificial intelligence pipeline.

被引起以促进跨域网络服务相关的机器学习或人工智能管道可信度功能的该装置可以被引起以,其中跨域机器学习或人工智能管道用于包括至少两个域的认知自治网络的控制:生成跨域可信度机器学习或人工智能能力信息请求并将其传递给至少一个域特定的机器学习或人工智能可信度功能,该跨域可信度机器学习或人工智能能力信息请求被配置为控制至少一个域特定的机器学习或人工智能可信度功能,以实现用于至少两个域中的至少一个域的机器学习或人工智能管道的能力发现;以及从至少一个域特定的机器学习或人工智能可信度功能获得跨域可信度机器学习或人工智能能力信息响应,报告针对用于至少两个域中的至少一个域的机器学习或人工智能管道的能力发现。The device caused to facilitate cross-domain network service-related machine learning or artificial intelligence pipeline trustworthiness functions can be caused to: generate a cross-domain trustworthiness machine learning or artificial intelligence capability information request and pass it to at least one domain-specific machine learning or artificial intelligence trustworthiness function, the cross-domain trustworthiness machine learning or artificial intelligence capability information request being configured to control at least one domain-specific machine learning or artificial intelligence trustworthiness function to enable capability discovery of the machine learning or artificial intelligence pipeline for at least one of the at least two domains; and obtain a cross-domain trustworthiness machine learning or artificial intelligence capability information response from at least one domain-specific machine learning or artificial intelligence trustworthiness function, reporting capability discovery for the machine learning or artificial intelligence pipeline for at least one of the at least two domains.

跨域可信度机器学习或人工智能能力信息请求可以包括:域范围参数,被配置为标识该请求正在寻址的域;以及范围参数,被配置为标识该请求正在寻址的域特定的机器学习或人工智能管道。A cross-domain trustworthy machine learning or artificial intelligence capability information request may include: a domain scope parameter configured to identify the domain to which the request is being addressed; and a scope parameter configured to identify a domain-specific machine learning or artificial intelligence pipeline to which the request is being addressed.

该跨域可信度机器学习或人工智能能力信息请求还可以包括管道阶段参数,该管道阶段参数被配置为标识该请求正在寻址的域特定的机器学习或人工智能管道的阶段。The cross-domain trustworthiness machine learning or artificial intelligence capability information request may also include a pipeline stage parameter, which is configured to identify the stage of the domain-specific machine learning or artificial intelligence pipeline that the request is addressing.

被引起以促进跨域网络服务相关的机器学习或人工智能管道可信度功能的该装置还可以被引起以,其中跨域机器学习或人工智能管道用于包括至少两个域的认知自治网络的控制:从网络运营方获得跨域可信度人工智能报告请求或订阅;基于来自网络运营方的所述跨域可信度人工智能报告请求或订阅,生成域特定的可信度人工智能报告请求或订阅并将其传递给至少一个域特定的机器学习或人工智能管道可信度功能,其中域特定的可信度人工智能报告请求或订阅被配置为控制至少一个域特定的机器学习或人工智能管道可信度功能,以提供至少一个域特定的机器学习或人工智能管道报告响应或通知;从至少一个域特定的机器学习或人工智能管道可信度功能接收机器学习或人工智能能力信息和/或至少一个域特定的机器学习或人工智能管道报告响应或通知;将从至少一个域特定的机器学习或人工智能管道接收的机器学习或人工智能能力信息和/或至少一个域特定的机器学习或人工智能管道报告存储在跨域信任知识数据库中;基于至少一个域特定的机器学习或人工智能管道报告响应或通知,生成并传递跨域可信度人工智能报告。The device caused to facilitate machine learning or artificial intelligence pipeline credibility functions related to cross-domain network services may also be caused to: obtain a cross-domain credibility artificial intelligence report request or subscription from a network operator; based on the cross-domain credibility artificial intelligence report request or subscription from the network operator, generate a domain-specific credibility artificial intelligence report request or subscription and pass it to at least one domain-specific machine learning or artificial intelligence pipeline credibility function, wherein the domain-specific credibility artificial intelligence report request or subscription is configured to control at least one domain-specific machine learning or artificial intelligence pipeline credibility function to provide at least one domain-specific machine learning or artificial intelligence pipeline report response or notification; receive machine learning or artificial intelligence capability information and/or at least one domain-specific machine learning or artificial intelligence pipeline report response or notification from at least one domain-specific machine learning or artificial intelligence pipeline credibility function; store the machine learning or artificial intelligence capability information and/or at least one domain-specific machine learning or artificial intelligence pipeline report received from at least one domain-specific machine learning or artificial intelligence pipeline in a cross-domain trust knowledge database; generate and pass a cross-domain credibility artificial intelligence report based on at least one domain-specific machine learning or artificial intelligence pipeline report response or notification.

跨域可信度人工智能报告请求可以包括:域范围参数,被配置为标识该请求正在寻址的域;范围参数,被配置为标识该请求正在寻址的域特定的机器学习或人工智能管道;以及管道阶段参数,被配置为标识该请求正在寻址的域特定机器学习或人工智能管道的阶段。A cross-domain credibility AI report request may include: a domain scope parameter configured to identify the domain to which the request is being addressed; a scope parameter configured to identify a domain-specific machine learning or AI pipeline to which the request is being addressed; and a pipeline stage parameter configured to identify a stage of a domain-specific machine learning or AI pipeline to which the request is being addressed.

跨域可信度人工智能报告请求还可以包括以下至少一项:公平性度量参数的列表,被配置为标识要被报告的公平性度量;公平度量解释的列表,被配置为标识要被报告的公平性度量解释;可解释性度量的列表,被配置为标识要被报告的可解释性度量;解释的列表,被配置为标识要被报告的解释;技术鲁棒性度量的列表,被配置为标识要被报告的技术鲁棒性度量;技术鲁棒性度量解释的列表,被配置为标识要被报告的技术鲁棒性度量解释;对抗鲁棒性度量的列表,被配置为标识要被报告的对抗鲁棒性度量;对抗鲁棒性度量解释的列表,被配置为标识要被报告的对抗鲁棒性度量解释;开始时间参数,被配置为标识用于报告的开始时间;结束时间参数,被配置为标识用于报告的结束时间;以及报告间隔参数,被配置为标识用于报告的周期间隔。The cross-domain trustworthy AI report request may also include at least one of the following: a list of fairness metric parameters, configured to identify fairness metrics to be reported; a list of fairness metric explanations, configured to identify fairness metric explanations to be reported; a list of explainability metrics, configured to identify explainability metrics to be reported; a list of explanations, configured to identify explanations to be reported; a list of technical robustness metrics, configured to identify technical robustness metrics to be reported; a list of technical robustness metric explanations, configured to identify technical robustness metric explanations to be reported; a list of adversarial robustness metrics, configured to identify adversarial robustness metrics to be reported; a list of adversarial robustness metric explanations, configured to identify adversarial robustness metric explanations to be reported; a start time parameter, configured to identify a start time for reporting; an end time parameter, configured to identify an end time for reporting; and a reporting interval parameter, configured to identify a periodic interval for reporting.

跨域可信度人工智能报告订阅可以包括:域范围参数,被配置为标识该订阅正在寻址的域;范围参数,被配置为标识该订阅正在寻址的域特定的机器学习或人工智能管道;以及管道阶段参数,被配置为标识该订阅正在寻址的域特定的机器学习或人工智能管道的阶段。A cross-domain credibility AI report subscription may include: a domain scope parameter configured to identify the domain that the subscription is addressing; a scope parameter configured to identify the domain-specific machine learning or AI pipeline that the subscription is addressing; and a pipeline stage parameter configured to identify the stage of the domain-specific machine learning or AI pipeline that the subscription is addressing.

跨域可信度人工智能报告订阅还可以包括以下至少一项:公平性度量参数的列表,被配置为标识要被报告的公平性度量;可解释性度量的列表,被配置用于标识要被报告的可解释性度量;技术鲁棒性度量的列表,被配置为标识要被报告的技术鲁棒性度量;对抗鲁棒性度量的列表,被配置为标识要被报告的对抗鲁棒性度量;以及交叉报告阈值参数,被配置为标识度量或度量解释针对其被报告的阈值。The cross-domain trustworthy AI report subscription may also include at least one of the following: a list of fairness metric parameters, configured to identify fairness metrics to be reported; a list of explainability metrics, configured to identify explainability metrics to be reported; a list of technical robustness metrics, configured to identify technical robustness metrics to be reported; a list of adversarial robustness metrics, configured to identify adversarial robustness metrics to be reported; and a cross-reporting threshold parameter, configured to identify a threshold against which a metric or metric interpretation is reported.

根据第四方面,提供了一种装置,包括被配置为促进跨域网络服务相关的机器学习或人工智能管道可信度功能的电路系统,其中该跨域机器学习或人工智能管道用于包括至少两个域的认知自治网络的控制。According to a fourth aspect, an apparatus is provided, comprising a circuit system configured to facilitate machine learning or artificial intelligence pipeline credibility functions related to cross-domain network services, wherein the cross-domain machine learning or artificial intelligence pipeline is used for control of a cognitive autonomous network including at least two domains.

根据第五方面,提供了一种计算机程序,包括计算机可执行代码,该计算机可执行代码在至少一个处理器上运行时被配置为:促进跨域网络服务相关的机器学习或人工智能管道可信度功能,其中该跨域机器学习或人工智能管道用于包括至少两个域的认知自治网络的控制。According to a fifth aspect, a computer program is provided, comprising computer executable code, which, when executed on at least one processor, is configured to: facilitate machine learning or artificial intelligence pipeline credibility functions related to cross-domain network services, wherein the cross-domain machine learning or artificial intelligence pipeline is used for control of a cognitive autonomous network comprising at least two domains.

根据第六方面,提供了一种包括指令的计算机程序[或包括程序指令的计算机可读介质],用于使装置执行至少以下:促进跨域网络服务相关的机器学习或人工智能管道可信度功能,其中该跨域机器学习或人工智能管道用于包括至少两个域的认知自治网络的控制。According to a sixth aspect, there is provided a computer program comprising instructions [or a computer-readable medium comprising program instructions] for causing an apparatus to perform at least the following: facilitating machine learning or artificial intelligence pipeline credibility functions associated with cross-domain network services, wherein the cross-domain machine learning or artificial intelligence pipeline is used for control of a cognitive autonomous network comprising at least two domains.

根据第七方面,提供了一种非瞬时性计算机可读介质,包括程序指令,用于使装置执行至少以下:促进跨域网络服务相关的机器学习或人工智能管道可信度功能,其中该跨域机器学习或人工智能管道用于包括至少两个域的认知自治网络的控制。According to a seventh aspect, a non-transitory computer-readable medium is provided, comprising program instructions for causing a device to perform at least the following: facilitating machine learning or artificial intelligence pipeline credibility functions related to cross-domain network services, wherein the cross-domain machine learning or artificial intelligence pipeline is used for control of a cognitive autonomous network comprising at least two domains.

根据第八方面,提供了一种非瞬时性计算机可读介质,包括程序指令,用于使装置执行至少以下:促进跨域网络服务相关的机器学习或人工智能管道可信度功能,其中该跨域机器学习或人工智能管道用于包括至少两个域的认知自治网络的控制。According to an eighth aspect, a non-transitory computer-readable medium is provided, comprising program instructions for causing a device to perform at least the following: facilitating machine learning or artificial intelligence pipeline credibility functions related to cross-domain network services, wherein the cross-domain machine learning or artificial intelligence pipeline is used for control of a cognitive autonomous network comprising at least two domains.

根据第九方面,提供了一种计算机可读介质,包括程序指令,用于使装置执行至少以下:促进跨域网络服务相关的机器学习或人工智能管道可信度功能,其中该跨域机器学习或人工智能管道用于包括至少两个域的认知自治网络的控制。According to a ninth aspect, a computer-readable medium is provided, comprising program instructions for causing an apparatus to perform at least the following: facilitating machine learning or artificial intelligence pipeline credibility functions associated with cross-domain network services, wherein the cross-domain machine learning or artificial intelligence pipeline is used for control of a cognitive autonomous network comprising at least two domains.

一种装置,包括用于执行如上所述的方法的动作的部件。An apparatus comprises means for performing the actions of the method as described above.

一种装置,被配置为执行如上所述的方法的动作。A device is configured to perform the actions of the method described above.

一种计算机程序,包括程序指令,用于使计算机执行如上所述的方法。A computer program includes program instructions for causing a computer to execute the method described above.

一种存储在介质上的计算机程序产品,可以使装置执行本文所描述的方法。A computer program product stored on a medium can cause an apparatus to execute the method described herein.

一种电子设备,可以包括如本文所描述的装置。An electronic device may include the apparatus described herein.

一种芯片组,可以包括如本文所描述的装置。A chipset may include the device described herein.

本申请的实施例旨在解决与现有技术相关联的问题。The embodiments of the present application are intended to solve the problems associated with the prior art.

在上文中,已经描述了许多不同的方面。应当理解,另外的方面可以通过上述方面中的任何两个或更多个方面的组合被提供。In the above, many different aspects have been described. It should be understood that additional aspects can be provided by combining any two or more of the above aspects.

各种其他方面还在下面的详细描述和所附权利要求中被描述。Various other aspects are also described in the following detailed description and appended claims.

缩略语表Abbreviations

AI: 人工智能AI: Artificial Intelligence

CAN: 认知自主网络CAN: Cognitive Autonomous Network

CD: 跨域CD: Cross-domain

CN: 核心网CN: Core Network

CNF: 认知网络功能CNF: Cognitive Network Function

CRUD: 创建、读取、更新、删除CRUD: Create, Read, Update, Delete

CDSMD: 跨域服务管理域CDSMD: Cross-domain Service Management Domain

CU: 集中单元CU: Centralized Unit

DU: 分布式单元DU: Distributed Unit

E2E: 端到端E2E: End to End

E2ESMD: 端到端服务管理域E2ESMD: End-to-End Service Management Domain

HLEG: 高水平专家组HLEG: High Level Expert Group

MANO: 管理和编排MANO: Management and Orchestration

MD: 管理域MD: Management Domain

ML: 机器学习ML: Machine Learning

QCI: QoS类别标识符QCI: QoS Class Identifier

QoE: 体验质量QoE: Quality of Experience

QoS: 服务质量QoS: Quality of Service

QoT: 可信度质量QoT: Quality of Trustworthiness

RAN: 无线电接入网络RAN: Radio Access Network

RRU: 远程无线电单元RRU: Remote Radio Unit

SLA: 服务水平协议SLA: Service Level Agreement

TAI: 可信人工智能TAI: Trusted Artificial Intelligence

TAIF: TAI框架TAIF: TAI Framework

TN: 传送网络TN:Transmission Network

UMTS: 通用移动电信系统UMTS: Universal Mobile Telecommunications System

URLLC: 超可靠低延时通信URLLC: Ultra-Reliable Low Latency Communications

VNF: 虚拟网络功能VNF: Virtual Network Function

V2X: 车辆到一切V2X: Vehicle to Everything

WI: 工作项目WI: Work Item

3GPP: 第三代合作伙伴项目3GPP: Third Generation Partnership Project

5G: 第五代5G: Fifth Generation

5GC: 5G核心网5GC: 5G Core Network

5GS: 5G系统5GS: 5G System

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

实施例现在将参考附图仅通过示例的方式被描述,在附图中:Embodiments will now be described, by way of example only, with reference to the accompanying drawings, in which:

图1示出了5G通信系统的示意图;FIG1 shows a schematic diagram of a 5G communication system;

图2示出了控制装置的示意图;FIG2 shows a schematic diagram of a control device;

图3示出了终端的示意图;FIG3 shows a schematic diagram of a terminal;

图4示出了人工智能/机器学习管道的示意图;FIG4 shows a schematic diagram of an artificial intelligence/machine learning pipeline;

图5示出了用于认知自治网络的可信人工智能框架的示例的示意图;FIG5 shows a schematic diagram of an example of a trusted artificial intelligence framework for a cognitive autonomous network;

图6示出了关于如图5所示的用于认知自治网络的示例可信人工智能框架的工作流程图;FIG6 shows a workflow diagram for an example trusted artificial intelligence framework for a cognitive autonomous network as shown in FIG5 ;

图7示出了利用域特定的可信人工智能框架的示例跨域管理和编排架构的示意图;FIG7 illustrates a schematic diagram of an example cross-domain management and orchestration architecture utilizing a domain-specific trusted artificial intelligence framework;

图8示出了根据一些实施例的利用域特定的可信人工智能框架的示例跨域管理和编排架构的示意图;FIG8 illustrates a schematic diagram of an example cross-domain management and orchestration architecture utilizing a domain-specific trusted artificial intelligence framework according to some embodiments;

图9示出了由域特定的人工智能信任引擎向跨域人工智能信任引擎提供的示例跨域可信人工智能应用编程接口的工作流程图;以及FIG9 illustrates a workflow diagram of an example cross-domain trusted artificial intelligence application programming interface provided by a domain-specific artificial intelligence trust engine to a cross-domain artificial intelligence trust engine; and

图10示出了存储指令的非易失性存储介质的示意图,该指令在由处理器执行时允许处理器执行本文描述的方法的一个或多个步骤。FIG. 10 shows a schematic diagram of a non-volatile storage medium storing instructions that, when executed by a processor, allow the processor to perform one or more steps of the methods described herein.

具体实施方式DETAILED DESCRIPTION

某些实施例在下面参考能够经由无线蜂窝系统通信的移动通信设备和服务于这样的移动通信设备的移动通信系统被解释。在详细解释示例性实施例之前,无线通信系统、其接入系统以及移动通信设备的某些一般原理参考图1、图2和图3被简要解释,以帮助理解所描述的示例背后的技术。Certain embodiments are explained below with reference to a mobile communication device capable of communicating via a wireless cellular system and a mobile communication system serving such a mobile communication device. Before explaining the exemplary embodiments in detail, certain general principles of a wireless communication system, its access system, and a mobile communication device are briefly explained with reference to Figures 1, 2, and 3 to help understand the technology behind the described examples.

图1示出了5G系统(5GS)的示意图。5GS可以包括终端、(无线电)接入网((R)AN)、5G核心网(5GC)、一个或多个应用功能(AF)以及一个或多个数据网络(DN)。Figure 1 shows a schematic diagram of a 5G system (5GS). The 5GS may include a terminal, a (radio) access network ((R)AN), a 5G core network (5GC), one or more application functions (AFs), and one or more data networks (DNs).

5G(R)AN可以包括连接到一个或多个gNodeB(gNB)集中式单元(CU)功能的一个或多个gNodeB(gNB)分布式单元(DU)功能。The 5G(R)AN may include one or more gNodeB (gNB) distributed unit (DU) functions connected to one or more gNodeB (gNB) centralized unit (CU) functions.

5GC可以包括接入和移动性管理功能(AMF)、会话管理功能(SMF)、认证服务器功能(AUSF)、用户数据管理(UDM)、用户平面功能(UPF)、网络暴露功能(NEF)和/或未表示的其他网络功能(NF),诸如操作管理和维护(OAM)NF。5GC may include access and mobility management function (AMF), session management function (SMF), authentication server function (AUSF), user data management (UDM), user plane function (UPF), network exposure function (NEF) and/or other network functions (NFs) not represented, such as operation administration and maintenance (OAM) NF.

图2图示了用于控制如图1所示的(R)AN或5GC的功能的控制装置200的示例。控制装置可以包括至少一个随机存取存储器(RAM)211a,至少一个只读存储器(ROM)211b、至少一个处理器212、213以及输入/输出接口214。至少一个处理器212、213可以耦合到RAM 211a和ROM 211b。至少一个处理器212、213可以被配置为执行适当的软件代码215。软件代码215可以例如允许执行一个或多个步骤以执行本方面中的一个或多个。软件代码215可以存储在ROM 211b中。控制装置200可以与控制5G(R)AN或5GC的另一功能的另一控制装置200互连。在一些实施例中,(R)AN或5GC的每个功能包括控制装置200。在备选实施例中,(R)AN或5GC的两个或更多个功能可以共享控制装置。FIG2 illustrates an example of a control device 200 for controlling the functions of a (R)AN or 5GC as shown in FIG1 . The control device may include at least one random access memory (RAM) 211a, at least one read-only memory (ROM) 211b, at least one processor 212, 213, and an input/output interface 214. At least one processor 212, 213 may be coupled to the RAM 211a and the ROM 211b. At least one processor 212, 213 may be configured to execute appropriate software code 215. The software code 215 may, for example, allow one or more steps to be executed to perform one or more of the present aspects. The software code 215 may be stored in the ROM 211b. The control device 200 may be interconnected with another control device 200 that controls another function of a 5G (R)AN or 5GC. In some embodiments, each function of the (R)AN or 5GC includes a control device 200. In an alternative embodiment, two or more functions of the (R)AN or 5GC may share a control device.

图3示出了终端300的示例,诸如图1所示的终端。终端300可以由能够发送和接收无线电信号的任何设备来提供。非限制性示例包括用户设备、移动站(MS)或移动设备(诸如移动电话或所谓的“智能电话”)、被提供有无线接口卡或其他无线接口设施的计算机(例如,USB加密狗)、个人数据助理(PDA)或被提供有无线通信能力的平板电脑、机器类型通信(MTC)设备、蜂窝物联网(CIoT)设备或这些设备的任何组合等。终端300可以提供例如用于携带通信的数据的通信。通信可以是语音、电子邮件(email)、文本消息、多媒体、数据、机器数据等中的一种或多种。FIG3 shows an example of a terminal 300, such as the terminal shown in FIG1. The terminal 300 may be provided by any device capable of sending and receiving radio signals. Non-limiting examples include user equipment, a mobile station (MS) or a mobile device (such as a mobile phone or so-called "smart phone"), a computer provided with a wireless interface card or other wireless interface facilities (e.g., a USB dongle), a personal data assistant (PDA) or a tablet computer provided with wireless communication capabilities, a machine type communication (MTC) device, a cellular Internet of Things (CIoT) device, or any combination of these devices, etc. The terminal 300 may provide, for example, communication for carrying data for communication. The communication may be one or more of voice, email (email), text message, multimedia, data, machine data, etc.

终端300可以经由用于接收的适当装置通过空中或无线电接口307接收信号,并且可以经由用于发出无线电信号的适当装置发出信号。在图3中,收发器装置由框306示意性地指定。收发器装置306可以例如通过无线电部分和相关联的天线布置被提供。天线布置可以被布置在移动设备的内部或外部。The terminal 300 may receive signals via an air or radio interface 307 via appropriate means for receiving, and may send signals via appropriate means for sending radio signals. In FIG. 3 , the transceiver means is schematically designated by a block 306. The transceiver means 306 may be provided, for example, by a radio part and an associated antenna arrangement. The antenna arrangement may be arranged internally or externally to the mobile device.

终端300可以被提供有至少一个处理器301、至少一个存储器ROM 302a、至少一个RAM 302b和其他可能的组件303,用于在软件和硬件辅助执行其被设计为执行的任务中使用,包括包括对接入系统和其他通信设备的接入和与其的通信的控制。至少一个处理器301耦合至RAM 302b及ROM 302a。至少一个处理器301可以被配置为执行适当的软件代码308。软件代码308可以例如允许执行当前方面中的一个或多个。软件代码308可以存储在ROM302a中。The terminal 300 may be provided with at least one processor 301, at least one memory ROM 302a, at least one RAM 302b and other possible components 303 for use in software and hardware assisted execution of the tasks it is designed to perform, including control of access to and communication with access systems and other communication devices. At least one processor 301 is coupled to RAM 302b and ROM 302a. At least one processor 301 may be configured to execute appropriate software code 308. Software code 308 may, for example, allow execution of one or more of the current aspects. Software code 308 may be stored in ROM 302a.

处理器、存储器和其他相关控制装置可以被提供在适当的电路板上和/或芯片组中。该特征由附图标记304表示。该设备可以可选地具有用户接口,诸如小键盘305、触敏屏幕或板、其组合等。可选地,显示器、扬声器和麦克风中的一项或多项可以取决于设备的类型被提供。The processor, memory and other related control means may be provided on an appropriate circuit board and/or in a chipset. This feature is indicated by reference numeral 304. The device may optionally have a user interface, such as a keypad 305, a touch sensitive screen or pad, a combination thereof, etc. Optionally, one or more of a display, a speaker and a microphone may be provided depending on the type of device.

如前所述,闭环自动化和机器学习(ML)(也称为人工智能或AI)可以内置到自组织网络(SON)或认知自治网络(CAN)中,使运营方能够自动优化无线电接入网络中的每个小区。As mentioned earlier, closed-loop automation and machine learning (ML) (also known as artificial intelligence or AI) can be built into self-organizing networks (SON) or cognitive autonomous networks (CAN), enabling operators to automatically optimize each cell in the radio access network.

人工智能(AI)或机器学习(ML)管道通过将AI/ML工作流程拆分为独立、可重用和模块化的组件,然后将这些组件通过管道连接在一起以创建模型,从而帮助自动化AI/ML工作流程。AI/ML管道是迭代的,其中每个步骤被重复以不断地提高模型的准确性。Artificial Intelligence (AI) or Machine Learning (ML) pipelines help automate AI/ML workflows by breaking them down into independent, reusable, and modular components that are then connected together through pipelines to create models. AI/ML pipelines are iterative, where each step is repeated to continually improve the accuracy of the model.

如图4所示,示例AI/ML工作流程包括以下三个组件:As shown in Figure 4, the example AI/ML workflow includes the following three components:

数据源管理器403。数据源管理器403被配置以实现诸如数据收集和数据准备的功能。Data source manager 403. The data source manager 403 is configured to implement functions such as data collection and data preparation.

模型训练管理器405。模型训练管理器405被配置为实现诸如超参数调整的功能。Model training manager 405. Model training manager 405 is configured to implement functions such as hyperparameter tuning.

模型推理管理器407。模型推理管理器407被配置为实现诸如模型评估的功能。Model reasoning manager 407. Model reasoning manager 407 is configured to implement functions such as model evaluation.

随着AI/ML管道化和最近对微服务架构(例如容器)的推动,每个AI/ML工作流组件都被抽象为一个独立的服务,相关利益相关者(例如数据工程师、数据科学家)可以独立处理该服务。此外,AI/ML管道编排器401(其示例由Kubeflow提供)可以管理AI/ML管道的生命周期。例如,管理调试、扩展、退役生命周期中的各个阶段。With AI/ML pipelineization and the recent push for microservice architectures (e.g., containers), each AI/ML workflow component is abstracted as an independent service that can be handled independently by relevant stakeholders (e.g., data engineers, data scientists). In addition, an AI/ML pipeline orchestrator 401 (an example of which is provided by Kubeflow) can manage the lifecycle of the AI/ML pipeline. For example, it manages the various stages in the debugging, scaling, and decommissioning lifecycles.

为了让AI/ML系统得到广泛接受,除了它们的性能(例如准确性)之外,它们还应该是可信的。法律机构正在提出关于AI/ML应用的框架,例如欧盟委员会已经提出了有史以来第一个关于AI的法律框架。该法律框架展现了针对AI是可信的新规则,以及基于AI的关键任务系统在不久的将来必须遵守的规则。关于AI的高级专家组(HLEG)小组已经开发了欧盟委员会的可信AI(TAI)战略。在2019年4月发布的可交付成果“Ethics Guidelines forTrustworthy AI”中,该小组已经列出了AI系统应该满足的七项关键要求才能被视为可信的。以下是要求:In order for AI/ML systems to gain widespread acceptance, in addition to their performance (e.g. accuracy), they should also be trustworthy. Legal bodies are proposing frameworks on AI/ML applications, for example the European Commission has proposed the first ever legal framework on AI. The legal framework lays out new rules for AI to be trustworthy and for mission-critical AI-based systems to comply with in the near future. The High-Level Expert Group (HLEG) group on AI has developed the European Commission’s Trustworthy AI (TAI) strategy. In the deliverable “Ethics Guidelines for Trustworthy AI” published in April 2019, the group has listed seven key requirements that an AI system should meet to be considered trustworthy. Here are the requirements:

透明度。透明度要求包括可追溯性、可解释性和通信。Transparency. Transparency requirements include traceability, explainability, and communication.

多样性、非歧视和公平性。这一要求包括避免不公平偏见、可接入性和通用设计以及利益相关者参与。Diversity, non-discrimination, and equity. This requirement includes avoiding unfair bias, accessibility and universal design, and stakeholder engagement.

技术鲁棒性和安全性。该要求包括抵御攻击和安全性、后备计划以及一般安全性、准确性、可靠性和再现性。Technical robustness and security. This requirement includes resistance to attacks and security, fallback plans, and general safety, accuracy, reliability, and reproducibility.

隐私和数据治理。该要求包括尊重隐私、数据质量和完整性以及对数据的接入。Privacy and data governance. This requirement includes respect for privacy, data quality and integrity, and access to data.

问责制。问责制要求包括可审计性、负面影响的最小化和报告、权衡和补救。Accountability. Accountability requirements include auditability, minimization and reporting of adverse impacts, trade-offs, and remediation.

人力机构和监督。人类能动性和监督要求包括基本权利、人类能动性和人类监督。Human agency and oversight. Human agency and oversight requirements include fundamental rights, human agency, and human oversight.

社会和环境福祉。该要求包括可持续性和环境友好性、社会影响、社会和民主。Social and environmental well-being. This requirement includes sustainability and environmental friendliness, social impact, society and democracy.

另外,国际标准化组织和国际电工委员会(ISO/IEC)也发布了关于“Overview oftrustworthiness in artificial intelligence”的技术报告。开源社区的早期努力也体现在开发TAI框架/工具/库,诸如IBM AI360、Google Expandable AI和TensorFlowResponsible AI。In addition, the International Organization for Standardization and the International Electrotechnical Commission (ISO/IEC) also released a technical report on "Overview of trustworthiness in artificial intelligence". Early efforts in the open source community are also reflected in the development of TAI frameworks/tools/libraries, such as IBM AI360, Google Expandable AI, and TensorFlow Responsible AI.

下面,我们介绍AI/ML研究社区中描述的一些关键TAI定义/算法/度量。Below, we present some key TAI definitions/algorithms/metrics described in the AI/ML research community.

公平性:公平性是理解数据中引入的偏差并确保模型在所有人口群体之间提供公平预测的过程。遍历整个人工智能/机器学习管道应用公平性分析非常重要,确保从公平性和包容性的角度不断重新评估模型。当AI/ML被部署在影响广泛终端用户的关键业务过程中时,这尤其重要。检测AI/ML模型中的偏差有以下三种广泛的方法:Fairness: Fairness is the process of understanding the bias introduced in the data and ensuring that the model provides fair predictions across all demographic groups. It is important to apply fairness analysis throughout the AI/ML pipeline, ensuring that models are constantly re-evaluated from a fairness and inclusion perspective. This is especially important when AI/ML is deployed in critical business processes that impact a wide range of end users. There are three broad approaches to detecting bias in AI/ML models:

1.预处理公平性——使用算法(诸如重新加权和不同影响移除器)以检测AI/ML训练数据中的偏差。1. Pre-processing fairness - using algorithms (such as reweighting and disparate influence removers) to detect bias in AI/ML training data.

2.处理中公平性——使用算法(诸如偏见移除器和对抗性去偏差)以检测AI/ML模型生成中的偏差。2. Processing fairness - using algorithms (such as bias removers and adversarial debiasing) to detect bias in AI/ML model generation.

3.后处理公平性——使用算法(诸如赔率均衡和拒绝选项分类)以检测AI/ML模型决策中的偏差。3. Post-processing fairness – using algorithms (such as odds equalization and rejection option classification) to detect bias in AI/ML model decision making.

公平性的量化——存在测量个人和群体公平性的若干个度量。例如,统计奇偶差异、平均赔率差异、差异影响和泰尔指数。Quantification of fairness - Several metrics exist to measure individual and group fairness. For example, statistical parity difference, mean odds difference, differential impact, and the Theil index.

可解释性:AI/ML模型的可解释性是指黑盒模型的揭秘,该黑盒模型仅进行预测或向白盒给出建议,而白盒实际上给出了由模型针对特定数据集标识的底层机制和模式的细节。为什么有必要了解AI/ML模型的底层机制,诸如人类可读性、合理性、可解释性和偏差缓解,存在多个原因。存在三种广泛的方法来设计可解释的ML模型:Explainability: Explainability of AI/ML models refers to the demystification of a black box model that only makes predictions or gives recommendations to a white box that actually gives details of the underlying mechanisms and patterns identified by the model for a specific dataset. There are multiple reasons why it is necessary to understand the underlying mechanisms of AI/ML models such as human readability, reasonableness, interpretability, and bias mitigation. There are three broad approaches to designing explainable ML models:

1.预建模的可解释性——理解或描述用于开发AI/ML模型的数据。例如,使用诸如ProtoDash和解缠推理先验变分自动编码器解释器的算法。1. Pre-modeling interpretability - understanding or describing the data used to develop AI/ML models. For example, using algorithms such as ProtoDash and Disentangled Inference Prior Variational Autoencoder Explainer.

2.可解释的建模/可说明的建模——开发更多可解释的AI/ML模型,例如具有联合预测和解释的ML模型或替代可解释模型。例如,使用诸如广义线性规则模型和教学可解释决策(TED)的算法。2. Explainable Modeling/Explanable Modeling - Develop more explainable AI/ML models, such as ML models with joint prediction and explanation or alternative explainable models. For example, using algorithms such as generalized linear rule models and Teaching Explainable Decisions (TED).

3.后建模可解释性——从预开发的AI/ML模型中提取解释。例如,使用诸如ProtoDash、Contrastive Explanations Method、Profweight、LIME和SHAP的算法。3. Post-modeling explainability - extract explanations from pre-developed AI/ML models. For example, using algorithms such as ProtoDash, Contrastive Explanations Method, Profweight, LIME, and SHAP.

此外,解释可以是本地的(即解释单个实例/预测)或全局的(即解释全局AI/ML模型结构/预测,例如基于组合每个预测的许多本地解释)。Furthermore, explanations can be local (i.e. explaining a single instance/prediction) or global (i.e. explaining the global AI/ML model structure/prediction, e.g. based on combining many local explanations for each prediction).

可解释性的量化——尽管最终由消费者确定解释的质量,但研究界已经提出了定量度量作为可解释性的代理。存在测量可解释性的若干个度量,诸如忠实性和单调性。Quantification of Interpretability — While it is ultimately up to the consumer to determine the quality of an explanation, the research community has proposed quantitative metrics as proxies for interpretability. Several metrics exist to measure interpretability, such as faithfulness and monotonicity.

鲁棒性(对抗性):任何AI/ML模型开发人员/科学家都需要考虑防御和评估其AI/ML模型和应用的四种对抗性威胁。Robustness (Adversarial): There are four adversarial threats that any AI/ML model developer/scientist needs to consider defending and evaluating their AI/ML models and applications.

1.规避:规避攻击涉及在测试时仔细扰乱输入样本,以使其被错误分类。例如,使用诸如影子攻击、阈值攻击的技术。1. Evasion: Evasion attacks involve carefully perturbing input samples at test time so that they are misclassified. For example, using techniques such as shadow attacks and threshold attacks.

2.中毒:中毒是训练数据的对抗性污染。机器学习系统可以使用操作期间收集的数据被重新训练。攻击者可能会通过在操作过程中注入恶意样本来毒害该数据,从而破坏重新训练。例如,使用诸如后门攻击和对抗性后门嵌入的技术。2. Poisoning: Poisoning is the adversarial contamination of training data. Machine learning systems can be retrained using data collected during operation. An attacker may poison this data by injecting malicious samples during operation, thereby undermining the retraining. For example, using techniques such as backdoor attacks and adversarial backdoor embedding.

3.提取:提取攻击旨在通过查询接入目标模型来复制机器学习模型。例如,使用诸如KnockoffNets和功能等效提取的技术。3. Extraction: Extraction attacks aim to replicate machine learning models by querying the target model, for example, using techniques such as KnockoffNets and functional equivalent extraction.

4.推理:推理攻击确定数据的样本是否被用于AI/ML模型的训练数据集中。例如,使用诸如成员推理黑盒和属性推理黑盒的技术。4. Inference: Inference attacks determine whether a sample of data was used in the training dataset of an AI/ML model. For example, using techniques such as membership inference black box and attribute inference black box.

除了对抗性鲁棒性之外,AI/ML技术鲁棒性还有其他方面需要解决,诸如处理丢失数据、错误数据、数据置信度、后备计划等。In addition to adversarial robustness, there are other aspects of AI/ML technology robustness that need to be addressed, such as handling missing data, erroneous data, data confidence, backup plans, etc.

在AI/ML设计的每个阶段,有多种方法可以保护AI/ML模型免受这样的对抗性攻击:There are multiple ways to protect AI/ML models from such adversarial attacks at every stage of AI/ML design:

预处理器——例如,使用诸如InverseGAN和DefenseGAN的技术。Preprocessors — For example, using techniques such as InverseGAN and DefenseGAN.

后处理器——例如,使用诸如反向sigmoid和舍入的技术。Post-processing — for example, using techniques such as inverse sigmoid and rounding.

训练器——例如,使用诸如一般对抗性训练和Madry的协议的技术。Trainer — For example, using techniques such as general adversarial training and Madry’s protocol.

变换器——例如,使用诸如防御蒸馏和神经净化的技术。Transformers – For example, using techniques such as Defense Distillation and Neural Purification.

检测器——例如,使用诸如基于激活分析的检测和基于频谱特征的检测的技术。Detectors - for example, using techniques such as activation analysis based detection and spectral signature based detection.

鲁棒性的量化:存在测量ML模型的鲁棒性的若干个度量,诸如经验鲁棒性和损失敏感性。Quantification of robustness: There are several metrics to measure the robustness of ML models, such as empirical robustness and loss sensitivity.

用以促进用于可互操作和多供应方环境中AI/ML模型可信度(例如公平性、可解释性、鲁棒性)的定义、配置、监测和测量的用于认知自治网络(CAN)的可信人工智能框架(TAIF)的一个示例如图5所示,并且另外的细节可以从PCT/EP2021/062396中被找到。An example of a Trusted Artificial Intelligence Framework (TAIF) for Cognitive Autonomous Networks (CAN) to facilitate the definition, configuration, monitoring and measurement of AI/ML model trustworthiness (e.g., fairness, explainability, robustness) in interoperable and multi-supplier environments is shown in FIG5 , and further details can be found in PCT/EP2021/062396 .

在该示例中,示出了网络运营方501,其被配置为将信息传递到策略管理器533和AI信任引擎503。In this example, a network operator 501 is shown, which is configured to pass information to a policy manager 533 and an AI trust engine 503.

策略管理器533被配置为从网络运营方501接收信息。此外,策略管理器533被配置为接收或以其他方式获得服务定义或业务/客户意图。除了网络/AI服务质量(QoS)要求之外,服务定义或业务/客户意图还可能包括AI/ML可信度要求,并且TAIF被使用以配置所请求的AI/ML可信度并监测和确保其实现。The policy manager 533 is configured to receive information from the network operator 501. In addition, the policy manager 533 is configured to receive or otherwise obtain a service definition or business/customer intent. In addition to network/AI quality of service (QoS) requirements, the service definition or business/customer intent may also include AI/ML trustworthiness requirements, and TAIF is used to configure the requested AI/ML trustworthiness and monitor and ensure its implementation.

因此,例如,系统可以包括服务管理和编排527功能,其被配置为从策略管理器533接收服务质量(QoS)。服务管理和编排527被配置为基于服务管理和编排功能527的输出来控制元件管理器或虚拟网络功能(VNF)管理器或资源管理器531。Thus, for example, the system may include a service management and orchestration 527 function configured to receive quality of service (QoS) from a policy manager 533. The service management and orchestration 527 is configured to control an element manager or a virtual network function (VNF) manager or a resource manager 531 based on the output of the service management and orchestration function 527.

另外,系统可以包括AI管道编排器525。AI管道编排器525被配置为从策略管理器533获得或接收AIQoS,并且基于此,并且以与关于图4所示的类似的方式,被配置为控制用于AI管道1 505和AI管道2 515的数据源管理器509、519、模型训练管理器511、521和模型推理管理器513、523的操作。In addition, the system may include an AI pipeline orchestrator 525. The AI pipeline orchestrator 525 is configured to obtain or receive AI QoS from the policy manager 533, and based thereon, and in a similar manner as described with respect to FIG. 4, is configured to control the operation of the data source managers 509, 519, the model training managers 511, 521, and the model inference managers 513, 523 for the AI pipeline 1 505 and the AI pipeline 2 515.

TAIF引入了另外两项管理功能,AI信任引擎(可信度功能)503(每个管理域一个)和AI信任管理器507、617(每个AI/ML管道505、515一个)和被配置为支持TAIF中的交互的六个新接口(T1-T6)。AI信任引擎503被配置为用作用于管理网络中所有AI可信度相关组件的中心,而AI信任管理器507、517是用例并且通常是供应方特定的,具有AI用例及其如何被实现的知识。TAIF introduces two additional management functions, the AI Trust Engine (Trustworthiness Function) 503 (one per management domain) and the AI Trust Manager 507, 617 (one per AI/ML pipeline 505, 515) and six new interfaces (T1-T6) configured to support interactions in TAIF. The AI Trust Engine 503 is configured to serve as a hub for managing all AI trustworthiness related components in the network, while the AI Trust Managers 507, 517 are use case and typically vendor specific, with knowledge of the AI use case and how it is implemented.

此外,示例TAIF还采用了AI可信质量(AIQoT)的概念,以统一的方式定义AI/ML模型可信度,涵盖三个因素,即公平性、可解释性和鲁棒性。AIQoT例如从策略管理器533被传递到AI信任引擎功能503并且类似于QoS如何被使用用于网络性能。In addition, the example TAIF also adopts the concept of AI Trust Quality (AIQoT) to define AI/ML model trustworthiness in a unified way, covering three factors, namely fairness, explainability and robustness. AIQoT is passed from the policy manager 533 to the AI trust engine function 503, for example, and is similar to how QoS is used for network performance.

示例QoT可以由下表显示Example QoT can be shown by the following table

示例TAIF中的高水平通用工作流程如图6所示。A high-level general workflow in the example TAIF is shown in Figure 6.

在该示例工作流程中,显示了客户意图被提供给策略管理器功能533,如图6中的步骤601所示。In this example workflow, customer intent is shown being provided to the policy manager function 533, as shown in step 601 in FIG. 6 .

另外显示了网络运营方(经由策略管理器功能533)例如通过T1接口向AI信任引擎503指定所需的AIQoT(基于风险水平的用例特定的),如图6中由步骤603所示。Also shown is the network operator (via the policy manager function 533 ) specifying the desired AIQoT (use case specific based on risk level) to the AI trust engine 503 , for example, via a T1 interface, as shown by step 603 in FIG. 6 .

AI信任引擎503将AIQoT转化为特定的AI可信(即,公平性、可解释性和鲁棒性)要求,并且标识受影响的(多个)用例特定的AI信任管理器。使用T2接口,AI信任引擎503配置AI信任管理器507,如图6中由步骤605所示。The AI trust engine 503 converts the AIQoT into specific AI trust (i.e., fairness, explainability, and robustness) requirements and identifies the affected use case(s) specific AI trust manager. Using the T2 interface, the AI trust engine 503 configures the AI trust manager 507, as shown in FIG6 by step 605.

用例特定且感知实现的AI信任管理器507被配置为通过T3接口配置、监测和测量用于AI数据源管理器509的AI可信要求,如图6中由步骤607所示。The use case specific and implementation-aware AI trust manager 507 is configured to configure, monitor and measure AI trust requirements for the AI data source manager 509 through the T3 interface, as shown by step 607 in Figure 6.

此外,用例特定且感知实现的AI信任管理器507被配置为通过T4接口配置、监测和测量用于AI训练管理器511的AI可信要求,如图6中由步骤609所示。Furthermore, the use case specific and implementation-aware AI trust manager 507 is configured to configure, monitor and measure AI trust requirements for the AI training manager 511 via the T4 interface, as shown by step 609 in FIG. 6 .

另外,用例特定且感知实现的AI信任管理器507被配置为通过T5接口配置、监测和测量用于AI推理管理器513的AI可信要求,如图6中由步骤611所示。Additionally, the use case specific and implementation-aware AI trust manager 507 is configured to configure, monitor and measure AI trust requirements for the AI reasoning manager 513 via the T5 interface, as shown in FIG. 6 by step 611 .

来自AI数据源管理器509、AI训练管理器511和AI推理管理器513的关于AI管道的测量或收集的TAI度量和/或TAI解释相应地通过T3、T4和T5接口被推送到AI信任管理器507,如图6中相应地由步骤613、615和617示出。The measured or collected TAI metrics and/or TAI interpretations about the AI pipeline from the AI data source manager 509, the AI training manager 511, and the AI reasoning manager 513 are pushed to the AI trust manager 507 through the T3, T4, and T5 interfaces, respectively, as shown in FIG. 6 by steps 613, 615, and 617, respectively.

AI信任管理器507基于由AI信任引擎(可信度功能)配置的报告机制,通过T2接口将TAI度量和/或TAI解释推送到AI信任引擎503,如图6中由步骤619所示。The AI trust manager 507 pushes the TAI measurements and/or TAI interpretations to the AI trust engine 503 through the T2 interface based on the reporting mechanism configured by the AI trust engine (trustworthiness function), as shown by step 619 in Figure 6.

最后,网络运营方501可以通过T6接口从AI信任引擎请求(如图6中由步骤621所示)并接收(如图6中由步骤623所示)AI管道的TAI度量/解释。Finally, the network operator 501 may request (as shown by step 621 in FIG. 6 ) and receive (as shown by step 623 in FIG. 6 ) TAI metrics/explanations of the AI pipeline from the AI trust engine via the T6 interface.

基于获取的信息,网络运营方可以决定经由策略/意图管理器更新策略,如图6中由步骤625所示。Based on the acquired information, the network operator may decide to update the policy via the policy/intent manager, as shown in FIG. 6 by step 625 .

因此,示例TAI框架使各种电信利益相关者(例如认知网络功能供应方、网络运营方、监管机构、终端用户)能够信任由网络中AI/ML模型做出的决策/预测。Thus, the example TAI framework enables various telecom stakeholders (e.g., cognitive network function providers, network operators, regulators, end users) to trust the decisions/predictions made by AI/ML models in the network.

示例跨域管理和编排架构还在图7中被显示。该示例显示了跨域端到端(E2E)网络服务场景,但其他跨域非E2E场景(即每个域内)是可能的。例如,核心域可以递归地嵌入3GPP定义的网络功能(NF)域和虚拟化域,RAN域可以包括集中式单元(CU)、分布式单元(DU)、远程无线电单元(RRU)、由不同的供应方提供的中传和前传域。An example cross-domain management and orchestration architecture is also shown in Figure 7. This example shows a cross-domain end-to-end (E2E) network service scenario, but other cross-domain non-E2E scenarios (i.e., within each domain) are possible. For example, the core domain can recursively embed the 3GPP-defined network function (NF) domain and virtualization domain, and the RAN domain can include centralized units (CU), distributed units (DU), remote radio units (RRU), midhaul and fronthaul domains provided by different suppliers.

在图7所示的示例跨域E2E网络服务场景中,跨域服务管理域(CDSMD)(例如,E2E服务管理域)705位于跨域策略/意图管理器703和网络运营方701之间,其被配置为控制跨域服务MD 705及下面的域管理域。例如,如图7所示,显示了(第一)域1MD(例如RAN MD)712、(第二)域2MD(例如传送MD)722和(第三)域3MD(例如核心网MD)732。跨域服务管理域(CDSMD)705被配置为将从网络运营方701或客户(例如,经由跨域策略/意图管理器703)接收的跨域E2E网络服务请求(根据服务水平协议(SLA))分解为域特定的(例如RAN、传送、核心)的网络资源/服务需求,并且将其传送给对应的单独管理域(MD)712、722、732。In the example cross-domain E2E network service scenario shown in FIG7 , a cross-domain service management domain (CDSMD) (e.g., E2E service management domain) 705 is located between a cross-domain policy/intent manager 703 and a network operator 701, and is configured to control the cross-domain service MD 705 and the following domain management domains. For example, as shown in FIG7 , a (first) domain 1 MD (e.g., RAN MD) 712, a (second) domain 2 MD (e.g., transport MD) 722, and a (third) domain 3 MD (e.g., core network MD) 732 are shown. The cross-domain service management domain (CDSMD) 705 is configured to decompose a cross-domain E2E network service request (according to a service level agreement (SLA)) received from a network operator 701 or a customer (e.g., via a cross-domain policy/intent manager 703) into domain-specific (e.g., RAN, transport, core) network resource/service requirements, and transmit them to the corresponding separate management domains (MDs) 712, 722, 732.

单独MD 712、722、732还被配置为负责通过连续监测与资源/服务相关的关键性能指标(KPI)并将其报告给CDSMD 705来确保在其对应的域内满足域特定的资源/服务要求。The individual MDs 712 , 722 , 732 are also configured to be responsible for ensuring that domain-specific resource/service requirements are met within their corresponding domains by continuously monitoring and reporting resource/service-related key performance indicators (KPIs) to the CDSMD 705 .

在图7所示的示例中,示出了(第一)域1MD(例如RAN MD)712。(第一)域1MD(例如RAN MD)712还可以由域特定的策略/意图管理器711(其类似于图5和6中所示的策略/意图管理器)来控制/监测。(第一)域1MD(例如RAN MD)712可以包括域1AI信任引擎713(或可信度功能)和域1AI管道编排器714,其两者管理和控制域1AI管道1 715。然后,1AI管道1 715可以控制或配置跨域网络服务717的域特定的方面、域1资源(RAN资源716)。In the example shown in FIG. 7 , a (first) domain 1 MD (e.g., RAN MD) 712 is shown. The (first) domain 1 MD (e.g., RAN MD) 712 may also be controlled/monitored by a domain-specific policy/intent manager 711 (which is similar to the policy/intent manager shown in FIGS. 5 and 6 ). The (first) domain 1 MD (e.g., RAN MD) 712 may include a domain 1 AI trust engine 713 (or trustworthiness function) and a domain 1 AI pipeline orchestrator 714, both of which manage and control the domain 1 AI pipeline 1 715. The 1 AI pipeline 1 715 may then control or configure domain-specific aspects of cross-domain network services 717, domain 1 resources (RAN resources 716).

此外,图7所示的示例显示了(第二)域2MD(例如传送MD)722。(第二)域2MD 722还可以由域特定的策略/意图管理器721(其类似于图5和6所示的策略/意图管理器)控制/监测。(第二)域2MD 722可以包括域2AI信任引擎723(或可信度功能)和域2AI管道编排器724,其两者管理和控制域2AI管道2 725。域2AI管道2 725然后可以控制或配置跨域网络服务717的域特定的方面、域2资源(传送资源726)。In addition, the example shown in FIG7 shows a (second) domain 2 MD (e.g., transport MD) 722. The (second) domain 2 MD 722 may also be controlled/monitored by a domain-specific policy/intent manager 721 (which is similar to the policy/intent manager shown in FIGS. 5 and 6). The (second) domain 2 MD 722 may include a domain 2 AI trust engine 723 (or trustworthiness function) and a domain 2 AI pipeline orchestrator 724, both of which manage and control the domain 2 AI pipeline 2 725. The domain 2 AI pipeline 2 725 may then control or configure domain-specific aspects of the cross-domain network service 717, domain 2 resources (transport resources 726).

另外,如图7的示例中所示,可以采用(第三)域3MD(例如,核心网MD)732。(第三)域3MD 732还可以由域特定的策略/意图管理器731(类似于图5和6中所示的策略/意图管理器)控制/监测。(第三)域3MD 732可以包括域3AI信任引擎733(或可信度功能)和域3AI管道编排器734,其两者管理和控制域3AI管道3 735。域3AI管道3 735然后可以控制或配置跨域网络服务717的域特定的方面、域3资源(核心网络资源736)。In addition, as shown in the example of FIG. 7 , a (third) domain 3MD (e.g., core network MD) 732 may be employed. The (third) domain 3MD 732 may also be controlled/monitored by a domain-specific policy/intent manager 731 (similar to the policy/intent manager shown in FIGS. 5 and 6 ). The (third) domain 3MD 732 may include a domain 3 AI trust engine 733 (or trustworthiness function) and a domain 3 AI pipeline orchestrator 734, both of which manage and control the domain 3 AI pipeline 3 735. The domain 3 AI pipeline 3 735 may then control or configure domain-specific aspects of the cross-domain network service 717, domain 3 resources (core network resources 736).

因此,所请求/实例化的跨域E2E网络服务(例如覆盖RAN、传送和核心域(由框717表示))由相应的MD(由框715、725、735表示)中的其对应的AI管道(或CNF)管理。需要注意的是,取决于用例,AI管道可以在域特定的MD中(例如,用于主动资源自动缩放)或在域本身内(例如,用于RAN域中的主动移动性切换)被实例化。然后,利用域特定的AI信任引擎(可信度函数)和AI管道的特定的AI信任管理器(如上文所述和引用),用于该域特定的AI管道的AI管道可信度(即,包括公平性、可解释性、鲁棒性的AIQoT)可以在对应的MD内被定义、配置、测量和报告。Thus, the requested/instantiated cross-domain E2E network service (e.g., covering RAN, transport and core domains (represented by box 717)) is managed by its corresponding AI pipeline (or CNF) in the corresponding MD (represented by boxes 715, 725, 735). It should be noted that, depending on the use case, the AI pipeline can be instantiated in a domain-specific MD (e.g., for proactive resource autoscaling) or within the domain itself (e.g., for proactive mobility switching in the RAN domain). Then, utilizing the domain-specific AI trust engine (trustworthiness function) and the AI pipeline's specific AI trust manager (as described and referenced above), the AI pipeline trustworthiness (i.e., AIQoT including fairness, explainability, robustness) for the domain-specific AI pipeline can be defined, configured, measured and reported within the corresponding MD.

然而,如图7所示的网络可能会出现问题,因为CDSMD 703中没有被配置为接收用于跨域E2E网络服务的期望的跨域AIQoT(即,由跨域策略/意图管理器基于跨域E2E网络服务的风险水平被定义)的管理功能。因此,CDSMD没有办法:However, the network shown in FIG7 may have problems because there is no management function configured to receive the desired cross-domain AIQoT (i.e., defined by the cross-domain policy/intent manager based on the risk level of the cross-domain E2E network service) for the cross-domain E2E network service in CDSMD 703. Therefore, CDSMD has no way to:

将跨域AIQoT转化为域特定的AIQoT;Convert cross-domain AIQoT into domain-specific AIQoT;

从域特定的(多个)AI信任引擎发现TAI能力信息;Discover TAI capability information from domain-specific (multiple) AI trust engines;

将转化后的域特定的AIQoT传送给(多个)域特定的AI信任引擎;以及delivering the converted domain-specific AIQoT to domain-specific AI trust engine(s); and

从(多个)域特定的AI信任引擎收集/请求跨域TAI度量/解释。Collect/request cross-domain TAI metrics/explanations from (multiple) domain-specific AI trust engines.

此外,即使解决了这个问题,CDSMD也无法解决(例如,执行根本原因分析)从(多个)域特定的AI信任引擎接收的、属于跨域E2E网络服务的TAI相关升级(即,在TAI度量/解释方面),并且无法将从一个MD的域特定的AI信任引擎接收的相关TAI升级相关的信息委托给另一个MD,使得其他MD可以采取预防措施,以避免跨域E2E网络服务SLA违规(在我们的案例中是跨域AIQoT)。Furthermore, even if this issue is addressed, CDSMD is unable to resolve (e.g., perform root cause analysis) TAI-related escalations (i.e., in terms of TAI measurements/explanations) received from (multiple) domain-specific AI trust engines that pertain to cross-domain E2E network services, and is unable to delegate information related to relevant TAI escalations received from the domain-specific AI trust engine of one MD to another MD so that the other MD can take preventive measures to avoid cross-domain E2E network service SLA violations (in our case, cross-domain AIQoT).

另外,这样的系统无法通过一个方式来聚合从单独的MD的(多个)AI信任引擎接收的TAI相关升级度量/解释以提供CDSMD,以向网络运营方或客户提供问题的全局视图。在此示例中,与TAI相关的升级度量/解释可以包括跨域AIQoT违规。Additionally, such a system does not have a way to aggregate TAI-related escalation metrics/explanations received from the (multiple) AI trust engines of separate MDs to provide a CDSMD to provide a global view of the problem to the network operator or customer. In this example, TAI-related escalation metrics/explanations may include cross-domain AIQoT violations.

在以下实施例中进一步讨论的概念是跨域TAI框架的引入(其扩展了上面讨论的并在PCT/EP2021/062396中针对认知自治网络引入的域特定的TAI框架,以促进针对可互操作和多供应方环境中跨域网络服务相关的人工智能管道可信度(即公平性、可解释性、稳健性)的定义、配置、测量和报告。A concept further discussed in the following embodiments is the introduction of a cross-domain TAI framework (which extends the domain-specific TAI framework discussed above and introduced in PCT/EP2021/062396 for cognitive autonomous networks to facilitate the definition, configuration, measurement and reporting of AI pipeline trustworthiness (i.e. fairness, explainability, robustness) related to cross-domain network services in interoperable and multi-supplier environments.

在这些实施例中,除了跨域QoS要求之外,对应于网络服务的客户意图还可以包括跨域AI可信要求,并且跨域TAI框架被使用以确保期望的跨域AI可信要求的满足。In these embodiments, in addition to the cross-domain QoS requirements, the customer intent corresponding to the network service may also include cross-domain AI trust requirements, and the cross-domain TAI framework is used to ensure that the desired cross-domain AI trust requirements are met.

如图8所示,跨域TAI框架包括新颖的管理功能,跨域AI信任引擎(可信度功能)801(或可信度功能)。在一些实施例中,跨域AI信任引擎在跨域服务管理域(CDSMD)内被采用。另外,在一些实施例中,实现了新接口(其在图8所示的示例中被指定为TCD-1)805,其被配置为支持跨域AI信任引擎801和域特定的AI信任引擎813、823、833(或可信度功能)之间的交互。此外,在一些实施例中,在跨域AI信任引擎801和域特定的策略/意图管理器811、821、831之间实现了另一个新接口(其在图8所示的示例中被指定为TCD-2)。As shown in Figure 8, the cross-domain TAI framework includes a novel management function, a cross-domain AI trust engine (credibility function) 801 (or credibility function). In some embodiments, the cross-domain AI trust engine is adopted within the cross-domain service management domain (CDSMD). In addition, in some embodiments, a new interface (which is designated as TCD-1 in the example shown in Figure 8) 805 is implemented, which is configured to support the interaction between the cross-domain AI trust engine 801 and the domain-specific AI trust engines 813, 823, 833 (or credibility functions). In addition, in some embodiments, another new interface (which is designated as TCD-2 in the example shown in Figure 8) is implemented between the cross-domain AI trust engine 801 and the domain-specific policy/intent manager 811, 821, 831.

此外,在本文详细描述的实施例中,跨域AIQoT的概念被引起入,以统一的方式定义跨域AI可信度,涵盖跨域网络服务相关的AI管道的域特定的AIQoT要求和约束。Furthermore, in the embodiments described in detail herein, the concept of cross-domain AIQoT is introduced to define cross-domain AI trustworthiness in a unified manner, covering domain-specific AIQoT requirements and constraints for AI pipelines related to cross-domain network services.

在一些实施例中,跨域AI信任引擎801被配置为支持以下操作:In some embodiments, the cross-domain AI trust engine 801 is configured to support the following operations:

取决于跨域网络服务的风险水平,将跨域AIQoT要求转化为域特定的AIQoT要求(例如RAN域AIQoT、传送域AIQoT和核心域AI QoT);Depending on the risk level of cross-domain network services, convert cross-domain AIQoT requirements into domain-specific AIQoT requirements (e.g., RAN domain AIQoT, transport domain AIQoT, and core domain AI QoT);

域特定的AI信任引擎能够在属于跨域网络服务的域特定的AI管道中配置的TAI方法和/或TAI度量和/或TAI解释的发现/确定;The domain-specific AI trust engine enables discovery/determination of TAI methods and/or TAI metrics and/or TAI interpretations configured in a domain-specific AI pipeline belonging to a cross-domain network service;

用于跨域网络服务的跨域AIQoT和/或域特定的AIQoT要求是否被满足的验证;Verification that cross-domain AIQoT and/or domain-specific AIQoT requirements for cross-domain network services are met;

域特定的AI信任引擎在属于跨域网络服务的域特定的AI管道中需要满足的期望的/更新的AIQoT(从跨域AIQoT得出的)的配置/委托;Configuration/delegation of the desired/updated AIQoT (derived from the cross-domain AIQoT) that the domain-specific AI trust engine needs to satisfy in the domain-specific AI pipeline belonging to the cross-domain network service;

针对域特定的AI信任引擎813、823、833能够在属于跨域网络服务的域特定的AI管道中测量/报告/升级的TAI度量和/或TAI解释的请求/订阅;Requests/subscriptions for TAI metrics and/or TAI interpretations that the domain-specific AI trust engines 813, 823, 833 are able to measure/report/upgrade in domain-specific AI pipelines belonging to cross-domain network services;

将从域特定的AI信任引擎813、823、833接收的关于属于跨域网络服务的域特定的AI管道715、725、735的所有TAI能力信息和/或TAI报告存储在跨域信任知识数据库中;storing all TAI capability information and/or TAI reports received from the domain-specific AI trust engines 813, 823, 833 regarding the domain-specific AI pipelines 715, 725, 735 belonging to the cross-domain network service in a cross-domain trust knowledge database;

执行从域特定的AI信任引擎813、823、833接收的TAI报告的根本原因分析。此外,如果需要,基于TAI报告更新域特定的AIQoT要求;Perform root cause analysis of TAI reports received from domain-specific AI trust engines 813, 823, 833. Also, update domain-specific AIQoT requirements based on TAI reports if needed;

向网络运营方提供关于跨域网络服务的问题/升级的全局视图(例如,聚合的跨域网络服务相关的TAI报告)——其在此示例中可能是跨域AIQoT违规。Providing a global view to the network operator on issues/escalations of cross-domain network services (eg, aggregated cross-domain network service related TAI reports) - which in this example may be cross-domain AIQoT violations.

在一些实施例中,可以实现跨域TAI API(其可以由(多个)域特定的AI信任引擎产生并由跨域AI信任引擎消耗)。例如,这些可以是以下项:In some embodiments, a cross-domain TAI API may be implemented (which may be generated by (multiple) domain-specific AI trust engines and consumed by the cross-domain AI trust engine). For example, these may be the following:

1.跨域TAI能力发现API(Req/Resp)——跨域TAI能力发现API被配置为允许跨域AI信任引擎经由TCD-1接口发现域特定的AI信任引擎能够在属于跨域网络服务的域特定的AI管道中配置的TAI方法和/或TAI度量和/或TAI解释。1. Cross-domain TAI Capability Discovery API (Req/Resp) - The cross-domain TAI capability discovery API is configured to allow the cross-domain AI trust engine to discover, via the TCD-1 interface, TAI methods and/or TAI metrics and/or TAI interpretations that the domain-specific AI trust engine is capable of configuring in a domain-specific AI pipeline belonging to a cross-domain network service.

2.跨域TAI配置API或跨域TAI委派API(Req/Resp)。跨域TAI配置API或跨域TAI委派API被配置为允许跨域AI信任引擎经由TCD-1接口配置/委派域特定的AI信任引擎在属于跨域网络服务的域特定的AI管道中需要满足的期望的/更新的AIQoT(从跨域AIQoT得出的)。备选地,在一些实施例中,跨域TAI配置API或跨域TAI委托API被配置为允许跨域AI信任引擎经由TCD-2接口通知域特定策略/意图管理器(经由域特定的AI信任引擎)被要求在属于跨域网络服务的域特定的AI管道中进行配置的期望的/更新的AIQoT(从跨域AIQoT得出的)。2. Cross-domain TAI configuration API or cross-domain TAI delegation API (Req/Resp). The cross-domain TAI configuration API or cross-domain TAI delegation API is configured to allow the cross-domain AI trust engine to configure/delegate the expected/updated AIQoT (derived from the cross-domain AIQoT) that needs to be met in the domain-specific AI pipeline belonging to the cross-domain network service to the domain-specific AI trust engine via the TCD-1 interface. Alternatively, in some embodiments, the cross-domain TAI configuration API or cross-domain TAI delegation API is configured to allow the cross-domain AI trust engine to notify the domain-specific policy/intent manager (via the domain-specific AI trust engine) via the TCD-2 interface of the expected/updated AIQoT (derived from the cross-domain AIQoT) that is required to be configured in the domain-specific AI pipeline belonging to the cross-domain network service.

3.跨域TAI报告API或跨域TAI升级API(请求/响应和订阅/通知)。跨域TAI报告API或跨域TAI升级API被配置为允许跨域AI信任引擎经由TCD-1接口请求/订阅域特定的AI信任引擎能够在属于跨域网络服务的域特定的AI管道中进行测量/报告/升级的TAI度量和/或TAI解释。3. Cross-domain TAI reporting API or cross-domain TAI upgrade API (request/response and subscription/notification). The cross-domain TAI reporting API or cross-domain TAI upgrade API is configured to allow the cross-domain AI trust engine to request/subscribe to the domain-specific AI trust engine via the TCD-1 interface to measure/report/upgrade TAI metrics and/or TAI interpretations in the domain-specific AI pipeline belonging to the cross-domain network service.

图9显示了示出根据一些实施例的跨域AI信任引擎801的实现的示例工作流程图。此外,该图还显示了上述API的应用,并由(多个)域特定的AI信任引擎通过TCD-1接口供应,以从属于跨域网络服务的域特定的AI管道中发现、配置、测量和查询/收集TAI方法和/或TAI度量和/或TAI解释。Figure 9 shows an example workflow diagram illustrating an implementation of a cross-domain AI trust engine 801 according to some embodiments. In addition, the figure also shows the application of the above-mentioned API and is supplied by (multiple) domain-specific AI trust engines through the TCD-1 interface to discover, configure, measure and query/collect TAI methods and/or TAI metrics and/or TAI interpretations from domain-specific AI pipelines belonging to cross-domain network services.

此外,还显示了另外的示例备选实现,显示了跨域AI信任引擎和域特定的策略/意图管理器之间通过TCD-2接口进行的交互。Additionally, an additional example alternative implementation is shown, showing the interaction between the cross-domain AI trust engine and the domain-specific policy/intent manager via the TCD-2 interface.

如图9中由步骤901所示,网络运营方701例如通过T1接口向跨域策略/意图管理器703(在跨域服务管理域705内)通知用于跨域网络服务的意图。As shown by step 901 in FIG. 9 , the network operator 701 notifies the cross-domain policy/intent manager 703 (within the cross-domain service management domain 705 ) of the intent for cross-domain network services, for example, via a T1 interface.

然后,跨域策略/意图管理器703被配置为将用于跨域网络服务的意图转化为跨域AIQoT,并通过步骤903通知跨域AI信任引擎801,如图9所示。Then, the cross-domain policy/intent manager 703 is configured to convert the intent for the cross-domain network service into a cross-domain AIQoT and notify the cross-domain AI trust engine 801 through step 903, as shown in Figure 9.

然后,跨域AI信任引擎801可以被配置为将获得的跨域AIQoT要求转化为域特定的AIQoT要求,如图9中由步骤905所示。换言之,跨域AI信任引擎801被配置为取决于跨域网络服务的风险水平生成参数RAN域AIQoT、传送域AIQoT和核心域AIQoT。取决于跨域网络服务的风险水平的参数RAN域AIQoT、传送域AIQoT和核心域AIQoT的生成可以例如通过下表示出:Then, the cross-domain AI trust engine 801 can be configured to convert the obtained cross-domain AIQoT requirements into domain-specific AIQoT requirements, as shown by step 905 in Figure 9. In other words, the cross-domain AI trust engine 801 is configured to generate parameters RAN domain AIQoT, transport domain AIQoT, and core domain AIQoT depending on the risk level of the cross-domain network service. The generation of the parameters RAN domain AIQoT, transport domain AIQoT, and core domain AIQoT depending on the risk level of the cross-domain network service can be shown, for example, by the following table:

在一些实施例中,转化/映射逻辑可以考虑用于跨域网络服务的SLA要求(例如,服务类型、服务优先级、KPI度量),并且可选地,还考虑域特定的TAI能力信息。在一些实施例中,转化可以在步骤911之后被执行。In some embodiments, the conversion/mapping logic may consider SLA requirements (eg, service type, service priority, KPI metrics) for cross-domain network services, and optionally, domain-specific TAI capability information. In some embodiments, the conversion may be performed after step 911 .

图9中所示的步骤907、909和911的操作可以被实现为如图9中附图标记906所示的跨域TAI能力发现API的一部分。The operations of steps 907 , 909 and 911 shown in FIG. 9 may be implemented as a part of a cross-domain TAI capability discovery API as shown by reference numeral 906 in FIG. 9 .

例如,跨域AI信任引擎801可以被配置为生成跨域TAI能力信息请求(CDTAICIREq)。如图9所示,请求可以通过步骤907从跨域AI信任引擎801发送到(多个)域特定的AI信任引擎。在该示例中,域特定的AI信任引擎是RAN管理域712AI信任引擎813。该请求用于请求关于(多个)AI信任引擎813能够在属于跨域网络服务的域特定的AI管道中配置的TAI方法和/或TAI度量和/或TAI解释的信息。For example, the cross-domain AI trust engine 801 can be configured to generate a cross-domain TAI capability information request (CDTAICIREq). As shown in Figure 9, the request can be sent from the cross-domain AI trust engine 801 to the (multiple) domain-specific AI trust engine through step 907. In this example, the domain-specific AI trust engine is the RAN management domain 712 AI trust engine 813. The request is used to request information about the TAI method and/or TAI metric and/or TAI interpretation that the (multiple) AI trust engine 813 can configure in the domain-specific AI pipeline belonging to the cross-domain network service.

在一些实施例中,示例请求(CDTAICIReq)包括以下参数:In some embodiments, an example request (CDTAICIReq) includes the following parameters:

在一些实施例中,(多个)域特定的AI信任引擎(在该示例中是RAN管理域712AI信任引擎813)被配置为通过与如由图9中步骤907所示的域特定的AI管道交互来确定接收的请求(CDTAICIReq)中请求的所有信息。该示例中的交互是与属于跨域网络服务的RAN管理域712、AI管道715(例如AI信任管理器902、AI数据源管理器903、AI训练管理器904、AI推理管理器905)。该操作的细节可以根据任何合适的方式来实现,例如如PCT/EP2021/071044中所描述的。In some embodiments, (multiple) domain-specific AI trust engines (in this example, RAN management domain 712 AI trust engine 813) are configured to determine all information requested in the received request (CDTAICIReq) by interacting with a domain-specific AI pipeline as shown by step 907 in Figure 9. The interaction in this example is with the RAN management domain 712, AI pipeline 715 (e.g., AI trust manager 902, AI data source manager 903, AI training manager 904, AI reasoning manager 905) belonging to the cross-domain network service. The details of the operation can be implemented in any suitable manner, for example as described in PCT/EP2021/071044.

在一些实施例中,域特定的AI信任引擎(在该示例中是RAN管理域712AI信任引擎813)将跨域TAI能力信息响应(CDTAICIResp)发送回如由图9中的步骤911所示的请求跨域AI信任引擎801。在一些实施例中,跨域TAI能力信息响应(CDTAICIResp)包括关于受支持的TAI方法和/或TAI度量和/或TAI解释的域特定的AI管道(属于跨域网络服务)的信息。In some embodiments, the domain-specific AI trust engine (in this example, the RAN management domain 712 AI trust engine 813) sends a cross-domain TAI capability information response (CDTAICIResp) back to the requesting cross-domain AI trust engine 801 as shown by step 911 in Figure 9. In some embodiments, the cross-domain TAI capability information response (CDTAICIResp) includes information about supported TAI methods and/or TAI metrics and/or TAI interpreted domain-specific AI pipelines (belonging to cross-domain network services).

在一些实施例中,CDTAICIResp包括以下参数:In some embodiments, CDTAICIResp includes the following parameters:

在一些实施例中,跨域AI信任引擎被配置为将跨域TAI能力信息存储在跨域跨域信任知识数据库内。如果域中的一个中有能力更新,则数据库可以被更新。In some embodiments, the cross-domain AI trust engine is configured to store the cross-domain TAI capability information in a cross-domain trust knowledge database. If there is a capability update in one of the domains, the database can be updated.

在一些实施例中,跨域AI信任引擎801被配置为基于如图9中由步骤913所示的跨域TAI能力信息响应或存储在跨域信任知识数据库中的跨域TAI能力信息来确定跨域AIQoT和/或域特定的AIQoT要求可以被满足。另外,在一些实施例中,跨域AI信任引擎801被配置为将域特定的AIQoT转化为公平性、可解释性和鲁棒性要求,如前面所示和所述,以确定跨域AIQoT和/或域特定的AIQoT满意度结果。In some embodiments, the cross-domain AI trust engine 801 is configured to determine that cross-domain AIQoT and/or domain-specific AIQoT requirements can be met based on the cross-domain TAI capability information response as shown by step 913 in Figure 9 or the cross-domain TAI capability information stored in the cross-domain trust knowledge database. In addition, in some embodiments, the cross-domain AI trust engine 801 is configured to convert the domain-specific AIQoT into fairness, explainability and robustness requirements, as shown and described above, to determine the cross-domain AIQoT and/or domain-specific AIQoT satisfaction results.

跨域AI信任引擎801还可以被配置为,如果要求不能被满足,则如图9中由步骤915所示,生成否定确认(跨域AIQoT NACK)并将其发送(如图9中由步骤915所示)到跨域策略/意图管理器703。这是响应于从步骤903接收的跨域AIQoT而被发送的。The cross-domain AI trust engine 801 may also be configured to generate and send a negative acknowledgement (cross-domain AIQoT NACK) to the cross-domain policy/intent manager 703 as shown in step 915 in FIG. 9 if the requirement cannot be met. This is sent in response to the cross-domain AIQoT received from step 903.

图9中作为步骤917、919和921示出的操作示出了作为如图9中附图标记916所示的跨域TAI配置API或跨域TAI委托API的一部分的第一备选。The operations shown as steps 917 , 919 and 921 in FIG. 9 show a first alternative as part of a cross-domain TAI configuration API or a cross-domain TAI delegation API as shown by reference numeral 916 in FIG. 9 .

例如,跨域TAI配置/委托(CRUD)请求(CDTAIConReq)从跨域AI信任引擎801发送到(多个)域特定的AI信任引擎,其在该示例中是RAN管理域712AI信任引擎813,以通知在属于跨域网络服务的域特定的AI管道中需要被满足的转化后的域特定的AIQoT。这在图9中被示为步骤917。For example, a cross-domain TAI configuration/delegation (CRUD) request (CDTAIConReq) is sent from the cross-domain AI trust engine 801 to the domain-specific AI trust engine(s), which in this example is the RAN management domain 712 AI trust engine 813, to notify the converted domain-specific AIQoT that needs to be satisfied in the domain-specific AI pipeline belonging to the cross-domain network service. This is shown as step 917 in FIG. 9.

在一些实施例中,跨域AI信任引擎801被配置为还将域特定的AIQoT转化为公平性、可解释性和鲁棒性要求,如上文所示和所述,并且将该信息包括在跨域TAI配置/委托中(CRUD)请求中。在一些实施例中,CDTAIConReq包括以下参数:In some embodiments, the cross-domain AI trust engine 801 is configured to also convert domain-specific AIQoT into fairness, explainability, and robustness requirements, as shown and described above, and include this information in the cross-domain TAI configuration/delegation (CRUD) request. In some embodiments, CDTAIConReq includes the following parameters:

在一些实施例中,域特定的AI信任引擎被配置为配置基于跨域TAI配置/委托CRUD请求,在属于跨域网络服务的域特定的AI管道中配置对应的(即,基于期望的域特定的AIQoT)公平性和/或可解释性和/或鲁棒性方法/度量/解释。该配置在图9中由步骤919示出。该实现可以是任何合适的实现,例如,诸如PCT/EP2021/071044中所描述的。In some embodiments, the domain-specific AI trust engine is configured to configure corresponding (i.e., based on the desired domain-specific AIQoT) fairness and/or explainability and/or robustness methods/metrics/explanations in the domain-specific AI pipeline belonging to the cross-domain network service based on the cross-domain TAI configuration/delegation CRUD request. This configuration is illustrated in FIG9 by step 919. The implementation can be any suitable implementation, for example, such as described in PCT/EP2021/071044.

取决于先前步骤中的配置过程是否成功,域特定的AI信任引擎被配置为利用跨域TAI公平性配置/委托CRUD响应(CDTAIConResp)来响应于跨域AI信任引擎。一些实施例中的响应包括用于满足属于跨域网络服务的域特定的AI管道中的域特定的AIQoT的ACK/NACK。生成和发送该响应在图9中由步骤921示出。Depending on whether the configuration process in the previous step is successful, the domain-specific AI trust engine is configured to respond to the cross-domain AI trust engine with a cross-domain TAI fairness configuration/delegation CRUD response (CDTAIConResp). The response in some embodiments includes an ACK/NACK for satisfying the domain-specific AIQoT in the domain-specific AI pipeline belonging to the cross-domain network service. Generating and sending this response is shown in Figure 9 by step 921.

图9中作为步骤923、925、927、929和931所示的操作示出了作为如图9中作为附图标记922所示的跨域TAI配置API或跨域TAI委托API的一部分的第二备选。The operations shown as steps 923 , 925 , 927 , 929 and 931 in FIG. 9 illustrate a second alternative as part of a cross-domain TAI configuration API or a cross-domain TAI delegation API as shown as reference numeral 922 in FIG. 9 .

跨域AI信任引擎被配置为生成跨域TAI配置/委托CRUD请求(CDTAIConReq)并将其传递到域特定的策略/意图管理器811以向域特定的策略/意图管理器811通知需要在属于跨域网络服务的域特定的AI管道中被满足的转化后的域特定的AIQoT。生成和传递CDTAIConReq的操作在图9中由步骤923示出。在一些实施例中,CDTAIConReq可以包括以下参数:The cross-domain AI trust engine is configured to generate a cross-domain TAI configuration/delegation CRUD request (CDTAIConReq) and pass it to the domain-specific policy/intent manager 811 to notify the domain-specific policy/intent manager 811 of the converted domain-specific AIQoT that needs to be satisfied in the domain-specific AI pipeline belonging to the cross-domain network service. The operation of generating and passing CDTAIConReq is shown in Figure 9 by step 923. In some embodiments, CDTAIConReq may include the following parameters:

域特定的策略/意图管理器811被配置为向域特定的AI信任引擎813发送期望的AIQoT信息,如图9中由步骤925所示。The domain-specific policy/intent manager 811 is configured to send the desired AIQoT information to the domain-specific AI trust engine 813, as shown by step 925 in Figure 9.

然后,域特定的AI信任引擎813可以基于跨域TAI配置/委托CRUD请求,将AIQoT转化为公平性、可解释性和鲁棒性要求,并在属于跨域网络服务的域特定的AI管道中配置对应的公平性和/或可解释性和/或鲁棒性方法/度量/解释。该配置在图9中由步骤927示出。该实现可以是任何合适的实现,例如,诸如在PCT/EP2021/071044中描述的。The domain-specific AI trust engine 813 can then convert the AIQoT into fairness, explainability and robustness requirements based on the cross-domain TAI configuration/delegated CRUD request, and configure the corresponding fairness and/or explainability and/or robustness methods/metrics/explanations in the domain-specific AI pipeline belonging to the cross-domain network service. This configuration is shown in Figure 9 by step 927. The implementation can be any suitable implementation, for example, such as described in PCT/EP2021/071044.

然后,域特定的AI信任引擎813可以被配置为向域特定的策略/意图管理器811发送用于满足属于跨域网络服务的域特定的AI管道中的期望的AIQoT的ACK/NACK。发送ACK/NACK的操作如图9中由步骤929所示。The domain-specific AI trust engine 813 may then be configured to send an ACK/NACK to the domain-specific policy/intent manager 811 for satisfying the desired AIQoT in the domain-specific AI pipeline belonging to the cross-domain network service. The operation of sending the ACK/NACK is shown in FIG. 9 by step 929.

然后,基于域特定的AIQoT是否被满足,域特定的策略/意图管理器811被配置为利用包含ACK/NACK的跨域TAI公平性配置/委托CRUD响应(CDTAIConResp)来响应于跨域AI信任引擎,以用于满足属于跨域网络服务的域特定的AI管道中的域特定AIQoT。生成和发送跨域TAI公平性配置/委托CRUD响应(CDTAIConResp)在图9中由步骤931示出。Then, based on whether the domain-specific AIQoT is satisfied, the domain-specific policy/intent manager 811 is configured to respond to the cross-domain AI trust engine with a cross-domain TAI fairness configuration/delegation CRUD response (CDTAIConResp) containing ACK/NACK for satisfying the domain-specific AIQoT in the domain-specific AI pipeline belonging to the cross-domain network service. Generating and sending the cross-domain TAI fairness configuration/delegation CRUD response (CDTAIConResp) is shown in Figure 9 by step 931.

图9中作为步骤933、935、937、939和941所示的操作示出了如图9中作为附图标记932所示的示例跨域TAI报告API或跨域TAI升级API实现。The operations shown in FIG. 9 as steps 933 , 935 , 937 , 939 and 941 illustrate an example cross-domain TAI reporting API or cross-domain TAI upgrading API implementation as shown in FIG. 9 as reference numeral 932 .

在一些实施例中,域特定的AI信任引擎933被配置为从属于跨域网络服务的域特定的AI管道收集在步骤919或步骤927中配置的TAI报告(度量和/或解释)。报告的收集在图9中由步骤933示出。该实现可以是任何合适的实现,例如,诸如PCT/EP2021/071044中所描述的。In some embodiments, the domain-specific AI trust engine 933 is configured to collect TAI reports (metrics and/or explanations) configured in step 919 or step 927 from the domain-specific AI pipeline belonging to the cross-domain network service. The collection of reports is illustrated in Figure 9 by step 933. The implementation can be any suitable implementation, for example, such as described in PCT/EP2021/071044.

在一些实施例中,网络运营方701生成并传递针对跨域TAI报告的请求或订阅,如图9中由步骤935所示。In some embodiments, the network operator 701 generates and transmits a request or subscription for cross-domain TAI reporting, as shown by step 935 in FIG. 9 .

如图9中由步骤937所示,跨域TAI报告请求/订阅(CDTAIRReq/CDTAIRSub)被生成并从跨域AI信任引擎801发送到属于跨域网络服务的域特定的AI管道的报告/订阅配置的域特定的AI信任引擎813。在一些实施例中,CDTAIRReq包括以下参数:As shown in step 937 in FIG9 , a cross-domain TAI report request/subscription (CDTAIRReq/CDTAIRSub) is generated and sent from the cross-domain AI trust engine 801 to the domain-specific AI trust engine 813 of the report/subscription configuration of the domain-specific AI pipeline belonging to the cross-domain network service. In some embodiments, CDTAIRReq includes the following parameters:

在一些实施例中,CDTAIRSub包括以下参数:In some embodiments, CDTAIRSub includes the following parameters:

在一些实施例中,跨域AI信任引擎可以将跨域TAI报告存储在跨域信任知识数据库内。In some embodiments, the cross-domain AI trust engine may store the cross-domain TAI report in a cross-domain trust knowledge database.

在一些实施例中,当一个或多个报告特性(即,周期性或按需)被满足时,则域特定的AI信任引擎813被配置为根据CDTAIRReq中指定的报告配置向跨域AI信任引擎801发送跨域TAI报告响应(TAIRResp)。在一些实施例中,当适用的TAI度量满足一个或多个报告阈值时,则域特定的AI信任引擎813被配置为生成跨域TAI报告通知(TAIRNot)消息并将其发送到包括实际的TAI报告的跨域AI信任引擎801。跨域TAI报告响应(TAIRResp)或跨域TAI报告通知(TAIRNot)的生成如图9中由步骤939所示。In some embodiments, when one or more reporting characteristics (i.e., periodic or on-demand) are met, the domain-specific AI trust engine 813 is configured to send a cross-domain TAI reporting response (TAIRResp) to the cross-domain AI trust engine 801 according to the reporting configuration specified in CDTAIRReq. In some embodiments, when the applicable TAI metric meets one or more reporting thresholds, the domain-specific AI trust engine 813 is configured to generate and send a cross-domain TAI reporting notification (TAIRNot) message to the cross-domain AI trust engine 801 including the actual TAI report. The generation of a cross-domain TAI reporting response (TAIRResp) or a cross-domain TAI reporting notification (TAIRNot) is shown in FIG. 9 by step 939.

然后,跨域AI信任引擎801执行来自(多个)域特定的AI信任引擎的TAI报告的根本原因分析,并提供关于跨域网络服务的问题的全局视图(例如,聚合的跨域网络服务相关的TAI报告)。例如,如图9中由步骤941所示,跨域AIQoT违规可以被发送到网络运营方701。聚合逻辑可以考虑组合/聚合从(多个)单独的特定域的AI信任引擎接收的数据/训练/推理相关的本地/全局解释。The cross-domain AI trust engine 801 then performs root cause analysis of TAI reports from (multiple) domain-specific AI trust engines and provides a global view of issues with cross-domain network services (e.g., aggregated cross-domain network service-related TAI reports). For example, as shown by step 941 in Figure 9, cross-domain AIQoT violations can be sent to the network operator 701. The aggregation logic can consider combining/aggregating local/global interpretations of data/training/reasoning related received from (multiple) separate domain-specific AI trust engines.

图10显示了存储指令和/或参数1002的非易失性存储介质1000a(例如计算机盘(CD)或数字多功能盘(DVD))和1000b(例如通用串行总线(USB)记忆棒)的示意图,指令和/或参数1002当由处理器执行时允许处理器执行如上所述的方法的一个或多个步骤。10 shows a schematic diagram of non-volatile storage media 1000a (e.g., a computer disk (CD) or digital versatile disk (DVD)) and 1000b (e.g., a universal serial bus (USB) memory stick) storing instructions and/or parameters 1002 which, when executed by a processor, allow the processor to perform one or more steps of the method described above.

注意,虽然上面描述了示例实施例,但是在不脱离本发明的范围的情况下,可以对所公开的解决方案进行多种变化和修改。Note that while the above describes exemplifying embodiments, there are several variations and modifications which may be made to the disclosed solution without departing from the scope of the present invention.

应当理解,尽管已经在5GS的上下文中讨论了上述概念,但是这些概念中的一个或多个可以被应用于其他蜂窝系统。It should be appreciated that although the above concepts have been discussed in the context of 5GS, one or more of these concepts may be applied to other cellular systems.

因此,实施例可以在所附权利要求的范围内变化。一般而言,一些实施例可以以硬件或专用电路、软件、逻辑或其任何组合来实现。例如,一些方面可以以硬件来实现,而其他方面可以以可以由控制器、微处理器或其他计算设备执行的固件或软件来实现,尽管实施例不限于此。虽然各种实施例可以被图示和描述为框图、流程图或使用一些其他图形表示,但是很好理解的是,作为非限制性示例,本文描述的这些框、装置、系统、技术或方法可以在硬件、软件、固件、专用电路或逻辑、通用硬件或控制器或其他计算设备、或其某种组合中实现。Therefore, the embodiments may vary within the scope of the appended claims. In general, some embodiments may be implemented in hardware or dedicated circuits, software, logic, or any combination thereof. For example, some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software that can be executed by a controller, microprocessor, or other computing device, although the embodiments are not limited thereto. Although various embodiments may be illustrated and described as block diagrams, flow charts, or using some other graphical representations, it is well understood that, as non-limiting examples, the boxes, devices, systems, techniques, or methods described herein may be implemented in hardware, software, firmware, dedicated circuits or logic, general hardware or controllers or other computing devices, or some combination thereof.

这些实施例可以通过存储在存储器中并且可由所涉及的实体的至少一个数据处理器执行的计算机软件或者通过硬件或者通过软件和硬件的组合来实现。此外,在这方面,应当注意,例如图7和图8中的任何过程可以表示程序步骤,或互连的逻辑电路、框和功能,或程序步骤和逻辑电路、框和功能的组合。软件可以存储在诸如存储器芯片或在处理器内实现的存储器块、磁介质(诸如硬盘或软盘)以及光学介质(诸如DVD及其数据变体CD)的物理介质上。These embodiments may be implemented by computer software stored in a memory and executable by at least one data processor of the entity involved, or by hardware, or by a combination of software and hardware. In addition, in this regard, it should be noted that any of the processes in, for example, Figures 7 and 8 may represent program steps, or interconnected logic circuits, boxes and functions, or a combination of program steps and logic circuits, boxes and functions. The software may be stored on physical media such as memory chips or memory blocks implemented within a processor, magnetic media (such as hard disks or floppy disks), and optical media (such as DVDs and their data variants CDs).

存储器可以是适合于本地技术环境的任何类型,并且可以使用任何合适的数据存储技术来实现,诸如基于半导体的存储器设备、磁存储器设备和系统、光学存储器设备和系统、固定存储器和可移动存储器。数据处理器可以是适合本地技术环境的任何类型,并且作为非限制性示例,可以包括以下一项或多项:通用计算机、专用计算机、微处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、门级电路和基于多核处理器架构的处理器。The memory may be of any type suitable for the local technical environment and may be implemented using any suitable data storage technology, such as semiconductor-based memory devices, magnetic memory devices and systems, optical memory devices and systems, fixed memory, and removable memory. The data processor may be of any type suitable for the local technical environment and may include, as non-limiting examples, one or more of the following: a general-purpose computer, a special-purpose computer, a microprocessor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), a gate-level circuit, and a processor based on a multi-core processor architecture.

备选地或另外地,一些实施例可以使用电路系统来实现。该电路系统可以被配置为执行先前描述的功能和/或方法步骤中的一项或多项。该电路系统可以被提供在基站和/或通信设备中。Alternatively or additionally, some embodiments may be implemented using a circuit system. The circuit system may be configured to perform one or more of the previously described functions and/or method steps. The circuit system may be provided in a base station and/or a communication device.

如本申请中所使用的,术语“电路系统”可以指以下一项或多项或全部:As used in this application, the term "circuitry" may refer to one or more or all of the following:

(a)仅硬件电路实现(诸如仅在模拟和/或数字电路系统中的实现);(a) hardware circuit implementation only (such as implementation only in analog and/or digital circuitry);

(b)硬件电路和软件的组合,诸如:(b) a combination of hardware circuitry and software, such as:

(i)(多个)模拟和/或数字硬件电路与软件/固件的组合,以及(i) a combination of analog and/or digital hardware circuits and software/firmware, and

(ii)具有软件的(多个)硬件处理器(包括(多个)数字信号处理器)、软件和(多个)存储器的任何部分,它们一起工作以使装置(诸如通信设备或基站)执行先前描述的各种功能;以及(ii) any portion of hardware processor(s) (including digital signal processor(s)) with software, software and memory(s) that work together to enable an apparatus (such as a communication device or base station) to perform the various functions previously described; and

(c)(多个)硬件电路和/或(多个)处理器,诸如(多个)微处理器或(多个)微处理器的一部分,其需要软件(例如固件)来操作,但当操作不需要软件时,该软件可能不存在。(c) Hardware circuits and/or processor(s), such as microprocessor(s) or portions of microprocessor(s), that require software (e.g., firmware) to operate, but where the software is not required for operation, the software may not be present.

电路系统的该定义适用于该术语在本申请中的所有使用,包括在任何权利要求中。作为另外的示例,如本申请中所使用的,术语“电路系统”还涵盖仅硬件电路或处理器(或多个处理器)或硬件电路或处理器的一部分及其(或它们的)随附软件和/或固件的实现。术语电路系统还涵盖例如集成器件。This definition of circuitry applies to all uses of the term in this application, including in any claims. As a further example, as used in this application, the term "circuitry" also covers an implementation of merely a hardware circuit or processor (or multiple processors) or a portion of a hardware circuit or processor and its (or their) accompanying software and/or firmware. The term circuitry also covers, for example, an integrated device.

前面的描述已经通过示例性和非限制性示例的方式提供了一些实施例的完整且信息丰富的描述。然而,当结合附图和所附权利要求书阅读时,鉴于前面的描述,各种修改和改编对于相关领域的技术人员来说可能变得显而易见。然而,本教导的所有这样和类似的修改仍将落入所附权利要求所限定的范围内。The foregoing description has provided a complete and informative description of some embodiments by way of exemplary and non-limiting examples. However, various modifications and adaptations may become apparent to those skilled in the relevant art in view of the foregoing description when read in conjunction with the accompanying drawings and the appended claims. However, all such and similar modifications of the present teachings will still fall within the scope defined by the appended claims.

Claims (20)

1.一种装置,包括被配置为促进跨域网络服务相关的机器学习或人工智能管道可信度功能的部件,其中所述跨域机器学习或人工智能管道用于控制包括至少两个域的认知自治网络。1. An apparatus, comprising components configured to facilitate trustworthiness functions of a cross-domain network service-related machine learning or artificial intelligence pipeline, wherein the cross-domain machine learning or artificial intelligence pipeline is used to control a network including at least two domains Cognitive autonomous networks. 2.根据权利要求1所述的装置,其中被配置为促进跨域网络服务相关的机器学习或人工智能管道可信度功能的所述部件被配置为促进以下至少一项,其中所述跨域机器学习或人工智能管道用于控制包括至少两个域的认知自治网络:2. The apparatus of claim 1, wherein the component configured to facilitate cross-domain network service-related machine learning or artificial intelligence pipeline trustworthiness functions is configured to facilitate at least one of the following, wherein the cross-domain Machine learning or artificial intelligence pipelines are used to control cognitive autonomous networks that include at least two domains: 定义跨域网络服务相关的机器学习或人工智能管道可信度;Define the trustworthiness of machine learning or artificial intelligence pipelines related to cross-domain network services; 配置跨域网络服务相关的机器学习或人工智能管道可信度;Configure the trustworthiness of machine learning or artificial intelligence pipelines related to cross-domain network services; 测量跨域网络服务相关的机器学习或人工智能管道可信度;以及Measuring the trustworthiness of machine learning or artificial intelligence pipelines associated with cross-domain network services; and 报告跨域网络服务相关的机器学习或人工智能管道可信度。Reports on the trustworthiness of machine learning or artificial intelligence pipelines related to cross-domain network services. 3.根据权利要求1或2中任一项所述的装置,其中所述跨域网络服务相关的机器学习或人工智能管道可信度函数包括以下至少一项:3. The device according to any one of claims 1 or 2, wherein the cross-domain network service-related machine learning or artificial intelligence pipeline credibility function includes at least one of the following: 公平性;fairness; 可解释性;以及Explainability; and 鲁棒性。robustness. 4.根据权利要求1至3中任一项所述的装置,其中被配置为促进跨域网络服务相关的机器学习或人工智能管道可信度功能的所述部件被配置为用于以下项,其中所述跨域机器学习或人工智能管道用于控制包括至少两个域的认知自治网络:4. The apparatus of any one of claims 1 to 3, wherein the component configured to facilitate cross-domain network service-related machine learning or artificial intelligence pipeline trustworthiness functions is configured for, Wherein the cross-domain machine learning or artificial intelligence pipeline is used to control a cognitive autonomous network including at least two domains: 获得跨域机器学习或人工智能质量可信度,所述跨域机器学习或人工智能质量可信度被配置为:覆盖域特定的机器学习或人工智能质量可信度要求、以及跨域网络服务相关的机器学习或人工智能管道的约束;Obtain cross-domain machine learning or artificial intelligence quality credibility, and the cross-domain machine learning or artificial intelligence quality credibility is configured to: cover domain-specific machine learning or artificial intelligence quality credibility requirements, and cross-domain network services Constraints on relevant machine learning or artificial intelligence pipelines; 将所述跨域机器学习或人工智能质量可信度转化为用于所述至少两个域中的至少一个域的至少一个域特定的机器学习或人工智能质量可信度;以及converting the cross-domain machine learning or artificial intelligence quality confidence into at least one domain-specific machine learning or artificial intelligence quality confidence for at least one of the at least two domains; and 提供用于所述至少两个域中的至少一个域的所述至少一个域特定的机器学习或人工智能质量可信度。Confidence in the at least one domain-specific machine learning or artificial intelligence quality is provided for at least one of the at least two domains. 5.根据权利要求4所述的装置,其中被配置为将所述跨域机器学习或人工智能可信度质量转化为用于所述至少两个域中的至少一个域的至少一个域特定的机器学习或人工智能可信度质量的所述部件被配置为:基于所述跨域网络服务的风险水平,将所述跨域机器学习或人工智能可信度质量转化为至少一个域特定的机器学习或人工智能可信度质量。5. The apparatus according to claim 4, wherein the component configured to convert the cross-domain machine learning or artificial intelligence credibility quality into at least one domain-specific machine learning or artificial intelligence credibility quality for at least one of the at least two domains is configured to: convert the cross-domain machine learning or artificial intelligence credibility quality into at least one domain-specific machine learning or artificial intelligence credibility quality based on the risk level of the cross-domain network service. 6.根据权利要求4或5中任一项所述的装置,其中被配置为将所述跨域机器学习或人工智能可信度质量转化为用于所述至少两个域中的至少一个域的至少一个域特定的机器学习或人工智能可信度质量的所述部件被配置为:基于用于所述跨域网络的至少一个服务水平协议要求,将所述跨域机器学习或人工智能可信度质量转化为至少一个域特定的机器学习或人工智能可信度质量,其中所述至少一个服务水平协议包括以下至少一项:服务类型;服务优先级;以及至少一项关键性能指标度量。6. An apparatus according to any one of claims 4 or 5, wherein the component configured to convert the cross-domain machine learning or artificial intelligence credibility quality into at least one domain-specific machine learning or artificial intelligence credibility quality for at least one of the at least two domains is configured to: based on at least one service level agreement requirement for the cross-domain network, convert the cross-domain machine learning or artificial intelligence credibility quality into at least one domain-specific machine learning or artificial intelligence credibility quality, wherein the at least one service level agreement includes at least one of the following: service type; service priority; and at least one key performance indicator metric. 7.根据权利要求4至6中任一项所述的装置,其中被配置为提供用于所述至少两个域中的至少一个域的所述至少一个域特定的机器学习或人工智能可信度质量的所述部件被配置为:7. The apparatus of any one of claims 4 to 6, configured to provide the at least one domain-specific machine learning or artificial intelligence trust for at least one of the at least two domains. The components of degree quality are configured to: 生成跨域可信度机器学习或人工智能配置或委托请求,并将其传递给至少一个域特定的机器学习或人工智能可信度功能,所述跨域可信度机器学习或人工智能配置或委托请求被配置为:控制所述至少一个域特定的机器学习或人工智能可信度功能,以配置用于所述至少两个域中的所述至少一个域的机器学习或人工智能管道;以及Generate a cross-domain credibility machine learning or artificial intelligence configuration or delegation request and pass it to at least one domain-specific machine learning or artificial intelligence credibility function, the cross-domain credibility machine learning or artificial intelligence configuration or The delegate request is configured to: control the at least one domain-specific machine learning or artificial intelligence trustworthiness functionality to configure a machine learning or artificial intelligence pipeline for the at least one of the at least two domains; and 基于用于所述至少两个域中的所述至少一个域的所述机器学习或人工智能管道的所述配置的实现,从所述至少一个域特定的机器学习或人工智能可信度功能获得跨域可信度机器学习或人工智能配置或委托响应。Obtained from the at least one domain-specific machine learning or artificial intelligence credibility function based on implementation of the configuration of the machine learning or artificial intelligence pipeline for the at least one of the at least two domains Configure or delegate responses with cross-domain trustworthiness machine learning or artificial intelligence. 8.根据权利要求4至6中任一项所述的装置,其中被配置为提供用于所述至少两个域中的至少一个域的所述至少一个域特定的机器学习或人工智能可信度质量的部件被配置为:8. The apparatus of any one of claims 4 to 6, configured to provide the at least one domain-specific machine learning or artificial intelligence trust for at least one of the at least two domains. Quality components are configured as: 生成跨域可信度机器学习或人工智能配置或委托请求,并将其传递给至少一个域特定的策略管理器,所述跨域可信度机器学习或人工智能配置或委托请求被配置为:控制至少一个域特定的机器学习或人工智能可信度功能,以配置用于所述至少两个域中的所述至少一个域的机器学习或人工智能管道;以及generating and passing a cross-domain trustworthy machine learning or artificial intelligence configuration or delegation request to at least one domain-specific policy manager, the cross-domain trustworthy machine learning or artificial intelligence configuration or delegation request being configured to: control at least one domain-specific machine learning or artificial intelligence trustworthy function to configure a machine learning or artificial intelligence pipeline for at least one of the at least two domains; 基于用于所述至少两个域中的所述至少一个域的所述机器学习或人工智能管道的所述配置的实现,从所述至少一个域策略管理器获得跨域可信度机器学习或人工智能配置或委托响应。obtaining cross-domain credibility machine learning from the at least one domain policy manager based on implementation of the configuration of the machine learning or artificial intelligence pipeline for the at least one of the at least two domains; AI configuration or delegate response. 9.根据权利要求7或8任一项所述的装置,其中所述跨域可信度机器学习或人工智能配置或委托请求包括:9. The apparatus according to any one of claims 7 or 8, wherein the cross-domain credibility machine learning or artificial intelligence configuration or delegation request includes: 域范围参数,被配置为标识所述请求正在寻址的域;a domain scope parameter configured to identify the domain being addressed by the request; 管道标识参数,被配置为标识所述请求正在寻址的域特定的机器学习或人工智能管道;a pipeline identification parameter configured to identify the domain-specific machine learning or artificial intelligence pipeline that the request is addressing; 类别标识参数,被配置为标识所述至少一个域特定的机器学习或人工智能可信度质量。A category identification parameter configured to identify the at least one domain-specific machine learning or artificial intelligence credibility quality. 10.根据权利要求9所述的装置,当从属于权利要求7时,其中所述跨域可信度机器学习或人工智能配置或委托请求还包括以下至少一项:10. The apparatus of claim 9, when dependent on claim 7, wherein the cross-domain credibility machine learning or artificial intelligence configuration or delegation request further includes at least one of the following: 期望的公平性参数,被配置为指示用于所述域特定的机器学习或人工智能管道的相对公平性水平;a desired fairness parameter configured to indicate a relative fairness level for the domain-specific machine learning or artificial intelligence pipeline; 期望的可解释性参数,被配置为指示用于所述域特定的机器学习或人工智能管道的期望的可解释性水平;a desired explainability parameter configured to indicate a desired level of explainability for the domain-specific machine learning or artificial intelligence pipeline; 期望的技术鲁棒性参数,被配置为指示用于所述域特定的机器学习或人工智能管道的期望的技术鲁棒性水平;以及a desired technical robustness parameter configured to indicate a desired technical robustness level for the domain-specific machine learning or artificial intelligence pipeline; and 期望的对抗鲁棒性参数,被配置为指示用于所述域特定的机器学习或人工智能管道的期望的对抗鲁棒性水平。A desired adversarial robustness parameter configured to indicate a desired level of adversarial robustness for the domain-specific machine learning or artificial intelligence pipeline. 11.根据权利要求4至10中任一项所述的装置,被配置为促进跨域网络服务相关的机器学习或人工智能管道可信度功能的所述部件被配置为用于以下项,其中所述跨域机器学习或人工智能管道用于控制包括至少两个域的认知自治网络:11. The apparatus according to any one of claims 4 to 10, wherein the component configured to facilitate cross-domain network service-related machine learning or artificial intelligence pipeline credibility functions is configured for the following items, wherein the cross-domain machine learning or artificial intelligence pipeline is used to control a cognitive autonomous network including at least two domains: 生成跨域可信度机器学习或人工智能能力信息请求,并将其传递给至少一个域特定的机器学习或人工智能可信度功能,所述跨域可信度机器学习或人工智能能力信息请求被配置为:控制所述至少一个域特定的机器学习或人工智能可信度功能,以实现用于所述至少两个域中的所述至少一个域的机器学习或人工智能管道的能力发现;以及Generate a cross-domain credibility machine learning or artificial intelligence capability information request and pass it to at least one domain-specific machine learning or artificial intelligence credibility function, the cross-domain credibility machine learning or artificial intelligence capability information request configured to: control the at least one domain-specific machine learning or artificial intelligence credibility function to enable capability discovery of the machine learning or artificial intelligence pipeline for the at least one of the at least two domains; as well as 从所述至少一个域特定的机器学习或人工智能可信度功能获得跨域可信度机器学习或人工智能能力信息响应,所述人工智能能力信息响应报告针对用于所述至少两个域中的所述至少一个域的机器学习或人工智能管道的所述能力发现。Obtain a cross-domain credibility machine learning or artificial intelligence capability information response from the at least one domain-specific machine learning or artificial intelligence credibility function, the artificial intelligence capability information response report is for use in the at least two domains The capability discovery of the machine learning or artificial intelligence pipeline of the at least one domain. 12.根据权利要求11所述的装置,其中所述跨域可信度机器学习或人工智能能力信息请求包括:12. The apparatus according to claim 11, wherein the cross-domain credibility machine learning or artificial intelligence capability information request includes: 域范围参数,被配置为标识所述请求正在寻址的域;以及a domain scope parameter configured to identify the domain to which the request is being addressed; and 范围参数,被配置为标识所述请求正在寻址的域特定的机器学习或人工智能管道。A scope parameter configured to identify the domain-specific machine learning or artificial intelligence pipeline that the request is addressing. 13.根据权利要求12所述的装置,其中所述跨域可信度机器学习或人工智能能力信息请求还包括管道阶段参数,所述管道阶段参数被配置为标识所述请求正在寻址的所述域特定的机器学习或人工智能管道的阶段。13. The apparatus of claim 12, wherein the cross-domain credibility machine learning or artificial intelligence capability information request further includes a pipeline stage parameter configured to identify all of the requests being addressed. Describe the stages of a domain-specific machine learning or artificial intelligence pipeline. 14.根据权利要求4至13中任一项所述的装置,其中被配置为促进跨域网络服务相关的机器学习或人工智能管道可信度功能的所述部件还被配置为用于以下,其中所述跨域机器学习或人工智能管道用于控制包括至少两个域的认知自治网络:14. The apparatus of any one of claims 4 to 13, wherein the component configured to facilitate cross-domain network service-related machine learning or artificial intelligence pipeline trustworthiness functions is further configured to: Wherein the cross-domain machine learning or artificial intelligence pipeline is used to control a cognitive autonomous network including at least two domains: 从网络运营方获得跨域可信度人工智能报告请求或订阅;Obtain cross-domain credibility artificial intelligence report requests or subscriptions from network operators; 基于来自网络运营方的所述跨域可信度人工智能报告请求或订阅,生成域特定的可信度人工智能报告请求或订阅,并将其传递给至少一个域特定的机器学习或人工智能管道可信度功能,其中所述域特定的可信度人工智能报告请求或订阅被配置为:控制所述至少一个域特定的机器学习或人工智能管道可信度功能,以提供至少一个域特定的机器学习或人工智能管道报告响应或通知;Generate a domain-specific trustworthiness AI report request or subscription based on the cross-domain trustworthiness AI report request or subscription from the network operator and pass it to at least one domain-specific machine learning or artificial intelligence pipeline a trustworthiness function, wherein the domain-specific trustworthiness artificial intelligence report request or subscription is configured to: control the at least one domain-specific machine learning or artificial intelligence pipeline trustworthiness function to provide at least one domain-specific Machine learning or artificial intelligence pipeline reporting responses or notifications; 从所述至少一个域特定的机器学习或人工智能管道可信度功能接收机器学习或人工智能能力信息、和/或所述至少一个域特定的机器学习或人工智能管道报告响应或通知;Receive machine learning or artificial intelligence capability information from the at least one domain-specific machine learning or artificial intelligence pipeline credibility function, and/or the at least one domain-specific machine learning or artificial intelligence pipeline reporting response or notification; 将从所述至少一个域特定的机器学习或人工智能管道接收的机器学习或人工智能能力信息、和/或所述至少一个域特定的机器学习或人工智能管道报告存储在跨域信任知识数据库中;Store machine learning or artificial intelligence capability information received from the at least one domain-specific machine learning or artificial intelligence pipeline, and/or the at least one domain-specific machine learning or artificial intelligence pipeline report in a cross-domain trust knowledge database ; 基于所述至少一个域特定的机器学习或人工智能管道报告响应或通知,生成并传递所述跨域可信度人工智能报告。The cross-domain credibility artificial intelligence report is generated and delivered based on the at least one domain-specific machine learning or artificial intelligence pipeline report response or notification. 15.根据权利要求14所述的装置,其中所述跨域可信度人工智能报告请求包括:15. The apparatus of claim 14, wherein the cross-domain credibility artificial intelligence report request includes: 域范围参数,被配置为标识所述请求正在寻址的域;a domain scope parameter configured to identify the domain to which the request is being addressed; 范围参数,被配置为标识所述请求正在寻址的域特定的机器学习或人工智能管道;以及a scope parameter configured to identify the domain-specific machine learning or artificial intelligence pipeline to which the request is addressed; and 管道阶段参数,被配置为标识所述请求正在寻址的所述域特定机器学习或人工智能管道的阶段。A pipeline stage parameter configured to identify the stage of the domain-specific machine learning or artificial intelligence pipeline that the request is addressing. 16.根据权利要求15所述的装置,其中所述跨域可信度人工智能报告请求还包括以下至少一项:16. The apparatus of claim 15, wherein the cross-domain credibility artificial intelligence report request further includes at least one of the following: 公平性度量参数的列表,被配置为标识要被报告的公平性度量;A list of fairness metric parameters configured to identify the fairness metrics to be reported; 公平度量解释的列表,被配置为标识要被报告的公平性度量解释;A list of fairness metric interpretations configured to identify the fairness metric interpretations to be reported; 可解释性度量的列表,被配置为标识要被报告的可解释性度量;A list of explainability metrics configured to identify the explainability metrics to be reported; 解释的列表,被配置为标识要被报告的解释;A list of interpretations, configured to identify interpretations to be reported; 技术鲁棒性度量的列表,被配置为标识要被报告的技术鲁棒性度量;A list of technical robustness metrics configured to identify technical robustness metrics to be reported; 技术鲁棒性度量解释的列表,被配置为标识要被报告的技术鲁棒性度量解释;A list of technical robustness metric interpretations configured to identify technical robustness metric interpretations to be reported; 对抗鲁棒性度量的列表,被配置为标识要被报告的对抗鲁棒性度量;A list of adversarial robustness metrics configured to identify adversarial robustness metrics to be reported; 对抗鲁棒性度量解释的列表,被配置为标识要被报告的对抗鲁棒性度量解释;A list of adversarial robustness metric interpretations configured to identify adversarial robustness metric interpretations to be reported; 开始时间参数,被配置为标识用于报告的开始时间;A start time parameter, configured to identify the start time for reporting; 结束时间参数,被配置为标识用于报告的结束时间;以及An end time parameter configured to identify the end time for reporting; and 报告间隔参数,被配置为标识用于报告的周期间隔。Report interval parameter, configured to identify the periodic interval used for reporting. 17.根据权利要求14所述的装置,其中所述跨域可信度人工智能报告订阅包括:17. The apparatus of claim 14, wherein the cross-domain credibility artificial intelligence reporting subscription includes: 域范围参数,被配置为标识所述订阅正在寻址的域;a domain scope parameter configured to identify the domain being addressed by the subscription; 范围参数,被配置为标识所述订阅正在寻址的域特定的机器学习或人工智能管道;以及A scope parameter configured to identify the domain-specific machine learning or artificial intelligence pipeline that the subscription is addressing; and 管道阶段参数,被配置为标识所述订阅正在寻址的所述域特定的机器学习或人工智能管道的阶段。A pipeline stage parameter configured to identify the stage of the domain-specific machine learning or artificial intelligence pipeline that the subscription is addressing. 18.根据权利要求17所述的装置,其中所述跨域可信度人工智能报告订阅还包括以下至少一项:18. The apparatus of claim 17, wherein the cross-domain credibility artificial intelligence report subscription further includes at least one of the following: 公平性度量参数的列表,被配置为标识要被报告的公平性度量;A list of fairness metric parameters configured to identify the fairness metrics to be reported; 可解释性度量的列表,被配置用于标识要被报告的可解释性度量;A list of explainability metrics configured to identify the explainability metrics to be reported; 技术鲁棒性度量的列表,被配置为标识要被报告的技术鲁棒性度量;a list of technical robustness metrics configured to identify technical robustness metrics to be reported; 对抗鲁棒性度量的列表,被配置为标识要被报告的对抗鲁棒性度量;以及a list of adversarial robustness metrics configured to identify adversarial robustness metrics to be reported; and 交叉报告阈值参数,被配置为标识度量或度量解释针对其被报告的阈值。Cross reporting threshold parameter, configured to identify the threshold for which a metric or metric interpretation is reported. 19.一种方法,包括:19. A method comprising: 促进跨域网络服务相关的机器学习或人工智能管道可信度功能,其中所述跨域机器学习或人工智能管道用于控制包括至少两个域的认知自治网络。Facilitate cross-domain network service-related machine learning or artificial intelligence pipeline trustworthiness functions, wherein the cross-domain machine learning or artificial intelligence pipeline is used to control a cognitive autonomous network including at least two domains. 20.一种计算机程序,包括计算机可执行指令,所述计算机可执行指令当在一个或多个处理器上运行时执行根据权利要求19所述的方法的步骤。20. A computer program comprising computer-executable instructions which, when run on one or more processors, perform the steps of the method of claim 19.
CN202180101559.1A 2021-08-10 2021-08-10 Apparatus, method and computer program Pending CN117813846A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/111815 WO2023015448A1 (en) 2021-08-10 2021-08-10 Apparatus, method, and computer program

Publications (1)

Publication Number Publication Date
CN117813846A true CN117813846A (en) 2024-04-02

Family

ID=85200363

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180101559.1A Pending CN117813846A (en) 2021-08-10 2021-08-10 Apparatus, method and computer program

Country Status (3)

Country Link
EP (1) EP4385223A4 (en)
CN (1) CN117813846A (en)
WO (1) WO2023015448A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN119155706A (en) * 2024-11-07 2024-12-17 成都乐超人科技有限公司 Method and system for realizing 5G communication quality analysis based on intelligent AI

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20250048418A1 (en) * 2023-07-31 2025-02-06 Nokia Solutions And Networks Oy Methods and entities for a network
WO2025228570A1 (en) * 2025-02-05 2025-11-06 Lenovo International Coöperatief U.A. Interfaces for offering ai/ml capabilities in a wireless communication system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2290221A1 (en) * 1998-11-23 2000-05-23 Siemens Information And Communication Networks, Inc. An intelligent telecommunications management network (tmn)
CN102098799B (en) * 2011-01-26 2013-04-03 北京邮电大学 Intelligent cognitive wireless network system for realizing heterogeneous network convergence
US10542046B2 (en) * 2018-06-07 2020-01-21 Unifyvault LLC Systems and methods for blockchain security data intelligence
US11470105B2 (en) * 2019-12-19 2022-10-11 Cisco Technology, Inc. Attestation service gateway
CN111083710A (en) * 2019-12-20 2020-04-28 大唐网络有限公司 Intelligent networking method for 5G system
CN112291807B (en) * 2020-10-15 2022-09-23 山东科技大学 A wireless cellular network traffic prediction method based on deep transfer learning and cross-domain data fusion
CN113114335B (en) * 2021-03-18 2021-11-19 中国电子科技集团公司第五十四研究所 Software-defined space-based network networking architecture based on artificial intelligence

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN119155706A (en) * 2024-11-07 2024-12-17 成都乐超人科技有限公司 Method and system for realizing 5G communication quality analysis based on intelligent AI
CN119155706B (en) * 2024-11-07 2025-02-07 成都乐超人科技有限公司 Method and system for realizing 5G communication quality analysis based on intelligent AI

Also Published As

Publication number Publication date
EP4385223A1 (en) 2024-06-19
EP4385223A4 (en) 2025-04-23
WO2023015448A1 (en) 2023-02-16

Similar Documents

Publication Publication Date Title
Khan et al. ORAN-B5G: A next-generation open radio access network architecture with machine learning for beyond 5G in industrial 5.0
KR101676743B1 (en) Prediction and root cause recommendations of service access quality of experience issues in communication networks
US20230040284A1 (en) Trust related management of artificial intelligence or machine learning pipelines
US20240195701A1 (en) Framework for trustworthiness
CN117813846A (en) Apparatus, method and computer program
US11832106B2 (en) 5G-IoT intelligent trust enabler system
US20250139509A1 (en) Enhancement of training node selection for trustworthy federated learning
US12375362B2 (en) Apparatus, method, and computer program
Leppänen et al. Service modeling for opportunistic edge computing systems with feature engineering
JP7405955B2 (en) Communication methods and devices for multiple management areas
EP4125012A1 (en) Trust related management of artificial intelligence or machine learning pipelines in relation to the trustworthiness factor explainability
Barrachina‐Muñoz et al. Deploying cloud‐native experimental platforms for zero‐touch management 5G and beyond networks
WO2023011728A1 (en) Trustworthy federated learning
Esin Characteristics of structurally finite classes of order-preserving three-valued logic maps
EP4418617A1 (en) Energy efficiency control mechanism
Zheng et al. Practice on fifth-generation core (5GC) network fault self-recovery based on a Digital Twin
WO2023082112A1 (en) Apparatus, methods, and computer programs
EP4084372B1 (en) Method and apparatus for communication systems comprising management data analytic functions
WO2024216987A1 (en) Method, device and computer program product for wireless communication
CN119718881A (en) A component introduction method, device and equipment
Ashish et al. Integrating Enterprise Services and Risk-Aware Incident Management: REST, SOAP, and ServiceNow Event Management Best Practices
GB2641133A (en) Method, apparatus and computer program relating to traceability of nested digital twins
WO2024068018A1 (en) Apparatus and method for introducing a data preparation configuration policy
CN119908103A (en) Data Preparation in Wireless Communication Systems
EP4434200A1 (en) Control of requirement fulfillment of artificial intelligence pipelines

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination