[go: up one dir, main page]

CN117701897A - Ultrapure smelting method of K465 equiaxed superalloy return material - Google Patents

Ultrapure smelting method of K465 equiaxed superalloy return material Download PDF

Info

Publication number
CN117701897A
CN117701897A CN202311765287.2A CN202311765287A CN117701897A CN 117701897 A CN117701897 A CN 117701897A CN 202311765287 A CN202311765287 A CN 202311765287A CN 117701897 A CN117701897 A CN 117701897A
Authority
CN
China
Prior art keywords
electron beam
smelting
ultrapure
return material
superalloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311765287.2A
Other languages
Chinese (zh)
Inventor
薛佳宁
安宁
于海原
李慧威
曹合欢
李重阳
郭宇威
杨帆
高倩
薛轶青
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beiye Functional Materials Jiangsu Co ltd
Beijing Beiye Functional Materials Corp
Original Assignee
Beiye Functional Materials Jiangsu Co ltd
Beijing Beiye Functional Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beiye Functional Materials Jiangsu Co ltd, Beijing Beiye Functional Materials Corp filed Critical Beiye Functional Materials Jiangsu Co ltd
Priority to CN202311765287.2A priority Critical patent/CN117701897A/en
Publication of CN117701897A publication Critical patent/CN117701897A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/16Remelting metals
    • C22B9/22Remelting metals with heating by wave energy or particle radiation
    • C22B9/228Remelting metals with heating by wave energy or particle radiation by particle radiation, e.g. electron beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D7/00Casting ingots, e.g. from ferrous metals
    • B22D7/005Casting ingots, e.g. from ferrous metals from non-ferrous metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/02Obtaining nickel or cobalt by dry processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/20Obtaining niobium, tantalum or vanadium
    • C22B34/24Obtaining niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/30Obtaining chromium, molybdenum or tungsten
    • C22B34/34Obtaining molybdenum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/30Obtaining chromium, molybdenum or tungsten
    • C22B34/36Obtaining tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B4/00Electrothermal treatment of ores or metallurgical products for obtaining metals or alloys
    • C22B4/06Alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/001Dry processes
    • C22B7/003Dry processes only remelting, e.g. of chips, borings, turnings; apparatus used therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/04Refining by applying a vacuum

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

The embodiment of the invention discloses an ultrapure smelting method of a K465 equiaxed superalloy return material. The invention bombards the return material through the high-energy electron beam spot to completely melt, effectively promotes denitrification in the refining process with high vacuum degree, and utilizes the flow field and the temperature field generated by local overheating of the molten pool to cause the refractory oxide and the coarse carbide to agglomerate and float upwards, thereby achieving the effect of deep impurity removal of the return material. The ultrapure smelting method of the K465 equiaxed superalloy return material solves the problems of high gas content and poor refractory inclusion removal effect of the return material after the traditional vacuum induction remelting, ensures that the purity of the return material reaches a new material level, realizes the recycling of the K465 superalloy return material, and promotes the sustainable development of the aerospace engine industry.

Description

Ultrapure smelting method of K465 equiaxed superalloy return material
Technical Field
The embodiment of the invention relates to the technical field of alloy smelting, in particular to an ultrapure smelting method of a K465 equiaxed superalloy return material.
Background
The K465 equiaxial crystal casting superalloy is widely applied to turbine rotor blades, turbine guide blades and other high-temperature structural members of an aeroengine working at about 1000 ℃, and has the characteristics of higher carbon content, high alloying degree, large amounts of refractory elements of W, mo and Nb, and along with the rapid development of aerospace technology, the demand for directional superalloy is increasing. However, due to the complex design of the pouring system, the blade has a certain rejection rate, so that the material utilization rate of cast superalloy parts is only 10-20%, the material utilization rate of some complex parts is even lower than 10%, and the rest parts exist in the form of return materials such as waste parts, risers, pouring channels and the like. A large amount of return materials are produced in China every year, and because alloy melt reacts with a crucible, a mold shell and the like to form nonmetallic impurities in the part casting process, the nonmetallic impurities mainly exist in the return materials in the form of oxygen-nitrogen composite compounds, so that the oxygen and nitrogen contents in the alloy are greatly increased, and the alloy can be recycled only by strict purification process treatment. The reuse rate of the cast high-temperature alloy return material is low at present in China, and a great deal of strategic metal resources are seriously wasted.
The K465 casting superalloy returns have high content of oxygen, nitrogen and other gas impurities, and more refractory nonmetallic inclusions such as oxides, nitrides and the like exist in the alloy, so that the refractory nonmetallic inclusions are difficult to effectively remove by adopting the traditional vacuum induction remelting process, and the mechanical properties such as room temperature yield, high temperature durability and the like can be obviously reduced when the inclusions exist in the alloy. And as the proportion of the added return material and the number of times of return are increased, the micro-porosity is also gradually increased after induction remelting. The electron beam smelting technology is mainly applied to smelting refractory metals and alloys and has the advantages that the purification and purification efficiency is obviously higher than that of other vacuum smelting equipment due to the characteristics of high vacuum degree, high energy density and the like, but the purification and reutilization of the cast high-temperature alloy return materials are not realized by adopting an electron beam smelting technology means at present in China, the inclusion content of the vacuum induction smelting K465 alloy is high, the purity cannot reach the new material level, and the obvious gap exists between the reutilization of cast high-temperature alloy in China and the foreign countries.
Disclosure of Invention
The invention provides an ultrapure smelting method of a K465 equiaxed superalloy return material, which aims to solve the technical problems that the return material of the K465 equiaxed superalloy cast scrap part, a riser, a runner and the like has high content of oxygen, nitrogen and other gas impurities, more refractory nonmetallic inclusions exist in the alloy, and the like, and the conventional vacuum induction remelting process is difficult to effectively remove. According to the invention, the K465 alloy waste parts, the riser, the pouring gate and the like are subjected to shot blasting to remove surface pollutants, the electron beam cold bed refining is performed, the denitrification is effectively promoted by utilizing the high vacuum degree in the refining process, and the refractory oxide and the coarse carbide are clustered and floated by utilizing the flow field and the temperature field generated by local overheating of the molten pool, so that the effect of deep impurity removal of the returned materials is achieved. The ultrapure smelting method of the K465 equiaxed superalloy return material solves the problems of high gas content and poor refractory inclusion removal effect of the return material after the traditional vacuum induction remelting, ensures that the purity of the return material reaches a new material level, realizes the recycling of the K465 superalloy return material, and promotes the sustainable development of the aerospace engine industry.
In order to achieve the above object, the embodiment of the present invention provides the following technical solutions:
an ultra-pure smelting method of K465 equiaxed superalloy return material adopts electron beam cold bed smelting technology, promotes denitrification through high vacuum degree in refining process, and utilizes flow field and temperature field generated by local overheating of molten pool to cause refractory oxide and coarse carbide to agglomerate and float upwards, thus achieving the effect of deep impurity removal of the return material, solving the problems of high gas content and poor effect of removing refractory impurities of the return material after traditional vacuum induction remelting, and causing the purity of the return material to reach the new material level, the method comprises the following steps:
s1, cutting a K465 equiaxial casting superalloy return material into a proper size, performing shot blasting treatment to remove surface pollutants, and cleaning and drying to obtain a raw material for electron beam ultrapure smelting;
s2, after the furnace body is cleaned, placing the raw material for the electron beam ultrapure smelting into a water-cooled copper crucible, closing a furnace door, starting electron beam smelting equipment to preheat and vacuumize, enabling the vacuum degree in the smelting furnace and the vacuum degree in an electron gun chamber to meet the requirements respectively, and preheating filaments of the electron gun;
s3, after the filament is heated to a certain temperature, gradually increasing electron beam smelting power, observing that raw materials in the water-cooled copper crucible begin to melt, and adjusting a scanning path to enable raw material blocks in the crucible to be completely melted;
s4, maintaining certain smelting power and beam spot size, moving the electron beam spot at a constant speed, refining the returned material in a certain scanning path, and promoting refractory inclusions and coarse carbides to gather and float to the beam spot irradiation position through a flow field stirring effect and a temperature field gradient;
s5, after the refining step is finished, the electron beam spot is close to the edge area of the crucible, the smelting power and the size of the beam spot are gradually reduced, the range of a molten pool is slowly reduced, the melt is gradually solidified, and finally, the melt is completely solidified at the stay position of the electron beam spot, so that a final solidification area enriched with inclusions is obtained;
s6, after the furnace body electron gun chamber and the cast ingot are cooled, taking out the cast ingot in the water-cooled copper crucible, and cutting off a final solidification area to obtain the ultra-pure K465 equiaxial superalloy return material electron beam alloy ingot.
Further, in step S4, in the refining step, the electron beam melting power is 20 to 30kW.
Further, in the step S4, in the refining step, the electron beam refining time is 20 to 30 minutes.
Further, in step S4, the diameter of the electron beam spot is in the range of 30-50 mm, and the area of the scanning path needs to cover the melt to reach more than 80%.
Further, in the step S3, the filament cathode is heated to 2500-2600 ℃, the smelting power is gradually increased to 10-12 kW, the raw materials begin to be melted, the scanning path is gradually adjusted, and the irradiation time of the electron beam spot can be properly prolonged when the raw materials which are not melted in large size are encountered until the raw material blocks are completely melted.
Further, in step S2, the electron beam melting equipment is started to perform preheating and vacuumizing, and the vacuum degree in the melting furnace is required to be less than 5×10 -2 Pa, the vacuum degree of the electron gun chamber should be less than 1×10 -2 Pa.
Further, in step S6, the specific range of the last solidification region is cut off, including the last solidification region and the edge shrinkage defect portion thereof, and the ultra-pure K465 equiaxed superalloy return material electron beam alloy ingot is obtained after cutting off.
The embodiment of the invention has the following advantages:
1. the ultra-pure smelting method of the K465 equiaxed superalloy return material provided by the invention creatively applies the electron beam cold bed smelting technology to the ultra-pure smelting of the return materials such as K465 superalloy pouring gate, riser, waste parts and the like, solves the problems of high gas content and poor refractory inclusion removal effect of the return materials after smelting by adopting the traditional vacuum induction remelting means, reduces the total content of oxygen and nitrogen in the return material alloy ingot after smelting to below 10 (ppm), ensures that the refractory inclusion removal rate reaches more than 85 percent, ensures that the purity of the return materials completely reaches the full new material level, and can realize the recycling of the K465 superalloy return materials.
2. After the waste K465 alloy parts, risers, pouring channels and the like are shot-blasted to remove surface pollutants, high-energy electron beam spots are adopted to bombard the return material of the K465 high-temperature alloy to completely melt, a smelting chamber is kept at high vacuum degree in the refining process, the high vacuum degree promotes the rapid denitrification reaction in the melt, and the refractory oxide and the coarse carbide are clustered and floated by utilizing a flow field and a temperature field generated by local overheating of a molten pool, so that the effect of deep impurity removal of the return material is achieved. The invention does not need to carry out the induction remelting step of the return material, and the alloy ingot is compact and loose without shrinkage cavity, so that the ultrapure smelting efficiency of the K465 high-temperature alloy return material is greatly improved. The ultrapure smelting method of the K465 equiaxed superalloy return material can meet the same level use requirement of the K465 return material, and is beneficial to improving the recycling rate of the equiaxed casting superalloy return material in China.
Drawings
In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the drawings used in the description of the embodiments or the prior art will be briefly described below. It will be apparent to those of ordinary skill in the art that the drawings in the following description are exemplary only and that other implementations can be obtained from the extensions of the drawings provided without inventive effort.
FIG. 1 is a photograph of oxidized inclusions and coarse carbides agglomerated in the final solidification zone during electron beam melting of the K465 equiaxed superalloy return provided in example 1 of the present invention.
Detailed Description
Other advantages and advantages of the present invention will become apparent to those skilled in the art from the following detailed description, which, by way of illustration, is to be read in connection with certain specific embodiments, but not all embodiments. All other embodiments, which can be made by those skilled in the art based on the embodiments of the invention without making any inventive effort, are intended to be within the scope of the invention.
Example 1
The embodiment provides an ultrapure smelting method of a K465 equiaxed superalloy return material:
(1) Pretreatment of the return material: cutting an equiaxed casting superalloy K465 pouring gate, performing shot blasting on the surface, and cleaning and drying to obtain a K465 return material raw material;
(2) Adopting electron beam cold bed smelting equipment to clean the interior of a furnace body, placing the pretreated return material raw material into a water-cooled copper crucible, closing a furnace door, starting a vacuum system to preheat and vacuumize, and indicating the vacuum degree of an electron gun chamber as 9.8x10 -3 (Pa), the vacuum degree indication number of the smelting furnace is 3.6X10 -2 (Pa) starting an electron gun for preheating;
(3) Starting a filament power supply of an electron gun, gradually increasing the filament voltage until a cathode reaches about 2500℃, starting and gradually increasing electron beam smelting power to about 10 (kW), observing that after raw materials in a water-cooled copper crucible begin to melt, gradually adjusting a scanning path, and delaying the irradiation time of electron beam spots until a large-size unmelted raw material is encountered until a material block is completely melted;
(4) After the raw materials in the crucible are completely melted, refining steps are carried out: adjusting smelting power to 22 (kW), adjusting beam spot size to 40 (mm), uniformly moving the electron beam spot, refining by using an annular scanning path, wherein the area of the scanning path covering the melt in the crucible reaches 85%, and refining time is 20 minutes;
(5) After the refining step is finished, the electron beam spot is moved to the edge area of the crucible, the smelting power and the size of the beam spot are gradually reduced to zero, the melt is gradually solidified, and finally a final solidification area enriched with inclusions is obtained;
(6) And after the furnace body electron gun chamber and the cast ingot are cooled, opening a furnace door to take out the alloy ingot in the water-cooled copper crucible, and cutting off the last solidification area and the macroscopic shrinkage hole defect at the edge to obtain the K465 equiaxed superalloy return material electron beam alloy ingot.
The electron-microscopic photograph of the inclusions in the final solidification zone of the electron beam ingot cutting of the K465 equiaxed superalloy return provided in the embodiment is shown in figure 1. According to the invention, the floating and agglomeration of refractory inclusions and coarse carbides to a final solidification area are effectively promoted by a flow field stirring effect and a temperature field gradient, and microscopic characterization analysis shows that a large amount of oxides and coarse carbides are enriched in the final solidification area, so that the effect of deeply removing the refractory inclusions is achieved. The electron beam alloy ingot of the high-temperature alloy return material such as K465 smelted in the embodiment has oxygen content reduced to 5 (ppm) and nitrogen content reduced to 4 (ppm), and the electron beam button ingot method is adopted to detect that the content of the inclusion in the electron beam ingot is reduced to 0.29 (cm) 2 /kg) to achieve the full charge induction melting level.
Example 2
The embodiment provides an ultrapure smelting method of a K465 equiaxed superalloy return material:
(1) Pretreatment of the return material: cutting an equiaxed casting superalloy K465 pouring gate, performing shot blasting on the surface, and cleaning and drying to obtain a K465 return material raw material;
(2) Adopting electron beam cold bed smelting equipment to clean the interior of a furnace body, placing the pretreated return material raw material into a water-cooled copper crucible, closing a furnace door, starting a vacuum system to preheat and vacuumize, and indicating the vacuum degree of an electron gun chamber as 8.0 multiplied by 10 -3 (Pa), melting furnace vacuum degree indication number is 1.2X10 -2 (Pa) starting an electron gun for preheating;
(3) Starting a filament power supply of an electron gun, gradually increasing the filament voltage until a cathode reaches about 2500℃, starting and gradually increasing electron beam smelting power to about 10 (kW), observing that after raw materials in a water-cooled copper crucible begin to melt, gradually adjusting a scanning path, and delaying the irradiation time of electron beam spots until a large-size unmelted raw material is encountered until a material block is completely melted;
(4) After the raw materials in the crucible are completely melted, refining steps are carried out: adjusting smelting power to 29 (kW), adjusting beam spot size to 50 (mm), uniformly moving the electron beam spot, refining by using an annular scanning path, wherein the area of the melt in the crucible covered by the scanning path reaches 90%, and refining time is 25 minutes;
(5) After the refining step is finished, the electron beam spot is moved to the edge area of the crucible, the smelting power and the size of the beam spot are gradually reduced to zero, the melt is gradually solidified, and finally a final solidification area enriched with inclusions is obtained;
(6) And after the furnace body electron gun chamber and the cast ingot are cooled, opening a furnace door to take out the alloy ingot in the water-cooled copper crucible, and cutting off the last solidification area and the macroscopic shrinkage hole defect at the edge to obtain the K465 equiaxed superalloy return material electron beam alloy ingot.
In the electron beam ingot of the K465 equiaxial superalloy return material provided in the embodiment, the total content of oxygen and nitrogen is reduced to 9 (ppm), and the content of inclusions in the electron beam ingot is detected to be reduced to 0.25 (cm) by adopting an electron beam button ingot method 2 And/kg), the effect of deeply removing refractory impurities is achieved.
Comparative example 1
The comparative example provides a smelting method of a K465 equiaxed superalloy return:
(1) Pretreatment of the return material: cutting an equiaxed casting superalloy K465 pouring gate, performing shot blasting on the surface, and cleaning and drying to obtain a K465 return material raw material;
(2) Adopting electron beam cold bed smelting equipment to clean the interior of a furnace body, placing the pretreated return material raw material into a water-cooled copper crucible, closing a furnace door, starting a vacuum system to preheat and vacuumize, and indicating the vacuum degree of an electron gun chamber as 9.0 multiplied by 10 -3 (Pa), the indication of the vacuum degree of the smelting furnace is 1.5X10 -2 (Pa) starting an electron gun for preheating;
(3) Starting a filament power supply of an electron gun, gradually increasing the filament voltage until a cathode reaches about 2500℃, starting and gradually increasing electron beam smelting power to about 10 (kW), observing that after raw materials in a water-cooled copper crucible begin to melt, gradually adjusting a scanning path, and delaying the irradiation time of electron beam spots until a large-size unmelted raw material is encountered until a material block is completely melted;
(4) After the raw materials in the crucible are completely melted, refining steps are carried out: adjusting smelting power to 18 (kW), adjusting beam spot size to 25 (mm), moving the electron beam spot at uniform speed, refining by using an annular scanning path, wherein the area of the scanning path covering the melt in the crucible reaches 60%, and refining time is 15 minutes;
(5) After the refining step is finished, the electron beam spot is moved to the edge area of the crucible, the smelting power and the size of the beam spot are gradually reduced to zero, the melt is gradually solidified, and finally a final solidification area enriched with inclusions is obtained;
(6) And after the furnace body electron gun chamber and the cast ingot are cooled, opening a furnace door to take out the alloy ingot in the water-cooled copper crucible, and cutting off the last solidification area and the macroscopic shrinkage hole defect at the edge to obtain the K465 equiaxed superalloy return material electron beam alloy ingot.
The oxygen content of the surface of the electron beam ingot of the K465 equiaxial superalloy return material provided by the comparative example is 6 (ppm), the oxygen content of the position of the ingot close to the crucible wall is 13 (ppm), and the inclusion content in the electron beam ingot is detected to be 0.98 (cm) by adopting an electron beam button ingot method 2 /kg). Because the smelting power is lower than 20kW, and the area of the melt is not covered by an electron beam spot scanning path in the refining process, the local superheat degree in the refining process is small, and the temperature field and the flow field generated in the melt are difficult to drive the refractory oxide and coarse carbide at the bottom of the crucible to agglomerate and float upwards, so that the residual oxide of the cast ingot near the crucible wall is more, and the effect of removing the impurities deeply cannot be achieved.
While the invention has been described in detail in the foregoing general description and specific examples, it will be apparent to those skilled in the art that modifications and improvements can be made thereto. Accordingly, such modifications or improvements may be made without departing from the spirit of the invention and are intended to be within the scope of the invention as claimed.

Claims (7)

1. The ultra-pure smelting method of K465 equiaxed superalloy return materials is characterized in that an electron beam cold bed smelting technology is adopted, denitrification is promoted by high vacuum degree in the refining process, and refractory oxide and coarse carbide clusters are gathered and floated by utilizing a flow field and a temperature field generated by local overheating of a molten pool, so that the effect of deep impurity removal of the return materials is achieved, the problems of high gas content of the return materials and poor effect of removing refractory impurities after the conventional vacuum induction remelting are solved, and the purity of the return materials reaches a new material level, and the method comprises the following steps:
s1, cutting a K465 equiaxial casting superalloy return material into a proper size, performing shot blasting treatment to remove surface pollutants, and cleaning and drying to obtain a raw material for electron beam ultrapure smelting;
s2, after the furnace body is cleaned, placing the raw material for the electron beam ultrapure smelting into a water-cooled copper crucible, closing a furnace door, starting electron beam smelting equipment to preheat and vacuumize, enabling the vacuum degree in the smelting furnace and the vacuum degree in an electron gun chamber to meet the requirements respectively, and preheating filaments of the electron gun;
s3, after the filament is heated to a certain temperature, gradually increasing electron beam smelting power, observing that raw materials in the water-cooled copper crucible begin to melt, and adjusting a scanning path to enable raw material blocks in the crucible to be completely melted;
s4, maintaining certain smelting power and beam spot size, moving the electron beam spot at a constant speed, refining the returned material in a certain scanning path, and promoting refractory inclusions and coarse carbides to gather and float to the beam spot irradiation position through a flow field stirring effect and a temperature field gradient;
s5, after the refining step is finished, the electron beam spot is close to the edge area of the crucible, the smelting power and the size of the beam spot are gradually reduced, the range of a molten pool is slowly reduced, the melt is gradually solidified, and finally, the melt is completely solidified at the stay position of the electron beam spot, so that a final solidification area enriched with inclusions is obtained;
s6, after the furnace body electron gun chamber and the cast ingot are cooled, taking out the cast ingot in the water-cooled copper crucible, and cutting off a final solidification area to obtain the ultra-pure K465 equiaxial superalloy return material electron beam alloy ingot.
2. The method of ultrapure smelting a K465 equiaxed superalloy return according to claim 1 wherein in step S4 the electron beam smelting power in the refining step is 20 to 30kW.
3. The method for ultrapure melting of K465 equiaxed superalloy returns according to claim 1 wherein in step S4 the electron beam refining time in the refining step is 20 to 30 minutes.
4. The method for ultrapure melting of K465 equiaxed superalloy returns according to claim 1 wherein in step S4 the electron beam spot diameter is in the range of 30-50 mm and the scan path is required to cover more than 80% of the melt area.
5. The method for ultrapure melting of a K465 equiaxed superalloy return as in claim 1 wherein in step S3, the filament cathode is heated to 2400-2600 ℃, the melting power is increased stepwise to 10-12 kW, the feedstock begins to melt, the scanning path is adjusted stepwise, and the electron beam spot irradiation time is suitably prolonged until the feedstock pieces are completely melted when large-size unmelted feedstock is encountered.
6. The method for ultrapure melting of K465 equiaxed superalloy returns according to claim 1 wherein in step S2 the electron beam melting equipment is turned on for preheating and evacuating, the vacuum in the melting furnace being less than 5 x 10 -2 Pa, the vacuum degree of the electron gun chamber should be less than 1×10 -2 Pa.
7. The method for ultra-pure smelting of K465 equiaxed superalloy returns according to claim 1, wherein in step S6, the specific range of the last solidification zone is cut off including the last solidification zone and the edge shrinkage defect portion thereof, and the ultra-pure K465 equiaxed superalloy returns electron beam alloy ingot is obtained after cutting off.
CN202311765287.2A 2023-12-20 2023-12-20 Ultrapure smelting method of K465 equiaxed superalloy return material Pending CN117701897A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311765287.2A CN117701897A (en) 2023-12-20 2023-12-20 Ultrapure smelting method of K465 equiaxed superalloy return material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311765287.2A CN117701897A (en) 2023-12-20 2023-12-20 Ultrapure smelting method of K465 equiaxed superalloy return material

Publications (1)

Publication Number Publication Date
CN117701897A true CN117701897A (en) 2024-03-15

Family

ID=90147727

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311765287.2A Pending CN117701897A (en) 2023-12-20 2023-12-20 Ultrapure smelting method of K465 equiaxed superalloy return material

Country Status (1)

Country Link
CN (1) CN117701897A (en)

Similar Documents

Publication Publication Date Title
US11981978B2 (en) Method for preparing high-purity nickel-based superalloy by electron beam induced refining and casting technology
CN102965529B (en) Preparation method of short-process titanium alloy Ti-Ni-Nb
CN107164639B (en) A method for preparing superalloy by electron beam cladding solidification technology
WO2022033463A1 (en) Method for removing inclusions from high-temperature alloy by electron beam overheating dissolution
CN109182843B (en) Nickel-tungsten master alloy and method for preparing nickel-tungsten master alloy by electron beam melting
CN116607028B (en) Smelting method of refractory high-entropy alloy
JP4638002B2 (en) Method and apparatus for manufacturing silicon for solar cell
CN118563052A (en) A method for improving the cleanliness of bearing steel vacuum consumable remelting ingot
CN107385244B (en) A method for preparing nickel-based superalloy with high purification by electron beam cladding induced solidification technology
CN112760508A (en) Method for continuously refining high-temperature alloy return material by using electron beams
JP4747689B2 (en) Continuous production method of copper alloy
CN112624122A (en) Method and device for preparing 6N polycrystalline silicon by refining industrial silicon through vacuum microwave
CN117845068A (en) A method for removing impurity elements from nickel-based high-temperature alloy return material by electron beam melting
CN117701897A (en) Ultrapure smelting method of K465 equiaxed superalloy return material
RU2274671C1 (en) Method of production of the carbon-free casting high-temperature alloys
JP4263366B2 (en) Method and apparatus for melting rare earth magnet scrap
CN114134356A (en) Zinc alloy production process
CN117701899A (en) Purification recovery method of DD5 single crystal casting superalloy return material
CN112210673B (en) Method for removing inclusions in high-temperature alloy through electron beam surface pyrolysis
CN115323186B (en) A process for controlling the crown height of high-temperature alloy vacuum arc remelting casting ingots
CN120536743B (en) Electron beam refining continuous casting recovery device and method for casting high-temperature alloy fine return material
CN110484742B (en) A method for preparing Fe-W master alloy with high purification by electron beam melting
CN120536744B (en) Electron beam refining coupled ceramic filtering and recycling method for casting common return materials of superalloy
CN117965927B (en) High-temperature alloy return material purifying smelting method based on hydrogen plasma blowing
CN117564231B (en) AQ80M magnesium alloy oversized ingot blank and preparation method and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination